
HAL Id: tel-04244647
https://ens.hal.science/tel-04244647v1

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Delegation and Tracing for Attribute-Based
Cryptography

Lénaïck Gouriou

To cite this version:
Lénaïck Gouriou. Delegation and Tracing for Attribute-Based Cryptography. Cryptography and
Security [cs.CR]. ENS Ulm, 2023. English. �NNT : �. �tel-04244647�

https://ens.hal.science/tel-04244647v1
https://hal.archives-ouvertes.fr

Préparée à l’École Normale Supérieure de Paris

Délégation et Traçage pour la Cryptographie à Base
d’Attributs

Soutenue par

Lénaïck Gouriou
Le 15 Mai 2023

École doctorale no386
Sciences Mathématiques de
Paris Centre

Spécialité
Informatique

Composition du jury :

Benoît Libert
Zama Rapporteur

Pascal Lafourcade
Université Clermont-Auvergne Rapporteur

Sébastien Canard
Telecom Paris Examinateur

Louis Goubin
Université de Versailles-Saint-
Quentin-En-Yvelines

Examinateur

Pierre-Alain Fouque
Université Rennes 1 Examinateur

Cécile Delerablée
Leanear Co-encadrante de

thèse
David Pointcheval
CNRS Directeur de thèse

Résumé

Le nombre d’appareils connectés par personne a massivement augmenté lors de la dernière
décennie, en particulier dans les pays occidentaux. Étant donné que la sécurité des structures
connectées au réseau peut être compromise à partir de n’importe quel point d’entrée par un
attaquant malveillant, la sécurisation des trousseaux de clefs cryptographiques des utilisateurs
devient centrale pour construire une infrastructure sécurisée. Afin d’explorer les réponses à
cette problématique, nous proposons des solutions pour que les utilisateurs puissent gérer des
appareils multiples. En particulier, nous nous penchons sur les pratiques cryptographiques qui
sont compatibles avec les méthodologies modernes de contrôle d’accès basées sur des attributs.
Ces pratiques doivent aussi intégrer les outils qui sont au cœur de la gestion d’appareils multiples
par des utilisateurs. Le premier de ces outils est la délégation, qui permet aux utilisateurs de
délimiter les capacités de déchiffrement de chacun de leurs appareils en fonction de leurs besoins.
La délégation doit être possible sans nécessiter d’interaction avec une quelconque autorité, afin
de préserver la vie privée et l’autonomie de l’utilisateur. Le second outil est le traçage, où nous
exigeons que les appareils des utilisateurs puissent être identifiés en cas d’abus ou d’utilisation
illégitime, afin que tout utilisateur puisse être tenu responsable de la gestion de ses appareils.

Nous commençons par présenter une approche pratique des Dual Pairing Vector Spaces
(DPVS), qui est un système de construction et de preuves qui permet d’assurer le meilleur
niveau de sécurité pour la cryptographie basée sur les attributs. Le DPVS est compatible avec
des caractéristiques importantes de cette cryptographie telles que la richesse de l’expression
des politiques de contrôle d’accès. Ensuite, nous présentons une nouvelle contribution pour le
chiffrement basé sur les attributs sous la forme d’une nouvelle primitive : le Switchable-Attribute
Key-Policy Attribute-Based Encryption (SA-KP-ABE). Dans un SA-KP-ABE, les attributs des
utilisateurs et des chiffrés peuvent être "activés/désactivés" d’une manière indistinguable pour
les utilisateurs. Nous prouvons que cette approche permet le traçage et qu’elle est compatible
avec la délégation. Nous fournissons également une construction de SA-KP-ABE avec le DPVS.
Notre dernière contribution est un schéma de signature basée sur des attributs qui permet deux
méthodes de délégation. La première est la délégation habituelle de clefs, et la seconde permet de
déléguer des politiques d’accès pré-approuvées qui peuvent être réutilisées pour signer différents
messages. L’une ou l’autre de ces deux méthodes peut être utilisée en fonction du risque liée
à une mauvaise gestion ou de la compromission de l’appareil recevant les clefs déléguées, car
la seconde méthode implique moins de dommages potentiels que la première. De plus, nous
prouvons également que notre schéma est compatible avec le traçage de signatures, où une
autorité désignée peut lever l’anonymat des signatures suspectes.

Chiffrement basé sur les attributs ⋆ Signature basée sur les attributs ⋆ Délégation ⋆ Traçage

ii

Abstract

The last decade has seen a massive increase in the number of connected devices per person,
especially in western countries. As the security of connected structures can be compromised from
any entry point by a malicious attacker, securing sets of cryptographic keys of users becomes
an important keystone to build secure infrastructure. To explore answers to this problem,
we propose solutions oriented towards the management of multiple devices for each user. In
particular, we consider cryptographic practices that are compatible with modern access-control
methodologies based on attributes. These practices should be compatible with features that
are central to management of multiple devices. The first is delegation, as a means for users to
delimit the decryption capabilities of each of their devices depending on their needs. Delegation
should be doable without requiring interaction with any sort of authority, in order to preserve
the user’s intimacy and autonomy. The second is tracing, in the sense that we require that
devices can be tracked in the case of abuse or illegitimate use so that any user can be held
accountable.

We begin by presenting a practical approach to the Dual Pairing Vector Spaces (DPVS), a
framework that allows for full security of attribute-based schemes, while being compatible with
important features like expressive policies. Then, we present a new contribution for attribute-
based encryption schemes in the form of a new primitive: Switchable-Attribute Key-Policy
Attribute-Based Encryption (SA-KP-ABE). In a SA-KP-ABE, the attributes of users and cipher-
texts can be "turned on/off" in a way that is indistinguishable for the users. We prove that this
approach allows for tracing, and is fully compatible with delegation. We also provide a con-
struction of SA-KP-ABE in the DPVS framework. Our last contribution is an attribute-based
signature scheme that allows for two types of delegation. The first one is the usual delegation
of keys, and the second one allows to delegate pre-approved policies that can be re-used to
sign different messages. Either of these two approaches can be used depending on the risk of
mismanagement or corruption of the device receiving the delegated keys, as the latter incurs
less possible damage than the first one. Furthermore, we also prove our scheme to be compat-
ible with tracing techniques, where a designated authority can lift the anonymity of suspicious
signatures.

Attribute-Based Encryption ⋆ Attribute-Based Signature ⋆ Delegation ⋆ Traitor-Tracing

iv

Remerciements

Pour commencer, j’aimerais remercier les deux personnes sans qui cette thèse n’aurait pas été
possible.

David Pointcheval, qui m’a accueilli au sein de l’équipe CASCADE. David a été très présent
tout au long de ma thèse, en étant toujours à l’écoute de mes intérêts de recherche. Ses proposi-
tions et conseils ont été indispensables au bon déroulement de ma thèse, et ce manuscrit n’aurait
pas vu le jour sans son aide et sa patience indéfectibles. En particulier, j’ai pu compter sur lui
pendant la période difficile du Covid-19, pendant laquelle il a su m’aider à garder un cap dans
un monde qui le perdait.

Cécile Delerablée, qui a rendu ma thèse possible grâce à Leanear et au projet que cette
équipe porte. Elle a su m’intégrer dans une équipe en agrandissement, qui est pleine de vie et
d’objectifs ambitieux. Je ne peux m’empêcher de mentionner Yohann, pour sa capacité d’écoute
sur nos projets communs et ses retours constructifs; Pierre, qui m’apprend à me méfier en bonne
mesure des dangers d’internet; Bérenger, dont les courses nocturnes inspirent le dépassement de
soi; ainsi que les nouveaux membres de l’équipe avec qui j’espère que nous aurons l’occasion de
partager les grandes traditions de Leanear que sont les petits-déjeuners copieux et le barbecue,
Steven, Tony, Hadrien, et Nathan. J’ai aussi une pensée pour Ange et Michele avec qui nous
avons partagé de bons moments.

Je remercie aussi Benoît Libert et Pascal Lafourcade, pour avoir pris le temps de lire ma
thèse et d’en faire un retour critique. J’adresse de même mes remerciements à Sébastien Canard,
Louis Goubin, et Pierre-Alain Fouque qui me font l’honneur de participer au jury de thèse.

Mes remerciements vont également aux permanents de l’équipe CASCADE. J’aimerais en
particulier remercier Brice, qui m’a guidé et éclairé dans ma première expérience d’enseignement,
ainsi que pour toutes les fois où sa hauteur de vue a nourri ma réflexion et mon envie d’apprendre.
Je pense aussi à Céline, qui a su débusquer avec intuition la personne derrière son cadeau de
Secret Santa, ainsi que pour ses conseils avisés de danse. Je remercie aussi Phong, pour ses
perspectives sur l’actualité du monde de la recherche. Enfin, je veux remercier Michel, Hieu,
et toute l’équipe administrative du DI pour l’accueil qu’ils m’ont réservé et pour leur aide
perpétuelle dans mon parcours.

Merci également à mes camarades de CASCADE, ainsi qu’à ceux des autres équipes qui
occupent nos bureaux en bonne entente, sans lesquels mes journées de travail auraient été bien
moroses. Mélissa, dont personne n’a su égaler le talent pour les événements conviviaux; Louiza,
qui m’a amené voir des giraffes à Lyon (ainsi que des cryptologues à l’ANSSI); Chloé, avec qui
je partage sur la perspective de jeune cryptologue; Antoine, pour sa passion pour les jeux et
les nombreuses fois où nous avons joué ensemble; Balthazar, pour avoir pris soin de mon ancien
smartphone; Romain, qui m’a guidé lors de mon premier Eurocrypt et pour son amitié; Jérémy,
pour son esprit d’équipe dans les soirées jeux de société; Baptiste, pour son humour et son aide
logistique; Huy, pour m’avoir initié au mensonge dans les jeux de société, bien que je reste un
piètre menteur; Paola, dont l’humour est une inspiration pour moi; Ky, dont les manières de
gentleman m’impressionnent toujours autant; Michael, pour sa patience lors de ses nombreuses
explications du Cuckoo-hashing; Léonard, pour sa spontanéité et nos innombrables discussions;
Paul, pour m’avoir transmis la passion du quantique et les nombreux partages que j’ai eu avec
lui; Hugo, pour m’avoir initié au volleyball; Henry, mon cobureau de fortune; Robert, pour sa

vi

gentillesse et son aide sur les réseaux; Nicolas, pour m’avoir réexpliqué plusieurs fois qu’il faisait
du FHE et non pas du FE; Théo, pour ses conseils et nos soirées tardives au bureau; Antoine
et Vincent, pour apporter un peu de pratique dans nos théories farfelues; ainsi qu’à tous les
autres que j’ai rencontrés, Alexandra, Anca, Aurélien, Azam, Geoffroy, Jianwei, Marie, Michele,
Quentin, et tous ceux que je n’ai pas nommés.

Je remercie aussi mes amis, en particulier mes témoins Corentin, Solenn, et Dorian, qui
me supportent quotidiennement (au sens français et anglais du terme), ainsi que mes amis
Liza, Constance, Thomas, Camille, Florent, Clément, Thibaut, l’équipe de la RSCDS, et plus
largement tous mes amis de Rennes et de Paris. Merci particulièrement à Robin de m’avoir
transmis l’opportunité de cette thèse.

Merci à ma famille, à mes mamans, Sha et Shadow, pour leur amour infini; ma grand-mère,
pour son soutien indéfectible; Erika et Gerhard, pour m’avoir accueilli dans leur famille; Jean-
Marc, pour les nombreux cours de snowboard; ainsi qu’a tous mes cousins, oncles et tantes qui
font vivre chaque Noël avec énergie.

Pour finir, merci à Julie, ma fiancée, pour toutes les fois où elle m’a soutenu, pour tous les
moments que nous avons partagés, et pour les instants de bonheur que nous vivons ensembles.
C’est un grand honneur pour moi que de t’épouser.

Contents

Résumé i

Abstract iii

Remerciements v

1 Introduction en Français 1
1.1 Contexte et Motivations . 1
1.2 Contributions . 5

1.2.1 Dual Pairing Vector Spaces . 5
1.2.2 Chiffrement basé sur les attributs . 5
1.2.3 Signature basée sur les attributs . 7

2 Introduction 9
2.1 Context and Motivations . 9
2.2 Related Work . 13

2.2.1 Frameworks for Attribute-Based Cryptography 13
2.2.2 Traitor-Tracing . 13
2.2.3 Multi-Receiver Encryption . 14
2.2.4 Anonymous Signatures . 15

2.3 Contributions . 16
2.3.1 Dual Pairing Vector Spaces . 16
2.3.2 Attribute-Based Encryption . 16
2.3.3 Attribute-Based Signature . 18

3 Definitions 19
3.1 Hardness Assumptions . 19
3.2 Access-Trees . 20

3.2.1 Definition of a Policy . 20
3.2.2 Labeling of Access-Trees . 21

3.3 Attribute-Based Encryption (ABE) . 23
3.3.1 Definition of ABE . 23
3.3.2 Security Model for ABE . 23

3.4 Attribute-Based Signature (ABS) . 25
3.4.1 Definition of ABS . 25
3.4.2 Security Model for ABS . 25

4 Dual Pairing Vector Spaces (DPVS) 27
4.1 Pairing Vector Spaces . 27
4.2 Dual Pairing Vector Spaces . 28
4.3 Change of Basis . 29

4.3.1 Definition . 29

viii

4.3.2 Partial Change of Basis . 29
4.4 Particular Changes of Bases . 30

4.4.1 Diffie-Hellman Tuple in Basis Change . 30
4.4.2 Indistinguishability of Sub-Spaces (SubSpace-Ind) 30
4.4.3 Indistinguishability of Position (Pos-Ind) 31
4.4.4 Indexing and Randomness Amplification (Index-Ind) 32

5 Basic ABE and ABS Constructions 37
5.1 Overview of the Dual System Encryption (DSE) 37
5.2 A Key-Policy Attribute-Based Encryption (KP-ABE) Construction 38

5.2.1 Description of the KP-ABE Scheme . 38
5.2.2 Security Analysis of the KP-ABE . 39

5.3 An Attribute-Based Signature (ABS) Construction 51
5.3.1 Complementary Properties . 51
5.3.2 Description of our ABS Scheme . 53
5.3.3 Security Analysis of the ABS . 55

5.4 Discussion . 69
5.4.1 ABE . 70
5.4.2 ABS . 70

6 ABE with Switchable Attributes 71
6.1 Independent Leaves . 71
6.2 Switchable Leaves and Attributes . 72
6.3 KP-ABE with Switchable Attributes (SA-KP-ABE) 72

6.3.1 Definition of SA-KP-ABE . 72
6.3.2 Security Model for SA-KP-ABE . 73

6.4 Our SA-KP-ABE . 75
6.4.1 Construction . 75
6.4.2 Security Results . 77
6.4.3 Security Proofs . 79

6.5 Application to Traitor-Tracing . 107
6.5.1 Delegatable and Traceable KP-ABE . 107
6.5.2 Fingerprinting Code . 108
6.5.3 Delegatable and Traceable KP-ABE from SA-KP-ABE 109

7 ABS with Delegation and Tracing 111
7.1 Attribute and Policy Delegations . 111

7.1.1 Definition of Delegateable ABS . 111
7.1.2 Security Model for Delegateable ABS . 112

7.2 Description of our Delegateable ABS . 113
7.2.1 Security Results . 114
7.2.2 Security Proofs . 115

7.3 Traceable ABS . 116
7.3.1 Definition of Traceable ABS and Security Model 116
7.3.2 One-Time Linearly-Homomorphic Signature 117

7.4 Description of our Traceable ABS . 118
7.4.1 Security Results . 120
7.4.2 Proof of the Traceability . 120

8 Conclusion 123

Chapter

1
Introduction en Français

Chapter content
1.1 Contexte et Motivations . 1
1.2 Contributions . 5

1.2.1 Dual Pairing Vector Spaces . 5
1.2.2 Chiffrement basé sur les attributs . 5
1.2.3 Signature basée sur les attributs . 7

1.1 Contexte et Motivations
Aperçu. En 2023, le nombre moyen d’appareils connectés par personne est estimé à 9,4 en
Europe occidentale, et à 13,6 en Amérique du Nord. À titre de comparaison, en 2018, la moyenne
était de 5,6 en Europe occidentale et de 8,2 en Amérique du Nord. En seulement 5 ans, le nombre
d’appareils a presque doublé dans ces régions, et cette croissance ne va probablement pas s’arrêter
dans les années à venir si on considère le développement de l’Internet des objets. À mesure que
le nombre d’appareils augmente, la surface d’attaque des entreprises et des particuliers qui les
utilisent s’élargit naturellement. La fondation OWASP (https://owasp.org), l’une des plus
grandes fondations dédiées à la sécurité des applications Web, a récemment placé les attaques
sur le contrôle d’accès en tête des préoccupations de sécurité pour les applications Web, où
les attaquants abusent des autorisations mal configurées, voire pas configurées du tout. Ces
types de failles de sécurité ne peuvent qu’empirer avec l’augmentation du nombre d’appareils
par personne, car le contrôle d’accès pour chaque appareil devient plus complexe à gérer, surtout
si l’on considère que les applications peuvent être autorisées différemment par chaque appareil
en fonction de la technologie utilisée, qui est susceptible d’être différente d’un appareil à l’autre.

Pour résoudre ces problèmes, des approches basées sur les attributs ont été proposées pour
aider à gérer les autorisations. À haut niveau, les solutions basées sur les attributs autorisent
les accès en évaluant les attributs de l’utilisateur contre la politique de sa requête. Par exemple,
imaginons un utilisateur qui souhaite accéder et éditer du code dans un projet. Afin de protéger
l’accès à ce projet, la politique pourrait spécifier que vous devez être un Mainteneur OU
un Developpeur sur le projet. Par conséquent, sans les attributs appropriés, l’utilisateur se
verrait refuser sa demande d’accès. L’avantage de ce paradigme est la granularité élevée qu’il
fournit lorsqu’il faut déterminer les autorisations, ce que nous considérons comme un atout
important pour répondre aux défis que nous avons mentionnés ci-dessus. En effet, chaque
appareil d’un utilisateur présente des spécificités, certains étant hors de contrôle de l’utilisateur,
comme les composants matériels ou les implémentations logicielles, mais beaucoup dépendent
encore fortement de l’usage de l’utilisateur, par exemple dans le cadre personnel ou professionnel,
ou bien si l’on utilise un ordinateur de bureau, un ordinateur portable ou un téléphone.

L’instanciation cryptographique concrète de cette approche a commencé avec le chiffrement
basé sur les attributs (ABE), dans l’article fondateur de Goyal et al. [GPSW06]. Dans leur
cryptosystème, la politique est intégrée à la clé privée de chaque utilisateur, tandis que les

https://owasp.org

2 1 - Introduction en Français

attributs sont associés au chiffré. Tout utilisateur peut alors déchiffrer un message tant que les
attributs du texte chiffré sont validés par la politique contenue dans ses clefs. Ce premier article
introduit également la délégation de clefs, où tout utilisateur peut ajuster finement la politique
d’accès pour chacun de ses appareils lorsqu’il crée une nouvelle clef à partir d’une clef existante,
tant que la nouvelle politique est plus restrictive. Son équivalent naturel pour les signatures, la
signature basée sur les attributs (ABS), a été introduit plus tard par Maji et al. [MPR11]. Dans
un système ABS, les utilisateurs possèdent des attributs et peuvent signer dynamiquement un
message avec une politique d’accès à condition d’avoir les attributs nécessaires pour valider la
politique. Un vérificateur peut alors être convaincu que le signataire du message a effectivement
respecté la politique associé au message qui a été signé.
Histoire de la Cryptographie Basée sur les Attributs. L’ABE est lui-même une général-
isation du chiffrement basé sur l’identité (IBE), avec une première réalisation utilisant des ap-
pariement (ou couplage) en 2001 par Boneh et Franklin [Sha84, BF03], qui a été conçu à l’origine
pour faciliter la gestion des certificats et des PKI, en ne nécessitant que l’identité du récepteur,
typiquement une adresse e-mail, pour envoyer un message chiffré. Toutes les vérifications sont
effectuées à l’avance par l’autorité centrale, qui n’a plus qu’à s’assurer que la clef secrète associée
à une identité sera délivrée à la bonne personne.

Nous pouvons donc voir l’ABE, défini formellement pour la première fois en 2006 [GPSW06],
comme une généralisation de l’IBE, en considérant les identités comme un type d’attributs qu’un
expéditeur peut utiliser pour chiffrer. Il restait encore quelques défis à relever pour passer de
l’IBE à l’ABE, en particulier comment exprimer les requêtes booléennes et les clefs impliquant
plusieurs attributs (contrairement à une seule identité pour l’IBE), et comment empêcher les
combinaisons de clefs provenant de plusieurs parties non autorisées qui formeraient une seule
clef valide (mais non désirée), une propriété que l’on appelle résistance à la collusion.

En 2010, l’ABE a lui-même été généralisé comme faisant partie d’une nouvelle classe appelée
Functional Encryption (FE), qui a été formellement introduite par Boneh et al. [BSW11]. Avec
le FE, le récepteur peut obtenir une fonction du texte chiffré. Une fonction typique est la
vérification booléenne : retourner le message si une certaine expression est vraie, sinon retourner
⊥, fonction qui est exactement l’ABE.

De nouvelles contributions pour chacune de ces classes de fonctions sont faites régulièrement,
car chaque classe de fonctions est généralement plus efficace que sa généralisation, et car certains
problèmes restent ouverts pour chaque classe de fonctions (par exemple construire un schéma
ABE sécurisé de manière adaptative à partir de l’hypothèse LWE, voir paragraphe suivant).

L’un des principaux défis pour les sous-classes de fonctions de FE était d’atteindre un niveau
de sécurité plus élevé, la sécurité adaptative, qui n’a été réalisé qu’en 2009, d’abord pour l’IBE
puis pour l’ABE, par Waters [Wat09] avec l’introduction de son nouveau paradigme : le Dual
System Encryption (discuté plus loin dans la section 5.1). Ce paradigme s’est avéré particulière-
ment compatible avec le Dual Pairing Vector Spaces (DPVS) [OT09], qui repose sur deux espaces
vectoriels avec des bases orthogonales pour l’opération de couplage. L’avantage du DPVS est de
pouvoir facilement contrôler le comportement des éléments secrets dans les clefs et les chiffrés
afin de faire des changements indistinguables pour les preuves, en utilisant cette orthogonalité.
Les modifications dans les clefs et chiffrés sont effectuées par de simples changements de base,
qui peuvent être regroupés en quelques catégories selon la disposition initiale des clefs et des
chiffrés.

L’ABS a débuté en 2011 avec les travaux de Maji et al. [MPR11], en tant qu’approche com-
plémentaire de l’ABE pour les signatures, mais a reçu globalement moins d’attention en termes
de nombre de contributions. Bien que de nature différente, l’ABS remplit un rôle similaire au
Ring Signature [RST01] et au Group Signature [Cv91], à savoir signer un message qui peut
convaincre tout vérificateur que le signataire occupe une certaine position dans un groupe re-
streint. De plus, toutes ces primitives garantissent une forme d’anonymat pour les signataires,
car les vérificateurs n’apprennent aucune information sauf que le signataire appartient au groupe

1.1 - Contexte et Motivations 3

AND

OR

Mainteneur Développeur

Projet X

Figure 1.1: Un arbre comme politique d’accès, pour l’expression booléenne : ((Maintaineur OR
Développeur) AND Projet X) comme condition pour être autorisé. Intuitivement, il faut pos-
séder un attribut correspondant à une feuille pour la "rendre vraie", puis évaluer récursivement
les portes des parents (AND, OR) dans l’arbre d’accès jusqu’à la racine. Les règles formelles
d’évaluation de la politique d’un arbre d’accès sont présentées dans la section 3.2.

depuis lequel il a créé la signature. Cependant, contrairement à ces variantes de signature, dans
l’ABS le groupe n’est pas formellement explicité avant la signature comme dans les signatures
de groupe, ou explicité ad-hoc comme dans les Ring Signatures, mais exprimé dynamiquement
par des politiques que le signataire peut valider.

Politiques d’Accès et Attributs. Historiquement, il y a eu deux modèles d’expression ma-
joritaires pour exprimer les politiques d’accès. Le premier était l’arbre d’accès, issu des articles
fondateurs de l’ABE [GPSW06, BSW07], dans lequel la politique est exprimée sous la forme d’un
arbre qui peut être évalué depuis les feuilles jusqu’à la racine pour validation, chaque feuille étant
considérée comme "vraie" si l’attribut qui lui correspond est présent (voir Figure 1.1). L’arbre
d’accès contrôle de manière granulaire qui peut être autorisé par le biais de portes OR et AND
situées dans les noeuds intérieurs, qui nécessitent soit d’avoir l’attribut pour un fils (portes OR),
soit tous les fils (portes AND) pour passer la porte. Il existe également un autre type de portes
appelées portes à seuil (également connues sous le nom de "portes k parmis n"), mais nous
constatons qu’elles produisent des arbres d’accès aussi expressifs que ceux utilisant uniquement
des portes OR/AND. L’autre modèle d’expression, qui est maintenant plus courant en raison de
son expressivité et de ses propriétés algébriques, est le Linear Secret Sharing Scheme (LSSS),
où la politique est représentée comme une matrice dont les vecteurs-lignes de la matrice sont les
attributs. La politique peut alors être évaluée pour obtenir l’accès sous condition qu’une certaine
combinaison linéaire des lignes (correspondant formellement à une certaine combinaison spéci-
fique d’attributs) permette de reconstruire un vecteur prédéterminé, pour récupérer le message
en clair. Un exemple est donné dans la figure 1.2. Les arbres d’accès sont faciles à comprendre
et intuitifs, bien qu’ils ne soient pas le modèle le plus expressif pour les politiques d’accès, mais
comme nous nous concentrons sur des outils de délégation ou de traçage pour les constructions
basées sur les attributs, qui semblent agnostiques de ce choix, nous utiliserons des arbres d’accès
à partir de maintenant. De plus, les arbres d’accès peuvent être facilement convertis en LSSS,

Maintaineur
Développeur

Projet X

1 1
1 1
0 −1

 L1 + L3 = [1 0]
L2 + L3 = [1 0]

Figure 1.2: Une matrice LSSS comme politique d’accès, pour l’expression booléenne : ((Main-
taineur OR Développeur) AND Projet X) comme condition pour être autorisé. Les lignes cor-
respondent aux attributs (dans l’ordre de haut en bas) : Maintaineur, Développeur, Projet X.
Pour valider l’accès, il faut être capable de calculer linéairement le vecteur ligne [1 0] avec les
lignes correspondant à ses attributs.

4 1 - Introduction en Français

comme le montrent les travaux de [LW11, CPP17].
Une fois qu’un modèle de politique d’accès est choisi, la prochaine question naturelle qui

vient à l’esprit est la suivante : comment les utiliser concrètement dans une construction ?
Pour répondre à cette question, nous expliquons d’abord à haut niveau comment distribuer
les politiques et les attributs dans un schéma cryptographique, puis nous poursuivons avec un
aperçu de l’approche technique de nos constructions.

Comme nous l’avons mentionné plus haut, le premier article sur l’ABE plaçait la politique
dans les clefs secrètes des utilisateurs, tandis que les attributs permettant d’évaluer les poli-
tiques se trouvaient dans le texte chiffré : nous appelons cela le KP-ABE (Key-Policy ABE).
Naturellement, nous pouvons considérer sa contrepartie, Ciphertext-Policy ABE, où les clefs se-
crètes sont associées à des attributs, et le chiffreur décide d’une politique d’accès, au moment du
chiffrement, pour accéder au message. Le choix entre KP-ABE et CP-ABE n’est pas trivial, car
la partie en charge de la politique d’accès est la plus susceptible d’avoir un contrôle granulaire
sur le déchiffrement, vu qu’elle contrôlera sous quelles règles les attributs peuvent être utilisés
pour déchiffrer. C’est encore plus vrai en ce qui concerne la délégation : comme nous le verrons
dans la Section 3.2, la délégation des arbres d’accès est très puissante et permet de nombreuses
évolutions par rapport à l’arbre du délégant original, ce qui augmente la différence de contrôle
sur le déchiffrement pour les utilisateurs entre KP-ABE et CP-ABE.

Examinons maintenant des instanciations de constructions basées sur les attributs utilisant
des couplages, en particulier pour expliquer comment l’arbre d’accès (terme que nous utiliserons
désormais pour faire référence aux politiques d’accès) et les attributs sont utilisés au sein de
protocoles cryptographiques. En effet, nous voulons fournir des garanties solides pour les parties
prenantes du protocole que la personne obtenant une autorisation par le biais d’un arbre d’accès
l’a fait légitimement. Plus concrètement, l’arbre d’accès est intégré par le biais d’un partage
secret, où chaque feuille de l’arbre d’accès reçoit une part. Les feuilles sont représentées par
des clefs pour du KP-ABE, des chiffrés pour du CP-ABE, et des signatures pour de l’ABS.
Parallèlement, les attributs, situés dans le texte chiffré pour du KP-ABE, et dans les clefs pour
du CP-ABE et de l’ABS, sont liés par un aléa commun. Ensuite, grâce à la bilinéarité du couplage,
on déchiffre en couplant chaque feuille de l’arbre d’accès avec son attribut correspondant. A
ce moment, l’aléa commun se factorise, permettant ainsi de recombiner les parts du partage
de secret initial, permettant le déchiffrement. Le lecteur peut alors se demander comment
s’assurer que le "bon" attribut a été utilisé pour correspondre à une feuille. Ceci est garanti
par l’utilisation d’un élément orthogonal entre la feuille et l’attribut : si le bon attribut est
utilisé pour une feuille, la partie orthogonale s’annulera, sinon elle créera un bruit faussant le
déchiffrement. Nous illustrons notre explication pour du KP-ABE avec la Figure 1.3.

