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Abstract. Recent advances in machine learning offer powerful tools for exploring complex reaction
mechanisms in condensed phases via reactive simulations. In this tutorial review, we describe the key
challenges associated with simulating reactions in condensed phases, we introduce neural network
potentials and detail how they can be trained. We emphasize the importance of active learning to con-
struct the training set, and show how these reactive force fields can be integrated with enhanced sam-
pling techniques, including transition path sampling. We illustrate the capabilities of these new meth-
ods with a selection of applications to chemical reaction mechanisms in solution and at interfaces.
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1. Introduction

The elucidation of reaction mechanisms is at the
heart of chemistry. A mechanism identifies a molec-
ular pathway involving a series of successive struc-
tures explaining the chemical reorganization caused
by a reaction. Determining the mechanism, the order
in which the elementary changes occur, and which of
them causes the rate-limiting energy barrier is essen-
tial to guide the work of chemists to control reactiv-
ity and act on it, e.g., by catalyzing a reaction step.
Organic physical chemists have achieved remarkable
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successes and determined the mechanisms of funda-
mental reactions such as nucleophilic substitutions
and Diels–Alder reactions [1–4]. This was obtained
via a combination of approaches, including for ex-
ample, linear free energy relationships, substituent
effects and isotopic effects on the rate constant [3,
4]. However, these experimental approaches provide
only an incomplete and often ambiguous description
of the mechanism. In addition, it is well appreci-
ated that reaction mechanisms as drawn in chem-
istry textbooks are largely idealized and that reac-
tions actually proceed along pathways which can sig-
nificantly deviate from these simplified representa-
tions. An in-depth determination of reaction mech-
anisms, taking into account path variability, would
therefore be desirable, but remains almost inacces-
sible experimentally.
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Numerical simulations appear as a perfectly
suited technique for the determination of reac-
tion mechanisms, since they naturally provide the
desired atomic resolution. However, simulations
face multiple challenges when it comes to modelling
chemical reactivity in condensed phases such as liq-
uids, solid/liquid and vapor/liquid interfaces, and
biochemical environments. We now describe four of
these challenges.

The first computational difficulty is that chemi-
cal reactions typically involve the breaking and mak-
ing of covalent bonds, which imply electronic struc-
ture rearrangements. The mechanical description of
molecular energies provided by classical force fields
with fixed bond patterns and fixed partial atomic
charges is therefore not adequate, and the electronic
structure should be determined along the reaction
pathway by solving (approximately) the electronic
Schrödinger equation at every step. Density func-
tional theory (DFT) is nowadays a method of choice
for chemists, since it offers an attractive balance be-
tween cost and accuracy [5].

However, a second difficulty arises from the large
size of the systems of interest. Studying chemical re-
activity typically requires very large molecular sys-
tems, since one should not only describe the reaction
partners, but also the surrounding solvent molecules
which impact the properties of the reagents. This im-
plies that systems of at least hundreds or thousands
of atoms should be included in the electronic struc-
ture calculation. While very good DFT functionals
can be used for small molecular systems (with a few
tens of atoms), larger systems induce very high com-
putational costs.

A third challenge is that reaction equilibrium con-
stants and reaction rate constants are governed by
differences in free energies, respectively between re-
actant and product and between reactant and tran-
sition state, and not by potential energies. At ambi-
ent temperature, the entropic contribution to these
free energies can thus be important, and determin-
ing these free energies requires an extensive sam-
pling of the configurational space. This therefore
imposes long (more than nanosecond-long) molecu-
lar dynamics simulations propagated with forces ob-
tained from DFT calculations. This implies that the
costly electronic structure calculations must be re-
peated millions of times. Pioneering studies using ab
initio (i.e., DFT-based) molecular dynamics [6] have

already provided valuable insight in a broad range of
chemical reaction mechanisms, showing the poten-
tial of this approach (see, e.g., Refs [7–12]). However,
they often face limitations in the system size and in
the trajectory length, and therefore in the precision
on the computed free energies. Systems of a few hun-
dreds of atoms simulated for a few hundreds of pi-
coseconds typically require millions of CPU hours on
a single computer (i.e., more than a hundred years)
and remain little practical despite the availability of
parallel computing architectures.

The accessible simulation times thus remain
much shorter than typical reaction times. It is there-
fore very unlikely that a trajectory initiated in the
reactant state will spontaneously cross the reaction
free energy barrier(s) to form the product during the
available simulation time. Elucidating the reaction
mechanism thus imposes to force the reactants to
move along the reaction coordinate. However, this
requires identifying the reaction coordinate and this
is a fourth challenge. While chemical intuition can
be used for simple reactions like acid/base proton
transfers, for complex mechanisms determining the
reaction coordinate is precisely what chemists try
to do and for which the assistance of simulations is
requested. Enhanced sampling methods have been
proposed to identify pathways on complex energy
surfaces [13–17], but they require extensive simula-
tions, and have so far been mostly used with classical
force field descriptions of the energies and forces
(e.g., for protein folding) and very little for chemical
reactions because of their prohibitive computational
cost.

Recent developments in machine learning now
provide a solution to all these challenges [18–20].
Among the many machine learning approaches that
have been applied to interatomic potentials, deep
neural networks have been particularly success-
ful [18–20]. In this paper, we describe how these
recent developments now allow training neural net-
works which provide the energies and forces tradi-
tionally obtained from an expensive resolution of the
Schrödinger equation, and how they can be com-
bined with enhanced sampling methods to deter-
mine the mechanisms of complex reactions in con-
densed phases. We introduce the structure of neural
network potentials in Section 2, then we describe
how they are trained in Section 3, and present appli-
cations to chemical reactions in Section 4. We finally
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offer some concluding remarks in Section 5. We em-
phasize that our goal is to provide a tutorial review
and we will often direct the reader to excellent, more
specialized reviews on the specific aspects that will
be discussed.

