Neural network potentials for exploring condensed phase chemical reactivity - ENS - École normale supérieure
Article Dans Une Revue Comptes Rendus. Chimie Année : 2024

Neural network potentials for exploring condensed phase chemical reactivity

Résumé

Recent advances in machine learning offer powerful tools for exploring complex reaction mechanisms in condensed phases via reactive simulations. In this tutorial review, we describe the key challenges associated with simulating reactions in condensed phases, we introduce neural network potentials and detail how they can be trained. We emphasize the importance of active learning to construct the training set, and show how these reactive force fields can be integrated with enhanced sampling techniques, including transition path sampling. We illustrate the capabilities of these new methods with a selection of applications to chemical reaction mechanisms in solution and at interfaces.
Fichier principal
Vignette du fichier
CRCHIM_2024__27_S5_A4_0.pdf (2.69 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04685806 , version 1 (03-09-2024)

Identifiants

Citer

Axel Gomez, Miguel de la Puente, Rolf David, Damien Laage. Neural network potentials for exploring condensed phase chemical reactivity. Comptes Rendus. Chimie, 2024, 27 (S5), pp.1-17. ⟨10.5802/crchim.315⟩. ⟨hal-04685806⟩
20 Consultations
13 Téléchargements

Altmetric

Partager

More