Motivations. Notre objectif est l’exploration des solutions basées sur des attributs qui don-
nent une granularité sur le contrôle d’accès lors du déchiffrement pour les utilisateurs, et en
particulier des solutions qui facilitent la gestion sur de différents appareils connectés. Pour cette
raison, nous décidons de nous concentrer sur le KP-ABE et l’ABS avec délégation. Préserver
autant que possible l’anonymat des utilisateurs est également un aspect important de notre
mission, compte tenu des risques accrus de perte ou de corruption d’un appareil dans un envi-
ronnement ou chaque utilisateur se doit de manipuler de nombreux appareils. Ainsi, les clefs et
les signatures d’un utilisateur ne devraient idéalement rien révéler de son identité, et nous exi-
geons également que les clefs et les signatures ne soient pas reliables les unes aux autres, même
si elles sont liées par délégation. Cependant, nous souhaitons également responsabiliser les util-
isateurs, en particulier dans un système où ils disposent d’un grand pouvoir via la délégation,
et nous exigeons donc une certaine forme de traçage par une autorité de confiance, qui puisse
révéler l’utilisateur ayant effectué un déchiffrement ou une signature. Pour y parvenir, nous
devons d’abord sélectionner un ensemble de méthodes compatible avec la sécurité adaptative,
c’est à dire compatible avec la méthodologie de Dual Encryption System.

1.2 - Contributions 5

SubSpace-Ind: avec b∗
2 caché

ct = (σtt −σt ω)B
k∗

λ = (πλ πλtλ aλ)B∗

Le couplage des vecteurs peut être calculé comme un produit scalaire.

e(ct,k∗
λ) = [πλσt(1, tλ)(t,−1) + ω · aλ]Gt

= [ω · aλ + πλσt(t− tλ)]Gt

= [ω · aλ]Gt
if t = tλ

Figure 1.3: Approche par couplage de KP-ABE: la clef de la feuille λ est k∗
λ, λ contient aλ qui

est un bout du partage de secret d’un certain a0, et tλ est l’attribut associé à λ. Le texte chiffré
pour l’attribut t est ct, où ω est un aléa commun pour tous les attributs dans le chiffré. On peut
voir les parties orthogonales : πλ(1, t) et σt(t,−1). Les détails mathématiques complets sur la
façon dont les couplages sont effectués peuvent être trouvés dans le chapitre 4.

1.2 Contributions

Comme première étape afin de construire nos ABE et ABS avec délégation, nous revenons sur
les constructions proposées par Okamoto et Takashima [OT12a, OT11]. Dans les deux cas, nous
prouvons une construction avec délégation et sécurité adaptative sous l’hypothèse SXDH au
chapitre 5. La méthodologie commune à ces deux constructions, le Dual Pairing Vector Spaces
(DPVS), est présenté au chapitre 4.

1.2.1 Dual Pairing Vector Spaces

Notre contribution pour le DPVS est une compilation de ses principaux outils de preuve
présentés sous la forme de théorèmes pratiques sous l’hypothèse DDH. En effet, les résultats
et preuves des travaux d’Okamoto-Takashima sont spécialisés pour leurs propres constructions,
avec peu de réutilisabilité. Nous présentons donc de nouveaux outils génériques qui peuvent
être adaptés à n’importe quelle preuve utilisant du DPVS. Ces résultats sont présentés dans la
Section 4.4, avec un tableau récapitulatif rapide dans la Figure 4.1. Nous prouvons également
un nouveau théorème pour des constructions en univers illimité pour les attributs dans les
constructions avec le DPVS (voir Théorème 7).

1.2.2 Chiffrement basé sur les attributs

Nous commençons par un KP-ABE avec délégation, qui permet de plus de dissimuler des attributs
dans le chiffré pour obtenir un traçage indétectable. Dans ce but, nous détaillons d’abord l’une
des principales limitations que nous devons surmonter pour réunir délégation et traçabilité. Avec
l’approche originale de [GPSW06], les attributs associés au chiffré sont explicitement indiqués
dans le chiffré. La suppression de certains attributs peut permettre d’isoler des clefs privées
spécifiques, mais il s’agit d’un processus public, et donc incompatible avec toute procédure de
traçage, qui serait alors détectable par l’adversaire. L’alternative serait d’utiliser la sécurité
sémantique du schéma pour envoyer différents contenu de chiffré en fonction des attributs possi-
bles du traître [LT18], mais cette approche augmente drastiquement la taille des clefs, car il faut
créer un double complet de la clef pour chaque attribut de traçage. Afin éviter cela, notre pre-
mière contribution sur l’ABE est la nouvelle primitive : le Switchable-Attribute Key-Policy
Attribute-Based Encryption (SA-KP-ABE), où il est possible d’invalider certains attributs dans

6 1 - Introduction en Français

Caractéristiques [OT12a] [LW15] [CGW18] Ours
Securité Adaptative Adaptative Adaptative Adaptative

Hypothèse DLIN q-type XDLIN SXDH
Construction CP/KP

ABE
CP/KP

ABE
IPE KP ABE

Délégation ✓ × × ✓
Traçage × ✓ × ✓

Figure 1.4: Comparaison avec les autres travaux sur KP-ABE.

le chiffré de manière indistinguable. Plus précisément, nous apportons de nouvelles propriétés
aux attributs dans les chiffrés (pour un traçage indétectable) mais aussi symétriquement aux
feuilles dans les clefs (pour l’anonymat).

Dans un SA-KP-ABE, les attributs d’un chiffré et les feuilles d’un arbre d’accès T définissant
la politique d’une clef peuvent être changés dans deux états différents : Les attributs peuvent
être définis comme valides ou invalides dans un chiffré au moment du chiffrement, grâce a l’aide
d’une clé de chiffrement secrète. Nous désignons alors Γ = Γv ·∪ Γi l’ensemble des attributs
d’un chiffré, comme l’union disjointe des attributs valides et invalides ; les feuilles peuvent être
définies comme passives ou actives dans l’arbre d’accès d’une clef au moment de sa génération, en
utilisant la clef maître habituelle. Nous désignons également L = Lp ·∪La, l’ensemble des feuilles,
comme l’union disjointe des feuilles passives et actives. Un ensemble d’attributs valides/invalides
Γ = Γv ·∪ Γi est accepté par un arbre d’accès T avec des feuilles passives/actives L = Lp ·∪ La,
si l’arbre T est acceptant lorsque toutes les feuilles dans L associées à un attribut dans Γ sont
à True, sauf si une feuille est active (dans La) et l’attribut associé à la feuille dans le chiffré
est invalide (dans Γi). Comme dit ci-dessus, les feuilles passives/actives dans L sont décidées
pendant la procédure de génération des clefs par l’autorité centrale, en utilisant sa clef maître.
Les clefs sont ensuite remises aux utilisateurs. Pendant le chiffrement, un chiffré est généré pour
les attributs de Γ, mais il est possible de spécifier que certains attributs sont invalides en utilisant
une clef secrète de traçage, ce qui rend virtuellement inutile les feuilles actives des arbres d’accès
dans les clefs privées. Les feuilles passives ne sont pas affectées par les attributs invalides.

Notre deuxième contribution sur l’ABE est une instanciation concrète et efficace d’un
SA-KP-ABE, avec des preuves de sécurité sous l’hypothèse SXDH. Nous expliquons finalement
comment construire un KP-ABE délégable et traçable à partir d’une telle primitive. Comme le
montre la Figure 1.4, notre schéma est le premier à combiner explicitement à la fois la délégation
et la traçabilité des clefs pour un KP-ABE.
Discussions. Notre cadre présente des caractéristiques communes avec les approches mod-
ernes de KP-ABE, avec cependant quelques différences majeures. Tout d’abord, Waters [Wat09]
a introduit la technique de Dual System Encryption (DSE), pour améliorer le niveau de sécurité
des KP-ABE, depuis la sécurité sélective de [GPSW06] vers de la sécurité adaptative. Dans le
DSE, les clefs et les chiffrés peuvent être définis comme étant semi-fonctionnels, dans la même
veine que nos feuilles actives dans les clefs et les attributs invalides dans les chiffrés. Cependant,
le DSE utilise uniquement les clefs et chiffrés semi-fonctionnels pendant la simulation, dans la
preuve de sécurité, alors que notre construction les exploite dans la construction pratique. La
preuve de sécurité nécessite donc d’utiliser de nouvelles techniques de preuve pour utiliser les
éléments semi-fonctionnels dans la construction.

Par ailleurs, des notions de dissimulation d’attributs existent déjà, et sont des propriétés
fortes qui ont été bien étudiées dans la littérature (en particulier pour du Inner-Product Encryp-
tion). Cependant, il n’est pas nécessaire de requérir des propriétés aussi fortes pour le traçage.
En effet, notre propriété de (Distinct) Attribute-Indistinguishability est finement adapté au
KP-ABE avec traçage.

Pour finir, quelques mots sur l’avantage de notre solution par rapport à une approche avec

1.2 - Contributions 7

KEM qui combinerait un KP-ABE avec délégation et un schéma de traçage de traître de manière
générique. Cette solution fonctionne si l’on ne cherche pas l’optimalité de la résistance aux col-
lusion pendant le traçage. En effet, le principal problème de cette utilisation de deux schémas
indépendants est que pour chaque utilisateur, la clé KP-ABE et la clé de traçage ne sont pas
liées. Par conséquent, les chiffrés de la partie ABE et de la partie traçage sont calculés indépen-
damment. Les utilisateurs en collusion peuvent donc tous participer pour déjouer le traçage sans
restriction : la résistance à la collusion pour le traçage dans le schéma global sera exactement la
résistance à la collusion du schéma de traçage du traître. Au contraire, notre construction tire
parti de la résistance aux collusions du KP-ABE pour améliorer la résistance aux collusions du
traçage : seuls les joueurs non révoqués par la partie KP-ABE peuvent s’allier contre la méthode
de traçage. Ainsi, pendant le traçage, on peut révoquer des utilisateurs arbitraires grâce à la
partie politique d’accès. Cela permet de réduire le nombre de traîtres actifs, en les maintenant
éventuellement en dessous du seuil de résistance aux collusions du schéma de traçage de traîtres,
de sorte que le traçage reste efficace.

1.2.3 Signature basée sur les attributs

Nous passons maintenant à nos contributions d’ABS, où nous proposons et prouvons deux con-
structions qui s’appuient sur celle adaptée des travaux d’Okamoto-Takashima [OT11] :

• Notre contribution sur l’ABS est une construction qui augmente la précédente avec
différents types de délégation : la délégation d’attributs et la délégation de politiques
d’accès;

• La deuxième construction ajoute la traçabilité en utilisant une nouvelle méthode utilisant
un schéma de signature linéairement homomorphe.

Toutes ces constructions sont existentiellement infalsifiables sous les deux conditions suivantes
: l’hypothèse SXDH dans le modèle standard, et la résistance aux collisions de certaines fonc-
tions de hachage. Nos deux premières constructions sont également parfaitement anonymes,
tandis que la troisième est calculatoirement anonyme sous une variante proche de l’hypothèse
DDH. La traçabilité de notre dernière construction est prouvée dans le modèle d’oracle aléatoire,
et repose sur la sécurité d’un schéma de signature linéairement homomorphe, et la simulation-
extractability et la soundness de deux preuves à divulgation nulle de connaissance non-interactives
(NIZK). Nous exploitons le schéma de [HPP20], dont la sécurité est prouvée dans le modèle
générique pour les groupes avec couplage.
Discussions. Nos trois schémas se comportent de manière très proche en terme de perfor-
mances. Les clefs et signatures sont linéaires en le nombre d’attributs utilisés pour signer,
avec des performances comparables à [OT11]. L’un des principaux avantages du DPVS est de
s’appuyer directement sur l’hypothèse de sécurité, ce qui simplifie le protocole, contrairement
aux autres approches qui doivent intégrer des preuves non-interactives à divulgation nulle de
connaissances plus complexes, qui sont au coeur des premières constructions d’ABS, afin de prou-
ver la validation de la politique sans révéler d’information qui puisse compromettre l’anonymat
du signataire. En particulier, nous mentionnons que l’intrication entre la délégation et le traçage
de [GM19] rend impossible d’effectuer de la délégation sans avoir recours à des NIZK, tandis que
notre approche modulaire permet d’éviter ce problème.

Nous avons séparé notre construction avec délégation de notre construction avec traçage afin
de pouvoir souligner les spécificités de chacune pour le lecteur, cependant nous notons que ces
constructions sont entièrement compatibles. On pourrait donc faire un ABS avec deux types de
délégation, et de la traçabilité, en assemblant chacun des blocs spécifiques de nos constructions.
On obtiendrait ainsi un système avec une infalsifiabilité existentielle sous l’hypothèse SXDH,
mais un anonymat calculatoire sous une hypothèse proche du DDH. Nous notons que le traçage
remonte à la clef originale remise à l’utilisateur, même lorsqu’il s’agit de tracer une signature

8 1 - Introduction en Français

Caractéristiques [OT11] [GM19] Ours
Hypothèses DLIN q-type + SXDH SXDH
Délégation × ✓ ✓

Traçage ✓ ✓ ✓
Taille de
signature

Linéaire en
attributs

Linéaire en
attributs et

autorités

Linéaire en
attributs

Figure 1.5: Comparaison avec d’autres travaux.

faite avec à partir d’une clef déléguée. En effet, la propriété de linéarité du schéma de signature
garantit que le même scalaire wid se trouve dans toutes les clefs déléguées et dans toutes les
signatures provenant de la même clef de signature initiale, avec tout de même un anonymat
calculatoire et une impossibilité de lier des clefs entre elles. Cela permet donc de traiter le cas
où un utilisateur délègue ses droits de signature à plusieurs appareils : quel que soit la clef
utilisée pour la signature, le traçage ciblera l’utilisateur initial.

Chapter

2
Introduction

Chapter content
2.1 Context and Motivations . 9
2.2 Related Work . 13

2.2.1 Frameworks for Attribute-Based Cryptography 13
2.2.2 Traitor-Tracing . 13
2.2.3 Multi-Receiver Encryption . 14
2.2.4 Anonymous Signatures . 15

2.3 Contributions . 16
2.3.1 Dual Pairing Vector Spaces . 16
2.3.2 Attribute-Based Encryption . 16
2.3.3 Attribute-Based Signature . 18

2.1 Context and Motivations

Overview. As of 2023, the average number of connected device per person is estimated to be
9.4 in Western Europe, and 13.6 in North America. For comparison, in 2018, the average was
5.6 in Western Europe and 8.2 in North America. In only 5 years, the number of devices has
almost doubled in those regions, and this growth is probably not going to stop in the incoming
years when considering the development of the Internet of Things. As the number of devices
grows, naturally the attack surface of companies and individuals using them also becomes larger.
The OWASP foundation (https://owasp.org), one of the biggest foundation dedicated to the
security of Web Applications, recently placed Broken Access Control as the number one security
concern for Web applications, where attackers abuse poorly configured authorization of actions,
if configured at all. These sorts of security breaches can only worsen with the increase of devices
per person, as the access-control for each device becomes more complex to manage, particularly
when considering how applications may be authorized differently by each device depending on
the technology it uses, which is likely to be different from device to device.

As a solution to these problems, approaches based on attributes have been brought forward
to help manage authorizations. At a high level, attribute-based solutions authorize actions by
evaluating the attributes of the user against the policy of its request. As an example, let’s
suppose a user that wants to access to some code in a project. In order to protect the access to
this project, the policy could specify that you need to be a Maintainer OR a Developer on the
project, hence without the proper attributes the user wouldn’t be granted access. The advantage
of this paradigm is the high granularity it provides when determining authorizations, which we
consider to be an important feature to answer the challenges we addressed above. Indeed,
each device of a user bear specificities, with some being out of control of the user as hardware
components, or software implementations, but with many still being strongly dependent on the
usage of the users, for example personal of professional, or desktop or laptop or mobile.

https://owasp.org

10 2 - Introduction

The concrete cryptographic instanciation of this approach first started with Attribute-Based
Encryption (ABE), in the seminal paper of Goyal et al. [GPSW06]. In such a cryptosystem,
the policy is embedded inside each user’s private key, while the attributes are situated in the
ciphertext. Any user can then decrypt a message as long as the attributes in the ciphertext are
validated by the policy in his keys. This first paper also introduces delegation of keys, where any
user can finely-tune the policy for each of his devices when creating a new key from an existing
one, for any more restrictive policy. Its natural counterpart for signatures, Attribute-Based
Signature (ABS), was later introduced by Maji et al. [MPR11]. In an ABS scheme, users hold
attributes and may dynamically sign any policy for a message for which their attributes validate
said policy. Any verifier can then be convinced that the signer of the message effectively fulfilled
the policy with its set of attributes.
History of Attribute-Based Cryptography. ABE itself is a generalization of Identity-Based
Encryption (IBE), with a first realization using pairings in 2001 by Boneh and Franklin [Sha84,
BF03], which was originally designed to ease the management of certificates and PKI structures,
by requiring only the identity of the receiver, typically an email address, to send an encrypted
message. All verifications would be done ahead of time by the Central Authority, who just needs
to make sure that the secret key associated to an identity would be delivered to the right person.

We can then see ABE, with its first scheme in 2006 [GPSW06], as a generalization of IBE,
by considering identities as simply a type of attributes that a sender can encrypt for. There
were still some challenges to go from IBE to ABE, in particular how to express boolean queries
and keys involving multiple attributes (contrary to a single identity), and how to prevent key
combinations from many unauthorized parties that would result in an (unwanted) authorized
key, which is a property called collusion-resistance.

In 2010, ABE was itself generalized as part of a new class called Functional Encryption
(FE), which was formally introduced by Boneh et al. [BSW11]. In FE, the receiver can obtain
a function of the ciphertext. A typical function is the boolean test: return the message if some
expression is True, else return ⊥, which is exactly ABE.

New contributions for each of these classes of functions are still common, as each class of
function is generally more efficient than its generalization, and as some problems remain open
for each class of functions (for example constructing an adaptively secure ABE scheme from the
LWE assumption, see next paragraph).

One of the main challenge for subclasses of functions of FE was to reach a higher level of
security, the adaptive security, which was only realized in 2009, first for IBE and then for ABE,
by Waters [Wat09] with the introduction of his new paradigm: The Dual System Encryption
(discussed later in Section 5.1). This paradigm proved particularly compatible with Dual Pairing
Vector Spaces (DPVS) [OT09], a framework relying on two vector-spaces with orthogonal bases
regarding the pairing operation. The advantage of the DPVS is that, using this orthogonality,
one can easily control the behavior of secret elements in the keys and ciphertexts in order to
make indistinguishable changes for proofs. The changes are made through simple changes of
basis, which can be regrouped in a few categories depending on the disposition of keys and
ciphertexts.

ABS starts off in 2011 with the work of Maji et al. [MPR11], as the complementary approach
of ABE for signatures, but received overall less attention in terms of number of contributions.
Although different in nature, ABS fills in a role similar to Ring Signature [RST01] and Group
Signature [Cv91], that is to sign a message that can convince any verifier that the signer holds
some position in a restricted group. Furthermore, all these primitives guarantee a form of
anonymity for the signers, where all verifiers do not learn any information except that the
signer belongs to the group he created a signature from. However, contrary to these variants
of signature, in ABS the group is not formally explicited prior to the signature as in Group
signatures, or explicited ad-hoc as in Ring signatures, but expressed dynamically through policies
that the signer can fullfill.

2.1 - Context and Motivations 11

AND

OR

Maintainer Developer

Project X

Figure 2.1: An access-tree as a policy, for the boolean expression: ((Maintainer OR Developer)
AND Project X) as the condition to be authorized. Intuitively, one must possess an attribute
matching a leaf to "make it True", and then recursively evaluate the (AND, OR) parent gates in
the access-tree until the root. The formal rules for evaluating the policy of an access-tree are
presented in Section 3.2.

Policies and Attributes. There have been historically two major expression models for poli-
cies. The first was access-tree, from the original papers for ABE [GPSW06, BSW07], in which
the policy is expressed as a tree which can be evaluated from the leaves up to the root for
validation, where a leaf is considered as "true" if it matches an attribute (see Figure 2.1). The
access-trees granularly controls who can be authorized through OR and AND gates located in
the interior nodes, which requires either to have the attribute for one child (OR-gates), or all the
children (AND-gates) to pass the gate. There also exists of another type of gates called threshold
gates (also known as "k-out-of-n gates"), but we note that they produce access-trees that are
as expressive as the one using only OR/AND-gates. The other expression model, which is now
more common due to its expressiveness and its algebraic properties, is the Linear Secret Sharing
Scheme (LSSS), where the policy is represented as a matrix, and the vector-rows of the matrix
are the attributes. The policy can then be evaluated for authorization if some specific linear
combination of the rows (formally corresponding to some specific combination of attributes)
allow to reconstruct a predetermined vector, to retrieve the original message. An example is
given in Figure 2.2. Access-trees are easy to understand and intuitive, despite not being the
most expressive model for policies, but as our focus in on additional features of attribute-based
constructions, we will work with access-trees from now on. Furthermore, access-trees can be
easily converted into LSSS, as shown in the work of [LW11, CPP17].

Once a policy model is chosen, the next natural question that comes to mind is: how do we
use them concretely in a construction? To answer this, we first explain at a high-level how to
distribute policies and attributes, and then proceed with an outline of our technical approach.

As we mentioned above, the first paper written on ABE put the policy inside the secret
keys of the users, while the attributes to evaluate the policies are in the ciphertext: we call
this Key-Policy ABE (KP-ABE). Naturally, we can consider its counterpart, Ciphertext-Policy
ABE, where the secret keys are associated with attributes, and the encrypter decides a policy, at
encryption time, to be matched to access the message. The choice between KP-ABE and CP-ABE

Maintainer
Developer
Project X

1 1
1 1
0 −1

 L1 + L3 = [1 0]
L2 + L3 = [1 0]

Figure 2.2: An LSSS matrix as a policy, for the boolean expression: ((Maintainer OR Developer)
AND Project X) as the condition to be authorized. The rows correspond to attributes (in order
from top to bottom): Maintainer, Developer, Project X. In order to validate the policy, one must
be able to linearly compute the row vector [1 0] with the rows corresponding to his attributes.

12 2 - Introduction

SubSpace-Ind: with b∗
2 hidden

ct = (σtt −σt ω)B
k∗

λ = (πλ πλtλ aλ)B∗

The pairing of both vectors can be computed as a scalar product.

e(ct,k∗
λ) = [πλσt(1, tλ)(t,−1) + ω · aλ]Gt

= [ω · aλ + πλσt(t− tλ)]Gt

= [ω · aλ]Gt
if t = tλ

Figure 2.3: Pairing approach to KP-ABE: the key for leaf λ is k∗
λ, which contains aλ as a share

to reconstruct some secret a0, and tλ the attribute associated to the leaf λ. The ciphertext for
attribute t is ct, where ω is a common random for all attributes in the ciphertext. One can see
the orthogonal parts: πλ(1, t) and σt(t,−1). Full mathematical details for how pairings are done
can be found in Chapter 4.

is not trivial, as the side in charge of the policy is the one most likely to have a granular control
over decryption, as it will control under which rules the attributes can be used to validate the
policy. This is even more true regarding delegation: as we will see in Section 3.2, delegation of
access-trees is very powerful and allow for a lot of evolutions from the original delegator tree,
increasing the difference of control over decryption for users between KP-ABE and CP-ABE.

We now delve deeper into the instanciations for Attribute-based constructions using bilin-
ear pairings, in particular to explain how the access-tree (which we will now use to refer to
policies) and attributes are put inside the cryptographic scheme. Indeed, we want to provide
cryptographically sound guarantees for either sides of the protocol that the person obtaining
authorization through an access-tree did so legitimately. More concretely, the access-tree will
be embedded through a secret sharing, where each leaf of the access-tree is given a share. The
leaves are represented by keys for KP-ABE, ciphertexts for CP-ABE, and signatures for ABS.
Meanwhile, the attributes, situated in the ciphertext for KP-ABE, and in the keys for CP-ABE
and ABS, are bound by a common random. Then, through the bilinearity of the pairing, one
decrypts by pairing each leaf of the access-tree with its corresponding attribute. There, the com-
mon random will factorize, thus allowing to recombine the shares into the initial secret sharing,
ensuring decryption. The reader might wonder how we can ensure whether the "good" attribute
has been used to match a leaf. This is achieved through use of an orthogonal element between
the leaf and the attribute: if the proper attribute is used for a leaf, the orthogonal part will
cancel itself out, else it will create a noise tampering with the decryption. We illustrate our
explanation for KP-ABE with Figure 2.3.
Motivations. Our aim is to explore attribute-based solutions that give granularity over access-
control over decryption to users, and in particular solutions that ease the management over
different devices. For this reason, we decide to focus on KP-ABE and ABS with delegation.
Preserving anonymity of users as much as possible is also an important feature of our work,
considering the increased risks of a device being lost or getting corrupted in a multi-device
setting compared to a setting with a single device. Thus, keys and signatures from a user should
ideally not reveal anything about their identity, and we also require that keys and signatures
are somewhat independent from one another, even if they are related by delegation. However,
we also want to keep users accountable, particularly in a system where they have great power
through delegation, and as such we will also require some form of tracing by a trusted authority,
as a way to reveal the user behind a decryption or signature. In order to achieve this, we

2.2 - Related Work 13

first need to select a framework that is compatible with full security using the Dual Encryption
System methodology.

2.2 Related Work

2.2.1 Frameworks for Attribute-Based Cryptography

The first frameworks for ABE relied on two groups compatible for bilinear pairings [GPSW06,
BSW07]. Security proofs used a partitioning technique, which limited security of schemes to
selective security, where the adversary has to announce his target set of attributes before the
beginning of the game. In order to reach a higher level of security, the adaptive security, Wa-
ters [Wat09] introduced a new paradigm: The Dual System Encryption (discussed later in Sec-
tion 5.1). Although originally designed for IBE, it is also adequate for adaptive security in ABE.
In particular, a new approach proved compatible with this new paradigm: groups of composite
order [LOS+10]. However, as the composite order setting is quite inefficient [Gui13], tools were
developped to convert composite order setting into a prime order setting [Fre10, Lew12]. One
of these technique relied on the Dual Pairing Vector Spaces (DPVS) framework [OT09], which
uses multi-dimensional vector spaces of prime order groups. As the DPVS proved useful for a
quantity of works in ABE and other similar primitives [OT11, OT12a, DOT18], we decided to
use it as well for the basis of our work. However, the tools from Okamoto-Takashima are hardly
reusable for new schemes, as they use a great number of problems and sub-problems that are
specific to their constructions, thus we must adapt them to our work. We also note the existence
of other generic tools that capture the expressiveness of policies and the central proof argument
for attribute-based schemes, but are neutral regarding our target application of delegation or
tracing [CGW15], [Att16].

2.2.2 Traitor-Tracing

In a traitor-tracing system, a tracing authority can interact with a Pirate Decoder (PD) that
non-legitimately decrypts ciphertexts, using one or more decryption keys of legitimate users (the
traitors), in order to determine which user’s private keys are used by the PD. Depending on the
possible interactions with the PD, the model may vary on a spectrum from white-box, where the
tracer can access information about the PD implementation, to black-box, where the tracer can
only use the PD as a decryption oracle. While the white-box scenario offers the best properties
of consistency and user privacy [Zha21], it is also the most demanding setting, as access to full
implementation of the Pirate Decoder might be difficult. On the other side, the black-box setting
offers the most reasonable scenario, as it can even work when interacting remotely with the PD.
For this reason, we will focus on black-box traitor tracing. The first traditional approach is
to embed codewords (also called "fingerprints") with specific properties in the decryption keys.
These codewords can then be recovered, under some marking assumptions that address collusion
of traitors, after interacting with the PD. Boneh and Shaw [BS95] proposed a tracing technique
by embedding codewords in each ciphertext. With this approach, the ciphertext size has to
be linear in the length of the codeword, and this length quickly increases with the size of the
possible collusion. Boneh and Naor [BN08] improved this approach with a shorter ciphertext:
only some bits of the codeword are involved in each ciphertext, but in this case tracing requires
additional assumptions on the decryption capabilities of the PD.

Boneh et al. [BSW06], followed by [BW06], proposed traceability (and revocation) whatever
the size of the collusion using a new linear tracing technique, with ciphertexts of size

√
N , where

N is the maximal number of users. Much later, [GKW18] showed that this approach had a flaw
in the secret-key setting and proposed a method to fix it.

14 2 - Introduction

2.2.3 Multi-Receiver Encryption

Broadcast Encryption. When used with efficient revocation, broadcast encryption is a nice
tool for fine-grained access-control, as proposed in the seminal NNL paper [NNL01]. In a broad-
cast encryption system, the sender specifies a target set T of users who can read the message.
All other users cannot access the message.

While it may seem possible to trace a compromised key exploited by a PD using revocation,
by a trial and error approach or more sophisticated techniques, the PD might stop answering if it
detects the tracing procedure. And this is an easy task for an adversary with classical broadcast
encryption schemes that leak information about the target set, and so the revoked devices.

Anonymous broadcast encryption addresses this leakage of the target set, but even the
most efficient solutions [LPQ12] cannot avoid a ciphertext being linear in the target set or
the revocation set. Ak et al. [AKPS12] proposed a generic method to transform a broadcast
encryption scheme into a trace and revoke scheme, using fingerprinting codes with additional
samplability property, to make the usual mode and the tracing mode indistinguishable. But it
does not provide fine-grained access-control as ABE schemes.
Attribute-Based Encryption (ABE). ABE has first been proposed in the paper by Goyal
et al. [GPSW06]. They propose a concrete construction of KP-ABE, for any monotonous access
structure defined by a policy expressed as an access-tree with threshold internal gates and
leaves associated to attributes. Attributes in the ciphertext are among a large universe U (not
polynomially bounded). Given an access-tree T embedded in a private key, and a set of attributes
Γ ⊂ U associated to a ciphertext, one can decrypt if and only if Γ satisfies T .