2. Neural network potentials

As described in the introduction, the first challenge
in performing molecular simulations of a reactive
system is to obtain the energies and forces. This can
be done either “on-the-fly” or a priori.

In Born–Oppenheimer ab initio molecular dy-
namics [9,21], the Schrödinger equation is solved
“on-the-fly” for the valence electrons at a given elec-
tronic structure level (typically DFT) to obtain the
forces on the ions (formed by the nuclei and core
electrons) in a given configuration and to propagate
the trajectory to the next step. One advantage is that
forces are only determined for configurations which
are visited by the trajectory. However, a limitation is
that forces must be evaluated at every step of the sim-
ulation, and the resulting computational cost has so
far limited the size of the systems and the length of
the trajectories. Reactive extensions of classical force
fields [22,23] have also been used: because they are
parametrized to describe some pre-defined chemi-
cal reaction, they do not require expensive electronic
structure calculations. While these approaches have
been successful for some combustion reactions and
enzymatic reactions, they remain less accurate than
ab initio approaches and can exhibit parameteriza-
tion biases.

Another approach for the calculation of forces and
energies relies on the a priori calculation and fitting
of the potential energy surface (PES) on which the
system is evolving. While this approach has been
successfully used for gas phase reactions and spec-
troscopy [24], it was for some time limited to small
systems, due to the complexity of fitting a highly mul-
tidimensional PES. However, the idea of fitting the
PES of a molecular system around a reduced num-
ber of configurations of known energy (computed at
the given reference level of theory) to gain access
to entire regions of the PES with a reduced compu-
tational cost but comparable accuracy has known a
growing interest for several decades [18,25–28]. The
mapping of atomic configurations to the PES was ini-
tially performed through analytical functions [24,25],

but this approach was limited to low dimensional-
ity problems. Modern machine learning (ML) tech-
niques are ideal tools to perform these mappings
in more complex situations, and have been used
since the early 2000s in the context of computational
chemistry [18,27]. Two very successful ML tools
to fit high-dimensional PES of molecular systems
in the condensed phase are kernel-based regression
methods (including, e.g., (symmetric) Gradient Do-
main ML [29,30] and Gaussian Approximation Po-
tentials [31]) and neural network (NN) based meth-
ods [18,28,32–35]. The advantages and limitations
of each family of methods have been discussed in
great detail in excellent reviews [19,36]. Very briefly,
the choice of a given method typically depends on
the systems and objectives of the study. Kernel-
based regression methods present a series of advan-
tages: they tend to outperform NN-based methods in
the low-data regime and the lower architecture com-
plexity makes them more easily interpretable (no-
ticeably, Gaussian Approximation Potentials [31] are
able to provide analytical uncertainties on predicted
quantities). However, NN-based methods are gener-
ally more efficient in the high-data regime and tend
to present higher prediction efficiencies and scaling
with, e.g., system size and number of chemical ele-
ments.

Here we focus on the applications of NN-based
techniques to chemical reactivity in the condensed
phase. Several approaches have been proposed, in-
cluding, e.g., the SchNet architecture [34], ANI [37],
and the DeepPot-SE scheme [20,32,33]. Most of them
rely on the High-Dimensional NN (HDNN) concept
introduced by Behler and Parrinello [18]. HDNN
provides an elegant solution to one of the main dif-
ficulties in mapping the nuclear configurations of
atoms to the PES with NN. In earlier implementa-
tions, because many of the PES symmetries (e.g.,
invariance upon translation, rotation, permutation
of identical atomic species) were not directly en-
coded in the usual representations of configurations
via Cartesian or internal coordinates, these invari-
ances had to be learned directly by the NN [26]
which limited their accuracy and scalability with sys-
tem size. In HDNN, the total energy of the sys-
tem is decomposed into atomic contributions E =∑

i∈atoms Ei , which are predicted by a single NN per
atomic species. This decomposition makes the en-
ergy invariant upon permutation of the coordinates
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Figure 1. Schematic representation of a NNP workflow to map the atomic configurations of a system to
the PES. In a given configuration, a local environment matrix is defined for every atom Ri : the latter
contains the chemical element and the positions in the atomic frame of reference of every neighboring
atoms within a given cutoff distance. These local environments are transformed (either manually or
through the use of embedding NN) into descriptor vectors Di , which preserve the invariances of the PES.
These descriptors are then transformed into atomic energies Ei by fitting NN (one per type of atomic
species), which yield the configuration energy E({⃗ri }) after summation. This energy can be analytically
differentiated to obtain the atomic forces F⃗i needed to propagate MD. The prediction error on both of
these quantities is used to adjust the parameters of the fitting (and, if needed, those of the embedding)
network during backpropagation.

of identical atomic species and provides a NN poten-
tial (NNP) model (the set of NN for each individual
species) that can in principle be used to study sys-
tems with an arbitrary number of atoms. The other
invariances of the PES can then be either learned di-
rectly from the nuclear positions (generally in the lo-
cal frames of reference of every atom) in what are
sometimes called end-to-end NNPs [33], or encoded
in human-designed descriptors of the atomic con-
figurations including, e.g., symmetry functions [38].
This total energy decomposition assumes that the
atomic energy depends only the atomic environment
within a finite range, but long-range effects impor-
tant for, e.g., electrostatics can be considered sepa-
rately and we will return to this point at the end of this
section. The general workflow of a NNP for the pre-
diction of molecular energies and forces is presented
in Figure 1.

