Convergence of normalized Betti numbers in nonpositive curvature - ENS - École normale supérieure Accéder directement au contenu
Article Dans Une Revue Duke Mathematical Journal Année : 2023

Convergence of normalized Betti numbers in nonpositive curvature


We study the convergence of volume-normalized Betti numbers in Benjamini-Schramm convergent sequences of non-positively curved manifolds with finite volume. In particular, we show that if X is an irreducible symmetric space of noncompact type, X = H 3 , and (M n) is any Benjamini-Schramm convergent sequence of finite volume X-manifolds, then the normalized Betti numbers b k (M n)/vol(M n) converge for all k. As a corollary, if X has higher rank and (M n) is any sequence of distinct, finite volume X-manifolds, the normalized Betti numbers of M n converge to the L 2 Betti numbers of X. This extends our earlier work with Nikolov, Raimbault and Samet in [1], where we proved the same convergence result for uniformly thick sequences of compact X-manifolds.
Fichier principal
Vignette du fichier
1811.02520.pdf (622.43 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02634432 , version 1 (27-05-2020)
hal-02634432 , version 2 (02-01-2023)



Miklos Abert, Nicolas Bergeron, Ian Biringer, Tsachik Gelander. Convergence of normalized Betti numbers in nonpositive curvature. Duke Mathematical Journal, 2023, 172 (4), ⟨10.1215/00127094-2022-0029⟩. ⟨hal-02634432v2⟩
45 Consultations
46 Téléchargements



Gmail Facebook X LinkedIn More