Furthermore, they laid down the bases for delegation of users’ private keys: one can delegate
a new key, associated with a more restrictive access-tree. This first paper on KP-ABE allows
fine-grained access-control for multiple devices, dealing with delegation of keys for more restric-
tive policies. However, few works have followed from here, except for some isolated work on
Hierarchical CP-ABE [WLW10, LYZ19], which bears inherent differences from KP-ABE as keys
consist in set of attributes which are less structured than policies. An important contribution
on the topic made by Shi and Waters [SW08] was to remark that that original definitions of
Hierarchical IBE [HL02] suffered from an incomplete perspective on how the adversary obtained
keys during the query phase, in particular regarding keys that could come from agents other
than the authority. To take into accounts these various scenarios, they proposed a generalized
model of delegation where the delegation history of the adversary must be tracked.
Predicate Encryption/Inner-Product Encryption (IPE). Okamoto and Takashima pre-
sented many IPE [OT10, OT12a, OT12b], together with LSSS: the receiver can read the message
if a predicate is satisfied on some information in the decryption key and in the ciphertext. Inner-
product encryption (where the predicate checks whether the vectors embedded in the key and
in the ciphertext are orthogonal) is the major tool for their work, which is instanciated in the
DPVS framework. On top of achieving adaptive security, their work also provide attribute-hiding
(from [KSW08]) where no information leaks about the attributes associated to the ciphertext,
except for the fact that they are accepted or not by the policies in the keys. It gets closer to our
goals, as tracing might become undetectable. However, it does not seem any longer compatible
with delegation, as the security proofs require all the key generation material to remain a secret
information for the key issuer only.

As follow-up works, Chen et al. [CGW15, CGW18] designed multiple systems for IPE, with
adaptive security, and explored full attribute-hiding with weaker assumptions and shorter ci-
phertexts and secret keys than in the previous work of Okamoto-Takashima. However, it does
not fit our expectations on delegation, for the same reasons. On the other hand, Attrapadung
also proposed new ABE schemes based on Pair Encoding Systems, which allow for extremely
general predicates and large universes [AT20], but this deals neither with delegation nor with
any kind of attribute-hiding, as we would need.

2.2 - Related Work 15

Traceable ABE. Wong et al. [LW15, LLLW17] combined the technique of [BW06] into a
CP-ABE, with policy encoded in a Linear Secret Sharing Scheme (LSSS). Those techniques
nevertheless seem incompatible with delegation properties. Intuitively, their approach assigns
each single user to a different cell in a table, and then methodically tests each cell of the table
for a traitor, with linear tracing. This is quite exclusive with delegation for the users, as one
cannot add more cells in the table.

Lai and Tang [LT18] proposed a framework for traitor-tracing in ABE. Their technique is
a generic transformation to make any ABE into a traceable ABE, following Boneh and Shaw
[BS95] methodology with codewords. However, their construction is a generic one, and the
additional layer for tracing incurs an expensive overhead on keys by requiring a full copy of the
access-tree per character of the tracing word. Nevertheless, our approach will be in this vein,
but for a more specific construction.

2.2.4 Anonymous Signatures

Group Signatures. In a Group Signature scheme [Cv91], a group is represented by a group
public key, which can be used by any verifier to check signatures done by a member of the group.
Each group member owns a distinct secret signing key, which can be used to anonymously sign
an message in the name of the group. Meanwhile, the group manager holds a group manager’s
secret key, which can be used to generate the group, as well as to trace a signature generated by a
member of the group to the original signer. The first fully secure realizations of Group Signatures
were static [BMW03], where the group is fixed during the Setup, until later realizations with a
dynamic group were proposed [KY05], allowing users to be added on the fly. There has been
a proposition to use attributes-like properties by Khader [Kha07], however only the identity of
the signer stays hidden during a signature as in Group Signature, while the attributes used to
sign will be known to any verifier.
Ring Signatures. In a Ring Signature scheme [RST01], the group is dynamically formed at
Signature time by the signer, who arbitrarily choses public keys of other "potential" signers to
create an ad-hoc group for which the signature is valid. Verifiers then access the public keys
used in the signature, and can only learn that the signature was indeed performed by someone
from that group. Ring Signature is extremely flexible, as no key generation from a central
authority step is necessary and users can join-in freely without management. This also comes
at a cost, as user traceability and accountability is almost impossible. Due to this condition,
some suggestions have been proposed, for example including a tag to allow identification by
an authority [BCC+15], or allowing the linkability between different signatures by the same
person [LWW04]. Nonetheless, Ring Signatures are oriented rather towards applications that
focus on anonymity and flexibility of join, for example e-voting, rather than fine-grained key
management and delegation for users.
Attribute-Based Signature (ABS). Attribute-Based Signature was introduced in [MPR11],
as the signature version of Attribute-Based Encryption (ABE) [GPSW06]. They define what one
can expect as unforgeability for ABS: one is unable to produce a convincing signature for any
policy he wouldn’t satisfy. They also introduce privacy (or anonymity) for ABS, where any
verifier does not learn anything on the identity nor the attributes of the signer when seeing a
signature, except that the signature is valid or not, with respect to the claimed policy.

Our constructions are based on Okamoto and Takashima’s [OT11] original work in the Dual-
Pairing Vector Space (DPVS) framework, which is still the basis for their recent work [DOT19].
However, while most of previous works are based on the DLIN assumption or variants, ours are
based on the SXDH assumption. Along with Attrapadung et al., they focused on the expressivity
of the policy [SAH16, SKAH18].
Traceable ABS. Traceability, as a feature of ABS, has been studied by different authors
and with different applications in mind. A first approach is the tracing of signers provided

16 2 - Introduction

in [EGK14], however without delegation. An approach which focuses on delegation has been
proposed by [DGM18] to trace the full path of the intermediary authorities that delivered the
keys to the final signers. For efficiency reasons, we decided to exploit a Linearly-Homomorphic
signature scheme [HPP20], while more classical approaches use public-key encryption to encrypt
the identity of the signer, together with NIZK proofs for consistency guarantees.
Hierarchical ABS. As far as delegation in ABS is concerned, very few works have been
conducted. A line of work from Manulis et al. [DGM18, GM19] explores a Hierarchical ABS
with a focus on the management of intermediate authorities, and the delegation keeps track of
the delegation path containing all the authorities that participated in the creation of someone’s
key. While this gives a strong granularity to identify the keys, especially during tracing, it also
means that key and signature sizes are linear in the number of attributes and the length of the
delegation path. There bas been no intermediary solution giving more control over secret keys
for delegation to users, to the best of our knowledge.

2.3 Contributions

As a first step to construct our ABE and ABS with delegation, we go back from Okamoto
and Takashima’s original constructions [OT12a, OT11]. In both cases, we prove a scheme with
delegation and adaptive security under the SXDH assumption in Chapter 5. The common
framework of both these schemes, the Dual-Pairing Vector Spaces (DPVS), is presented in
chapter 4.

2.3.1 Dual Pairing Vector Spaces

Our contribution on DPVS is a compilation of the main tools from DPVS for indistinguisha-
bility in proofs by game, presented as practical theorems under the DDH assumption. Since the
original work of Okamoto-Takashima are cut for their own construction, with few reusability for
new constructions, we present new generic tools that can be adapted to any proof in the DPVS
framework. The results can be found in Section 4.4, with a quick recap table in Figure 4.1. We
also adapt an existing theorem for static attributes into a new one that allows an unbounded
universe for the attributes (see Theorem 7).

2.3.2 Attribute-Based Encryption

We start with delegatable KP-ABE with some additional attribute-hiding property in the ci-
phertext to obtain undetectable tracing. To this aim, we first detail one of the main limitation
we have to overcome in order to get delegation and traceability: with the original approach
of [GPSW06], attributes associated to the ciphertext are explicitly stated as elements in the
ciphertext. Removing some attributes can thus allow to single out specific private keys, but
this is a public process, and thus incompatible with any tracing procedure, that would then
be detectable by the adversary. The alternative would be to use the semantic security of the
scheme to send different ciphertexts depending on the possible attributes of the traitor [LT18],
but this approach drastically increases the size of the keys, as the key must be fully duplicated
for each tracing attribute. To avoid that, our first contribution on ABE is the new prim-
itive: Switchable-Attribute Key-Policy Attribute-Based Encryption (SA-KP-ABE), where one
can invalidate some attributes in the ciphertext in an indistinguishable way. More precisely,
we will bring new properties to the attributes in ciphertexts (for undetectable tracing) but also
symmetrically to the leaves in keys (for anonymity).

In a SA-KP-ABE scheme, attributes in a ciphertext and leaves in an access-tree T defining the
policy in a key can be switched in two different states: Attributes can be set to valid or invalid in
a ciphertext at encryption time, using a secret encryption key. We then denote Γ = Γv ·∪Γi, the

2.3 - Contributions 17

Feature [OT12a] [LW15] [CGW18] Ours
Security Adaptive Adaptive Adaptive Adaptive

Assumptions DLIN q-type XDLIN SXDH
Construction type CP/KP

ABE
CP/KP

ABE
IPE KP ABE

Delegation ✓ × × ✓
Traceability × ✓ × ✓

Figure 2.4: Comparison with Related Work

set of attributes for a ciphertext, as the disjoint union of valid and invalid attributes; Leaves can
be set to passive or active in the access-tree in a key at key generation time, using the master
secret key. We also denote L = Lp ·∪ La, the set of leaves, as the disjoint union of passive and
active leaves. A set of valid/invalid attributes Γ = Γv ·∪ Γi is accepted by an access-tree T with
passive/active leaves L = Lp ·∪La, if the tree T is accepting when all the leaves in L associated to
an attribute in Γ are set to True, except if the leaf is active (in La) and the associated attribute
invalid (in Γi). As already presented above, passive/active leaves in L are decided during the
Key Generation procedure by the authority, using the master secret key. Then the keys are
given to the users. During the Encryption procedure, a ciphertext is generated for attributes
in Γ, but one might specify some attributes to be invalid by using a secret tracing key, which
virtually and secretly switches some active leaves to False. Passive leaves are not impacted by
invalid attributes.

A second contribution on ABE is a concrete and efficient instantiation of SA-KP-ABE,
with security proofs under the SXDH assumption. We eventually explain how one can deal with
delegatable and traceable KP-ABE from such a primitive. As shown on Figure 2.4, our scheme
is the first one that combines explicitly both delegation and traceability of keys for KP-ABE.
Discussions. Our setting bears common characteristics with modern KP-ABE approaches, but
with major differences. First, Waters [Wat09] introduced the Dual System Encryption (DSE)
technique, to improve the security level of KP-ABE, from selective security in [GPSW06] to
adaptive security. In DSE, keys and ciphertexts can be set semi-functional, which is in the same
vein as our active leaves in keys and invalid attributes in ciphertexts. However, DSE solely
uses semi-functional keys and ciphertexts during the simulation, in the security proof, while our
construction exploits them in the real-life construction. The security proof thus needs another
layer of tricks.

Second, the attribute-hiding notions are strong properties that have been well studied in
different IPE works. However, one does not need to achieve such a strong result for tracing:
Our (Distinct) Attribute-Indistinguishability is properly tailored for KP-ABE and tracing.

Finally, we detail the advantage of our solution over a generic KEM approach that would
combine a Delegatable KP-ABE and a black-box traitor-tracing scheme. This generic solution
works if one is not looking for optimal bounds on collusion-resistance during tracing: The main
issue with such a use of two independent schemes is that for each user, the KP-ABE key and
the traitor-tracing key are not linked. As a consequence, the encryptions of the ABE part and
the tracing part are done independently. The colluding users can all try to defeat the traitor
tracing without restriction: the collusion-resistance for tracing in the global scheme will exactly
be the collusion-resistance of the traitor tracing scheme. On the other hand, our construction
will leverage the collusion-resistance of KP-ABE to improve the collusion-resistance of tracing:
only players non-revoked by the KP-ABE part can try to defeat the traitor tracing part. Hence,
during tracing, one can revoke arbitrary users thanks to the policy/attributes part. This allows
to lower the number of active traitors, possibly keeping them below the collusion-resistance of
the traitor-tracing scheme, so that tracing remains effective.

18 2 - Introduction

Feature [OT11] [GM19] Ours
Assumptions DLIN q-type + SXDH SXDH
Delegation × ✓ ✓
Traceability ✓ ✓ ✓

Signature size Linear in attributes Linear in attributes
and authorities

Linear in attributes

Figure 2.5: Comparison with Related Work

2.3.3 Attribute-Based Signature

We move on to our ABS contributions, where we propose and prove two constructions that build
on the one adapted from Okamoto-Takashima’s work [OT11]:

• Our contribution on ABS is a scheme that improves the previous ABS construction
with different kinds of delegation: delegation of attributes and delegation of policies;

• The second scheme adds traceability to the initial ABS.

All these constructions are existentially unforgeable under the following two assumptions: the
SXDH assumption in the standard model, and the collision-resistance of some hash functions.
Our first and second constructions are also perfectly anonymous, while the third one is com-
putationally anonymous under a close variant of the DDH assumption. The traceability of our
last construction stands in the Random Oracle Model (ROM), and relies on the security of a
Linearly-Homomorphic signature scheme, the simulation-extractability of some non-interactive
zero-knowledge proof (NIZK) and the soundness of some other NIZK. We exploit the scheme
from [HPP20], whose security is proven in the generic bilinear group model.
Discussions. Our three schemes behave very closely regarding performances. The keys and
signatures are linear in the number of attributes involved, with performances comparable to [OT11].
One of the main advantage of the DPVS framework is to rely directly on the hardness assump-
tion which simplifies the protocol, instead of other approaches that need to run more complex
(NIZK) as subroutines, which were used as a way to prove the validity of the signature while
guaranteeing the anonymity of the signer. In particular, we note that the intrication between
delegation and traceability made by [GM19] makes it impossible to have delegation without
NIZK, while our modular approach to both features does not encounter this phenomenon.

We separated our construction featuring delegation from our construction featuring tracing
so we could underline the specificities of each to the reader, however we note that these new con-
structions are both fully compatible. One could then make an ABS with two kinds of delegation,
and traceability, by putting together each of the specific construction blocks of our constructions.
This would result in a scheme with existential unforgeability under the SXDH assumption, but
computational anonymity under a DDH-like assumption. We note that the tracing would only
trace back to the original key handed to a user, even when tracing a signature made with a
delegated key. The linear-only property of the signature scheme ensures the same scalar wid is
in all the delegated keys and signatures originated from the same initial signing key, but still
with computational anonymity, and unlinkability. This thus addresses the case where a user
delegates his signing rights to multiple devices, with various restrictions: whatever the key used
for signing, tracing will target the initial user.

Chapter

3
Definitions

Chapter content
3.1 Hardness Assumptions . 19
3.2 Access-Trees . 20

3.2.1 Definition of a Policy . 20
3.2.2 Labeling of Access-Trees . 21

3.3 Attribute-Based Encryption (ABE) 23
3.3.1 Definition of ABE . 23
3.3.2 Security Model for ABE . 23

3.4 Attribute-Based Signature (ABS) . 25
3.4.1 Definition of ABS . 25
3.4.2 Security Model for ABS . 25

3.1 Hardness Assumptions
We will make use of a pairing-friendly setting G = (G1,G2,Gt, e,G1, G2, q), with a bilinear map
e from G1 ×G2 into Gt, where G1 (respectively G2) is a generator of G1 (respectively G2). We
will use additive notation for G1 and G2, and multiplicative notation in Gt. The Decisional
Diffie-Hellman (DDH) Assumption, which is at the core of our work, is defined as follows:

Definition 1 (Decisional Diffie-Hellman Assumption) The DDH assumption in group G,
of prime order q with generator G, states that no algorithm can efficiently distinguish the two
distributions, a, b, c $← Zq,

D0 = {(a ·G, b ·G, ab ·G)} D1 = {(a ·G, b ·G, c ·G)}

And we will denote by Advddh
G (T) the best advantage an algorithm can get in distinguishing the

two distributions within time bounded by T . Eventually, we will make the following more general
Symmetric eXternal Diffie-Hellman (SXDH) Assumption which makes the DDH assumptions in
both G1 and G2. Then, we define Advsxdh

G (T) = max{Advddh
G1 (T),Advddh

G2 (T)}.
Furthermore, for our proofs, we will sometimes use the following DSDH assumption, which

is equivalent to the DDH assumption:

Definition 2 (Decisional Separation Diffie-Hellman Assumption) The DSDH assump-
tion in G, of prime order q with generator G, between two constant values x, y, states that no
algorithm can efficiently distinguish the two distributions, where a, b $← Zq,

Dx = {(a ·G, b ·G, (ab+ x) ·G)} Dy = {(a ·G, b ·G, (ab+ y) ·G)}

As c + x and c + y are perfectly indistinguishable for a random c, then the best advantage an
algorithm can get in distinguishing the two distributions within time T is upper-bounded by
2 · Advddh

G (T).

20 3 - Definitions

root ρ, gate AND

node ν1, AND

ν2, OR

leaf λ1 λ2

λ3

ν3, OR

λ4 λ5 λ6

Figure 3.1: Example of an access-tree with all the basic notions. Each leaf λi is associated with
an attribute in an universe U . In future figures, we will skip the nodes and leaves names, and
directly put their associated value: gates for nodes, attributes for leaves.

3.2 Access-Trees

Most of our work uses access-trees to express the policies used in our schemes, either for de-
cryption or signature. We explain here what access-trees are and how to label access-trees as a
secret sharing. We conclude with a small section on dual-trees, which is used for our signature
scheme construction.

3.2.1 Definition of a Policy

Access Trees. As in the seminal paper of Goyal et al. [GPSW06], we will consider an access-
tree T to model the policy on attributes in an unbounded universe U , but with only AND
and OR gates instead of more general threshold gates: an AND-gate being an n-out-of-n gate,
whereas an OR-gate is a 1-out-of-n gate. This is also a particular case of the more general LSSS
technique. Nevertheless, such an access-tree with only AND and OR gates is as expressive as
with any threshold gates or LSSS.

For any monotonic policy, we define our access-tree in the following way: T is a rooted
labeled tree from the root ρ, with internal nodes associated to AND and OR gates and leaves
associated to attributes. More precisely, for each leaf λ ∈ L, A(λ) ∈ U is an attribute, and any
internal node ν ∈ N is labeled with a gate G(ν) ∈ {AND,OR} as an AND or an OR gate to be
satisfied among the children in children(ν). We will implicitly consider that any access-tree T
is associated to the attribute-labeling A of the leaves and the gate-labeling G of the nodes. For
any leaf λ ∈ L of T or internal node ν ∈ N\{ρ}, the function parent links to the parent node:
ν ∈ children(parent(ν)) and λ ∈ children(parent(λ)). We illustrate these notions in Figure 3.1

On a given list Γ ⊆ U of attributes, each leaf λ ∈ L is either satisfied (considered or set
to True), if A(λ) ∈ Γ, or not (ignored or set to False) otherwise:. Then, an internal node ν is

AND

AND

OR

A B

C

OR

D E F

Figure 3.2: Example of an evaluation of an access-tree with the set Γ = {A,C, F} where
T (Γ) = 1. Leaves with an attribute corresponding in Γ are in green and are considered as True
to evaluate their parents, other leaves are considered False.

3.2 - Access-Trees 21

AND
AND

OR
A1 A2

OR
A3 A4

OR
A5 A6 A7

OR
A8 AND

A9 A10

Figure 3.3: Example of an access-tree with two different evaluation pruned trees: in green for
the set of attributes Γ1 = {A1, A3, A5, A8}, in red for Γ2 = {A2, A4, A6, A9, A10}.

satisfied if all children (AND-gate) or at least one of the children (OR-gate) are satisfied.
We add two notations to formalize what we explained in the above paragraph: we denote

Tν the subtree rooted at the node ν, and LΓ the restriction of L to the satisfied leaves in the
tree T . A leaf λ ∈ L is satisfied if λ ∈ LΓ then, recursively, Tν is satisfied if the AND/OR-gate
associated to ν via G(ν) is satisfied with respect to status of the children in children(ν): we note
Tν(Γ) = 1 when the subtree is satisfied, and 0 otherwise. In particular, the full access-tree is
satisfied by Γ if Tρ(Γ) = 1. See Figure 3.2 for a full example.

We detail here the rules to evaluate leaves and nodes depending on their attributes and gates:

Tλ(Γ) = 1 iff λ ∈ LΓ for any leaf λ ∈ L
Tν(Γ) = 1 iff ∀κ ∈ children(ν), Tκ(Γ) = 1 when G(ν) = AND
Tν(Γ) = 1 iff ∃κ ∈ children(ν), Tκ(Γ) = 1 when G(ν) = OR

Evaluation Pruned Trees. In the above definition, we considered an access-tree T and a set
Γ of attributes, with the satisfiability T (Γ) = 1 where the predicate defined by T is true when
all the leaves λ ∈ LΓ are set to True. We will consider a pruned version of T for Γ basically
as a skeleton with only the necessary True leaves to evaluate the internal nodes up to the root.
Formally, a Γ-evaluation pruned tree T ′ ⊂ T is a pruned version of T , where one children only
is kept to OR-gate nodes, down to the leaves, so that T ′(Γ) = 1.

We will denote EPT(T ,Γ) the set of all the evaluation pruned trees of T with respect to Γ.
EPT(T ,Γ) is non-empty if and only if T (Γ) = 1.

Figure 3.3 gives an illustration of such an access-tree for a policy: when the colored leaves
{λ1, λ3, λ5, λ8, λ9, λ10} are True, the tree is satisfied, and there are two possible evaluation pruned
trees: down to the leaves {λ1, λ3, λ5, λ8} or {λ1, λ3, λ5, λ9, λ10}.
Partial Order on Policies. We will introduce a notion of delegation to create more restrictive
access-tree from an existing one. In order to do that, we define the following partial order, for any
access-tree T , T ′: T ′ ≤ T , if and only if for any subset Γ of attributes, T ′(Γ) = 1 =⇒ T (Γ) = 1.
In our case of access-trees, a more restrictive access-tree is, for each node ν:

• if G(ν) = AND, one or more children are added (i.e., more constraints);
• if G(ν) = OR, one or more children are removed (i.e., less flexibility);
• the node ν is moved one level below as a child of an AND-gate at node ν ′, with additional

sub-trees as children to this AND-gate (i.e., more constraints).

We illustrate the last rule, with a simple example in Figure 3.4.

3.2.2 Labeling of Access-Trees

Labeled Access-Trees. We will label access-trees with integers so that some labels on the
leaves will be enough/necessary (according to the policy) to recover the labels above, up to the
root. An example of labeling in Z/7Z is presented on Figure 3.5, and we show how to do such
a labeling in our next definition.

22 3 - Definitions

OR

A B C

Leaf Gate Added AND-leaf

OR

AND

A′ A

B C

Figure 3.4: Access-tree (left-side) and delegated-tree (right-side) where the leaf associated with
attribute A is changed into an AND-gate with a new child leaf associated with attribute A′

Definition 3 (Random y-Labeling) For an access-tree T and any y ∈ Zp, the probabilistic
algorithm Λy(T) sets aρ ← y for the root, and then in a top-down manner, for each internal
node ν, starting from the root:

• if G(ν) = AND, with n children, a random n-out-of-n sharing of aν is associated to each
child: (aκ)κ

$← Zp,∀κ ∈ children(ν), such that aν = ∑
κ∈children(ν) aκ mod p;

• if G(ν) = OR, with n children, each child is associated to aν : ∀κ ∈ children(ν), aκ = aν .

Algorithm Λy(T) outputs Λy = (aλ)λ∈L, for all the leaves λ ∈ L of the tree T .

Due to the linear nature of labelings, from any y-labeling (aλ)λ of the tree T , and a random
z-labeling (bλ)λ of T , the sum (aλ + bλ)λ is a random (y + z)-labeling of T . In particular, from
any y-labeling (aλ)λ of T , and a random zero-labeling (bλ)λ of T , the values cλ ← aλ + bλ

provide a random y-labeling of T .
Labels on leaves are a secret sharing of the root that allows reconstruction of the secret if

and only if the policy is satisfied, as explained below:
Properties of Labelings. For an acceptable set of attributes Γ for T and a labeling Λy of T
for a random y, given only (aλ)λ∈LΓ , one can reconstruct y = aρ. Indeed, as T (Γ) = 1, we use
an evaluation pruned tree T ′ ∈ EPT(T ,Γ). Then, in a bottom-up way, starting from the leaves,
one can compute the labels of all the internal nodes, up to the root.

On the other hand, when T (Γ) = 0, with a random labeling Λy of T for a random y, given
only (aλ)λ∈LΓ , y is unpredictable: for any y, y′ ∈ Zp, Dy and Dy′ are perfectly indistinguishable,
where Dy = {(aλ)λ∈LΓ , (aλ)λ

$← Λy(T)}. Intuitively, given (aλ)λ∈LΓ , as T (Γ) = 0, one can
complete the labeling so that the label of the root is any y.

AND/6

AND/6

OR/2

2
λ1

2
λ2

OR/4

4
λ3

4
λ4

OR/5

5
λ5

5
λ6

5
λ7

OR/2

2
λ8

AND/2

3
λ9

6
λ10

Figure 3.5: Example of a 6-labeling in Z/7Z. The value of the AND gates is the sum of the
value of their children, the value of the OR gates is the same as the value of their children.

3.3 - Attribute-Based Encryption (ABE) 23

3.3 Attribute-Based Encryption (ABE)

3.3.1 Definition of ABE

We will define KP-ABE in the same way that the seminal work from [GPSW06], with access-
trees to define policies in the keys. We will also use the usual description of Key Encapsulation
Mechanism, that consists in generating an ephemeral key K and its encapsulation C. The
encryption of the actual message under the key K, using a symmetric encryption scheme is then
appended to C. We will however call C the ciphertext, and K the encapsulated key in C.

Setup(1κ). From the security parameter κ, the algorithm defines all the global parameters PK
and the master secret key MK;

KeyGen(MK, T). For a master secret key MK and an access-tree T , the algorithm outputs a
private key dkT ;

Encaps(PK,Γ). For a list Γ of attributes and global parameters PK, the algorithm generates the
ciphertext C and an encapsulated key K;

Decaps(dkT , C). Given the private key dkT and the ciphertext C, the algorithm outputs the
encapsulated key K.

For correctness, the Decaps algorithm should output the encapsulated key K if and only if C
has been generated for a set Γ that satisfies the policy T of the decryption key dkT : T (Γ) = 1.
Delegation. A major feature in [GPSW06] is the delegation of decryption keys, in which a
user with a decryption key dk corresponding to an access-tree T can compute a new decryption
key corresponding to any access-tree T ′ ≤ T . There is thus the additional algorithm:

Delegate(dkT , T ′). Given a key dkT , generated from either the KeyGen or the Delegate algo-
rithms, for a policy T and a more restrictive policy T ′ ≤ T , the algorithm outputs a
decryption key dkT ′ .

3.3.2 Security Model for ABE

We define the traditional notion of indistinguishability, with only KeyGen-queries. Then, we
extend it to handle delegation queries in a new notion called Delegation-Indistinguishability: if
one can ask several more restrictive delegations from an access-tree T , one should not be able to
distinguish an encapsulated key in a ciphertext under a non-trivial list of attributes, according
to the obtained delegated keys only. Note that this definition allows for an adversary to make
delegation requests on keys that are delegated keys themselves, without limit.

Definition 4 (Indistinguishability) IND-security for KP-ABE is defined by the following
game:

Initialize: The challenger runs the Setup algorithm of KP-ABE and gives the public parameters
PK to the adversary;

OKeyGen(T): The adversary is allowed to issue KeyGen-queries for any access-tree T of its
choice, and gets back the decryption key dkT ;

RoREncaps(Γ): The adversary submits one real-or-random encapsulation query on a set of at-
tributes Γ. The challenger asks for an encapsulation query on Γ and receives (K0, C). It
also generates a random key K1. It eventually flips a random coin b, and outputs (Kb, C)
to the adversary;

24 3 - Definitions

Finalize(b′): The adversary outputs a guess b′ for b. If for some access-tree T asked to the
OKeyGen-oracle, T (Γ) = 1, on the challenge set Γ, β $← {0, 1}, otherwise one sets β = b′.
One outputs β.

The advantage of an adversary A in this game is defined as

Advind(A) = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].

As usual, we do not consider the trivial attack where the adversary queries a key that give
direct access to the challenge ciphertext. One could of course consider Chosen-Ciphertext
security, where the adversary could have access to some decryption oracles, without the de-
cryption key itself. We note that we present the Adaptive-Set Security version of the Indis-
tinguishability game, which is standard since the introduction of the Dual System Encryption by
Waters [Wat09], meaning the challenge set Γ can be chosen at the time of the challenge. Before
that, most schemes were realized with Selective-Set security, where the adversary declares Γ
at the initialization step, as in [GPSW06].

We now extend the definition to include limitless delegation:

Definition 5 (Delegation-Indistinguishability) Del-IND security for KP-ABE is defined by
the following game between the adversary and a challenger:

Initialize: The challenger runs the Setup algorithm of KP-ABE and gives the public parameters
PK to the adversary;

Oracles: The following oracles can be called in any order and any number of times, except for
RoREncaps which can be called only once.

OKeyGen(T): to model KeyGen-queries for any access-tree T . It generates the decryption
key but only outputs the index k of the key;

ODelegate(k, T ′): to model Delegate-queries for any more restrictive access-tree T ′ ≤ T ,
for the k-th generated decryption key for T . It generates the decryption key but only
outputs the index k′ of the new key;

OGetKey(k): the adversary gets back the k-th decryption key generated by OKeyGen or
ODelegate oracles;

RoREncaps(Γ): the challenge real-or-random encapsulation query on a set of attributes Γ
is asked once only. The challenger asks for an encapsulation query on Γ and receives
(K0, C). It also generates a random key K1. It eventually flips a random coin b, and
outputs (Kb, C) to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some access-tree T corresponding to
a key asked to the OGetKey-oracle, T (Γ) = 1, on the challenge set Γ, β $← {0, 1}, otherwise
one sets β = b′. One outputs β.