In the following, we focus on the implementa-
tion of end-to-end NNPs provided in the Deep Po-
tential - Smooth Edition (DeepPot-SE) model [33],
within the DeePMD-kit package [20,32]. This choice
is motivated by the successful applications of this
approach to chemical reactions recently obtained in
our group [39–41] and because it presents a good

trade-off between prediction accuracy and compu-
tational efficiency [42]. However our discussion
remains general since our conclusions could have
been obtained with other families of end-to-end
NNPs. This model has been presented in detail else-
where [20,33], and here we only summarize its most
important features, some of which are shared with
other NNP families. The philosophy of the DeepPot-
SE scheme is to limit human intervention as much as
possible in the construction of the PES model. The
complex relation between the local atomic environ-
ment and the energy is therefore learned through
intermediary embedding NNs that map the coordi-
nates of the system onto non-linear descriptors, pro-
duced as the output layer of the embedding NN.
These descriptors are then provided as inputs to the
fitting NNs that predict the atomic energies (see Fig-
ure 1). In order to minimize the amount of in-
formation that needs to be learned by the NNPs,
the descriptors of every atom are usually built by
the embedding NNs from the positions of the other
atoms within its local frame of reference (which is
already a translationally invariant representation).
Furthermore, because the energy of a given atom is
mostly determined by its local environment, only the
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coordinates of atoms within a given cutoff distance
(typically 6 Å) are used as input of the embedding NN.
While this is an approximation to which we will re-
turn, this has the key advantage of limiting the com-
putational cost and ensuring that the model can be
used for systems of arbitrarily large sizes.

The parameters of both NNs (called weights and
biases) are simultaneously optimized during the
training process: this consists in the minimization
of the following loss function L defined as the sum of
mean square errors (MSE) of the NNP predictions on
several target quantities:

L(pE , p f ) = pE

N
∆E 2 + p f

3N

∑
i
|∆Fi |2 (1)

N is the number of atoms in the system and ∆E 2

and |∆Fi |2 are the MSE on the energy and on the
atomic forces. An additional term involving the sys-
tem virial can be introduced in the loss function, and
is typically employed for solid state systems. Since
in practice it has little impact for reactive models in
the liquid phase we remove it here for clarity rea-
sons. The prefactors pE and p f determine the rela-
tive importance of each target quantity; they are cho-
sen by the user and typically evolve during the min-
imization procedure following the adaptive learn-
ing rate [43]. During this minimization, the MSE
are computed from the differences between the tar-
get quantity predicted by the NNP and the refer-
ence value for a random subsample of configura-
tions (often called a batch) and the weights and bi-
ases of both NNs are modified by backpropagation.
The atomic forces are computed by differentiation of
the predicted total energy with respect to the atomic
coordinates, which imposes that this quantity vary
smoothly enough to always be differentiable. This
is enforced in the Smooth-Edition scheme by apply-
ing weighting functions (e.g., cosine [32] or polyno-
mial [20] functions) to the radial components of the
local atomic coordinates that are used to build the
descriptors in the embedding step.

In practice, despite the end-to-end philosophy of
the DeepPot-SE scheme, many hyperparameters of
the model need to be chosen by the user. These
include, e.g., the number of layers and neurons of
both NN, the prefactors of the target quantities in the
loss function, the batch size, and the total number
of training iterations. Systematic grid search proce-
dures can be used to determine these hyperparame-

ters. However, this can require large amounts of val-
idation data. Fortunately, the NNPs performances
have been found to remain robust over a reasonable
range of these hyperparameters. This implies that it
is often possible to use similar sets of hyperparame-
ters for training NNPs on different chemical systems.

We quickly present typical sets of hyperparame-
ters that we have successfully used in our group to
train NNPs for reactive systems in the liquid phase.
For the NN architectures, three hidden layers of some
tens of neurons for the embedding network and
four hidden layers of some hundreds of neurons for
the fitting network are enough to yield NNPs of the
same quality as that obtained with larger architec-
tures which induce larger computational costs. For
the prefactors of the loss function components, we
have found that using a much larger prefactor for the
atomic forces than for the energies at the beginning
of the training procedure typically yields NNPs that
are more stable during the MD simulations. We typ-
ically employ p f and pE prefactors that range from
approximately 1000 and 0.01 respectively at the be-
ginning of the training procedure to 1 and 0.1–1 at
the end. The total number of training iterations can
be set between some hundreds of thousands to some
millions depending on the training set size (the num-
ber of reference configurations used for the training)
and batch sizes below 5 all give comparable NNPs.
Finally, the learning rate used for the parameter op-
timization is adapted during the training procedure
and we have found that limiting values of 1×10−3 and
1×10−8 at the beginning and at the end of the train-
ing procedure give satisfactory results.

As described above, the DeepPot-SE scheme cor-
responds to what are sometimes called “second gen-
eration” NNPs [36], which currently are the most
commonly used NNPs to study reactivity in the liq-
uid phase. The main limitation of this NNP gener-
ation is the absence of explicit long-range effects in
the construction of the descriptors, which can lead
to unphysical behaviors in situations where these ef-
fects can significantly affect the energy of a configu-
ration (most noticeably at interfaces in the presence
of charges). However, we stress that long-range in-
teractions are present in the reference energies and
forces used for the training, and are therefore de-
scribed in a mean-field manner. Adding configura-
tions with long-range interactions to the training set
can be enough to correctly reproduce the physics of
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such systems, as these long-range effects can be in-
directly learned by the NNs [44]. Long-range effects
can also be explicitly included in the NNP description
of the system in what are called “third generation”
NNPs [36] (which have been implemented with the
DeepPot-SE model in the DeePMD-kit package [45]).
However, these have so far had limited applications
to realistic reactive systems and we will therefore fo-
cus on examples of applications of the “second gen-
eration” DeepPot-SE models.