The advantage of an adversary A in this game is defined as

Advdel-ind(A) = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].

This Delegation-Indistinguishability is definitely stronger than basic Indistinguishability as
the adversary can ask for an OGetKey(k)-query right after the OKeyGen(T)-query that provides
index k to get the decryption key for T . The counter k helps represent the different queries
made by the adversary where he does not get the decryption key back, but instead serve to
make future delegations.

3.4 - Attribute-Based Signature (ABS) 25

3.4 Attribute-Based Signature (ABS)

3.4.1 Definition of ABS

We take the definition of Attribute-Based Signatures (ABS) from the original work of Maji et
al. [MPR11], with attributes in the keys and access-trees as policies in the signatures:

Setup(1κ). From the security parameter κ, the algorithm defines all the global parameters PK
and the master secret key MK;

KeyGen(MK, id,Γ). For a master secret key MK, an identity id and a list of attributes Γ, the
algorithm outputs a private key SKid,Γ specific to the user id and the set of attributes Γ;

Sig(SKid,Γ,m, T). For a private key SKid,Γ, on a set of attributes Γ, a message m and an access-
tree T that accepts Γ, the algorithm outputs a signature σ;

Verif(PK,m, T , σ). Given the public parameters PK, a signature σ for a message m under an
access-tree T , the algorithm outputs 1 for accept or 0 for reject.

For correctness, the Verif algorithm should output 1 with overwhelming probability on (σ,m, T)
if σ has been generated on m and T , with a private key SKid,Γ that has been generated from
the KeyGen algorithm associated on a set Γ accepted by T .

3.4.2 Security Model for ABS

As for any signature scheme, one should not be able to produce an accepted signature without
an appropriate signing key. In ABS, it translates as not being able to produce a signature under
an access-tree T if one does not own the appropriate attributes to fulfill it:

Definition 6 (Existential Unforgeability) EUF for ABS is defined by the following game
between the adversary and a challenger:

Initialize: The challenger runs the Setup algorithm of ABS and gives the public parameters PK
to the adversary;

Oracles: The following oracles can be called in any order and any number of times.

OKeyGen(id,Γ): to model KeyGen-queries for any identity id and any set of attributes Γ
of its choice, the adversary gets back the key SKid,Γ;

OSig(id,m, T): to model Sig-queries for any identity id and under any access-tree T of its
choice for a message m, the adversary gets back the signature σ;

Finalize(b′): The adversary outputs a forgery (m′, T ′, σ′). If for some attribute set Γ asked
to the OKeyGen-oracle, T ′ accepts Γ, or if the adversary queried OSig on (m′, T ′), one
outputs 0. Otherwise one outputs Verif(PK,m′, T ′, σ′).

The advantage Adveuf(A) of an adversary A in this game is defined as the probability to output
1.

As usual, the Finalize-step excludes trivial attacks, where the adversary owns a key able to
generate an acceptable signature or just forwards a query asked to the signing oracle. We
present a version with delegation, akin to the ABE with delegation, in a later section with our
contributions.

Another security notion that should also be satisfied by an ABS scheme is that a signature
generated for a given access-tree should be independent of the user, which is usually referred to
as anonymity. Maji et al. [MPR11] deals with perfect anonymity, but we will be more flexible,
in order not to exclude traceability:

26 3 - Definitions

Definition 7 (Anonymity) An ABS scheme is said anonymous if, for any (PK,MK) $← Setup,
any message m, any identities id0, id1, any attribute sets Γ0,Γ1, any signing keys SK0

$←
KeyGen(MK, id0,Γ0), SK1

$← KeyGen(MK, id1,Γ1), and any access-tree T that accepts both Γ0
and Γ1, then the distributions of the signatures generated by Sig(SK0,m, T) and Sig(SK1,m, T)
are indistinguishable.

Indistinguishability can be perfect, statistical or computational, which leads to perfect, sta-
tistical or computational anonymity.

Whereas perfect anonymity excludes traceability, computational anonymity may allow the exis-
tence of a trapdoor leading to traceability. We will propose both in out later sections.

Chapter

4
Dual Pairing Vector Spaces
(DPVS)

Chapter content
4.1 Pairing Vector Spaces . 27
4.2 Dual Pairing Vector Spaces . 28
4.3 Change of Basis . 29

4.3.1 Definition . 29
4.3.2 Partial Change of Basis . 29

4.4 Particular Changes of Bases . 30
4.4.1 Diffie-Hellman Tuple in Basis Change 30
4.4.2 Indistinguishability of Sub-Spaces (SubSpace-Ind) 30
4.4.3 Indistinguishability of Position (Pos-Ind) 31
4.4.4 Indexing and Randomness Amplification (Index-Ind) 32

In this section, we present the Dual Pairing Vector Spaces (DPVS), that have been proposed
for efficient constructions with adaptive security [OT08, LOS+10, OT10, OT12b], like the Dual
Systems [Wat09], in prime-order groups under the DLIN assumption. In [LW10], Dual Systems
were using pairing on composite order elliptic curves. Then, prime-order groups have been used
with the SXDH assumption, in a pairing-friendly setting of primer order, which means that the
DDH assumptions hold in both G1 and G2 [CLL+13]. In all theses situations, one exploited
indistinguishability of sub-groups or sub-spaces. In this section, for the sake of efficiency, we use
the SXDH assumption in a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q) of primer order q.

We first present the mathematical basis of the framework, which has been conceived by
Okamoto and Takashima. However, the approach of Okamoto-Takashima is not appropriate
for re-usability, as their problem and sub-problem methodology is specialized for their specific
construction. Thus, we introduce a new generic approach to Okamoto and Takashima’s results in
the form of three ready-to-use generic theorems for DPVS proofs in Section 4.4. A recapitulative
table of these theorems is available in Figure 4.1. Finally, we present a new technical result for
unbounded universe of attributes in Theorem 7.

4.1 Pairing Vector Spaces
Let us be given any cyclic group (G = ⟨G⟩,+) of prime order q, denoted additively. We can
define the Zq vector space of dimension n,

Gn = {X = x⃗ ·G def= (X1 = x1 ·G, . . . ,Xn = xn ·G) | x⃗ ∈ Zn
q },

with the following laws:
(X1, . . . , Xn) + (Y1, . . . , Yn) def= (X1 + Y1, . . . , Xn + Yn)

a · (X1, . . . , Xn) def= (a ·X1, . . . , a ·Xn)

28 4 - Dual Pairing Vector Spaces (DPVS)

Essentially, all the operations between the vectors in Gn are applied on the vectors in Zn
q :

x⃗ ·G+ y⃗ ·G def= (x⃗+ y⃗) ·G a · (x⃗ ·G) def= (a · x⃗) ·G

where x⃗ + y⃗ and a · x⃗ are the usual internal and external laws of the vector space Zn
q . For the

sake of clarity, vectors will be row-vectors.
If we are using a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q), with a bilinear map e from

G1 × G2 into Gt, we can have an additional law between an element X ∈ Gn
1 and Y ∈ Gn

2 :
X × Y def= ∏

i e(Xi, Yi), where Gt is usually denoted multiplicatively.
Note that if X = (X1, . . . , Xn) = x⃗ ·G1 ∈ Gn

1 and Y = (Y1, . . . , Yn) = y⃗ ·G2 ∈ Gn
2 :

(x⃗ ·G1)× (y⃗ ·G2) = X×Y =
∏

i

e(Xi, Yi) =
∏

i

e(xi ·G1, yi ·G2)

=
∏

i

gxi·yi
t = gx⃗·y⃗⊤

t = g
⟨x⃗,y⃗⟩
t

where gt = e(G1, G2) and ⟨x⃗, y⃗⟩ is the inner product between vectors x⃗ and y⃗.

4.2 Dual Pairing Vector Spaces

We define E = (e⃗i)i the canonical basis of Zn
q , where e⃗i = (δi,1, . . . , δi,n), with the classical

δi,j = 1 if i = j and δi,j = 0 otherwise, for i, j ∈ {1, . . . , n}. We can also define E = (ei)i the
canonical basis of Gn, where ei = e⃗i ·G = (δi,j ·G)j . More generally, given any basis B = (⃗bi)i

of Zn
q , we can define the basis B = (bi)i of Gn, where bi = b⃗i ·G.
Choosing a random basis B of Gn is equivalent to choosing a random invertible matrix

B $← GLn(Zq). Given B, we define B = (⃗bi)i as a basis of Zn
q (B is essentially the matrix with b⃗i

as its i-th row, as b⃗i = ∑
j Bi,j · e⃗j), and note B ← B ×E the change of basis from the canonical

basis E . Then, we can define B = (bi)i where bi = b⃗i ·G. Thus, B is the basis of Gn associated
to the matrix B as

bi = b⃗i ·G =
∑

j

Bi,j · e⃗j ·G =
∑

j

Bi,j · ej

So we can write B = B · E
In case of pairing-friendly setting, for a dimension n, we will denote E = (ei)i and E∗ = (e∗

i)i

the canonical bases of Gn
1 and Gn

2 , respectively:

ei × e∗
j = (e⃗i ·G1)× (e⃗j ·G2) = g

⟨e⃗i,e⃗j⟩
T = g

δi,j

T .

The same way, if we denote B = (bi)i = B · E the basis of Gn
1 associated to a matrix B, and

B∗ = (b∗
i)i = B′ · E∗ the basis of Gn

2 associated to the matrix B′ = (B−1)⊤, as B ·B′⊤ = In,

bi × b∗
j = (⃗bi ·G1)× (⃗b′

j ·G2) = g
⟨⃗bi ,⃗b

′
j⟩

t = g
δi,j

t .

B and B∗ are called Dual Orthogonal Bases.
We have seen above the canonical bases E and E∗ are dual orthogonal bases, but for any

random invertible matrix U $← GLn(Zq), the bases U of Gn
1 associated to the matrix U and U∗

of Gn
2 associated to the matrix (U−1)⊤ are Random Dual Orthogonal Bases.

A pairing-friendly setting (G1,G2,Gt, e,G1, G2, q), with such dual orthogonal bases U and
U∗ of size n, is called a Dual Pairing Vector Space (DPVS).

4.3 - Change of Basis 29

4.3 Change of Basis

4.3.1 Definition

Let us consider the basis U = (ui)i of Gn associated to a matrix U ∈ GLn(Zq), and the basis
B = (bi)i of Gn associated to the product matrix BU , for any B ∈ GLn(Zq). For a vector
x⃗ ∈ Zq, we can define

(x⃗)B =
∑

i

xi · bi =
∑

i

xi · b⃗i ·G = x⃗ ·BU ·G = (x⃗ ·B) · U ·G = y⃗ · U ·G

=
∑

i

yi · u⃗i ·G =
∑

i

yi · ui = (y⃗)U where y⃗ = x⃗ ·B.

Hence, (x⃗)B = (x⃗·B)U and (x⃗·B−1)B = (x⃗)U where we denote B def= B·U. For any invertible matrix
B, if U is a random basis, then B = B ·U is also a random basis. Then, with B−1 = (b⃗′⊤

1 , . . . , b⃗
′⊤
n),

x⃗ = y⃗ · (b⃗′⊤
1 , . . . , b⃗

′⊤
n):

B = B · U, B′ =

b⃗′1
...
b⃗′

n

 , and (x⃗)B = (y⃗)U =⇒ x⃗ = (⟨y⃗, b⃗′1⟩, . . . , ⟨y⃗, b⃗′
n⟩).

Let us consider the random dual orthogonal bases U = (ui)i and U∗ = (u∗
i)i of Gn

1 and Gn
2

respectively associated to a matrix U (which means that U is associated to the matrix U and
U∗ is associated to the matrix (U−1)⊤): the bases B = B ·U and B∗ = (B−1)⊤ ·U∗ are also dual
orthogonal bases:

bi × b∗
j = g

b⃗i·b⃗′⊤
j

t = g
(
∑

l
Bi,l·u⃗l)·(

∑
k

(B−1
j,k

)⊤·u⃗∗⊤
k)

t = g

∑
l,k

Bi,lB
−1
k,j

·u⃗l·u⃗∗⊤
k

t = g

∑
k

Bi,kB−1
k,j

t = g
δi,j

t

as ∀(k, l), u⃗k · u⃗l = δk,l since U and U∗ are orthogonal bases.

4.3.2 Partial Change of Basis

We will often just have to partially change a basis, on a few vectors only: the transition matrix

B = (t)i1,...,im =

 t1,1 . . . t1,m
...

...
tm,1 . . . tm,m

i1,...,im

means the n× n matrix B where

Bi,j = δi,j , if any i, j ̸∈ {i1, . . . , im} Bik,iℓ
= tk,ℓ, for all k, ℓ ∈ {1, . . . ,m}

As a consequence, from a basis U, B = B · U corresponds to the basis

bi = ui, if i ̸∈ {i1, . . . , im} bik
=
∑

ℓ

tk,ℓ · uiℓ
, if k ̸∈ {i1, . . . , im}

As we need to have B∗ = (B−1)⊤ ·U∗, we need the dual transition matrix B′ to be B′ = (t′)i1,...,im

where t′ = (t−1)⊤. Indeed, in such a case, we have

b∗
i = u∗

i , if i ̸∈ {i1, . . . , im} b∗
ik

=
∑

ℓ

t′k,ℓ · u∗
iℓ
, if k ̸∈ {i1, . . . , im}

so,

30 4 - Dual Pairing Vector Spaces (DPVS)

• if both i, j ̸∈ {i1, . . . , im}, bi × b∗
j = ui × u∗

j = g
δi,j

t ;

• if i = ik ∈ {i1, . . . , im}, but j ̸∈ {i1, . . . , im},

bi × b∗
j = bik

× u∗
j =

(∑
ℓ

tk,ℓ · uiℓ

)
× u∗

j =
∏

ℓ

(uiℓ
× u∗

j)tk,ℓ = 1

• if i ̸∈ {i1, . . . , im}, but j = ik ∈ {i1, . . . , im},

bi × b∗
j = ui × b∗

ik
= ui ×

(∑
ℓ

t′k,ℓ · u∗
iℓ

)
=
∏

ℓ

(ui × u∗
iℓ

)t′
k,ℓ = 1

• if i = ik and j = iℓ,

bi × b∗
j =

(∑
p

tk,p · uip

)
×
(∑

p

t′ℓ,p · u∗
ip

)

=
∏
p

(uip × u∗
ip

)tk,p·t′
ℓ,p = g

∑
p

tk,p·t′
ℓ,p

t = g

∑
p

tk,p·t′⊤
p,ℓ

t = g
δk,ℓ

t = g
δi,j

t

4.4 Particular Changes of Bases

4.4.1 Diffie-Hellman Tuple in Basis Change

Let us consider a triple (a · G1, b · G1, c · G1), that is either a Diffie-Hellman tuple (i.e., c =
ab mod q) or a random tuple (i.e., c = ab + τ mod q, for τ $← Z∗

q). For any random dual
orthogonal bases U and U∗ associated to the matrices U and U ′ = (U−1)⊤, respectively, we can
set

B =
(

1 a
0 1

)
1,2

B′ =
(

1 0
−a 1

)
1,2

B = B · U B∗ = B′ · U∗

Note that we can compute B = (bi)i, as we know a ·G1 and all the scalars in U :

bi =
∑

k

Bi,k · uk bi,j =
∑

k

Bi,k · uk,j =
∑

k

Bi,kUk,j ·G1 =
∑

k

Uk,j · (Bi,j ·G1).

Hence, to compute bi, one needs all the scalars in U , but only the group elements Bi,j ·G1, and
so G1 and a ·G1. This is the same for B∗, except for the vector b∗

2 as a ·G2 is not known. One
can thus publish B and B∗\{b∗

2}.

4.4.2 Indistinguishability of Sub-Spaces (SubSpace-Ind)

Let us again choose B,B′ for bases B,B∗ as :

B =
(

1 a
0 1

)
1,2

B′ =
(

1 0
−a 1

)
1,2

B = B · U B∗ = B′ · U∗

As already remarked, for such a fixed matrix B, if U is random, so is B too. We remind that
(x⃗)B = (x⃗ ·B)U, and (x⃗)U = (x⃗ ·B−1)B. Note that B−1 = B′⊤. So, in particular

(b, c, 0, . . . , 0)U + (x1, x2, x3, . . . , xn)B
= (b, c− ab, 0, . . . , 0)B + (x1, x2, x3, . . . , xn)B
= (x1 + b, x2 + τ, x3, . . . , xn)B

4.4 - Particular Changes of Bases 31

where τ can be either 0 (in case of a Diffie-Hellman tuple) or random.
At the same time, whereas we cannot compute b∗

2, this does not exclude this second compo-
nent in vectors computed in G2: (y⃗)U∗ = (y⃗ ·B′−1)B∗ = (y⃗ ·B⊤)B∗ . Thus, for every y⃗ ∈ Zq:

(y1, . . . , yn)U∗ = (y1 + ay2, y2, . . . , yn)B∗ .

Theorem 1 Under the DDH Assumption in G1, for random dual orthogonal bases B and B∗,
once having seen B and B∗\{b∗

2}, and any number of vectors (yi,1, yi,2, . . . , yi,n)B∗, for chosen
{yi,2, . . . , yi,n}i ∈ Zn−1

q , but unknown random {yi,1}i $← Zq, one cannot distinguish the vectors
(x1, x

′
2, x3, . . . , xn)B and (x1, x2, x3, . . . , xn)B, for chosen x2, . . . , xn ∈ Zq, but unknown random

x1, x
′
2

$← Zq.

Using the DSDH assumption instead of the DDH assumption, on two chosen values x2 and x′
2,

one can show that no algorithm can efficiently distinguish the distribution (x1, x2, x3, . . . , xn)B
from (x1, x

′
2, x3, . . . , xn)B, for chosen x′

2, x2, . . . , xn ∈ Zq, but unknown random x1
$← Zq:

Theorem 2 (SubSpace-Ind Property) Under the DSDH Assumption in G1, for random dual
orthogonal bases B and B∗, once having seen B and B∗\{b∗

2}, and any number of vectors
(yi,1, yi,2, . . . , yi,n)B∗, for chosen {yi,2, . . . , yi,n}i ∈ Zn−1

q , but unknown random {yi,1}i $← Zq,
one cannot distinguish the vectors (x1, x

′
2, x3, . . . , xn)B and (x1, x2, x3, . . . , xn)B, for any chosen

x′
2, x2, . . . , xn ∈ Zq, but unknown random x1

$← Zq.

We stress that for this property, we only work with (b1,b2) and (b∗
1,b∗

2), but without publishing
b∗

2.

4.4.3 Indistinguishability of Position (Pos-Ind)

Let us consider another change of basis:

B =

 1 0 0
0 1 0
a −a 1

1,2,3

B′ =

 1 0 −a
0 1 a
0 0 1

1,2,3

B = B · U B∗ = B′ · U∗

In this case, we can compute B = (bi)i, but not the vectors b∗
1 and b∗

2 as a ·G2 is missing.

(c,−c, b, x4, . . . , xn)U = (c− ab,−c+ ab, b, x4, . . . , xn)B = (τ,−τ, b, x4, . . . , xn)B
(θ, θ, y3, y4, . . . , yn)U∗ = (θ, θ, aθ − aθ + y3, y4, . . . , yn)B∗ = (θ, θ, y3, . . . , yn)B∗

There is the limitation for the first two components in B∗ to be the same:

Theorem 3 (Pos-Ind Property) Under the DDH Assumption in G1, for random dual or-
thogonal bases B and B∗, once having seen B and B∗\{b∗

1,b∗
2} and any number of vectors

(yi,1, yi,1, . . . , yi,n)B∗, for chosen {yi,1, yi,3, . . . , yi,n}i ∈ Zn−1
q , one cannot distinguish the vectors

(x1,−x1, x3, x4, . . . , xn)B and (0, 0, x3, x4, . . . , xn)B, for chosen x4, . . . , xn ∈ Zq, but unknown
random x1, x3

$← Zq.

We stress again that for this property, we only work with (b1,b2,b3) and (b∗
1,b∗

2,b∗
3), but

without publishing (b∗
1,b∗

2).
But more useful, using the DSDH assumption on 0 and x1, which claims indistinguishability

between (a · G, b · G, (ab + 0) · G) and (a · G, b · G, (ab + x1) · G), we have indistinguishability

32 4 - Dual Pairing Vector Spaces (DPVS)

between

(0, x1, x3, . . . , xn)B + (ab,−ab, b, 0, . . . , 0)U
= (0, x1, x3, . . . , xn)B + (ab− ab,−ab+ ab, b, 0, . . . , 0)B
= (0, x1, x3, . . . , xn)B

(0, x1, x3, . . . , xn)B + (ab+ x1,−ab− x1, b, 0, . . . , 0)U
= (0, x1, x3, . . . , xn)B + (ab+ x1 − ab,−ab− x1 + ab, b, 0, . . . , 0)B
= (x1, 0, x3, . . . , xn)B

(y1, y1, y3, y4, . . . , yn)U∗ = (y1, y1, ay1 − ay1 + y3, y4, . . . , yn)B∗

= (y1, y1, y3, . . . , yn)B∗

Hence,

Theorem 4 (Swap-Ind Property) Under the DSDH Assumption in G1, for random dual or-
thogonal bases B and B∗, once having seen B and B∗\{b∗

1,b∗
2} and any number of vectors

(yi,1, yi,1, . . . , yi,n)B∗, for chosen {yi,1, yi,3, . . . , yi,n}i ∈ Zn−1
q , one cannot distinguish the vectors

(x1, 0, x3, x4, . . . , xn)B and (0, x1, x3, x4, . . . , xn)B, for chosen x1, x4, . . . , xn ∈ Zq, but unknown
random x3

$← Zq.

Again, for this property, we only work with (b1,b2,b3) and (b∗
1,b∗

2,b∗
3), but without publishing

(b∗
1,b∗

2).

4.4.4 Indexing and Randomness Amplification (Index-Ind)

Static version The crucial tool introduced in [OT12b] is the following change of basis, for
chosen scalars t ̸= p ∈ Zq. We start with what we call the static version, where t and p must be
known at the beginning of the game.

B = 1
t− p

×

 t −p at
−1 1 −a
0 0 t− p

1,2,3

B′ =

 1 1 0
p t 0
−a 0 1

1,2,3

In this case, we can compute B = (bi)i, but not the vectors b∗
3 as a ·G2 is missing.

(b, 0, c, x4, . . . , xn)U = (b, bp, c− ab, x4, . . . , xn)B
= (b · (1, p), τ, x4, . . . , xn)B

((t− p) · (π, 0), δ, y4, . . . , yn)U∗ = (πt+ atδ/(t− p),−π − aδ/(t− p), δ, y4, . . . , yn)B∗

= ((π + aδ/(t− p)) · (t,−1), δ, y4, . . . , yn)B∗

There is the limitation for the first two components in B and B∗ not to be orthogonal:
⟨(1, p), (t,−1)⟩ = (t− p) ̸= 0:

Theorem 5 Under the DDH Assumption in G1, for random dual orthogonal bases B and B∗,
once having seen B and B∗\{b∗

3}, and any number of vectors (πi · (t,−1), yi,3, . . . , yi,n)B∗, for
chosen {yi,3, . . . , yi,n} ∈ Zn−2

q , but unknown random {πi}i $← Zq, and for any chosen t ̸= p ∈ Zq,
one cannot distinguish the vectors (b · (1, p), τ, x4, . . . , xn)B and (b · (1, p), 0, x4, . . . , xn)B, for
chosen x4, . . . , xn ∈ Zq, but unknown random b, τ $← Zq.

As above, we can have a more convenient theorem under the DSDH assumption:

4.4 - Particular Changes of Bases 33

SubSpace-Ind: with b∗
2 hidden

c = (x1 x2 x3)B ≈ (x1 x′
2 x3)B

k∗ = (y1 y2 y3)B∗ = (y1 y2 y3)B∗

Swap-Ind: with b∗
1,b∗

2 hidden
c = (x1 0 x3)B ≈ (0 x1 x3)B

k∗ = (y1 y1 y3)B∗ = (y1 y1 y3)B∗

Index-Ind: with b∗
3 hidden, if p ̸= t

c = (σ · (1, p) x3)B ≈ (σ · (1, p) x′
3)B

k∗ = (π · (t,−1) y3)B∗ = (π · (t,−1) y3)B∗

Colored cells x are random values, while gray cells x are any value (possibly chosen).

Figure 4.1: Computationally indistinguishable Changes of Basis

Theorem 6 ((Static) Index-Ind Property) Under the DSDH Assumption in G1, for random
dual orthogonal bases B and B∗, once having seen B and B∗\{b∗

3}, and any number of vectors
(πi ·(t,−1), yi,3, . . . , yi,n)B∗, for chosen {yi,3, . . . , yi,n} ∈ Zn−2

q , but unknown random {πi}i $← Zq,
and for any chosen t ̸= p ∈ Zq, one cannot distinguish the vectors (σ · (1, p), x3, x4, . . . , xn)B and
(σ · (1, p), x′

3, x4, . . . , xn)B, for chosen x′
3, x3, x4, . . . , xn ∈ Zq, but unknown random σ $← Zq.

For this property, we only work with (b1,b2,b3) and (b∗
1,b∗

2,b∗
3), but without publishing b∗

3.
For a fixed t, we can iteratively update all the other indices p ̸= t.

We stress that, in this static version, t and p must be fixed, and known before the simulation
starts in the security analysis, as they will appear in the matrix B. In the Okamoto-Takashima’s
constructions [OT10, OT12b], such values t and p were for bounded names of attributes.
Adaptive version In the following, we want to consider unbounded attributes, we thus con-
clude this section with an adaptive version, where t and p do not need to be known in advance,
from a large universe. We will also take the opportunity to illustrate how proofs are conducted
in the DPVS, as the proof for Adaptive Index-Ind is done using the Indistinguishable properties
presented earlier in the section. A high level overview of the proof is presented on Figure 4.2.

Theorem 7 (Adaptive Index-Ind Property) Under the DDH Assumption in G1, for random
dual orthogonal bases B and B∗, once having seen B and B∗\{b∗

3}, and any number of vectors
(πi · (t,−1), yi,3, 0, 0, yi,6, . . . , yi,n)B∗, for any t ∈ Zq, {yi,3, yi,6, . . . , yi,n}i ∈ Zn−4

q , but unknown
random {πi}i $← Zq, one cannot distinguish between (σ · (1, p), x3, 0, 0, x6, . . . , xn)B and (σ ·
(1, p), x′

3, 0, 0, x6, . . . , xn)B, for any x3, x
′
3, x6, . . . , xn ∈ Zq, and p ̸= t, but unknown random

σ $← Zq, with an advantage better than 8× Advddh
G1 (T) + 4× Advddh

G2 (T), where T is the running
time of the adversary.

Proof For the sake of simplicity, we will prove indistinguishability between (σ · (1, p), 0, 0, 0)B
and (σ · (1, p), x3, 0, 0)B, in dimension 5 only, instead of n. Additional components could be
chosen by the adversary. Applied twice, we obtain the above theorem. The proof follows a
sequence of games.

Game G0: The adversary can choose p ̸= t and x3, y3 in Zq, but π, σ $← Zq are unknown to it:

k∗ = (π(t,−1), y3, 0, 0)B∗ c0 = (σ(1, p), 0, 0, 0)B
c1 = (σ(1, p), x3, 0, 0)B

34 4 - Dual Pairing Vector Spaces (DPVS)

G0 Initial situation before indexing
c0 = (π(t, −1) β 0 0)B
k∗ = (σ(1, p) 0 0 0)B∗

G1 SubSpace-Ind on (1,2,5,6)
c0 = (π(t, −1) β ρ(t, −1))B
k∗ = (σ(1, p) 0 0 0)B∗

G2 SubSpace-Ind on (1,2,3,5,6)
c0 = (π(t, −1) β ρ(t, −1))B
k∗ = (σ(1, p) 0 σ(1, p))B∗

G3 Formal change on (5,6)
c0 = (π(t, −1) β u1 u2)B
k∗ = (σ(1, p) 0 v1 v2)B∗

G4 SubSpace-Ind on (5,4)
c0 = (π(t, −1) β u1 u2)B
k∗ = (σ(1, p) α v1 v2)B∗

G5 Formal change on (5,6)
c0 = (π(t, −1) β ρ(t, −1))B
k∗ = (σ(1, p) α σ(1, p))B∗

G6 SubSpace-Ind on (1,2,3,5,6)
c0 = (π(t, −1) β ρ(t, −1))B
k∗ = (σ(1, p) α 0 0)B∗

G7 SubSpace-Ind on (1,2,5,6)
c0 = (π(t, −1) β 0 0)B
k∗ = (σ(1, p) α 0 0)B∗

Figure 4.2: Sequence of Games for Index-Ind Property

4.4 - Particular Changes of Bases 35

Vectors (b1,b2,b3,b∗
1,b∗

2) and (cb,k∗) are provided to the adversary that must decide on b:
Adv0 is its advantage in correctly guessing b. Only k∗ and c0 will be modified in the following
games, so that eventually c0 = c1 in the last game, which leads to perfect indistinguishability.