3. Training set construction

Neural network potentials exhibit high accuracy in
predicting energies and forces for configurations
closely resembling those in their training set. How-
ever, deviations from these trained configurations
lead to a rapid deterioration in the prediction ac-
curacy of the neural network model—a challenge
known as generalization performance [43]. The care-
ful selection of configurations to be included in the
training set is therefore critical in determining the
quality of the NNP. This section outlines system-
atic approaches aimed at enhancing the accuracy of
NNP for structures encountered in chemical reac-
tions, with a specific focus on active learning proce-
dures that iteratively refine NNP accuracy.

Identifying and generating relevant chemical
structures for the training set is a formidable task,
due to the overwhelming dimensionality of the
chemical space. Several approaches can be followed.
The first one is that adopted by several on-going
efforts to generate general-purpose NNPs aimed at
providing a universal force-field [37]. The training
sets of these NNPs are typically parts of existing
very large structure datasets of realistic synthesiz-
able molecules. One such example is the publicly
available GDB-11 dataset [46], which contains all
molecules made of up to 11 atoms of carbon, nitro-
gen, oxygen or fluorine and includes 26.4 million dis-
tinct structures. However, this approach is not prac-
tical for reactivity in condensed phase for two main
reasons. The first one is that solvent arrangements
need to be included in the configurations, which con-
siderably increases the possibilities to be considered.
Different strategies have been proposed to overcome
this limitation and generalize NNPs trained on small
systems to be transferable to larger molecular sys-
tems, including the condensed phase [47–49]. For

example, in the same fashion as hybrid QM/MM
techniques, hybrid NNP and molecular mechanics
(NNP/MM) simulations are being developed to treat
a solute by machine learning models while the sol-
vent is described with a classical force-field [50,51].
However, these setups cannot easily describe reac-
tions that involve solvent molecules. The second
very important difficulty arises because the study of
chemical reactivity requires to include high-energy
transition-state geometries, which are not present in
databases of stable structures.

Simulating chemical reactions in condensed
phases therefore requires the specific training of
the NNP on configurations that are representative
of the region of phase space explored during the re-
action. The training set should contain all kinds of
structures that will be encountered during the reac-
tive simulations, including typical configurations of
the reactants, transition states and products, but also
intermediate structures visited along the reaction
coordinate.

The a priori identification of all relevant configu-
rations to be included in the training set, e.g., from an
ab initio MD simulation, is usually not possible. One
therefore uses an iterative approach to progressively
enrich the training set and systematically improve its
prediction accuracy. Such an approach was for ex-
ample implemented in the deep potential generator
(DP-GEN) [52].

We now describe this active learning strategy com-
bined with a query by committee [53] estimation of
the NNP quality. As described in Figure 2A, one starts
from a small training set including configurations
that are representative of limited regions of the phase
space, typically stable reactant configurations easily
sampled in short DFT-based MD simulations. A few
hundreds of configurations with energies and forces
at a selected reference level of theory (DFT with a hy-
brid functional, for example) typically constitutes a
valid initial training set. Here it is important to se-
lect uncorrelated structures in order to maximize the
amount of information present in the dataset. Based
on this initial set of configurations, a first approxi-
mate NNP can be trained.

The next step is to discriminate between configu-
rations whose forces and energies are properly pre-
dicted by the NNP and configurations which are un-
known and poorly described. Contrasting the NNP
prediction with reference DFT calculations would be
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Figure 2. Concurrent learning scheme. (A) Iterative exploration of the phase space until convergence.
The relevant region of phase space for the chemical reaction of interest is in dark gray. The black lines
represent schematically a free energy surface. The part of configurational space known to the NNPs at
each iteration is in green, the intermediate region that provides new structures to be added to the training
set is in yellow. The red area corresponds to regions where the NNPs extrapolate significantly but that may
be accessible during the exploration phase. (B) Training set construction algorithm. (C) NNPs committee
evaluation test. The number of candidates, i.e. configurations selected to be labeled and added to the
training set, decreases over iterations. A threshold value can be decided as an interruption criterion.
(D) Correlation between the NNP predictions and the reference calculations, for example for energies or
forces. (E) Schematic representation of a learning curve where the error on the training set and the test
set are represented as a function of the number of data used for training.

extremely expensive. One therefore uses the query
by committee approach [53] to estimate the qual-
ity of the prediction provided by the NNP. Several
distinct NNPs are trained on the same training set
but initialized with different random parameters. Af-
ter training, their predictions all converge to a sim-
ilar answer in regions where they are properly opti-
mized, but significantly differ for configurations far
from these in the training set. This deviation be-
tween NN predictions is therefore exploited to iden-
tify which configurations are already known by the
NNP model and which ones are unknown and should
be added to the training set. In our studies, three
or more NNP models are typically trained on the
same training set at each step of the iterative training
procedure.

An additional advantage of this concurrent learn-
ing approach is that it greatly mitigates the risk of in-
stabilities recently found [42] for models trained with
different approaches and for which the average val-
ues of different observables (including, e.g., radial
distribution functions) fluctuate unphysically during
the molecular dynamics trajectory. The iterative na-
ture of the training set construction, guided by col-
lective variables based on chemical knowledge, en-
sures that the chemical space accessible to the sys-
tem is sampled systematically, which greatly reduces
the risks of encountering configurations leading to
instabilities during production. Furthermore, moni-
toring the deviation between the committee of NNPs
during the molecular dynamics trajectory allows an
“on-the-fly” detection of these instabilities, which
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might not be directly detectable from the model per-
formance over a possibly incomplete test set.