Game G1: We replicate the first sub-vector (t,−1), with ρ $← Zq, in the hidden components:
k∗ = (π(t,−1), y3, ρ(t,−1))B∗ . To show the indistinguishability, one applies the SubSpace-
Ind property on (B∗,B)1,2,4,5. Indeed, we can consider a triple (a · G2, b · G2, c · G2), where
c = ab + τ mod q with either τ = 0 or random, which are indistinguishable under the DDH
assumption in G2. Let us assume we start from random dual orthogonal bases (V,V∗). We
define

B′ =

1 0 a 0
0 1 0 a
0 0 1 0
0 0 0 1

1,2,4,5

B =

1 0 0 0
0 1 0 0
−a 0 1 0
0 −a 0 1

1,2,4,5

B∗ = B′ · V∗ B = B · V

The vectors b4,b5 can not be computed, but they are hidden from the adversary’s view, and
are not used in any vector. We compute the new vectors:

k∗ = (b(t,−1), y3, c(t,−1))V∗ c0 = (σ(1, p), 0, 0, 0)B
= (b(t,−1), y3, (c− ab)(t,−1)B∗

= (b(t,−1), y3, τ(t,−1)B∗

One can note that when τ = 0, this is the previous game, and when τ random, we are in the
new game, with π = b and ρ = τ : Adv0 − Adv1 ≤ Advddh

G2 (T).

Game G2: We replicate the non-orthogonal sub-vector (1, p), with θ $← Zq:

k∗ = (π(t,−1), y3, ρ(t,−1))B∗ c0 = (σ(1, p), 0, θ(1, p))B

To show the indistinguishability, one applies the SubSpace-Ind property on (B,B∗)1,2,4,5. In-
deed, we can consider a triple (a ·G1, b ·G1, c ·G1), where c = ab+ τ mod q with either τ = 0
or random, which are indistinguishable under the DDH assumption in G1. Let us assume we
start from random dual orthogonal bases (V,V∗). Then we define the matrices

B =

1 0 a 0
0 1 0 a
0 0 1 0
0 0 0 1

1,2,4,5

B′ =

1 0 0 0
0 1 0 0
−a 0 1 0
0 −a 0 1

1,2,4,5

B = B · V B∗ = B′ · V∗

The vectors b∗
4,b∗

5 can not be computed, but they are hidden from the adversary’s view. We
compute the new vectors in V and V∗:

c0 = (b(1, p), 0, c(1, p))V k∗ = (π′(t,−1), y3, ρ(t,−1))V∗

= (b(1, p), 0, (c− ab)(1, p))B = ((π′ + aρ)(t,−1), y3, ρ(t,−1))B∗

= (b(1, p), 0, τ(1, p))B

One can note that when τ = 0, this is the previous game, and when τ random, we are in the
new game, with π = π′ + aρ, σ = b, and θ = τ : Adv1 − Adv2 ≤ Advddh

G1 (T).

Game G3: We randomize the two non-orthogonal sub-vectors, with random scalars u1, u2, v1, v2
$← Zp:

k∗ = (π(t,−1), y3, u1, u2)B∗ c0 = (σ(1, p), 0, v1, v2)B

36 4 - Dual Pairing Vector Spaces (DPVS)

To show the indistinguishability, one makes a formal change of basis on (B∗,B)4,5, with a
random unitary matrix Z, with z1z4 − z2z3 = 1:

B′ = Z =
(
z1 z2
z3 z4

)
4,5

B =
(

z4 −z3
−z2 z1

)
4,5

B∗ = B′ · V∗ B = B · V

This only impacts the hidden vectors (b4,b5), (b∗
4,b∗

5). If one defines k∗ and c0 in (V∗,V),
this translates in (B∗,B):

k∗ = (π(t,−1), y3, ρ(t,−1))V∗ = (π(t,−1), y3, ρ(tz1 − z3, tz2 − z4))B∗

c0 = (σ(1, p), 0, θ(1, p))V = (σ(1, p), 0, θ(z4 − pz2,−z3 + pz1))B

Let us consider random u1, u2, v1, v2
$← Zp, and solve the system in z1, z2, z3, z4. This system

admits a unique solution, if and only if t ̸= p. And with random ρ, θ, and random unitary
matrix Z,

k∗ = (π(t,−1), y3, u1, u2)B∗ c0 = (σ(1, p), 0, v1, v2)B

with random scalars u1, u2, v1, v2
$← Zp. In bases (V,V∗), we are in the previous game, and

in bases (B,B∗), we are in the new game, if p ̸= t: Adv2 = Adv3.

Game G4: We now randomize the third component in c0:

k∗ = (π(t,−1), y3, u1, u2)B∗ c0 = (σ(1, p), x3, v1, v2)B

To show the indistinguishability, one applies the SubSpace-Ind property on (B,B∗)4,3. Indeed,
we can consider a triple (a · G1, b · G1, c · G1), where c = ab + τ mod q with either τ = 0 or
τ = x3, which are indistinguishable under the DDH assumption in G1. Let us assume we start
from random dual orthogonal bases (V,V∗). Then we define the matrices

B =
(

1 0
a 1

)
3,4

B′ =
(

1 −a
0 1

)
3,4

B = B · V B∗ = B′ · V∗

The vectors b∗
3 can not be computed, but it is not into the adversary’s view. We compute the

new vectors:

k∗ = (π(t,−1), y3, u
′
1, u2)V∗ c0 = (σ(1, p), c, b, v2)V

= (π(t,−1), y3, u
′
1 + ay3, u2)B∗ = (σ(1, p), c− ab, b, v2)B

= (σ(1, p), τ, b, v2)B

One can note that when τ = 0, this is the previous game, and when τ = x3, we are in the
new game, with v1 = b and u1 = u′

1 + ay3: Adv3 − Adv4 ≤ 2 × Advddh
G1 (T), by applying twice

the Diffie-Hellman indistinguishability game.

We can undo successively games G3, G2, and G1 to get, after a gap bounded by Advddh
G1 (t) +

Advddh
G2 (t): k∗ = (π(t,−1), y3, 0, 0)B∗ and c0 = (σ(1, p), x3, 0, 0)B. In this game, the advantage of

any adversary is 0. The global difference of advantages is bounded by 4·Advddh
G1 (T)+2·Advddh

G2 (T),
which concludes the proof.

Chapter

5
Basic ABE and ABS
Constructions

Chapter content
5.1 Overview of the Dual System Encryption (DSE) 37
5.2 A Key-Policy Attribute-Based Encryption (KP-ABE) Construction 38

5.2.1 Description of the KP-ABE Scheme . 38
5.2.2 Security Analysis of the KP-ABE . 39

5.3 An Attribute-Based Signature (ABS) Construction 51
5.3.1 Complementary Properties . 51
5.3.2 Description of our ABS Scheme . 53
5.3.3 Security Analysis of the ABS . 55

5.4 Discussion . 69
5.4.1 ABE . 70
5.4.2 ABS . 70

In this section, we present two constructions from Okamoto and Takashima based on the
DPVS. While OT constructions were originally made under the DLIN assumptions, we adapt
them under the SXDH assumption.

The first construction is an ABE scheme, with unbounded attributes (the setup allows for
an unlimited number of attributes during encryption and decryption) which is in the same vein
as [OT12b].

The second construction is an ABS scheme with non-monotone predicates (a signature can
use NOT gates in the policies), which is then extended to the multi-authority setting [OT11].
While both of these features are interesting, we do not keep them in order to focus on delegation
for our contributions in a later section.

While both these constructions are not strictly original, they illustrate that our new proof
formalism for DPVS is fully compatible with these classic constructions, while relying only on
the three theorems proved previously in Section 4.4.

But before that, we explain an important proof paradigm for Attribute-based constructions,
the Dual System Encryption.

5.1 Overview of the Dual System Encryption (DSE)
The DSE paradigm was invented by Waters in [Wat09] to solve the problem of constructing
Identity-Based constructions with adaptive security. At the time, the known method of proof
for selective security in IBE and ABE was the partitioning technique, where the simulator would
hide the challenge in the target set specified by the adversary at the very beginning of the
game. This method can be used for adaptive security in IBE [Wat05], as the simulator can
try and guess a single identity during the initialization that will be the adversary’s choice for
the challenge. But for ABE this approach is impossible, as there are conflicts for even a single

38 5 - Basic ABE and ABS Constructions

attribute depending on wether they are in an access-tree queried by the adversary, or in the
challenge set of the adversary, or used in multiple different keys. More details are provided
in [LOS+10].

The main idea of the DSE is as follows: Suppose that, only during the proof, the authority
was able to make semi-functional keys and ciphertexts, which are completely undistinguishable
from normal keys and ciphertexts. These semi-functional elements behave exactly the same
as their normal counterparts, with a single exception: no semi-functional key can decipher a
semi-functional ciphertext. Then, during the proof, the only thing the simulator needs to do is
to change all the keys issued to the adversary into semi-functional ones, and make the challenge
answer to the adversary a semi-functional ciphertext. This way, the adversary can extract no
information from the challenge ciphertext because all his keys are semi-functional, and thus he
has no advantage to answer the final challenge. We note that regular ciphertexts created by the
adversary during the game are unaffected by this strategy, as only the authority can create semi-
functional ciphertexts. This implies that the adversary does not even know that semi-functional
keys are handed to him during the game, as these keys will decipher any ciphertexts he might
create himself.

In the DPVS setting, semi-functionality is achieved by increasing the dimension of the vector
space in order to obtain distinct subspaces: the normal one, and the semi-functional one. Only
the normal subspace is used concretely during the construction to manipulate the usual elements
of the scheme, typically the parts of the secret sharing and the random of the ciphertext. The
other "unused" semi-functional subspace is always zero for keys and ciphertexts, except during
the proof. At that moment, the authority will use this subspace to put some kind of noise in the
semi-functional keys and challenge ciphertext. As the normal keys and challenge ciphertext have
only zero elements in this subspace, the pairing between a normal and a semi-functional element
will naturally suppress the noise added in the semi-functional subspace (since the pairing is done
subspace by subspace). However, when two semi-functional elements are paired together, the
noise doesn’t cancel out: decryption is impossible. This is the reason why in our constructions,
the bases for the vector spaces is approximately twice the size necessary for the scheme, the
first half of vectors is for the normal subspace, and the second half is for the semi-functional
subspace.

5.2 A Key-Policy Attribute-Based Encryption (KP-ABE) Con-
struction

Our goal for KP-ABE is to design of a new scheme with Switchable Attributes. Before that,
we start with a construction that has all the important properties for an ABE. We choose the
construction from Okamoto-Takashima that provides some kind of attribute-hiding property,
where no one can tell which attributes has been used in the policy of the encrypted ciphertext. On
top of that, except for the adaptive security, this construction is in the same vein as [GPSW06]
regarding the expressiveness of the policy, or the delegation capabilities, which is compatible
with our final objective. We note that OT’s original construction doesn’t allow for delegation.
For the sake of clarity, just using the static Index-Ind theorem, this construction can only handle
a polynomially-bounded universe of attributes and delegation, but with adaptive-set security
(see Definition 5).

5.2.1 Description of the KP-ABE Scheme

For the construction, we will use two DPVS, of dimensions 3 and 6 respectively, in a pairing-
friendly setting (G1,G2,Gt, e,G1, G2, q), using the notations introduced in Section 4:

5.2 - A Key-Policy Attribute-Based Encryption (KP-ABE) Construction 39

Setup(1κ). The algorithm chooses two random dual orthogonal bases

B = (b1,b2,b3) B∗ = (b∗
1,b∗

2,b∗
3)

D = (d1,d2,d3,d4,d5,d6) D∗ = (d∗
1,d∗

2,d∗
3,d∗

4,d∗
5,d∗

6).

It sets the public parameters PK = {(b1,b3,b∗
1), (d1,d2,d3,d∗

1,d∗
2,d∗

3)}, whereas the mas-
ter secret key MK = {b∗

3}. Other basis vectors are kept hidden.

KeyGen(MK, T). For an access-tree T , the algorithm first chooses a random a0
$← Zq, and a

random a0-labeling (aλ)λ of the access-tree T , and builds the key:

k∗
0 = (a0, 0, 1)B∗ k∗

λ = (πλ(1, tλ), aλ, 0, 0, 0)D∗

for all the leaves λ, where tλ = A(λ) and πλ
$← Zq. The decryption key dkT is then

(k∗
0, (k∗

λ)λ).

Delegate(dkT , T ′). The algorithm first generates zero-label credentials for the new attributes,
with k∗

λ ← (πλ · (1, tλ), 0, 0, 0, 0)D∗ , with πλ
$← Zq, for a new leaf. Keeping only the

credentials useful in T ′, it gets a valid key from dkT . It can thereafter be randomized with
a random a′

0
$← Zq and a random a′

0-labeling (a′
λ) of T ′, with k∗

0 ← k∗
0 + (a′

0, 0, 0)B∗ , and
k∗

λ ← k∗
λ + (π′

λ · (1, tλ), a′
λ, 0, 0, 0)D∗ , for π′

λ
$← Zq.

Encaps(PK,Γ). For the set Γ of attributes, the algorithm first chooses random scalars ω, ξ $← Zq.
It then sets K = gξ

t and generates the ciphertext C = (c0, (ct)t∈Γ) where c0 = (ω, 0, ξ)B
and ct = (σt(t,−1), ω, 0, 0, 0)D, for all the attributes t ∈ Γ and σt

$← Zq.

Decaps(dkT , C). The algorithm first selects an evaluation pruned tree T ′ of T that is satisfied
by Γ. This means that the labels aλ for all the leaves λ in T ′ allow to reconstruct a0 by
simple additions.

Note that from every leaf λ in T ′ and t = tλ = A(λ) ∈ Γ, it can compute

ct × k∗
t = g

σt·πλ·⟨(t,−1),(1,t)⟩+ω·aλ
t = gω·aλ

t .

Hence, it can derive gω·a0
t . From c0 and k∗

0, it gets c0 × k∗
0 = gω·a0+ξ

t which then easily
leads to K = gξ

t .

Correctness We stress that in the above decryption, one can recover gω·a0
t if and only if there

is an evaluation pruned tree T ′ of T that is satisfied by Γ. And this holds if and only if T (Γ) = 1.
Additionally, since b∗

3 is not public but in MK only, for the key issuer, only the latter can
issue keys, but anybody can delegate a key for a tree T into a key for a more restrictive tree T ′.
As everything can be randomized (the random coins πλ and the labeling), the delegated keys
are perfectly indistinguishable from fresh keys. Hence, given two keys possibly delegated from a
common key, one cannot decide whether they have been independently generated or delegated.

5.2.2 Security Analysis of the KP-ABE

We first consider the security analysis, without delegation, as it is quite similar to [OT12b], but
under the SXDH assumption instead of the DLIN assumption:

Theorem 8 Under the SXDH assumption, no adversary can win the IND security game (with-
out delegation) against our KP-ABE scheme, in the Adaptive-Set setting, with non-negligible
advantage.

40 5 - Basic ABE and ABS Constructions

G0 Real IND-Security game (without delegation)
c0 = (ω 0 ξ) ct = (σt(1, t) ω | 0 0 0)

k∗
ℓ,0 = (aℓ,0 0 1) k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 0)

G1 SubSpace-Ind Property, on (B,B∗)1,2 and (D,D∗)3,4, between 0 and τ $← Zq

c0 = (ω τ ξ) ct = (σt(1, t) ω | τ 0 0)
k∗

ℓ,0 = (aℓ,0 0 1) k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 0)

G2 SubSpace-Ind Property, on (D,D∗)1,2,6, between 0 and τzt

c0 = (ω τ ξ) ct = (σt(1, t) ω | τ 0 τzt)
k∗

ℓ,0 = (aℓ,0 0 1) k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 0)

G3 Introduction of an additional random-labeling. See Figure 5.2
c0 = (ω τ ξ) ct = (σt(1, t) ω | τ 0 τzt)

k∗
ℓ,0 = (aℓ,0 rℓ,0 1) k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 sℓ,λ/ztℓ,λ
)

G4 Formal basis change, on (B,B∗)2,3, to randomize ξ
c0 = (ω τ ξ′′) ct = (σt(1, t) ω | τ 0 τzt)

k∗
ℓ,0 = (aℓ,0 rℓ,0 1) k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 sℓ,λ/ztℓ,λ
)

Gray cells x mean they have been changed in this game.

Figure 5.1: Global sequence of games for the IND-security proof of the KP-ABE

G2.k.0 Hybrid game for G2, with 1 ≤ k ≤ K + 1 (from Figure 5.1)
c0 = (ω τ ξ) ct = (σt(1, t) ω | τ 0 τzt)

ℓ < k k∗
ℓ,0 = (aℓ,0 rℓ,0 1) k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 sℓ,λ/ztℓ,λ
)

ℓ ≥ k k∗
ℓ,0 = (aℓ,0 0 1) k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 0)
G2.k.1 SubSpace-Ind Property, on (B∗,B)1,2 and (D∗,D)3,4, between 0 and sk,∗

k∗
k,0 = (ak,0 sk,0 1) k∗

k,λ = (πk,λ(tk,λ,−1) ak,λ |sk,λ 0 0)
G2.k.2 Masking of the labeling. See Figure 5.3

k∗
k,0 = (ak,0 sk,0 1) k∗

k,λ = (πk,λ(tk,λ,−1) ak,λ | 0 0 sk,λ/ztk,λ
)

G2.k.3 Limitations on KeyGen-queries: sk,0 unpredictable, replaced by a random rk,0

k∗
k,0 = (ak,0 rk,0 1) k∗

k,λ = (πk,λ(tk,λ,−1) ak,λ | 0 0 sk,λ/ztk,λ
)

Figure 5.2: Sequence of games on the K keys for the IND-security proof of the KP-ABE

This theorem is proven with exact bound for an adversary with running time bounded by t,
where P is the size of the universe of the attributes and K is the number of queries to the
OKeyGen-oracle:

Advind(A) ≤ 2(KP 2 + 1)× Advddh
G1 (t) + (3P + 1)K × Advddh

G2 (t)
≤ (2KP 2 + 3KP +K + 2)× Advsxdh(t)

The global sequence of games is described on Figure 5.1, with another sequence of sub-games
on Figure 5.2.

In the two first games G1 and G2, one is preparing random τ and random masks zt in the
ciphertexts ct (actually, the challenge ciphertext corresponding to the attribute t), making them
semi-functional. Note that until the challenge query is asked, one does not exactly know the
attributes in the challenge set Γ (as we are in the adaptive-set setting), but we prepare all the
material for all possible ct, and only the ones corresponding to attributes in Γ will be provided
to the adversary at challenge time. The main step is to get to Game G3, with an additional

5.2 - A Key-Policy Attribute-Based Encryption (KP-ABE) Construction 41

labeling (sℓ,0, (sℓ,λ)λ) put inside the keys to make them semi-functional, using hybrid games
starting from Game G2. The sequence on Figure 5.2 gives more details: the new labelling is
added in each ℓ-th key (in G2.k.1), then each label is masked by the random zt for each attribute
t (in G2.k.2). In order to go to game G2.k.3 one exploits the limitations on the adversary in the
security game: the adversary cannot ask keys on access-trees T such that T (Γ) = 1, for the
challenge set Γ.

This construction makes more basis vectors public than in the original proof from [OT12b],
and only b∗

3 is for the key issuer. This is the reason why we can deal with delegation for any
user, as the delegator has access to all the informations to create a new key from his own. In
addition, as delegation provides keys that are perfectly indistinguishable from fresh keys, one
can easily get the full result:

Corollary 1 Under the SXDH assumption, no adversary can win the Del-IND security game
against the KP-ABE scheme, in the Adaptive-Set setting, with non-negligible advantage.

The bound is the same, except K is the global number of OKeyGen and ODelegate queries.
In this section, we will focus on the IND-security proof of the KP-ABE scheme.

Security proofs The global sequence of games will follow the steps shown on Figure 5.1. But
while the first steps (from G0 to G2) will be simple, the big step from G2 to G3 will need
multiple hybrid games, presented on Figure 5.2. All theses games work in a pairing-friendly
setting (G1,G2,Gt, e,G1, G2, q), with two random dual orthogonal bases (B,B∗) and (D,D∗) of
size 3 and 6, respectively.

In the following proof, we will use t to denote attributes, and thus the indices for the possible
ciphertexts ct associated to each attribute in the challenge ciphertext. We indeed anticipate all
the possible ct, before knowing the exact set Γ, as we are in the adaptive setting. The variable
p will be used in hybrid proofs to specify a particular attribute. We will denote P the size of
the universe of attributes. Then 1 ≤ t, p ≤ P . Similarly, we will use ℓ to denote key queries,
and thus the index of the global ℓ-th key k∗

ℓ , whereas λ will we used for the leaf in the tree of
the key-query: k∗

ℓ,λ is thus the specific key for leaf λ in the global ℓ-th key. The variable k will
be used in hybrid proofs to specify a particular key-query index. We will denote K the maximal
number of key-queries. Then 1 ≤ ℓ, k ≤ K.

Game G0: This is the real game where the simulator generates all the private information
and sets PK = {(b1,b3,b∗

1), (d1,d2,d3,d∗
1,d∗

2,d∗
3)} and MK = {b∗

3}. The public parameters
PK are provided to the adversary

OKeyGen(Tℓ): The adversary is allowed to issue KeyGen-queries on an access-tree Tℓ (for the
ℓ-th query), for which the challenger chooses a random scalar aℓ,0

$← Zq and a random
aℓ,0-labeling (aℓ,λ)λ of the access-tree Tℓ, and builds the key:

k∗
ℓ,0 = (aℓ,0, 0, 1)B∗ k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, 0)D∗

for all the leaves λ, where tℓ,λ = A(λ) is the attribute associated to the leaf λ in Tℓ and
πℓ,λ

$← Zq. The decryption key dkℓ is then (k∗
ℓ,0, (k∗

ℓ,λ)λ);
RoREncaps(Γ): On the unique query on a set of attributes Γ, the challenger chooses random

scalars ω, ξ, ξ′ $← Zq. It then sets K0 = gξ
t and K1 = gξ′

t . It generates the ciphertext
C = (c0, (ct)t∈Γ) where

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0)D

for all the attributes t ∈ Γ and σt
$← Zq. According to the real or random game (bit

b $← {0, 1}), one outputs (Kb, C).

42 5 - Basic ABE and ABS Constructions

Eventually, on adversary’s guess b′ for b, if for some Tℓ, Tℓ(Γ) = 1, then β $← {0, 1}, otherwise
β = b′. Then Adv0 = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].

In the next games, we gradually modify the simulations of OKeyGen and RoREncaps oracles,
but always (at least) with random ω, ξ, ξ′, (σt) $← Zq, (aℓ,0), (πℓ,λ) $← Zq, and random aℓ,0-
labeling (aℓ,λ)λ of the access-tree Tℓ for each OKeyGen-query.

Game G1: One chooses random τ $← Zq, and sets (which differs for the ciphertext only)

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, 0)D
k∗

ℓ,0 = (aℓ,0, 0, 1)B∗ k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, 0)D∗

The previous game and this game are indistinguishable under the DDH assumption in G1:
one applies the SubSpace-Ind property from Theorem 2, on (B,B∗)1,2 and (D,D∗)3,4. Indeed,
we can consider a triple (a · G1, b · G1, c · G1), where c = ab + τ mod q with either τ = 0 or
τ $← Z∗

q , which are indistinguishable situations under the DDH assumption.

Let us assume we start from random dual orthogonal bases (U,U∗) and (V,V∗) of size 3 and
6 respectively. Then we define the matrices

B =
(

1 a
0 1

)
1,2

B′ =
(

1 0
−a 1

)
1,2

D =
(

1 a
0 1

)
3,4

D′ =
(

1 0
−a 1

)
3,4

B = B · U B∗ = B′ · U∗ D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted b∗
2 and d∗

4, that nobody needs: the
vectors below have these coordinates at zero. So one can set

c0 = (b, c, ξ)U = (b, τ, ξ)B ct = (σt(1, t), b, c, 0, 0)V = (σt(1, t), b, τ, 0, 0)D
k∗

ℓ,0 = (aℓ,0, 0, 1)B∗ k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, 0)D∗

When τ = 0, this is exactly the previous game, with ω = b, for a random τ , this is the current
game: Adv0 − Adv1 ≤ Advddh

G1 (t).

Game G2: One continues to modify the ciphertext, with random τ, (zt) $← Zq:

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt)D
k∗

ℓ,0 = (aℓ,0, 0, 1)B∗ k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, 0)D∗

The previous game and this game are indistinguishable under the DDH assumption in G1: one
applies again the SubSpace-Ind property from Theorem 2, on (D,D∗)(1,2),6. Indeed, we can
consider a triple (a ·G1, b ·G1, c ·G1), where c = ab+ ζ mod q, with either ζ = 0 or ζ $← Z∗

q ,
which are indistinguishable situations under the DDH assumption.

Let us assume we start from random dual orthogonal bases (B,B∗) and (V,V∗) of size 3 and
6 respectively. Then we define the matrices

D =

 1 0 a
0 1 a
0 0 1

1,2,6

D′ =

 1 0 0
0 1 0
−a −a 1

1,2,6

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d∗
6, that nobody needs: the vectors

below have these coordinates at zero. One chooses additional random scalars αt, βt
$← Zq to

5.2 - A Key-Policy Attribute-Based Encryption (KP-ABE) Construction 43

virtually set bt = αt · b+ βt and ct = αt · c+ βt · a, which makes ct − abt = αt · ζ. One can set

c0 = (ω, τ, ξ)B ct = (bt(1, t), ω, τ, 0, ct(t+ 1))V
= (bt(1, t), ω, τ, 0, ct(t+ 1)− abt − abtt)D
= (bt(1, t), ω, τ, 0, ct(t+ 1)− abt(1 + t))D
= (bt(1, t), ω, τ, 0, αt · ζ · (t+ 1))D
= (bt(1, t), ω, τ, 0, τzt)D

k∗
ℓ,0 = (aℓ,0, 0, 1)B∗ k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, 0)D∗

where zt = αt · ζ · (t + 1)/τ . When ζ = 0, this is exactly the previous game, as zt = 0, with
πt = bt = αt ·b+βt, whereas for a random ζ, this is the current game: Adv1−Adv2 ≤ Advddh

G1 (t).

Game G3: We introduce a second independent sℓ,0-labeling sℓ,λ for each access-tree Tℓ and a
random rℓ,0 to define

k∗
ℓ,0 = (aℓ,0, rℓ,0, 1)B∗ k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, sℓ,λ/ztk,λ
)D∗

But to this, we move to a sub-sequence of hybrid games, with distinct ways for answering
the k − 1 first key queries and the last ones, as explained on Figure 5.2: for the ℓ-th key
generation query on Tℓ, the challenger chooses three random scalars aℓ,0, rℓ,0, sℓ,0

$← Zq, and
two random aℓ,0-labeling (aℓ,λ)λ and sℓ,0-labeling (sℓ,λ)λ of the access-tree Tℓ, and builds the
key (k∗

ℓ,0, (k∗
ℓ,λ)λ), with πℓ,λ

$← Zq:

ℓ < k k∗
ℓ,0 = (aℓ,0, rℓ,0, 1)B∗ k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, sℓ,λ/ztℓ,λ
)D∗

ℓ ≥ k k∗
ℓ,0 = (aℓ,0, 0, 1)B∗ k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, 0)D∗

For this game, we have to anticipate the values zt, for each attribute t, before knowing Γ, for
the challenge ciphertext, as we have to introduce ztℓ,λ

during the creation of the leaves. These
zt are thus random values chosen as soon as an attribute t is involved in the security game.
When k = 1, this is exactly the game G2: G2 = G2.1.0, whereas for k = K + 1 this is exactly
the expected game G3: G3 = G2.K+1.0. We now consider any k ∈ {1, . . . ,K}, to show that
G2.k.3 = G2.k+1.0, where all the keys for ℓ ̸= k will be defined using the basis vectors of
(B∗,D∗) and known scalars. We only focus on the k-th key and the ciphertext, but still with
random ω, τ, ξ, ξ′, (σt), (zt) $← Zq, random ak,0, (πk,λ) $← Zq, as well as a random ak,0-labeling
(ak,λ)λ of the access-tree Tk, but also sk,0

$← Zq and a second independent random sk,0-labeling
(sk,λ)λ of the access-tree Tk:

Game G2.k.0: This is exactly as described above, for ℓ = k:

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt)D
k∗

k,0 = (ak,0, 0, 1)B∗ k∗
k,λ = (πk,λ(tk,λ,−1), ak,λ, 0, 0, 0)D∗

Game G2.k.1: One now introduces the second labeling:

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt)D
k∗

0 = (ak,0, sk,0, 1)B∗ k∗
k,λ = (πk,λ(tk,λ,−1), ak,λ, sk,λ, 0, 0)D∗

This game is indistinguishable from the previous one under the DDH assumption in G2: one
applies the SubSpace-Ind property from Theorem 2 on (B∗,B)1,2 and (D∗,D)3,4. Indeed, we
can consider a triple (a · G2, b · G2, c · G2), where c = ab + ρ mod q, with either ρ = 0 or
ρ $← Z∗

q , which are indistinguishable situations under the DDH assumption.

44 5 - Basic ABE and ABS Constructions

Let us assume we start from random dual orthogonal bases (U,U∗) and (V,V∗) of size 3
and 6 respectively. Then we define the matrices

B′ =
(

1 a
0 1

)
1,2

B =
(

1 0
−a 1

)
1,2

D′ =
(

1 a
0 1

)
3,4

D =
(

1 0
−a 1

)
3,4

B∗ = B′ · U∗ B = B · U D∗ = D′ · V∗ D = D · V

Note that we can compute all the basis vectors excepted b2 and d4. But we can define the
ciphertext vectors in the original bases (U,V), and all the keys in bases (B∗,D∗), excepted
the k-th one:

c0 = (ω, τ, ξ)U = (ω + aτ, τ, ξ)B
ct = (σt(1, t), ω, τ, 0, τzt)V = (σt(1, t), ω + aτ, τ, 0, τzt)D

k∗
k,0 = (b0, 0, 1)B∗ + (b, c, 0)U∗ = (b0, 0, 1)B∗ + (b, ρ, 0)B∗ = (b0 + b, ρ, 1)B∗

k∗
k,λ = (πk,λ(tk,λ,−1), bλ, 0, 0, 0)D∗ + (0, 0, b · b′

λ, c · b′
λ, 0, 0)V∗

= (πk,λ(tk,λ,−1), bλ, 0, 0, 0)D∗ + (0, 0, b · b′
λ, ρ · b′

λ, 0, 0)D∗

= (πk,λ(tk,λ,−1), bλ + b · b′
λ, ρ · b′

λ, 0, 0)D∗

with b0
$← Zq, a random b0-labeling (bλ)λ, and a random 1-labeling (b′

λ)λ of Tk. When ρ = 0,
this is exactly the previous game, with ω = ω + aτ , and ak,0 = b0 + b, ak,λ = bλ + b · b′

λ,
whereas for a random ρ, this is the current game, with additional sk,0 = ρ, sk,λ = ρ · b′

λ:
Adv2.k.0 − Adv2.k.1 ≤ Advddh

G2 (t).

Game G2.k.2: With the same inputs, one just changes as follows

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzk)D
k∗

k,0 = (ak,0, sk,0, 1)B∗ k∗
k,λ = (πk,λ(tk,λ,−1), ak,λ, 0, 0, sk,λ/zk)D∗

Unfortunately, for the latter gap, which intuitively exploits the Swap-Ind property from
Theorem 4, we cannot do all the changes at once. Then, the Index-Ind property will be
applied first, with Theorem 6.
We will thus describe another sequence of games, as shown on Figure 5.3, where G2.k.1.p.0
with p = 1 is the previous game: G2.k.1 = G2.k.1.1.0; for any p, G2.k.1.p.5 is G2.k.1.p+1.0; and
G2.k.1.p.0 with p = P + 1 is the current game: G2.k.2 = G2.k.1.P +1.0. For each p, we prove
that

Adv2.k.1.p.0 − Adv2.k.1.p.5 ≤ 2P × Advddh
G1 (t) + 3× Advddh

G2 (t).

Hence, globally, we have

Adv2.k.1 − Adv2.k.2 ≤ 2P 2 × Advddh
G1 (t) + 3P × Advddh

G2 (t).

But before proving this huge gap, let us conclude the analysis.

Game G2.k.3: In the above game, to be a legitimate attack (that does not output a random
bit β in the Finalize procedure, but the actual output b′ of the adversary), for all the key
queries Tℓ, one must have Tℓ(Γ) = 0. In particular, Tk(Γ) = 0: this means that the access-
tree is not accepting of Γ, and thus there must be at least one leaf whose attributes is not
in Γ. More concretely, let t be one of these attributes, this means ct is not provided to the
adversary, and so no information about zt is leaked. As the key only contains sk,λ/ztk,λ

, no
information can leak about sk,λ either, since it is masked by this ztk,λ

. Thus, only (sk,λ)λ∈LΓ

is known, and by definition of labelings the root sk,0 is unpredictable.

5.2 - A Key-Policy Attribute-Based Encryption (KP-ABE) Construction 45

Remark 1 One may wonder whether previous keys that involve those ztk,λ
could leak some

information and contradict the above argument. Let us focus on the leaf λ associated to
the attribute p, and so the information one could get about zp when cp is not part of the
challenge ciphertext. At least, this argument holds for the first key generation, when we
are in the first sequence of games, in G2.k.2 with k = 1: zp is only used in cp, that is not
revealed to the adversary, and so s1,λ/zp does not leak any information about s1,λ. And
this is the same for all the leaves associated to missing attributes. Then s1,0 can definitely
be replaced by a random and independent r1,0: which is the current game G2.k.3 for k = 1.
When we are in G2.k.2 for k = 2, the adversary may now have some information about
s1,λ/zp and s2,λ/zp, but no information about s1,0 that has already been replaced by a
random r1,0, which makes s1,λ unpredictable, and so no additional information leaks about
zp: s2,λ is unpredictable. Again, the same argument holds for all the leaves associated to
missing attributes: s2,0 can also be replaced by a random and independent r2,0.
This is the reason of this hybrid sequence of game: if we would have first introduced the
zp in all the keys, it would not have been possible to replace all the sℓ,0 by rℓ,0 in the end.
This is only true when all the previous keys have already been modified.

One can thus modify the key generation algorithm for the k-th key, with an independent
rk,0

$← Zq:

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt)D
k∗

k,0 = (ak,0, rk,0, 1)B∗ k∗
k,λ = (πk,λ(tk,λ,−1), ak,λ, 0, 0, sk,λ/ztk,λ

)D∗

This concludes this sequence of sub-games with, for each k,

Adv2.k.0 − Adv2.k.3 ≤ 2P 2 × Advddh
G1 (t) + (3P + 1)× Advddh

G2 (t).

Hence, globally, we have

Adv2 − Adv3 ≤ 2KP 2 × Advddh
G1 (t) + (3P + 1)K × Advddh

G2 (t).

Game G4: In this game, one chooses a random θ to define the matrices

B =
(

1 −θ
0 1

)
2,3

B′ =
(

1 0
θ 1

)
2,3

B = B · U B∗ = B′ · U∗

which only modifies b2, which is hidden, and b∗
3, which is kept secret:

c0 = (ω, τ, ξ)U = (ω, τ, τθ + ξ)B = (ω, τ, ξ′′)B
k∗

ℓ,0 = (aℓ,0, rℓ,0, 1)U∗ = (aℓ,0, r
′
ℓ,0, 1)D∗

As a consequence, any value for θ can be used, without impacting the view of the adversary,
as r′

ℓ,0 is indeed independent of the other variables. In this last game, a random value ξ′′ is
used in the ciphertext, whereas K0 = gξ

t and K1 = gξ′

t : the advantage of any adversary is 0
in this last game.

If we combine all the steps:

Adv0 = Adv0 − Adv4

≤ Advddh
G1 (t) + Advddh

G1 (t) + 2KP 2 × Advddh
G1 (t) + (3P + 1)K × Advddh

G2 (t)
≤ 2(KP 2 + 1)× Advddh

G1 (t) + (3P + 1)K × Advddh
G2 (t)

46 5 - Basic ABE and ABS Constructions

c0 = (ω τ ξ) h∗
0 = (δ ρ 0)

G2.k.1.p.0 Hybrid game for G2.k.1, with 1 ≤ p ≤ P + 1 (from Figure 5.2)
ct = (σt(1, t) ω | τ 0 τzt)

t < p h∗
t = (πt(t,−1) δ | 0 0 ρ/zt)

t ≥ p h∗
t = (πt(t,−1) δ | ρ 0 0)

G2.k.1.p.1 Formal basis change, on (D,D∗)4,5, to duplicate τ
ct = (σt(1, t) ω | τ τ τzt)

G2.k.1.p.2 Swap-Ind Property, on (D∗,D)2,4,5, for 0 and ρ in h∗
p only

ct = (σt(1, t) ω | τ τ τzt)
h∗

p = (πp(p,−1) δ | 0 ρ 0)
G2.k.1.p.3 Index-Ind Property, on (D,D∗)1,2,5, between τ and τzt/zp

cp = (σp(1, p) ω | τ τ τzp)
t ̸= p ct = (σt(1, t) ω | τ τzt/zp τzt)

G2.k.1.p.4 Formal basis change, on (D,D∗)5,6, to cancel τ
ct = (σt(1, t) ω | τ 0 τzt)
h∗

p = (πp(p,−1) δ | 0 α ρ/zp)
G2.k.1.p.5 SubSpace-Ind Property, on (D∗,D)2,5, between α and 0

ct = (σt(1, t) ω | τ 0 τzt)
t < p h∗

t = (πt(t,−1) δ | 0 0 ρ/zt)
h∗

p = (πp(p,−1) δ | 0 0 ρ/zp)
t > p h∗

t = (πt(t,−1) δ | ρ 0 0)
Figure 5.3: Sequence of sub-games on the P attributes for the IND-security proof of our KP-ABE,
where k∗

ℓ,0 = (aℓ,0, 0, 1)B∗ + sℓ,0 · h∗
0 and k∗

ℓ,λ = (Πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, 0)D∗ + sℓ,λ · h∗
tk,λ

, for all
the leaves λ of all the keys ℓ, with h∗

0 = (δ, ρ, 0)B∗ and h∗
0 = (πt(t,−1), δ, ρ, 0, 0)D∗ for all the

possible attributes t. We only make the latter (h∗
0, (h∗

t)t) to evolve along this sequence.

5.2 - A Key-Policy Attribute-Based Encryption (KP-ABE) Construction 47

We now present the sub-sequence of games for proving the gap from the above G2.k.1 to G2.k.2.
We still focus on the challenge ciphertext (c0, (ct)) and the k-th key we will denote, for the sake
of clarity, as

k∗
k,0 = (a0, 0, 1)B∗ + s0 · h∗

0

k∗
k,λ = (Πk,λ(tk,λ,−1), aλ, 0, 0, 0)D∗ + sλ · h∗

tk,λ

where h∗
0 = (δ, ρ, 0)B∗ and h∗

t = (πt(t,−1), δ, ρ, 0, 0)D∗ for all the possible attributes. This
corresponds to

ak,0 = a0 + δ · s0 ak,λ = aλ + δ · sλ

sk,0 = ρ · s0 sk,λ = ρ · sλ

πk,λ = Πk,λ + sλ · πtk,λ

All the other keys will be generated using the basis vectors: we stress that they all have a
zero 5-th component, then d∗

5 will not be needed. In the new hybrid game, the critical point
will be the p-th attribute, where, when p = 1, G2.k.1.p.0 is exactly the above Game G2.k.1,
and when p = P + 1 this is the above Game G2.k.2. And it will be clear, for any p, that
G2.k.1.p.5 = G2.k.1.p+1.0: with random ω, τ, ξ, ξ′, δ, ρ, (zt), (σt), (πt) $← Zq,

Game G2.k.1.p.0: One defines the hybrid game for p:

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt)D
h∗

0 = (δ, ρ, 0)B∗ h∗
t = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗
t = (πt(t,−1), δ, ρ, 0, 0)D∗ t ≥ p

Game G2.k.1.p.1: One defines the matrices

D =
(

1 −1
0 1

)
4,5

D′ =
(

1 0
1 1

)
4,5

D = D · V D∗ = D′ · V∗

which modifies the hidden vectors d4 and d∗
5, and so are not in the view of the adversary:

ct = (σt(1, t), ω, τ, 0, τzt)V = (σt(1, t), ω, τ, τ, τzt)D
h∗

t = (πt(t,−1), δ, 0, 0, ρ/zt)V∗ = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗
t = (πt(t,−1), δ, ρ, 0, 0)V∗ = (πt(t,−1), δ, ρ, 0, 0)D∗ t ≥ p

For all the other keys, as the 5-th component is 0, the writing in basis V∗ is the same in basis
D∗. Hence, the perfect indistinguishability between the two games: Adv2.k.1.p.1 = Adv2.k.1.p.0.

Game G2.k.1.p.2: We apply the Swap-Ind property from Theorem 4, on (D∗,D)2,4,5: Indeed, we
can consider a triple (a ·G2, b ·G2, c ·G2), where c = ab+ θ mod q with either θ = 0 or θ = ρ,
which are indistinguishable situations under the DSDH assumption. Let us assume we start
from random dual orthogonal bases (B,B∗) and (V,V∗) of size 3 and 6 respectively. Then we
define the matrices

D′ =

 1 a −a
0 1 0
0 0 1

2,4,5

D =

 1 0 0
−a 1 0
a 0 1

2,4,5

D∗ = D′ · V∗ D = D · V

48 5 - Basic ABE and ABS Constructions

Note that we can compute all the basis vectors excepted d4,d5, but we define the ciphertext
on the original basis V:

ct = (σt(1, t), ω, τ, τ, τzt)V = (σt, σtt+ aτ − aτ, ω, τ, τ, τzt)D
= (σt(1, t), ω, τ, τ, τzt)D

h∗
t = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗
p = (πp(p,−1), δ, ρ, 0, 0)D∗ + (b(p,−1), 0,−c, c, 0)V∗

= (πp(p,−1), δ, ρ, 0, 0)D∗ + (b(p,−1), 0, ab− c,−ab+ c, 0)D∗

= (πp(p,−1), δ, ρ− θ, θ, 0)D∗

h∗
t = (πt(t,−1), δ, ρ, 0, 0)D∗ t > p

With θ = 0, this is as in the previous game, with θ = ρ, this is the current game: Adv2.k.1.p.1−
Adv2.k.1.p.2 ≤ 2 · Advddh

G2 (t).

Game G2.k.1.p.3: We keep the τ value (at the 5-th hidden position) in the ciphertext for the
p-th attribute only, and replace all the other values by τzt/zp:

cp = (σt(1, t), ω, τ, τ, τzt)D
ct = (σt(1, t), ω, τ, τzt/zp, τzt)D t ̸= p

To show this is possible without impacting the other vectors, we use the Index-Ind property
from Theorem 6, but in another level of sequence of hybrid games, for γ ∈ {1, . . . , P}\{p}:

Game G2.k.1.p.2.γ: We consider

cp = (σp(1, p), ω, τ, τ, τzp)D
ct = (σt(1, t), ω, τ, τzt/zp, τzt)D p ̸= t < γ

ct = (σt(1, t), ω, τ, τ, τzt)D t ≥ γ
h∗

t = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗
p = (πp(p,−1), δ, 0, ρ, 0)D∗

h∗
t = (πt(t,−1), δ, ρ, 0, 0)D∗ t > p

When γ = 1, this is the previous game: G2.k.1.p.2.1 = G2.k.1.p.2, whereas with γ = P + 1,
this is the current game: G2.k.1.p.2.P +1 = G2.k.1.p.3.
For any γ ∈ {1, . . . , P}, we consider a triple (a ·G1, b ·G1, c ·G1), where c = ab+ ζ mod q,
with either ζ = 0 or ζ = τ(zγ/zp − 1), which are indistinguishable situations under the
DSDH assumption. We define the matrices

D = 1
p− γ

×

 p −γ ap
−1 1 −a
0 0 p− γ

1,2,5

D′ =

 1 1 0
γ p 0
−a 0 1

1,2,5

and then D = D · V, D∗ = D′ · V∗: we cannot compute d∗
5, but the components on this

5.2 - A Key-Policy Attribute-Based Encryption (KP-ABE) Construction 49

vector are all 0 excepted for h∗
p we will define in V∗:

cp = (σp(1, p), ω, τ, τ, τzp)D
cγ = (b, 0, ω, τ, τ + c, τzγ)V = (b, bγ, ω, τ, τ + c− ab, τzγ)D

= (b(1, γ), ω, τ, τ + ζ, τzγ)D
ct = (σt(1, t), ω, τ, τzt/zp, τzt)D p ̸= t < γ

ct = (σt(1, t), ω, τ, τ, τzt)D t > γ

h∗
t = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗
p = ((p− γ) · (π, 0), δ, 0, ρ, 0)V∗

= (p · π + apρ,−π − aρ, δ, 0, ρ, 0)D∗

= ((π + aρ) · (p,−1), δ, 0, ρ, 0)D∗

h∗
t = (πt(t,−1), δ, ρ, 0, 0)D∗ t > p

which is the hybrid game with πp = π+ aρ and the 5-th component of cγ is τ + ζ, which is
either τ when ζ = 0, and thus the game G2.k.1.p.2.γ or τzγ/zp when ζ = τzγ/zp− τ , which is
G2.k.1.p.2.γ+1: hence, the distance between two consecutive games is bounded by Advdsdh

G1 (t).

Hence, we have Adv2.k.1.p.2 − Adv2.k.1.p.3 ≤ 2P × Advddh
G1 (t).

Game G2.k.1.p.4: We can now insert 1/zp in the p-th last component, and then make some
cleaning with the matrices, for α $← Z∗

q

D =
(
α/ρ 0
1/zp 1

)
5,6

D′ =
(
ρ/α −ρ/αzp

0 1

)
5,6

and then D = D · V, D∗ = D′ · V∗. As the four vectors d5,d6 and d∗
5,d∗

6 are hidden, the
modifications will not impact the view of the adversary. This consists in applying successively
the matrices :

D =
(

1/zp 0
0 1

)
5,6

D =
(

1 0
1 1

)
5,6

D =
(
αzp/ρ 0

0 1

)
5,6

Then, working in (V,V∗) gives, in (D,D∗):

cp = (σp(1, p), ω, τ, τ, τzp)V = (σp(1, p), ω, τ, 0, τzp)D
ct = (σt(1, t), ω, τ, τzt/zp, τzt)V

= (σt(1, t), ω, τ, (τzt/zp − τzt/zp) · ρ/α, τzt)D t ̸= p

= (σt(1, t), ω, τ, 0, τzt)D
h∗

t = (πt(t,−1), δ, 0, 0, ρ/zt)V∗ = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗
p = (πp(p,−1), δ, 0, ρ, 0)V∗ = (πp(p,−1), δ, 0, α, ρ/zp)D∗

h∗
t = (πt(t,−1), δ, ρ, 0, 0)V∗ = (πt(t,−1), δ, ρ, 0, 0)V∗ t > p

We stress again that for all the other keys, as the 5-th component is 0, the writing in basis
V∗ is the same in basis D∗. Hence, the perfect indistinguishability between the two games:
Adv2.k.1.p.4 = Adv2.k.1.p.3.

Game G2.k.1.p.5: We can now remove the α value in the p-th element of the key: We can
consider a triple (a ·G2, b ·G2, c ·G2), where c = ab+ α mod q, with either α = 0 or α $← Z∗

q ,
which are indistinguishable situations under the DDH assumption. We define the matrices

D′ =
(

1 a
0 1

)
2,5

D =
(

1 0
−a 1

)
2,5

50 5 - Basic ABE and ABS Constructions

and then D = D ·V, D∗ = D′ ·V∗: we cannot compute d5, but the components on this vector
are all 0:

cp = (σt(1, t), ω, τ, 0, τzt)D
ct = (σt(1, t), ω, τ, 0, τzt)D t ̸= p

h∗
t = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗
p = (−b(p,−1), δ, 0, c, ρ/zp)V∗ = (−b(p,−1), δ, 0, c− ab, ρ/zp)D∗

= (−b(p,−1), δ, 0, α, ρ/zp)D∗

h∗
t = (πt(t,−1), δ, ρ, 0, 0)D∗ t > p

which is the either the previous game when α ̸= 0 or the current game with α = 0, where
πp = −b: Adv2.k.1.p.4 − Adv2.k.1.p.5 ≤ Advddh

G2 (t).

5.3 - An Attribute-Based Signature (ABS) Construction 51

5.3 An Attribute-Based Signature (ABS) Construction
In this section, we describe an ABS scheme with perfect anonymity. The construction is inspired
by our KP-ABE [DGP22], while the proof is an optimized version (regarding the number of bases)
of Okamoto-Takashima’s base scheme [OT13]. We also handle unbounded universe of attributes.

This basic scheme is derived from a KP-ABE, where the signature can be seen as a decryption
key associated to a policy, and the verification algorithm tries to decrypt a ciphertext on a set
of attributes. If decryption works, the signature is valid, otherwise the signature is invalid. In a
later section about our contributions, we will add on this basic scheme two kinds of delegations,
and the traceability of signers. To anticipate delegations of attributes and policies, we already
separate the message and the policy in the signing process, which is a critical difference from
the [OT13] construction.

5.3.1 Complementary Properties

Dual-Trees Before going into the construction, we need to introduce a new notion related to
access-trees.

Definition 8 We call the dual-tree T ∗ of T the access-tree which is the exact same tree as T ,
except that all OR gates in T become AND gates in T ∗, and conversely all AND gates in T
become OR gates in T ∗.

We note that the structure of T and T ∗ is identical, in particular all leaves are present on
both trees, thus we will abuse notations and consider LT = LT ∗ when there is no ambiguity.

Dual-trees will be crucial in our signature constructions. They will allow the signer to share
enough information to the verifier for the verification of the signature, to prove correctness. At
the same time, it prevents revealing anything about the validity of the access-tree other than
the signer could sign it with its attributes, to ensure the anonymity property that we will define
later. This is formalized in the two next propositions.

Proposition 1 If (aλ)λ is an a0-labeling of T , and (bλ)λ is a b0-labeling of its dual tree T ∗,
then

∑
λ∈L aλbλ = a0b0.

Intuitively, there is always an OR-gate (from either T or T ′) which creates a common factor
when recursively evaluating the product at each node on both trees.

Proof We proceed by induction on the depth ℓ of the access-trees T .
When ℓ = 1, there are only two cases: any tree is either a root node labeled with an AND

gate and any number of children, or it is a root node labeled with an OR gate and any number
of children, and T ∗ is the alternative situation. Hence, by considering T with an AND-gate at
the root and T ∗ with an OR-gate at the root, we address both cases at once (we just have to
exchange T and T ∗ for the other case): (aλ)λ is an a0-labeling of T , and (bλ)λ is a b0-labeling of
T ∗. Since L = children(ρ), because of the AND-gate, a0 = ∑

κ∈L aκ, and because of the OR-gate,
for all κ ∈ L, bκ = b0: ∑λ∈L aλbλ = b0

∑
λ∈L aλ = a0b0.

Now we suppose, for the induction step, that this property holds for all k ≤ ℓ ∈ N, and prove
it holds for ℓ+1 as well. Again, let us consider T an access-tree of depth ℓ+1 with an AND-gate
at the root, and (aλ)λ an a0-labeling of T , then T ∗ is an access-tree of depth ℓ + 1 with an
OR-gate at the root, (bλ)λ is a b0-labeling of T ∗ (the other case just consists in switching T and
T ∗). Now, roots’ children are subtrees of depth at most ℓ. We note Tκ the subtree rooted at
κ ∈ children(ρ), and Lκ its leaves, and note that (Lκ)κ is a strict partition of L. As the dual
tree is built by just switching AND/OR gates, the dual-tree of Tκ (the subtree rooted at κ) is the
subtree of the dual-tree of T ∗ rooted at κ, that we can thus denote T ∗

κ without any ambiguity.
By definition of the labelings, a0 = ∑

κ∈children(ρ) aκ for T , and in T ∗, for all κ ∈ children(ρ),
bκ = b0. Then, as above, a0b0 = ∑

κ∈children(ρ) aκbκ. However, we also know from the induction

52 5 - Basic ABE and ABS Constructions

OR/4

AND/4

1
λ1

3
λ2

4
λ3

4
λ4

AND/3

OR/2

2
λ1

2
λ2

1
λ3

0
λ4

Figure 5.4: An access-tree (left) and its dual tree (right), both with random labelings in Z/7Z.
One can see that ∑λ∈L aλbλ = a0b0 = 5 mod 7.

hypothesis on all the subtrees Tκ and T ∗
κ , rooted at κ ∈ children(ρ) over the sets of leaves Lκ,

of depth at most ℓ, ∑λ∈Lκ
aλbλ = aκbκ. Because of the partition property of the Lκ’s into L,∑

λ∈L aλbλ = ∑
κ∈children(ρ)

∑
λ∈Lκ

aλbλ = ∑
κ∈children(ρ) aκbκ = a0b0.

Proposition 2 Let T be an access-tree and Γ a set of attributes so that T (Γ) = 1. Then, for
any Evaluation Pruned Tree T ′ ∈ EPT(T ,Γ), there is a 1-labeling (bλ)λ of the dual T ∗ which
verifies: bλ = 1 for all λ ∈ LT ′ and bλ = 0 for all λ /∈ LT ′.

Intuitively, if a tree T is satisfied by a set of attributes, we can associate the value 1 to the leaves
of the satisfied attributes in the tree (which defines the pruned tree T ′), and this association is
effectively a 1-labeling of the dual-tree T ′∗ ⊂ T ∗, but also a 1-labeling of the dual-tree T ∗. This
1-labeling of T ∗, which is specific to the choice of T ′, can then be randomizez for anonymity with
any 0-labeling of T ∗, through the linearity of labelings on T ∗, while maintaining correctness.

Proof Let T ′ be an Evaluation Pruned Tree from EPT(T ,Γ), where T (Γ) = 1. By definition
of an EPT, T ′ has only one child on OR gates that come from T , and all children on AND gates
that come from T . This translates to its dual T ′∗ having AND gates with only one child, and
OR gates having all children. From there, we can easily construct a 1-labeling of T ′∗ noted (bλ)λ

where bλ = 1, for all λ ∈ LT ′ . Indeed, since AND gates have a unique child, its label is identical
to the one of the parent, and OR gates always have identical labels for the children than the
one of the parent, all the 1’s then go up to the root. We expand this into a 1-labeling of T ∗ by
setting bλ = 0 for all λ /∈ LT ′ .

OR

AND

A
λ1

B
λ2

C
λ3

D
λ4

AND/1

OR/1

A/1
λ1

B/1
λ2

C/0
λ3

D/0
λ4

Figure 5.5: An access-tree fulfilled by the set {A,B} (left). One can extract a 1-labeling from
its dual-tree (right) which has values 1 on leaves {A,B} and 0 on all other leaves.

Indexing of Size Three Contrary to our ABE which rely on an indexing on a subspace of
size two, our ABS will rely on an indexing of size three. We detail the theorem, and provide
a sketch for the proof, but we refer to Theorem 7 for the detailled proof, since both follow the
exact same structure.

Theorem 9 (Index-Ind Property) In (B,B∗) of dimension 6, from the view of basis vectors
(b1,b2,b3,b∗

1,b∗
2,b∗

3,b∗
4), and any vector u = (π ·(x+ρx′,−1,−ρ), β, 0, 0)B, for chosen x, x′, β ∈

5.3 - An Attribute-Based Signature (ABS) Construction 53

Zq, but unknown random π $← Zq, and for any chosen (y, y′) ̸= (x, x′) ∈ Z2
q, one cannot

distinguish the vectors v∗
0 = (σ · (1, y, y′), 0, 0, 0)B∗ and v∗

1 = (σ · (1, y, y′), α, 0, 0)B∗, for chosen
α ∈ Zq, but unknown random σ $← Zq, with an advantage better than 4×Advddh

G2 (t)+2×Advddh
G1 (t).

We stress that in this theorem, π and σ are unknown and not under control, but σ ·G2 can be
known, as one can note along the games in the proof below.

G1 Initial situation before indexing
u = (π((x+ρx′), −1, −ρ) β 0 0)B

v∗ = (σ(1, y, y′) 0 0 0)B∗

G2 SubSpace-Ind on (1,2,5,6)
u = (π((x+ρx′), −1, −ρ) β ζ(x+ ρx′, −1))B

v∗ = (σ(1, y, y′) 0 0 0)B∗

G3 SubSpace-Ind on (1,2,3,5,6)
u = (π((x+ρx′), −1, −ρ) β ζ(x+ ρx′, −1))B

v∗ = (σ(1, y, y′) 0 θ(1, y + ρy′))B∗

G4 Formal change on (5,6)
u = (π((x+ρx′), −1, −ρ) β u1 u2))B

v∗ = (σ(1, y, y′) 0 v1 v2)B∗

G5 SubSpace-Ind on (5,4)
u = (π((x+ρx′), −1, −ρ) β u1 u2))B

v∗ = (σ(1, y, y′) α v1 v2)B∗

G6 Formal change on (5,6)
u = (π((x+ρx′), −1, −ρ) β ζ(x+ ρx′, −1))B

v∗ = (σ(1, y, y′) α θ(1, y + ρy′))B∗

G7 SubSpace-Ind on (1,2,3,5,6)
u = (π((x+ρx′), −1, −ρ) β ζ(x+ ρx′, −1))B

v∗ = (σ(1, y, y′) α 0 0)B∗

G8 SubSpace-Ind on (1,2,5,6)
u = (π((x+ρx′), −1, −ρ) β 0 0)B

v∗ = (σ(1, y, y′) α 0 0)B∗

Figure 5.6: Sequence of Games for Index-Ind Property of Size 3.

5.3.2 Description of our ABS Scheme

In this scheme, signatures will only depend on the policies, and will be perfectly independent of
the signers for anonymity. We consider attributes t in a large universe U , and policies expressed
as access trees T with leaves λ in L. We will express all the elements as vector in the correctness
analysis for more clarity.

Setup(1κ). The algorithm chooses three random dual orthogonal bases, in a pairing-friendly
setting PG = (G1,G2,Gt, e,G1, G2, q):

B = (b1, . . . ,b4) D = (d1, . . . ,d10) H = (h1, . . . ,h8)
B∗ = (b∗

1, . . . ,b∗
4) D∗ = (d∗

1, . . . ,d∗
10) H∗ = (h∗

1, . . . ,h∗
8).

It picks two hash functions H and H′ onto Zq. It then sets public parameters PK =
{PG,H,H′, (b1,b3), (b∗

2), (d1,d2,d3,d5), (d∗
1,d∗

2,d∗
3,d∗

4), (h1,h2,h3,h5), (h∗
4)}, as well as

the master secret key MK = {(b∗
1), (h∗

1,h∗
2,h∗

3)} ∪ PK.

54 5 - Basic ABE and ABS Constructions

KeyGen(MK, id,Γ). A random scalar δid
$← Z∗

q is associated to id, to define

k∗
0 = δid · b∗

1 + ϕ0 · b∗
2 k∗

t = δid · d∗
1 + πt · d∗

2 + tπt · d∗
3+ ϕt · d∗

4

r∗
1 = δid · h∗

1 + ψ1 · h∗
4 r∗

2 = δid · h∗
2 + ψ2 · h∗

4 r∗
3 = δid · h∗

3 + ψ3 · h∗
4

for all attributes t ∈ Γ, with ϕ0, ψ1, ψ2, ψ3, (ϕt)t, (πt)t
$← Z∗

q for each t. The signing key
SKid,Γ is then set as (k∗

0, (k∗
t)t∈Γ, r∗

1, r∗
2, r∗

3). It can be completed later for new attributes t,
for id, with extra k∗

t , using the same δid, specific to user id.