At each iteration of the active learning, the en-
semble of NNPs is then used to propagate short MD
trajectories. The goal is to explore the phase space
around the region of the training set, in order to
identify configurations where the NNP prediction is
poor and which should thus be added to the train-
ing set. The maximal deviation on the atomic forces
computed by all models serves as a proxy to mea-
sure whether the configurations are already known or
should be added to the training set to improve it. MD
configurations that are very similar to a subset of the
training set will exhibit a low maximal deviation on
forces, typically of the order (or below) of 0.1 eV·Å−1.
Frames containing new structures will be associated
to a large maximal deviation on forces. New configu-
rations to be added to the training set are usually se-
lected at the border between the region already in-
cluded in the training set (Figure 2A, green region)
and the unknown (see Figure 2A, yellow region). This
corresponds to intermediate values of maximal devi-
ation on forces, typically between 0.1 and 0.8 eV·Å−1.
In this region, the NNP model is not accurate but it
does not completely fail or break. In the red area
of Figure 2A, the committee of NNPs gives a very
large maximal deviation. This corresponds to con-
figurations that, although accessed during the ex-
ploration phase, might be highly non-physical and
where the NNPs cannot be trusted at all. The new
structures with intermediate deviations, called can-
didates, are usually sub-sampled to ensure a proper
decorrelation, before being labeled at the same refer-
ence level as the training set and added to it. The im-
proved dataset is used for training new NNP models
for the next iteration of the procedure (Figure 2B). As
illustrated schematically in Figure 2A, each iteration
pushes further the limits of the region of configura-
tional space that is properly described by the NNP.

A key feature of the training set is that it should
cover all the structures to be visited during the sub-
sequent simulations. For chemical reactions, this im-
plies that unbiased MD simulations during the active
learning iterations are not adequate. Typical barri-
ers between the reactant and product basins are sig-
nificantly larger than the thermal energy kBT , where
kB is the Boltzmann constant and T the temperature,
and the transition state region will not be explored
spontaneously. The active learning explorations are

therefore performed with enhanced sampling tech-
niques, including, e.g., metadynamics [13], on-the-
fly probability enhanced sampling (OPES) [17] or
umbrella sampling [54], or at elevated temperatures
to enhance the sampling. The choice of the en-
hanced sampling technique—and of the relevant col-
lective variables when applicable—is crucial for an
efficient exploration step for cases where the free en-
ergy landscape features larger than thermal energy
barriers. In addition, if the NNP is developed for
path integral MD (PIMD) [55,56] simulations for an
explicit description of nuclear quantum effects, the
training set should include typical configurations of
the path integral beads, since such simulations eval-
uate the forces on the beads. Alternatively, nuclear
quantum effects can also be learned directly in the
framework of machine-learned centroid molecular
dynamics schemes [57].

The iterative enrichment of the training set is
stopped when the quality of the NNP is considered to
have converged. The number of configurations that
are retained to be labeled and added to the training
set after an exploration phase is a good indicator of
the convergence. If less than a user-specified num-
ber of structures are pointed out by the committee of
neural networks, then it can be assumed to be con-
verged (Figure 2C). A converged concurrent learning
process can generate thousands or tens of thousands
configurations for the training set, depending on the
chemical complexity of the system.

One should then validate the quality of the NNP.
There is no absolute condition to assess the reliability
of the optimized NNP but a collection of metrics that
confirm the quality of the model is usually deemed
satisfactory [58]. The NNP validation is assessed on
an independent test set of configurations. The latter
includes configurations sampled within the region of
configurational space of interest and whose energies
and forces are labeled at the reference level of theory.
This validation set is a separate dataset that is not in-
cluded in the training set. The NNPs are used to pre-
dict energy and forces of the configurations in the test
set and the predictions are compared with the ref-
erence values (Figure 2D). The correlation is consid-
ered to be acceptable when the average prediction er-
rors on forces are typically below 0.1 eV·Å−1. This is
complemented by the analysis of the learning curve,
which represents a measure of the relative error, e.g.,
the root-mean squared NNP error on the energy or
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on the forces divided by the standard deviation of
the reference data, both on the training set and on
the independent test set as a function of the size of
the training set used (Figure 2E). For small training
sets, prediction errors are typically much lower on
known configurations (included in the training set)
than on unknown ones (such as those in test sets),
which is known as overfitting [36]. This difference of
performance usually results from an imbalance be-
tween the model complexity (featuring too many op-
timizable parameters) and the amount of informa-
tion present in the training set. It can thus be mon-
itored while the training set size increases by com-
paring the prediction errors over the training set and
over an independent test set. As the amount and di-
versity of data included in the training set increase,
the gap between the prediction errors on training and
test sets should decrease (see Figure 2E). This is typi-
cally referred to as a decrease in overfitting or, equiv-
alently, an improvement of the generalization perfor-
mance of the model.

Practically, the concurrent learning procedure de-
picted in Figure 2B is performed via a combina-
tion of software: one to train the NNP, for example
DeePMD-kit [32], a MD engine interfaced with the
NNP software to propagate MD simulations, which
can be LAMMPS [59] for classical nuclei MD simula-
tions or i-PI [60] for PIMD, optionally coupled with
PLUMED [61] for enhanced sampling, and an elec-
tronic structure code for energy and forces calcu-
lation at the chosen reference level of theory, e.g.,
CP2K [62]. A series of scripts are needed to prepare
the files and extract the configurations to be added
to the training set. For some simple applications,
this procedure has been implemented in the DP-GEN
software [63]. For more complex reactions which
require, e.g., several enhanced sampling techniques
or the explicit consideration of nuclear quantum ef-
fects, we have developed our own suite of scripts
(https://github.com/arcann-chem/).