Sig(SKid,Γ,m, T). Let T ′ ∈ EPT(T ,Γ) be an Evaluation Pruned Tree, ν, ξ, ζ, (ωλ)λ
$← Z∗

q , and
(αλ)λ the 1-labeling of the dual-tree T ∗ specific to T ′, where αλ = 1 if λ ∈ LT ′ , else
αλ = 0. This is possible as T (Γ) = 1 (see Proposition 2). Compute (βλ)λ to be a random
0-labeling of T ∗. Take (qλ)λ random scalars. Eventually, set, for H = H(T), H ′ = H′(m):

U∗ = ξk∗
0 + ζb∗

2 S∗
λ = αλξ · k∗

tλ
+ βλ · d∗

1 + ωλ · (d∗
2 + tλ · d∗

3) + qλ · d∗
4

V ∗ = ξ(r∗
1 +H · r∗

2 +H ′ · r∗
3) + ν · h∗

4

for all the leaves λ, where tλ is the associated attribute of λ. The signature is σ =
(U∗, V ∗, (S∗

λ)λ).

Verif(PK,m, T , σ). Let κ, κ0, (κλ)λ, s, s0, θ, (θλ)λ
$← Zq. Let (sλ)λ be a random s0-labeling of T ,

then set, for H̄ = H(T), H̄ ′ = H′(m):

u = −(s0 + s) · b1 + κ0 · b3 cλ = sλ · d1 + (θλtλ) · d2 − θλ · d3 + κλ · d5

v = (s+ θH̄ + θ′H̄ ′) · h1 − θ · h2 − θ′ · h3 + κ · h5

If e(b1, U
∗) ̸= 1Gt ∧ e(u, U∗) · e(v, V ∗) ·∏ e(cλ, S

∗
λ) = 1Gt , accept, else reject.

One can note that, as usual with Dual Pairing Vectors Spaces, some basis vectors are kept
hidden to real-life players, as they will only be used in the security proofs: (b2,b4), (b∗

3,b∗
4),

(d4,d6,d7,d8,d9,d10), (d∗
5,d∗

6,d∗
7,d∗

8,d∗
9,d∗

10), (h4,h6,h7,h8), and (h∗
5,h∗

6,h∗
7,h∗

8).
Correctness To clarify the content of the vectors, we detail each component in the corre-
sponding bases (B,B∗), (D,D∗), and (H,H∗), where 0k denotes k zero components:

KeyGen(MK, id,Γ). For random scalars δid, ϕ0, ψ1, ψ2, (ϕt)t, (πt)t
$← Z∗

q for t ∈ Γ.

k∗
0 = (δid, ϕ0, 02)B∗ k∗

t = (δid, πt(1, t), ϕt, 06)D∗

r∗
1 = (δid, 0, 0, ψ1, 04)H∗ r∗

2 = (0, δid, 0, ψ2, 04)H∗ r∗
3 = (0, 0, δid, ψ3, 04)H∗

Sig(SKid,Γ,m, T). For random scalars δid, ν, ξ, ζ, ψ1, ψ2, ψ3, (qλ)λ, (πλ)λ
$← Z∗

q , and (αλ)λ a 1-
labeling of T ∗, and (βλ)λ a random 0-labeling of T ∗, for H = H(T), H ′ = H′(m):

U∗ = (ξδid, ξϕ0 + ζ, 02)B∗ S∗
λ = (αλξδid + βλ, (αλξπλ + ωλ)(1, tλ), αλξϕtλ

+ qλ, 06)D∗

V ∗ = (ξδid · (1, H,H ′), ξ(ψ1 + ψ2H + ψ3H
′) + ν, 04)H∗

which follows the same distribution as

U∗ = (δ′, ζ, 02)B∗ S∗
λ = (αλδ

′ + βλ, ωλ(1, tλ), qλ, 06)D∗

V ∗ = (δ′ · (1, H,H ′), ν, 04)H∗

for random scalars δ′, ζ, ν, (qλ)λ, (ωλ)λ
$← Z∗

q , and still (αλ)λ a 1-labeling of T ∗ and (βλ)λ

a random 0-labeling of T ∗.

5.3 - An Attribute-Based Signature (ABS) Construction 55

Verif(PK,m, T , σ). For random scalars κ, κ0, (κλ)λ, s, s0, θ, θ
′, (θλ)λ

$← Zq, and a random s0-
labeling (sλ)λ of T , for H̄ = H(T), H̄ ′ = H′(m):

u = (−s0 − s, 0, κ0, 01)B cλ = (sλ, θλ(tλ,−1), 0, κλ, 05)D
v = (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, 03)H

Let (U∗, V ∗, (S∗
λ)λ) be a signature generated by Sig for an access-tree T , with a key SKid,Γ for

attributes Γ so that T (Γ) = 1, and (u, v, (cλ)λ) the verification vectors generated by Verif for the
same access-tree. We note T ′ ∈ EPT(T ,Γ) the Evaluation Pruned Tree used during signature.

We remind from Proposition 1 that, since (sλ)λ is a s0-labeling of T and (αλ)λ (respectively
(βλ)λ are a 1-labeling (respectively 0-labeling) of T ∗, then ∑λ∈L sλ(αλ + βλ) = s0(1 + 0) = s0.
We deduce that ∑λ∈L sλ(αλδ

′ + βλ) = s0(δ′ + 0) = s0δ
′.

The first check e(b1, U
∗) = gδ′

t ̸= 1Gt is to make sure δ′ ̸= 0, and thus that ξ ̸= 0 during the
signing process. For the second verification:∏

e(cλ, S
∗
λ) = g

∑
λ∈L sλ(αλδ′+βλ)

t = gs0δ′

t (5.1)

e(u, U∗) · e(v, V ∗) = g
δ′·(−s0−s)
t · gδ′s

t = g−δ′s0
t (5.2)

This leads to an accept if the signature was properly generated, first by using the same attribute
tλ in the S∗

λ’s of the signature and in the cλ’s of the ciphertext, such that the vectors (1, tλ)
and (tλ,−1) are orthogonal in equation (5.1). Secondly, the commitment to the message and
the access-tree must be the same: (H,H ′) = (H̄, H̄) so that (1, H) and (H̄,−1), as well as
(1, H ′) and (H̄ ′,−1) are orthogonal, to guarantee that for random θ and θ′, (1, H,H ′) and
(θH̄ + θ′H̄ ′,−θ,−θ′) are orthogonal in equation (5.2).

5.3.3 Security Analysis of the ABS

About the above ABS scheme described in Section 5.3.2, one can claim the unforgeability and
the perfect anonymity.

Theorem 10 (Existential Unforgeability) The ABS scheme described in Section 5.3.2 is
existentially unforgeable under the collision-resistance of the hash functions H,H′ and the SXDH
assumption, according to the Definition 6.

Theorem 11 (Perfect Anonymity) The ABS scheme described in Section 5.3.2 is perfectly
anonymous, according to the Definition 7.

Security Proofs We start by the anonymity result, as this will allow to perfectly simulate
signing queries in the proof of unforgeability.
Perfect Anonymity. Let us define an alternative signing algorithm AltSig, that uses the
master secret key instead of an individual signing key:

AltSig(MK,m, T). With random scalars δ′, ζ, ν, (qλ)λ, (γλ)λ
$← Zq, and (β′

λ)λ a random δ′-
labeling of T ∗, set, for H = H(T) and H ′ = H′(m):

U∗ = (δ′, ζ, 02)B∗ S∗
λ = (β′

λ, γλ(1, tλ), qλ, 06)D∗ V ∗ = (δ′ · (1, H,H ′), ν, 04)H∗

As shown, this is the same distribution as a real signature generated by a signing key SKid,Γ,
except for two elements. First, the random (γλ)λ from the second component of S∗

λ follows the
same random uniform distribution as (αλξπλ + ωλ)λ. Then, the random δ′-labeling (β′

λ)λ of T ∗

replaces (αλδ
′ + βλ)λ, where (αλ) is the 1-labeling of T ∗ associated to the Evaluation Pruned

Tree specific to Γ, and (βλ) a random 0-labeling of T ∗. As already noted, from the linearity of
the labelings, the linear combination is a random 1 · δ′ +0-labeling of T ∗, as (β′

λ)λ is, which thus
makes no difference.

56 5 - Basic ABE and ABS Constructions

Existential Unforgeability. For this proof, thanks to the above (perfect) indistinguishability
of the Sig and AltSig outputs, we will first replace the simulation of the signing oracle by the
AltSig procedure.

Then, we will use the index id for all the KeyGen queries/answers, and we assume the number
of KeyGen queries bounded by K. We use the index i for all the Sig queries/answers, and we
assume the number of Sig queries bounded by S. We will also use t to denote the attributes,
and we assume the number of attributes involved in a security game bounded by T .

The verification done by the challenger (on the candidate forgery output by the adversary)
uses a pair (m, T) that is different from any pair that appeared in the signing queries, hence
with H̄ = H(T) and H̄ ′ = H′(m), but (H̄, H̄ ′) ̸= (Hi, H

′
i) for all i, under the collision-resistance

of H and H′, as for any pair (mi, Ti) at least m ̸= mi or T ≠ Ti. Then, the proof follows the
sequence of games presented on Figure 5.7, to show that

Adv0 − Adv5 ≤ (6KT + 2S + 2)× Advddh
G1 (t) + (4T 2K + 6K + 4S)× Advddh

G2 (t)
+ S/q + Advcoll

H (t) + Advcoll
H′ (t).

Let us suppose we are at the final game G5 and consider a signature (U∗, V ∗, (S∗
λ)λ) generated

by the adversary. At that point, the Verif algorithm generates the element u in base B as :

u = (s′, 0, κ0, r
′
0)

First, by definition of Verif, if e(b1, U
∗) = 1Gt , then the verification fails. Hence, the first

component of U∗ must be non-zero, in the basis B∗. We can now consider the value e(u, U∗) ·
e(v, V ∗) ·∏ e(cλ, S

∗
λ). Since the coefficient s′ of b1 in u is uniform and independent from all other

values, then e(u, U∗) is uniform and independent from all other pairings in the Verif algorithm.
This implies e(u, U∗) · e(v, V ∗) ·∏ e(cλ, S

∗
λ) ̸= 1Gt except with probability 1/q: Adv5 ≤ 1/q. As

a consequence,

Adveuf = Adv0 ≤ (6KT + 2S + 2)× Advddh
G1 (t) + (4T 2K + 6K + 4S)× Advddh

G2 (t)
+ (S + 1)/q + Advcoll

H (t) + Advcoll
H′ (t).

Detailled Proof of the Existential Unforgeability of the ABS We now delve into the
details of the proof. The security proof follows the sequence of games presented on Figure 5.7.

Game G0: From the correctness of the signature and the perfect anonymity, keys generated
by the KeyGen algorithm, for user id, follow the distribution:

k∗
id,0 = (δid, ϕid,0, 02)B∗ k∗

id,t = (δid, πid,t(1, t), ϕid,t, 06)D∗ ∀t
r∗

id,1 = (δid, 0, 0, ψid,1, 04)H∗ r∗
id,2 = (0, δid, 0, ψid,2, 04)H∗

r∗
id,3 = (0, 0, δid, ψid,3, 04)H∗

and the i-th signature generated by the Sig algorithm follows

U∗
i = (δi, ζi, 02)B∗ S∗

i,λ = (β′
i,λ, γi,λ(1, tλ), qi,λ, 06)D∗

V ∗
i = (δi(1, Hi, H

′
i), νi, 04)H∗

where Hi = H(Ti), H ′
i = H′(mi).

For the decision of validity of the forgery S = (U∗, V ∗, (S∗
λ)λ) on message m′ and policy T ′,

one uses

u = (−s0 − s, 0, κ0, 0)B v = (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, 0, 0, 0)H
cλ = (sλ, θλtλ,−θλ, 0, κλ, 0, 0, 0, 0, 0)D

5.3 - An Attribute-Based Signature (ABS) Construction 57

G0 Initialization of the EUF security game
For the (at most) K different id’s and S different indices i’s.
k∗

id,0 = (δid ϕid,0 0 0)B∗

U∗
i = (δi ζi 0 0)B∗

u = (−s0 − s 0 κ0 0)B
r∗

id,1 = (δid 0 0 ψid,1 0 0 0 0)H∗

r∗
id,2 = (0 δid 0 ψid,2 0 0 0 0)H∗

r∗
id,3 = (0 0 δid ψid,3 0 0 0 0)H∗

V ∗
i = (δi δiHi δiH

′
i νi 0 0 0 0)H∗

v = (s+θH̄+θ′H̄ ′ −θ −θ′ 0 κ 0 0 0)H
k∗

id,t = (δid πid,t πid,tt ϕid,t 0 0 0 0 0 0)D∗

S∗
i,λ = (β′

i,λ γi,λ γi,λtλ qi,λ 0 0 0 0 0 0)D∗

cλ = (sλ θλtλ, −θλ 0 κλ 0 0 0 0 0)D

G1 rλ is a r0-labeling, ω is random
SubSpace-Ind in (B,B∗), (D,D∗) and (H,H∗)
u = (−s0 − s 0 κ0 −r0)B
v = (s+θH̄+θ′H̄ ′ −θ −θ′ 0 κ ω 0 0)H
cλ = (sλ θλtλ −θλ 0 κλ rλ 0 0 0 0)D

G2 δ′′
id all random: Hybrid sub-sequence (see Figure 5.8)

k∗
id,0 = (δid ϕid,0 0 δ′′

id)B∗

k∗
id,t = (δid πid,t πid,tt ϕid,t 0 0 0 0 0 0)D∗

G3 r′
0 random: Formal change of basis
u = (−s0 − s 0 κ0 r′

0)B
G4 ρi, τi all random: Hybrid sub-sequence (see Figure 5.9)

U∗
i = (δi ζi 0 ρi)B∗

V ∗
i = (δi δiHi δiH

′
i νi 0 τi 0 0)H

G5 s′ random
u = (s′ 0 κ0 r′

0)B

Figure 5.7: Sequence of Games for Unforgeability. Grey rectangles indicate the values changed
in each game.

58 5 - Basic ABE and ABS Constructions

where H̄ = H(T), H̄ ′ = H′(m), and (T ,m) ̸= (Ti,mi) for all i. Instead of outputting just the
decision, one can consider the challenger outputs (u, v, (cλ)λ), and everybody can make the
final verification:

e(b1, U
∗) ̸= 1Gt e(u, U∗) · e(v, V ∗) ·

∏
e(cλ, S

∗
λ) = 1Gt

And we denote by Adv0 the probability of the validity of the forgery. Our goal is to show this
is negligible.

Game G1: We change the verification vectors into

u = (−s0 − s, 0, κ0,−r0)B v = (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, ω, 0, 0)H
cλ = (sλ, θλtλ,−θλ, 0, κλ, rλ, 0, 0, 0, 0)D

where r0 and ω are random scalars and (rλ)λ is a random r0-labeling for the tree-policy T ′.
The previous game and this game are indistinguishable under the DDH assumption in G1:
one applies the SubSpace-Ind property on (B,B∗)3,4, (D,D∗)4,5 and (H,H∗)4,5. Indeed, we can
consider a triple (a · G1, b · G1, c · G1), where c = ab + τ mod q with either τ = 0 or τ = 1,
which are indistinguishable under the DDH assumption in G1.
Let us assume we start from random dual orthogonal bases (U,U∗), (V,V∗) and (W,W∗) .
Then we define the matrices

B =
(

1 −a
0 1

)
3,4

B′ =
(

1 0
a 1

)
3,4

D =
(

1 a
0 1

)
5,6

D′ =
(

1 0
−a 1

)
5,6

B = B · U B∗ = B′ · U∗ D = D · V D∗ = D′ · V∗

H =
(

1 −a
0 1

)
4,5

H ′ =
(

1 0
a 1

)
4,5

H = H ·W H∗ = H ′ ·W∗

The vectors b∗
4, d∗

5, and h∗
5 can not be computed, but they are hidden from the adversary’s

view, and are not used in any vector. We compute the new vectors:

u = (−s0 − s, 0, κ0, 0)B − (0, 0, br0,−cr0)U
= (−s0 − s, 0, κ0, 0)B − (0, 0, b1r0,−(c− ab)r0)B
= (−s0 − s, 0, κ0 + br0,−τr0)B

v = (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, 0, 0, 0)H + (0, 0, 0, 0,−bω, cω, 0, 0)W
= (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, 0, 0, 0)H + (0, 0, 0, 0,−bω, (c− ab)ω, 0, 0)H
= (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ− bω, τω, 0, 0)H

cλ = (sλ, θλtλ,−θλ, 0, κλ, 0, 0, 0, 0, 0)D + (0, 0, 0, 0,−brλ, crλ, 0, 0, 0, 0)V
= (sλ, θλtλ,−θλ, 0, κλ, 0, 0, 0, 0, 0)D + (0, 0, 0, 0,−brλ, (c− ab)rλ, 0, 0, 0, 0)D
= (sλ, θλtλ,−θλ, 0, κλ − brλ, τrλ, 0, 0, 0, 0)D

One can easily note that when τ = 0, this is the previous game, and when τ = 1, we are in
the new game.
On the other side, keys and signatures are unchanged, as their values on the corresponding
unknown basis vectors are 0. They can thus be directly defined in B∗, D∗, and H∗. We thus
have Adv0 − Adv1 ≤ 2× Advddh

G1 (t).

5.3 - An Attribute-Based Signature (ABS) Construction 59

Game G2: We introduce a random value δ′′
id in every key in basis B, in the component cor-

responding to the random value r0 that was just introduced in the verification vector u. In
order to do this, we proceed with an hybrid game on the key queries, modifying them one id
at a time. We will denote the current key by ∆, and we update the ∆-th key as:

k∗
∆,0 = (δ∆, ϕid,0, 0, δ′′

∆)B∗

When ∆ = 0, no key has been modified, this is exactly the game G1: G1 = G1.0.0, whereas for
∆ = K, all the keys have been modified, this is exactly the expected game G2: G2 = G1.K.0.
We show that for each ∆,

Adv1.∆.0 − Adv1.∆+1.0 ≤ 6T × Advddh
G1 (t) + (4T 2 + 6)× Advddh

G2 (t).

Hence, globally, we have

Adv1 − Adv2 ≤ 6KT × Advddh
G1 (t) + (4T 2 + 6)K × Advddh

G2 (t).

Game G3: In this game, we replace r0 in the verification vector by a random independent
r′

0
$← Zq:

u = (−s0 − s, 0, κ0, r
′
0)B

To do this, we proceed with a formal change of basis B. Let us assume we start from random
dual orthogonal bases (U,U∗). Then we define the matrices, with random θ $← Z∗

q

B =
(
θ
)

4
B′ =

(
1/θ

)
4

B = B · U B∗ = B′ · U∗

which modifies only the hidden basis vectors b4,b∗
4. Since they are not in the adversary’s

view, the advantage is not modified: Adv3 = Adv2. Furthermore

k∗
∆,0 = (δ∆, ϕid,0, 0, δ′′

∆)U∗ = (δ∆, ϕid,0, 0, θδ′′
∆)B∗

u = (−s0 − s, 0, κ0, r0)U = (−s0 − s, 0, κ0, r0/θ)B
Which replaces the random value δ′′

∆ by another random value θδ′′
∆ that follows the same

uniform distribution, and r′
0 = −r0/θ follows a uniform independent distribution, also inde-

pendent from the r0-labeling (rλ)λ.

Game G4: We now update generated signatures, with random values in coordinates corre-
sponding to the random ω that was introduced in the verification vector v in game G1. In
order to do this, we proceed with an hybrid game on the signature queries, modifying them
one i at a time. We will denote the current signature by j, and we update the j-th signature
as:

U∗
j = (δj , ζj , 0, ρj)B∗

V ∗
j = (δj(1, Hj , H

′
j), νj , 0, τj , 0, 0)H∗

with ρj , τj
$← Zq.

When j = 0, no signature has been modified, this is exactly the game G3: G3 = G3.0.0,
whereas for j = S, all the signatures have been modified, this is exactly the expected game
G4: G4 = G3.S.0. In Section 5.3.3, we show that for each j,

Adv3.j.0 − Adv3.j+1.0 ≤ 4× Advddh
G2 (t) + 2× Advddh

G1 (t) + 1/q,

if (H̄, H̄ ′) ̸= (Hj , H
′
j), which holds under the collision resistance of the two hash functions.

Hence, globally, we have

Adv3 − Adv4 ≤ S × (4× Advddh
G2 (t) + 2× Advddh

G1 (t) + 1/q) + Advcoll
H (t) + Advcoll

H′ (t).

60 5 - Basic ABE and ABS Constructions

Game G5: In this final game, we make the verification vector reject all the signatures by
removing the original secret on the first position:

u = (s′, 0, κ0, r
′
0)B

To do this, we define the matrices, with Θ $← Zq

B′ =
(

1 −Θ
0 1

)
1,4

B =
(

1 0
Θ 1

)
1,4

B∗ = B′ · U∗ B = B · U

which modifies the hidden vectors b4,b∗
1. Since they are not in the adversary’s view, the

advantage is not modified: Adv5 = Adv4. The verification vector is modified as

u = (−s0 − s, 0, κ0, r
′
0)U = (−s0 − s−Θr′

0, 0, κ0, r
′
0)B = (s′, 0, κ0, r

′
0)B

with s′ := −s0 − s − Θr′
0 that is uniformly distributed. Meanwhile, the keys and signatures

are modified as follows:

k∗
id,0 = (δid, ϕid,0, 0, δ′′

id)U∗ = (δid, ϕid,0, 0, δ′′
id + Θδid)B∗ = (δid, ϕid,0, 0, δ′

id)B∗

U∗
i = (δi, ζi, 0, ρi)U∗ = (δi, ζi, 0, ρi + Θδi)B∗ = (δi, ζi, 0, ρ′

i)B∗

If we combine all the steps:

Adv0−Adv5 ≤ 2× Advddh
G1 (t)

+ 6KT × Advddh
G1 (t) + (4T 2 + 6)K × Advddh

G2 (t) + 0
+ S × (4× Advddh

G2 (t) + 2× Advddh
G1 (t) + 1/q) + Advcoll

H (t) + Advcoll
H′ (t)

≤ (2S + 2 + 6KT)× Advddh
G1 (t) + (4T 2K + 6K + 4S)× Advddh

G2 (t)
+ S/q + Advcoll

H (t) + Advcoll
H′ (t)

Existential Unforgeability: Gap between G1 and G2. In this sequence of games, detailed
on Figure 5.8, we will stop tracking elements on bases H,H∗ as they are not modified.

Game G1.∆.0: The state of the game at that point is the following, for the keys

id < ∆ k∗
id,0 = (δid, ϕid,0, 0, δ′′

id)B∗

id ≥ ∆ k∗
id,0 = (δid, ϕid,0, 0, 0)B∗

∀id,∀t k∗
id,t = (δid, πid,t(1, t), ϕid,t, 0, 0, 0, 0, 0, 0)D∗

for the signatures,

U∗
i = (δi, ζi, 0, 0)B∗ S∗

i,λ = (β′
i,λ, γi,λ(1, tλ), qi,λ, 0, 0, 0, 0, 0, 0)D∗

and the verification vectors

u = (−s0 − s, 0, κ0,−r0)B cλ = (sλ, θλtλ,−θλ, 0, κλ, rλ, 0, 0, 0, 0)D

Game G1.∆.1: We change the ∆-th key into, for a random δ′
∆

$← Zq

k∗
∆,0 = (δ∆, ϕ∆,0, 0, δ′

∆)B∗ k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ′

∆, 0, 0, 0, 0)D∗

Other vectors are not modified.

5.3 - An Attribute-Based Signature (ABS) Construction 61

G1.∆.0 Hybrid sequence from G1 to G2

id ≥ ∆ k∗
id,0 = (δid ϕid,0 0 0)B∗

id < ∆ k∗
id,0 = (δid ϕid,0 0 δ′′

id)B∗

U∗
i = (δi ζi 0 0)B∗

u = (−s0 − s 0 κ0 −r0)B
r∗

id,1 = (δid 0 0 ψid,1 0 0 0 0)H∗

r∗
id,2 = (0 δid 0 ψid,2 0 0 0 0)H∗

r∗
id,3 = (0 0 δid ψid,3 0 0 0 0)H∗

V ∗
i = (δi δiHi δiH

′
i νid 0 0 0 0)H∗

v = (s+θH̄+θH̄ ′ −θ −θ′ 0 κ ω 0 0)H
k∗

id,t = (δid πid,t πid,tt ϕid,t 0 0 0 0 0 0)D∗

S∗
i,λ = (β′

i,λ γi,λ γi,λtλ qi,λ 0 0 0 0 0 0)D∗

cλ = (sλ θλtλ −θλ 0 κλ rλ 0 0 0 0)D

G1.∆.1 Add random δ′
∆: SubSpace-Ind in (B∗,B) and in (D∗,D)

k∗
∆,0 = (δ∆ ϕ∆,0 0 δ′

∆)B∗

k∗
∆,t = (δ∆ π∆,t π∆,tt ϕ∆,t 0 δ′

∆ 0 0 0 0)D∗

G1.∆.2 Add random δ′
∆zt: SubSpace-Ind in (D∗,D)

k∗
∆,t = (δ∆ π∆ π∆t ϕ∆,t 0 δ′

∆ 0 δ′
∆zt 0 0)D∗

G1.∆.3 Hybrid game (see Figure 5.10)
cλ = (sλ θλtλ −θλ 0 κλ 0 0 rλ

ztλ
0 0)D

G1.∆.4 Policy argument: r0 unpredictable, then δ′′
∆ random

k∗
∆,0 = (δ∆ ϕ∆,0 0 δ′′

∆)B∗

G1.∆.5 Undo G1.∆.3

cλ = (sλ θλtλ −θλ 0 κλ rλ 0 0 0 0)D
G1.∆.6 Undo G1.∆.2

k∗
∆,t = (δ∆ π∆,t π∆,tt ϕ∆,t 0 δ′

∆ 0 0 0 0)D∗

G1.∆.7 Undo G1.∆.1

k∗
∆,t = (δ∆ π∆,t π∆,tt ϕ∆,t 0 0 0 0 0 0)D∗

Figure 5.8: Existential Unforgeability: Gap between G1 and G2

62 5 - Basic ABE and ABS Constructions

The previous game and this game are indistinguishable under the DDH assumption in G2:
one applies the SubSpace-Ind property, on (B∗,B)2,4 and (D∗,D)1,6. Indeed, we can consider a
triple (a ·G2, b ·G2, c ·G2), where c = ab+ τ mod q with either τ = 0 or τ = δ′

∆
$← Zq, which

are indistinguishable under the DDH assumption in G2.
Let us assume we start from random dual orthogonal bases (U,U∗) and (V,V∗). Then we
define the matrices

B′ =
(

1 a
0 1

)
1,4

B =
(

1 0
−a 1

)
1,4

D′ =
(

1 a
0 1

)
1,6

D =
(

1 0
−a 1

)
1,6

B∗ = B′ · U∗ B = B · U D∗ = D′ · V∗ D = D · V

The vectors b4 and d6 can not be computed, but they are hidden from the adversary’s view.
The ∆-th key is now computed as

k∗
∆,0 = (δ∆, ϕ∆,0, 0, 0)B∗ + (b, 0, 0, c)U∗ = (δ∆ + b, ϕ∆,0, 0, τ)B∗

k∗
∆,t = (δ∆, π∆(1, t), ϕ∆,t, 0, 0, 0, 0, 0, 0)D∗ + (b, 0, 0, 0, 0, c, 0, 0, 0, 0)V∗

= (δ∆ + b, π∆,t(1, t), ϕ∆,t, 0, τ, 0, 0, 0, 0)D∗

When τ = 0, we are in the previous game, meanwhile when τ = δ′
∆

$← Zq we are in the
new game. In both cases, the random value δ∆ are replaced by δ∆ + b that follow the same
distribution. We can also update r∗

∆,1, r∗
∆,2 and r∗

∆,3 as b ·G2 is given.
Since b4 and d6 cannot be computed, one has to generate the verification vectors in the
original bases:

u = (−s0 − s, 0, κ0,−r0)U
= (−s0 − ar0 − s, 0, κ0,−r0)B = (−s′

0 − s, 0, κ0,−r0)B
cλ = (sλ, θλtλ,−θλ, 0, κλ, rλ, 0, 0, 0, 0)V

= (sλ + arλ, θλtλ,−θλ, 0, κλ, rλ, 0, 0, 0, 0)D = (s′
λ, θλtλ,−θλ, 0, κλ, rλ, 0, 0, 0, 0)D

where s′
0 = s0 + ar0 and s′

λ = sλ + arλ. Since (rλ)λ and (sλ)λ are random r0 and s0-labeling
(respectively), then any linear combination (s′

λ = sλ+arλ)λ is a random s′
0 = s0+ar0-labeling.

Hence, Adv1.∆.0 − Adv1.∆.1 ≤ Advddh
G2 (t).

Game G1.∆.2: We again change the keys into

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ′

∆, 0, δ′
∆zt, 0, 0)D∗

for random scalars zt
$← Zq.

The previous game and this game are indistinguishable under the DDH assumption in G2: one
applies the SubSpace-Ind property on (D∗,D)4,8. Indeed, we can consider a triple (a · G2, b ·
G2, c · G2), where c = ab + τ mod q with either τ = 0 or τ = 1, which are indistinguishable
under the DSDH assumption in G2.
One chooses additional scalars αt = δ′

∆zt and βt
$← Zq to virtually set bt = αt · b + βt and

ct = αt · c+ βt · a, which makes ct − abt = αt · τ = δ′
∆zt · τ .