4. Applications of NNP for reactivity

4.1. Brief overview of recent applications

The application of NNPs to chemical reactivity in
solution and in materials is expanding extremely
rapidly. For example, they have been successfully
used to study proton transfer reactions, including

water self-dissociation in the bulk [64] and at the
air–water interface [40] and proton transport in
porous materials [65]. NNPs have also been applied
to heterogeneous catalysis reactions, including water
dissociation on TiO2 surfaces [66–69] and ammonia
decomposition [70]. They have been used to investi-
gate the mechanisms of chemical reactions, such as
Diels–Alder cycloadditions [71], prebiotic amino acid
synthesis [72], urea decomposition [73], and different
reactions relevant to atmospheric chemistry [74,75].
They have even been extended to the very complex
reaction schemes involved in combustion [76,77].
While we cannot provide a comprehensive review of
these applications, in the following we illustrate the
capabilities and limitations of this method for a num-
ber of reactions that have been studied in our group.

4.2. Application to a simple reaction

We first describe how NNPs have been applied to
study the dissociation of formic acid in water and
at the air–water interface [39]. Extensive experimen-
tal and simulation studies had concluded that sim-
ple acids including formic acid experience a change
in their acidity between the bulk solution and the
air–water interface. This question attracted an im-
portant interest because of the major implications
for the description of chemical reactions at the sur-
face of atmospheric aerosols. However, both exper-
iments and simulations led to contrasted results, re-
porting both acidity enhancement and reduction for
the same acid, depending on the technique being
used.

For simulation studies, the challenge is twofold.
First, the simulations have to be able to describe the
dissociation reaction, so that DFT-based molecular
dynamics simulations would be typically used. Sec-
ond, in order for the comparison between the acid-
ity in the bulk and at the surface to be conclusive,
the uncertainties on the acid dissociation free ener-
gies should be much smaller than the difference be-
tween the dissociation free energies in the bulk and at
the water-interface. This requires the careful conver-
gence of these calculations, and therefore long sim-
ulations. However, the computational cost of DFT-
based simulations typically imposes strong limita-
tions on the trajectory length, and thus on the pre-
cision of the calculated free energy difference.

https://github.com/arcann-chem/
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Figure 3. Formic acid dissociation free energy
profile in the bulk (blue) and at the air–water
interface (red) along the hydrogen coordina-
tion number around the acidic oxygen atom of
formic acid [39].

We therefore trained a NNP to describe the dis-
sociation of formic acid both in the bulk and at the
air–water interface, at the BLYP-D3 level of theory.
The training set was constructed iteratively as de-
scribed above and includes both bulk and interface
environments, and configurations at different stages
of the dissociation reaction. Here the reaction mech-
anism is known and can be described with a simple
reaction coordinate, that we chose to be the hydro-
gen coordination number around the acidic oxygen
atom of formic acid, which decreases from 1 in the
acidic form to 0 in the conjugate base formate ion.
Biased sampling along this coordinate was used to
generate training set configurations. We note that
while the NNP does not include long-range interac-
tions because of its short-range cutoff, long-range in-
teractions are accounted for in the reference ener-
gies and forces calculated for the training set con-
figurations, so that long-range interactions between
charged species for example are described by the
NNP in a mean-field manner.

Typical dissociation reaction free energy profiles
are shown in Figure 3 in the bulk and at the air–water
interface. The thickness of each curve reports the
95% confidence interval on the free energy, which
shows the excellent convergence provided by our
long simulations. These calculations could unam-
biguously reveal that formic acid dissociation is less

favorable at the air–water interface than in the bulk,
in agreement with vibrational sum frequency gen-
eration spectroscopy and with X-ray photoemission
spectroscopy [39]. We could then use these dis-
sociation free energy profiles as the starting point
of a model to predict the dissociation free energy
based on the respective solvation free energies of
the reaction partners (formic acid and water reac-
tants, formate ion and hydronium products). This
approach was also extended to the dissociation of
the strong inorganic nitric acid in the bulk and at the
interface [39]. In a subsequent study, we followed
a similar approach to study the self-dissociation of
water which governs the pH of neat water, and we
showed how it is affected at the air–water interface,
and how this determines the pH of small aqueous
aerosols [40].

4.3. Application to a more complex reaction

While the aforementioned examples highlight the
potential of NNPs to study chemical reactivity in
the bulk and at interfaces, the cases described so
far involve simple single-step reactions, with a well-
defined reaction coordinate. However, many reac-
tions of interest are far more complex. They can in-
volve multiple intermediates and transition states, a
series of concerted or sequential steps, and several
competing pathways leading to the same or to dif-
ferent products. Well-known examples of such im-
portant but complex reactions are the Wittig reac-
tion, the aldol condensation, and the Michael ad-
dition, for which changing the conditions can lead
to different products, and the SN Ar reactions and
amine protection–deprotection reactions which in-
volve multiple steps [78].

The importance of the proper identification of the
reaction coordinate is illustrated by the model free
energy surface in Figure 4A. For the reaction trans-
forming the reactant A into the product B, two tran-
sition states TS1 and TS2 are revealed when the free
energy surface is represented along the two collective
variables (CV1 and CV2). However, if the CV2 coordi-
nate is ignored, these two pathways cannot be dis-
tinguished and the two transition states will appear
as a single saddle point in the one-dimensional pro-
file along CV1 (Figure 4B). If the two transition state
structures have different entropic properties, they
will be affected differently by temperature, changing
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Figure 4. (A) Model free energy surface along CV1 and CV2. The gray square represents the two minima
(A and B). The two minimum free energy profiles are represented with black and white solid lines. The
two transition states are represented by a black triangle and a white square. The path ensembles are
represented by the blue and green lines. (B) Free energy profiles of the same model free energy surface
represented along the s reaction coordinate for both the blue and green paths and along CV1 when CV2
is not considered explicitly (dashes). (C) Scheme of a shooting move in Transition Path Sampling, with
the initial path (solid gray line), the shooting point (purple circle), the new path (dashes for the forward
time propagation and dots for the backward time propagation).

the relative importance of the two pathways, and this
could not be understood by considering the profile
along CV1 only. In addition, a proper sampling of the
two transition state structures is likely difficult if the
CV2 coordinate is not considered explicitly.

A number of methods have been proposed to
identify reaction pathways on complex energy sur-
faces. When a very limited number of coordinates
is to be considered, traditional multidimensional free
energy surface calculations using umbrella sampling
or metadynamics can be used, and the pathway can
be determined a posteriori. When a larger num-
ber of coordinates is involved, these methods be-
come impractical because of the necessary compu-
tational effort, and other methods which do not re-
quire computing the full dimensional free energy hy-
persurface have been proposed. An attractive ap-
proach is provided by the adaptive string method
(ASM) [79] which focuses on the minimal free energy
path (MFP) and determines the free energy surface
only in the vicinity of the reaction path. Based on
the string method [80], this method considers a string

that spans from A to B. This string is then optimized
iteratively, moving on the free energy surface towards
the MFP. When convergence is reached, the string
is then used to identify the path collective variables
(parallel s and transverse z) [81] corresponding to the
MFP, to determine the reaction pathway, and to cal-
culate the free energy profile with the reaction transi-
tion states and intermediates. While this method can
consider a large number of collective variables (typ-
ically from 2 to 10), it remains critical for the qual-
ity of the final result to include all relevant coordi-
nates. Considering the model surface in Figure 4A,
both CV1 and CV2 should be considered to identify
the two pathways, and a string defined with CV1 but
not CV2 would probably only identify the blue reac-
tion path.

It is therefore interesting to consider other meth-
ods which do not require any a priori selection of
coordinates in the generation of reaction pathways.
One such very popular method is transition path
sampling (TPS) [14,15,82–84]. TPS only requires a
set of conditions that define the starting state A and
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the ending state B, together with one pathway con-
necting A and B. The latter does not need to be the
minimum free energy path, and it is typically gener-
ated by high temperature or biased simulations. Us-
ing a Monte Carlo approach, TPS then iteratively gen-
erates the statistical ensemble of pathways connect-
ing A and B. TPS is described in detail in excellent re-
views [14,15,84,85] and we only summarize its sim-
plest form. The initial path (X (o)) is discretized in L
snapshots, xi , with 0 ≤ i < L. One snapshot x(o)

τ is se-
lected, and a shooting move is performed by propa-
gating a new trajectory forward and backward in time
from this snapshot. One considers if this new tra-
jectory connects A and B, and it is accepted accord-
ing to a Metropolis criterion. One then performs an-
other iteration, selecting a snapshot either from the
new path (X (n)) if it has been accepted or from the
old path (X (o)) if it has been rejected, until an ad-
equate number of decorrelated paths are obtained.
TPS has been further extended to more complex sit-
uations [85–89]. TPS therefore provides the ensem-
ble of reaction pathways, with the important advan-
tage that they are generated from unbiased trajec-
tories and thus with the true dynamics. The transi-
tion path ensemble can then be a posteriori projected
on a selection of collective variables (CVs) to identify
the most relevant ones and define a simplified reac-
tion coordinate (but this choice does not affect the
transition path generation). It can further be used
for a committor analysis, to identify the transition
state location, and the ensemble of pathways can be
used to determine the free energy profile [90]. We
note that other related techniques including transi-
tion interface sampling [91,92] and forward flux sam-
pling [93,94] are also available to explore the free en-
ergy landscape (see, e.g., the review in [95]).

TPS has been extensively used for biophysical
phenomena occurring on rough free energy surfaces,
including protein folding, but it remains a computa-
tionally demanding technique due to the very large
number of trajectories required. While TPS has been
successfully applied to some chemical reactions [96–
98], the cost of propagating these many trajectories
with a description that accounts for chemical reac-
tions, i.e., typically DFT-based MD, has so far hin-
dered its broad application to reactivity.

Combining TPS and NNP therefore provides a
promising approach to explore chemical reactivity in
complex systems. In the following, we describe a

study performed in the group [41] where we used the
TPS implementation of OpenPathSampling [99,100]
together with the OpenMM [51] MD engine inter-
faced with DeePMD-kit [20,32] and the biased sam-
pling tools provided by PLUMED [61].

We present the application of this method to study
the formation of a peptide bond. The condensation
of an amine and a carboxylic acid to yield an amide is
a key step in the formation of polypeptides, since the
latter are polymers of amino acids linked together by
peptide bonds. In addition, amide formation is one
of the most common reactions in organic synthesis.
In bulk aqueous solution, this reaction is extremely
unfavorable. In living organisms, it is catalyzed by
enzymes and in organic synthesis it is typically per-
formed after activating the reactants, for example by
replacing the carboxylic acid with an acyl chloride or
an acyl anhydride. Understanding the mechanism of
this reaction is therefore of great interest for organic
synthesis, but also in the context of prebiotic chem-
istry.

The reaction involves several rearrangements: the
formation of the C–N bond, the breaking of the C–
O bond, and at least two proton transfers (see Fig-
ure 5). The sequence of these steps is not clear, and
it has been a subject of debate since a mechanism
(see Figure 5A) was proposed by Jencks in the late
sixties [101,102]. The mechanism is considered to
start with the formation of the C–N bond, yielding
a tetrahedral species (T ±) which has been proposed
as either a long-lived intermediate or a short-lived
transient structure [101–104], followed by the cleav-
age of the C–O bond. Numerous theoretical studies
have been published on this reaction, using a vari-
ety of methods ranging from gas-phase DFT calcula-
tions to QM/MM simulations, in order to investigate
the mechanism and the role of the solvent [103–108].

We first describe the training of the NNP. Follow-
ing the active learning approach described above,
we have constructed our training set iteratively, with
reference energy and force calculations performed
at the DFT-GGA level of theory (BLYP-D3). The fi-
nal training set contains an ensemble of approx-
imately 75,000 diverse configurations encompass-
ing reactants, products, intermediates, and transi-
tion states, all solvated in a cubic box with 300 wa-
ter molecules [41]. These reactive structures were
sampled via enhanced sampling using multiple col-
lective variables to describe the reaction, including
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Figure 5. (A) The amide formation mechanism proposed by Jencks for the aminolysis of acetate ester
(with the nucleophilic amine in olive and the leaving group in violet). (B) The two pathways for peptide
bond formation identified in our calculations: the general-base catalysis mechanism similar to Jencks’
proposal (path 1) and mechanism with no acid-base catalysis which is the most favorable one in pH-
neutral conditions (path 2). The same color code is used for the reacting groups as in (A). (C) Transition
path ensemble probability obtained from our TPS results for the peptide bond formation as a function
of three CVs, respectively the ∆d = dCO − dCN difference of bond lengths, and the CO,N hydrogen
coordination numbers around O and N where the path 1 is represented in blue and path 2 in green.
(D) Free energy profiles for the two pathways obtained by umbrella sampling along the path collective
variable of each mechanism, represented with the same color code as in (C).
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∆d = dCO −dCN, the difference in the lengths of the
forming C–N bond (dCN) and of the breaking C–O
bond (dCO), and ∆C = CN −CO, the difference in co-
ordination numbers between the nucleophilic amine
nitrogen and the leaving group oxygen with any hy-
drogen atom, which are “chemically intuitive” vari-
ables. Several additional collective variables, such as
the protonation states of the solvent, were also used
to ensure an even training of the NNP on all mecha-
nisms proposed in the literature.

After the NNP was trained, TPS was used to gen-
erate the transition path ensemble and to determine
the reaction pathway, without any variable-induced
bias. The ensemble of reactive trajectories consists of
more than 50,000 trajectories, for a total of ≈0.5 µs.
These trajectories were then projected along several
CVs to visualize the most probable “reaction tubes”.
The results in Figure 5C revealed two very distinct
pathways [41]. The relevant CVs were the difference
between the formed and cleaved bond lengths ∆d ,
the CN labile hydrogen coordination of the nucle-
ophilic nitrogen (of the attacking amine) and the CO

labile hydrogen coordination of the oxygen of the es-
ter. We subsequently constructed a path-collective
variable based on these four coordinates (dCN, dCO,
CN and CO) for each of the two paths, and we deter-
mined the free energy profile along each pathway us-
ing umbrella sampling (Figure 5D).

The first mechanism (Path 1, Figure 5B) starts with
the nucleophilic attack of the amine, forming a tran-
sient tetrahedral species (T ±), followed by the trans-
fer of a proton from the amine to the solvent, thereby
forming the transition state (T −) and H3O+. The suc-
cession of these two steps is the rate-limiting step
of this mechanism. The reaction then evolves bar-
rierlessly with the departure of the leaving group
and its subsequent protonation by H3O+, leading to
the formation of the products. This general base-
catalyzed mechanism resembles the mechanism pre-
viously proposed by Jencks [101,102], with the no-
table difference that both tetrahedral species T ± and
T − are not long-lived intermediates. However, our
calculations revealed that it is not the most favorable
under neutral pH conditions.

The second mechanism (Path 2, Figure 5B), pre-
viously unreported, was found to be the most favor-
able at neutral pH, as seen in the free energy pro-
file along the reaction coordinate (Figure 5D). It does
not involve any acid or base catalysis. The rate-

limiting step only involves the nucleophilic attack of
the amine, followed by the departure of the leaving
group forming the transition state P±, with a strong
ionic pair character. This is followed by proton re-
arrangements, which occur without any barrier. The
overall free energy barrier is consistent with experi-
mental rate constants for similar uncatalyzed amino
acid condensations [109].

The presence of these two competing mecha-
nisms provides an explanation to the experimen-
tal Kinetic Isotope Effects (KIE) measurements [110]
conducted in different pH conditions. Previous pro-
posals had suggested that the mechanism does not
change with pH but that the two successive barriers
(before and after the proposed long-lived tetrahedral
intermediate) are affected differently by pH. In con-
trast, our calculations show that two separate single-
step mechanisms co-exist and that pH affects their
barriers differently: the mechanism without acid-
base catalysis via P± is favored at moderately ba-
sic pH while the base-catalyzed mechanism via T −

is expected to be increasingly favored as pH is in-
creased [41]. These results therefore show that com-
bining NNP and TPS can provide a powerful method
to explore reaction mechanisms.

5. Concluding remarks

In this tutorial review, we have presented a brief
overview of the significant potential offered by
neural-network potentials in simulating chemical
reactions in the condensed phase. We have de-
scribed their training process and their combina-
tion with enhanced sampling techniques, such as
transition path sampling, to investigate complex
reaction mechanisms. This field is growing ex-
tremely rapidly. On-going developments include
the advancement of next-generation NNPs includ-
ing long-range interactions for example for an im-
proved description of electrostatics [36], the imple-
mentation of ∆-learning to facilitate the training and
increase the range of accessible accuracies [111],
embedding schemes combining ML potentials with
classical molecular mechanics (MM) force fields
for mixed ML/MM methods [112] equivalent to
hybrid quantum mechanics/molecular mechanics
(QM/MM) schemes, the combination of NNPs with
neural networks to learn observables relevant for
molecular spectroscopy [113], and the application of
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deep learning to identify relevant reaction coordi-
nates [114–116].
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