Let us assume we start from random dual orthogonal bases (V,V∗). Then we define the
matrices

D =
(

1 0
−a 1

)
4,8

D′ =
(

1 a
0 1

)
4,8

D = D · V D∗ = D′ · V∗

5.3 - An Attribute-Based Signature (ABS) Construction 63

The vector d7 can not be computed, but it is hidden from the adversary’s view. The ∆-th
key is now computed as

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ′

∆, 0, 0, 0, 0)D∗ + (0, 0, 0, bt, 0, 0, 0, ct, 0, 0)V∗

= (δ∆, π∆,t(1, t), ϕ∆,t + bt, 0, δ′
∆, 0, αtτ, 0, 0)D∗

= (δ∆, π∆,t(1, t), ϕ′
∆,t, 0, δ′

∆, 0, δ′
∆zt · τ, 0, 0)D∗

When τ = 0, we are in the previous game, meanwhile when τ = 1 we are in the new game.
Vectors in D are not modified, and are directly simulated in D, as their components are 0 on
the 7-th coordinate. Hence, Adv1.∆.1 − Adv1.∆.2 ≤ Advdsdh

G2 (t).

Game G1.∆.3: We hide the shares rλ in every verification vectors, in front of the value δ′
∆ that

was just introduced in the keys. In order to do this, we proceed with an hybrid game on the
attribute indices, modifying them one t at a time, using the first time the attribute t appears
in the game. We will denote the current attribute by p, also identified to its index in the order
of appearance. We transform the verification vectors for all λ such that tλ = p into

cλ = (sλ, θλp,−θλ, 0, κλ, 0, 0, rλ/zp)D
When p = 0 (for the order of appearance, which means before the first one), this is exactly
the game G1.∆.2: G1.∆.2 = G1.∆.2.0.0, whereas for p = T (for the order of appearance, which
means the last one) this is exactly the expected game G1.∆.3: G1.∆.3 = G1.∆.2.T.0.
From 5.3.3, for each p, we prove that

Adv1.∆.2.p.0 − Adv1.∆.2.p.5 ≤ 3× Advddh
G1 (t) + 2T × Advddh

G2 (t).

Hence, globally, we have

Adv1.∆.2 − Adv1.∆.3 ≤ 3T × Advddh
G1 (t) + 2T 2 × Advddh

G2 (t).

Game G1.∆.4: First, one can note that the scalars zt used in the verification vectors and in
the ∆-th key mask the rλ in the verification vectors. Since attributes in the ∆-th key do
not satisfy the policy T ′ of the forgery, not enough rλ can be known (others are perfectly
private), and then r0 is perfectly unpredictable, it can be replaced by a random value r′

0, in
an intermediate game.
Then, we proceed with a formal change of basis B. Let us assume we start from random dual
orthogonal bases (U,U∗). Then we define the matrices, with θ = r′

0/r0, for a random r′
0

$← Z∗
q

B =
(
θ
)

4
B′ =

(
1/θ

)
4

B = B · U B∗ = B′ · U∗

which modifies only the hidden basis vectors b4,b∗
4. Since they are not in the adversary’s

view, the advantage is not modified: Adv1.∆.4 = Adv1.∆.3. Then,

id < ∆ k∗
id,0 = (δid, ϕid,0, 0, δ′′

id)U∗ = (δid, ϕid,0, 0, θδ′′
id)B∗

k∗
∆,0 = (δ∆, ϕ∆,0, 0, δ′

∆)U∗ = (δ∆, ϕ∆,0, 0, θδ′
∆)B∗

id > ∆ k∗
id,0 = (δid, ϕid,0, 0, 0)U∗ = (δid, ϕid,0, 0, 0)B∗

u = (−s0 − s, 0, κ0,−r′
0)U = (−s0 − s, 0, κ0,−r′

0/θ)U
= (−s0 − s, 0, κ0,−r0)U

Definitions in (U,U∗) are the above intermediate game, and definitions in (D,D∗) correspond
to the new game as for id < ∆, δ′′

id are already random values, then θδ′′
id is also uniformly

random (whatever independent θ is); and since r′
0 is random, θδ′

∆ = r′
0δ

′
∆/r0 is uniformly

random, and independent.

64 5 - Basic ABE and ABS Constructions

Game G1.∆.5: In this game, we undo G1.∆.3. Then, as above, Adv1.∆.4 − Adv1.∆.5 ≤ 3T ×
Advddh

G1 (t) + 2T 2 × Advddh
G2 (t).

Game G1.∆.6: In this game, we undo G1.∆.2. Then Adv1.∆.5 − Adv1.∆.6 ≤ Advdsdh
G2 (t).

Game G1.∆.7: In this game, we undo G1.∆.1. Then Adv1.∆.6 − Adv1.∆.7 ≤ Advddh
G2 (t).

The hybrid on ∆ is over, as one can see: G1.∆+1.0 = G1.∆.7. We can now proceed on the hybrid
on ∆ + 1, until ∆ = K.
Existential Unforgeability: Gap between G3 and G4. In this sequence, we will stop
tracking elements on bases D,D∗ as they are not modified. See Figure 5.9.

G3.j.0 Hybrid sequence from G3 to G4
i ≥ j U∗

i = (ξiδi ζi 0 0)B∗

i < j U∗
i = (ξiδi ζi 0 ρi)B∗

u = (−s0 − s 0 κ0 −r0)B
i ≥ j V ∗

i = (ξiδi ξiδiHi ξiδiH
′
i νi 0 0 0 0)H∗

i < j V ∗
i = (ξiδi ξiδiHi ξiδiH

′
i νi 0 τi 0 0)H∗

v = (s+θH̄+θ′H̄ ′ −θ −θ′ 0 κ ω 0 0)H

G3.j.1 Add random ρj : SubSpace-Ind on (1,4) in (B∗,B) and on (1,6) in (H∗,H)
U∗

j = (ξjδj ζj 0 ρj)B∗

V ∗
j = (ξjδj ξjδjHj ξjδjH

′
j νj 0 ρjr0

ω 0 0)H∗

G3.j.2 Randomize ρjr0/ω: Index-Ind on (1,2,3,6,7,8) in (H∗,H)
U∗

j = (ξjδj ζj 0 ρj)B∗

V ∗
j = (ξjδj ξjδjHj ξjδjH

′
j νj 0 τj 0 0)H∗

Figure 5.9: Existential Unforgeability: Gap between G3 and G4

Game G3.j.0: The state of the game at that point is the following, for the keys, the signatures,
and the verification vectors

k∗
id,0 = (δid, ϕid,0, 0, δ′′

id)B∗ r∗
id,1 = (δid, 0, 0, ψid,1, 0, 0, 0, 0)H∗

r∗
id,2 = (0, δid, 0, ψid,2, 0, 0, 0, 0)H∗

r∗
id,3 = (0, 0, δid, ψid,3, 0, 0, 0, 0)H∗

i ≥ j U∗
i = (ξiδi, ζi, 0, 0)B∗ V ∗

i = (ξiδi(1, Hi, H
′
i), νi, 0, 0, 0, 0)H∗

i < j U∗
i = (ξiδi, ζi, 0, ρi)B∗ V ∗

i = (ξiδi(1, Hi, H
′
i), νi, 0, τi, 0, 0)H∗

u = (−s0 − s, 0, κ0,−r0)B v = (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ,
ω, 0, 0)H

Game G3.j.1: We change the j-th signature into:

U∗
j = (ξjδj , ζj , 0, ρj)B∗ V ∗

j = (ξjδj(1, Hj , H
′
j), νj , 0, ρj · r0/ω, 0, 0)H∗

with a random ρj
$← Zq. The previous game and this game are indistinguishable under the

DDH assumption in G2: one applies the SubSpace-Ind property, on (B,B∗)1,4 and (H,H∗)1,6.
Indeed, we can consider a triple (a ·G2, b ·G2, c ·G2), where c = ab+τ mod q with either τ = 0

5.3 - An Attribute-Based Signature (ABS) Construction 65

or random, which are indistinguishable situations under the DDH assumption in G2. One
notes that we can virtually set a′ = r0/ω · a and c′ = r0/ω · c, which makes c′− a′b = r0/ω · τ .
Let us assume we start from random dual orthogonal bases (U,U∗), (W,W∗). Then we define
the matrices

B′ =
(

1 a
0 1

)
1,4

B =
(

1 0
−a 1

)
1,4

H ′ =
(

1 a′

0 1

)
1,6

H =
(

1 0
−a′ 1

)
1,6

B∗ = B′ · U∗ B = B · U H∗ = H ′ ·W∗ H = H ·W

The vectors b4 and h6 can not be computed, but they are hidden from the adversary’s view.
The j-th signature is now computed as:

U∗
j = (b, ζj , 0, c)U∗ = (b, ζj , 0, τ)B∗

V ∗
j = (b(1, Hj , H

′
j), νj , 0, c′, 0, 0)W∗ = (b(1, Hj , H

′
j), νj , 0, r0/ω · τ, 0, 0)H∗

This is the expected signature, with ξj = b/δj . Since b ·G2 is known, we can use it to simulate
S∗

j,λ. When τ = 0, we are in the previous game, meanwhile when τ = ρj is random, we are in
the new game.
Since the vectors b4 and h6 can not be computed, we cannot define the verification vectors
in the new bases:

u = (−s0 − s, 0, κ0,−r0)U = (−s0 − s− ar0, 0, κ0,−r0)B
= (−s0 − s′, 0, κ0,−r0)B

v = (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, ω, 0, 0)W
= (s+ a′ω + θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, ω, 0, 0)H
= (s+ ar0 + θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, ω, 0, 0)H
= (s′ + θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, ω, 0, 0)H

They remain consistent, as one can simply replace the random s by s′ = s + ar0. Hence,
Adv3.j.0 − Adv3.j.1 ≤ Advddh

G2 (t).

Game G3.j.2: We change again the j-th signature into:

U∗
j = (ξjδj , ζj , 0, ρj)B∗ V ∗

j = (ξjδj(1, Hj , H
′
j), νj , 0, τj , 0, 0)H∗

with random and independent ρj , τj
$← Zq.

To do this, we use the Index-Ind Property from Theorem 7 on (H,H∗) on the 6 coordi-
nates 1,2,3,6,7,8, of dimension 6 from the view (h∗

1,h∗
2,h∗

3,h∗
6,h1,h2,h3) with hidden vectors

(h∗
7,h∗

8,h6,h7,h8), with

v = (s+ θH̄ + θ′H̄ ′,−θ,−θ′, 0, κ, ω, 0, 0)H
= (s+ θ(H̄ + ρH̄ ′),−θ,−ρθ, 0, κ, ω, 0, 0)H
= (s, 0, 0, 0, κ, 0, 0, 0)H + (θ(H̄ + ρH̄ ′,−1,−ρ), 0, 0, ω, 0, 0)H

V ∗
j = (ξjδj(1, Hj , H

′
j), νj , 0, τj , 0, 0)H∗

= (0, 0, 0, νj , 0, 0, 0, 0)H∗ + (ξjδj(1, Hj , H
′
j), 0, 0, τj , 0, 0)H∗

with ρ = θ′/θ, where ρ needs to be decided before the start of the game, as θ, θ′ can be too.
Under the collision resistance of the hash functions, we can assume that H̄ ̸= Hj and H̄ ′ ̸= H ′

j .
Then, one cannot distinguish between the two following

V ∗
j = (ξjδj(1, Hj , H

′
j), νj , 0, r0/ω · τ, 0, 0)H∗

V ∗
j = (ξjδj(1, Hj , H

′
j), νj , 0, τj , 0, 0)H∗

66 5 - Basic ABE and ABS Constructions

with random τj , and known random ξjδj ·G2, as the latter can either be chosen or is the b ·G2
from the DDH instances. Hence, Adv3.j.1 − Adv3.j.2 ≤ 4× Advddh

G2 (t) + 2× Advddh
G1 (t) + 1/q.

Existential Unforgeability: Hybrid Sequence. In this sequence, we only follow elements
in bases D,D∗ as other vectors are not modified. See Figure 5.10.

G1.∆.2.p.0 Hybrid sequence from G1.∆.3 to G1.∆.4

id > ∆ k∗
id,0 = (δid ϕid,0 0 0)B∗

k∗
∆,0 = (δ∆ ϕ∆,0 0 δ′

∆)B∗

id < ∆ k∗
id,0 = (δid ϕid,0 0 δ′′

id)B∗

U∗
i = (ξiδi ζi 0 0)B∗

u = (−s0 − s 0 κ0 −r0)B
r∗

id,1 = (δid 0 0 ψid,1 0 0 0 0)H∗

r∗
id,2 = (0 δid 0 ψid,2 0 0 0 0)H∗

r∗
id,3 = (0 0 δid ψid,3 0 0 0 0)H∗

V ∗
i = (ξiδi ξiδiHi ξiδiHi νid 0 0 0 0)H∗

v = (s+θH̄+θ′H̄ ′ −θ −θ′ 0 0 ω 0 0)H
id ̸= ∆ k∗

id,t = (δid πid,t πid,tt ϕid,t 0 0 0 0 0 0)D∗

k∗
∆,t = (δ∆ π∆,t π∆,tt ϕ∆,t 0 δ′

∆ 0 δ′
∆zt 0 0)D∗

S∗
i,λ = (β′

i,λ γi,λ γi,λtλ qi,λ 0 0 0 0 0 0)D∗

tλ ≥ p cλ = (sλ θλtλ −θλ 0 κλ rλ 0 0 0 0)D
tλ < p cλ = (sλ θλtλ −θλ 0 κλ 0 0 rλ

zt
0 0)D

G1.∆.2.p.1 Formal change of basis for (D∗,D): duplication in D∗

k∗
∆,t = (δ∆ π∆,t π∆,tt ϕ∆,t 0 δ′

∆ δ′
∆ δ′

∆zt 0 0)D∗

G1.∆.2.p.2 Swap rλ: Swap-Ind on (4,5,6) in (D,D∗)
tλ = p cλ = (sλ θλp −θλ 0 κλ 0 rλ 0 0 0)D
G1.∆.2.p.3 Index-Ind on all t ̸= p in (D∗,D)

t ̸= p k∗
∆,t = (δ∆ π∆,t π∆,tt ϕ∆,t 0 δ′

∆
δ′

∆zt

zp
δ′

∆zt 0 0)D∗

G1.∆.2.p.4 Remove α: Formal change of basis on (6,7) in (D∗,D)
k∗

∆,t = (δ∆ π∆ π∆t ϕ∆,t 0 δ′
∆ 0 δ′

∆zt 0 0)D∗

tλ = p cλ = (sλ θλp −θλ 0 κλ 0 α rλ

zp
0 0)D

G1.∆.2.p.5 SubSpace-Ind on (2,6) in (D,D∗)
tλ = p cλ = (sλ θλp −θλ 0 κλ 0 0 rλ

zp
0 0)D

Figure 5.10: Existential Unforgeability: Hybrid Sequence

Game G1.∆.2.p.0: The state of the game at that point is the following, for the keys

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ′

∆, 0, δ′
∆zt, 0, 0)D∗

k∗
id,t = (δid, πid,t(1, t), ϕid,t, 0, 0, 0, 0, 0, 0)D∗

the signatures,

S∗
i,λ = (β′

i,λ, γi,λ(1, tλ), qi,λ, 0, 0, 0, 0, 0, 0)D∗

and ciphertexts

cλ = (sλ, θλtλ,−θλ, 0, κλ, rλ, 0, 0, 0, 0)D t > p

cλ = (sλ, θλtλ,−θλ, 0, κλ, 0, 0, rλ/zt, 0, 0)D t ≤ p

5.3 - An Attribute-Based Signature (ABS) Construction 67

Game G1.∆.2.p.1: We change the keys into:

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ′

∆, δ
′
∆, δ

′
∆zt, 0, 0)D∗

k∗
id,t = (δid, πid,t(1, t), ϕid,t, 0, 0, 0, 0, 0, 0)D∗

To do this, we define the matrices

D′ =
(

1 1
0 1

)
6,7

D =
(

1 0
−1 1

)
6,7

which modifies the hidden vectors d7,d∗
6. Since they are not in the adversary’s view, the

advantage is perfect.
The keys are modified in the following way. Note that keys other than ∆ and signatures are
unmodified as they all have a 0 in the 6-th position.

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ′

∆, 0, δ′
∆zt, 0, 0)V∗

= (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ′
∆, δ

′
∆, δ

′
∆zt, 0, 0)D∗

Meanwhile, the ciphertexts are not modified because they all have a 0 in the 7-th position.
The adversary gains no advantage in this game: Adv1.∆.2.p.0 = Adv1.∆.2.p.1.

Game G1.∆.2.p.2: We change only the verification texts linked to the p-th attribute into:

tλ = p, cλ = (sλ, θλp,−θλ, 0, κλ, 0, rλ, 0, 0, 0)D
The previous game and this game are indistinguishable under the DSDH assumption in G1:
one applies the Swap-Ind property, on (D,D∗)5,6,7. Indeed, we can consider a triple (a ·G1, b ·
G1, d · G1), where d = ab + τ mod q with either τ = 0 or τ = 1, which are indistinguishable
situations under the DSDH assumption.
One chooses additional scalars αλ = −rλ and βλ

$← Zq to virtually set bλ = αλ · b + βλ and
dλ = αλ · d+ βλ · a, which makes dλ − abλ = αλ · τ = −rλ · τ .

D =

 1 a −a
0 1 0
0 0 1

5,6,7

D′ =

 1 0 0
−a 1 0
a 0 1

5,6,7

D∗ = D′ · V∗ D = D · V

The vectors d∗
6,d∗

7 can not be computed, but they are not in the view of the adversary. The
verification texts for the p-th attribute is changed as follows

cλ = (sλ, θλp,−θλ, 0, 0, rλ, 0, 0, 0, 0)D + (0, 0, 0, 0, bλ, dλ,−dλ, 0, 0, 0)V
= (sλ, θλp,−θλ, 0, bλ, rλ + αλ · τ,−αλ · τ, 0, 0, 0)D
= (sλ, θλp,−θλ, 0, bλ, rλ − rλ · τ, rλ · τ, 0, 0, 0)D

When τ = 0, we are in the previous game, meanwhile when τ = 1, we are in the next game.
Other verification texts are generated in D directly.
Keys and signatures are unchanged because they have the same value on 6th and 7th columns,
either 0 or δ′

∆. Notably, those with 0 on these positions are keys different than ∆, and can be
fully generated in D∗.

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ′

∆, δ
′
∆, δ

′
∆zt, 0, 0)V∗

= (δ∆, π∆,t(1, t), ϕ∆,t, a · δ′
∆ − a · δ′

∆, δ
′
∆, δ

′
∆, δ

′
∆zt, 0, 0)D∗

= (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ′
∆, δ

′
∆, δ

′
∆zt, 0, 0)D∗

The advantage of the adversary is: Adv1.∆.2.p.1 − Adv1.∆.2.p.2 ≤ Advdsdh
G1 (t).

68 5 - Basic ABE and ABS Constructions

Game G1.∆.2.p.3: We keep the δ′
∆ value (at the 7-th hidden position) in the key for the p-th

attribute only, and replace all values in other keys by δ′
∆zt/zp:

k∗
∆,p = (δ∆, π∆,p(1, p), ϕ∆,p, 0, δ′

∆, δ
′
∆, δ

′
∆zp, 0, 0)D∗

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ′

∆, δ
′
∆zt/zp, δ

′
∆zt, 0, 0)D∗

k∗
id,t = (δid, πid,t(1, t), ϕid,t, 0, 0, 0, 0, 0, 0)D∗

To show this is possible without impacting the other vectors, we use the Index-Ind property,
but in another level of sequence of hybrid games, for γ ∈ {1, . . . , T}\{p}. We will again
enumerate γ in their order of appearance in the security game (whether in key queries, or
signature queries).

Game G1.∆.2.p.2.γ: We consider

k∗
∆,p = (δ∆, π∆,p(1, p), ϕ∆,p, 0, δ′

∆, δ
′
∆, δ

′
∆zp, 0, 0)D∗

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ′

∆, δ
′
∆zt/zp, δ

′
∆zt, 0, 0)D∗ p ̸= t < γ

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ′

∆, δ
′
∆, δ

′
∆zt, 0, 0)D∗ t ≥ γ

cλ = (sλ, θλtλ,−θλ, 0, κλ, 0, 0, rλ/zt, 0, 0)D t < p

cλ = (sλ, θλp,−θλ, 0, κλ, 0, rλ, 0, 0, 0)D
cλ = (sλ, θλtλ,−θλ, 0, κλ, rλ, 0, 0, 0, 0)D t > p

When γ = 1, this is the previous game: G1.∆.2.p.2.1 = G1.∆.2.p.2, whereas with γ = T + 1,
this is the current game: G1.∆.2.p.2.T +1 = G1.∆.2.p.3.
To do this, we use the Index-Ind Property from Section 7 on (D,D∗) on the 5 coordi-
nates 2, 3, 6, 9, 10 of dimension 5 from the view (d∗

2,d∗
3,d∗

7,d2,d3) with hidden vectors
(d∗

9,d∗
10,d7,d9,d10), with

cλ = (sλ, θλp,−θλ, 0, κλ, 0, rλ, 0, 0, 0)D
k∗

∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ′
∆, δ

′
∆, δ

′
∆zt, 0, 0)D∗ t = γ

Hence, we have Adv1.∆.2.p.2 − Adv1.∆.2.p.3 ≤ 4× Advddh
G2 (t) + 2× Advddh

G1 (t)

Game G1.∆.2.p.4: We use a theoretic information change to uniformize the keys and verification
texts. We change the key into:

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ′

∆, 0, δ′
∆zt, 0, 0)D∗

k∗
∆,p = (δ∆, π∆,p(1, p), ϕ∆,p, 0, δ′

∆, 0, δ′
∆zp, 0, 0)D∗

Meanwhile the verification texts associated to attribute p are changed into:

cλ = (sλ, θλp,−θλ, 0, κλ, 0, rλ, rλ/zp, 0, 0)D t = p

To do this we use the following matrices:

D′ =
(

1 0
1/zp 1

)
7,8

D =
(

1 −1/zp

0 1

)
7,8

The vectors d7,d∗
7,d∗

8 must not be in the adversary’s view, but since they are hidden the
advantage is perfect.

5.4 - Discussion 69

Keys for ∆ are modified in the following way:

k∗
∆,t = (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ′

∆, δ
′
∆zt/zp, δ

′
∆zt, 0, 0)V∗

= (δ∆, π∆,t(1, t), ϕ∆,t, 0, δ′
∆, 0, δ′

∆zt, 0, 0)D∗

k∗
∆,p = (δ∆, π∆,p(1, p), ϕ∆,p, 0, δ′

∆, δ
′
∆, δ

′
∆zp, 0, 0)V∗

= (δ∆, π∆,p(1, p), ϕ∆,p, 0, δ′
∆, 0, δ′

∆zp, 0, 0)D∗

Verification texts associated to p are changed as well:

cλ = (sλ, θλp,−θλ, 0, κλ, 0, rλ, 0, 0, 0)V t = p

= (sλ, θλp,−θλ, 0, κλ, 0, rλ, rλ/zp, 0, 0)D

We note that for t ̸= p, cλ are unchanged. The same goes for all keys different than ∆ and all
signatures, as their component on the relevant positions are all 0 (7-th for verification texts,
7-th and 8-th for keys and signatures).
The adversary gains no advantage in this game: Adv1.∆.2.p.3 = Adv1.∆.2.p.4.

Game G1.∆.2.p.5: We remove rλ from the verification texts associated to the p-th attribute.

cλ = (sλ, θλtλ,−θλ, 0, κλ, 0, 0, rλ/zp, 0, 0)D tλ = p

The previous game and this game are indistinguishable under the DSDH assumption in G1:
one applies the SubSpace-Ind property, on (D,D∗)5,7. Indeed, we can consider a triple (a·G1, b·
G1, d · G1), where d = ab + τ mod q with either τ = 0 or τ = 1, which are indistinguishable
situations under the DSDH assumption.
One chooses additional scalar βλ

$← Zq to virtually set bλ = rλ · b+βλ and dλ = rλ · d+βλ · a,
which makes dλ − abλ = rλ · τ .

D′ =
(

1 0
a 1

)
5,7

D =
(

1 −a
0 1

)
5,7

D∗ = D′ · V∗ D = D · V

The vector d∗
7 cannot be computed, but they are not in the adversary’s view. The verification

texts for each λ so that tλ = p are changed in the following way:

cλ = (sλ, θλp,−θλ, 0, 0, 0, 0, rλ, rλ/zp, 0, 0)D + (0, 0, 0, 0, bλ, 0, dλ, 0, 0, 0)V
= (sλ, θλp,−θλ, 0, bλ, 0, rλ · τ, rλ/zp, 0, 0)D

When τ = 1, we are in the previous game, meanwhile when τ = 0, we are in the next
game. Other verification texts are unchanged and can be fully generated in V. Keys and
signatures are unchanged and can be fully generated in V∗ because they all have a value of
0 on the 7-th position at that point in the hybrid game. The advantage of the adversary is:
Adv1.∆.2.p.4 − Adv1.∆.2.p.5 ≤ Advddh

G1 (t).

5.4 Discussion

We discuss here the features and differences between these schemes, those of Okamoto and
Takashima [OT12b, OT13], and our contribution schemes presented in the two next section, to
explain some of our design choices.

70 5 - Basic ABE and ABS Constructions

5.4.1 ABE

One of our target application regarding ABE is tracing. We decided to use codewords for that
application. Full details are given on Section 6.5, but we explain here at a high level some of
the shortcomings of the traditional approach. The main difficulty for traitor-tracing is that the
traitor can never know he is being traced, else he will adopt a strategy to make the tracing
mode ineffective (for example by not answering). However, for ABE, one must access freely the
attributes given to him in the ciphertext in order to decrypt. This is a huge advantage for the
traitor, because if tracing mode relies on the attributes in the ciphertext, since the attributes
must be freely accessible for decryption, the adversary will detect tracing mode. Based on this
observation, we arrived at the following conclusion: the attributes used for tracing must be freely
available for decryption, but at the same time they must be able to contain some trapdoor that
is invisible for the traitor, so he doesn’t notice whether tracing mode is on. We call this property
of trapdoor being unnoticeable inside attributes as Attribute-Indistinguishability. These notions
will be fully discussed in the next section.

5.4.2 ABS

Our ABS with delegation, presented in Section 7, proposes two kind of delegations: one where
the attributes are delegated, and one where a pre-signed policy is delegated, where it can sign
any message afterwards. This last method of delegation is the reason we have decorrelated the
hash of the access-tree and the message in 5.3.2, contrary to the traditional approaches seen
in [OT11, EGK14]. This decorrelation relies on an indexing with an orthogonal subspace of size
3 (see Theorem 9). While Okamoto-Takashima presented a generic indexing for subspace of
any size, concrete instanciation always relied on size two. Our scheme instantiates a concrete
application for an indexing of larger size. We show that these delegations are compatible with
delegation, using a new approach relying on linearly-homomorphic signatures [HPP20] instead
of the traditional NIZK approach to encrypt the identity of the signer.

Chapter

6
ABE with Switchable
Attributes

Chapter content
6.1 Independent Leaves . 71
6.2 Switchable Leaves and Attributes . 72
6.3 KP-ABE with Switchable Attributes (SA-KP-ABE) 72

6.3.1 Definition of SA-KP-ABE . 72
6.3.2 Security Model for SA-KP-ABE . 73

6.4 Our SA-KP-ABE . 75
6.4.1 Construction . 75
6.4.2 Security Results . 77
6.4.3 Security Proofs . 79

6.5 Application to Traitor-Tracing . 107
6.5.1 Delegatable and Traceable KP-ABE . 107
6.5.2 Fingerprinting Code . 108
6.5.3 Delegatable and Traceable KP-ABE from SA-KP-ABE 109

We introduce our main contribution regarding KP-ABE. The ideal original idea came from
Waters’ Dual System Encryption [Wat09] that was developped to make attribute-based (as well
as identity-based) schemes adaptive, with the DSE (see Section 5.1).

The main idea of this new construction is to take Waters’ proof technique and look for
applications in the case where the semi-functionality introduced for proof only could be used
concretely as a scheme functionality. For that, we introduce new states for the keys and cipher-
texts that the authority can switch to simulate the semi-functionality, hence the name of our
Switchable KP-ABE. This completely new primitive of ABE is then proven compatible with a
well-known feature of broadcast-like encryption: Traitor-Tracing.

6.1 Independent Leaves

Before going on the Switchable Attributes, we need to identify a property called independent
leaves to guarantee the Attribute-Indistinguishability notion we introduce in the next section.
This property essentially describes leaves for which the secret share leaks no information about
any of the other leaves in the access-tree. As a toy example for non-independent leaves, consider
a trivial tree with only an OR root node with two children λ1 and λ2. Then any information the
adversary gains on aλ1 can be used for aλ2 as aλ1 = aλ2 . This is problematic in the case where
we would want to trick the adversary with a "secretly incorrect" attribute for λ1 (in a sense that
will be explained later), because he could compare it to the information he received for λ2 and
detect any incoherence between the two.

72 6 - ABE with Switchable Attributes

AND/6

AND/6

OR/2

2
λ1

2
λ2

OR/4

4
λ3

4
λ4

OR/5

5
λ5

5
λ6

5
λ7

OR/2

2
λ8

AND/2

3
λ9

6
λ10

Figure 6.1: A 6-labeling in Z/7Z, with a non-satisfying set of (colored) leaves: leaves λ8, λ9 and
λ10 are not independent as aλ8 = aλ9 +aλ10 mod 7. However, λ3 and λ5 are independent among
the green leaves.

Definition 9 (Independent Leaves) Given an access-tree T and a set Γ so that T (Γ) = 0, we
call independent leaves in LΓ, the leaves µ such that, given only (aλ)λ∈LΓ\{µ}, aµ is unpredictable:
for any y, the two distributions D$

y(Γ) = {(aλ)λ∈LΓ} and Dy(Γ, µ) = {(bµ) ∪ (aλ)λ∈LΓ\{µ}} are
perfectly indistinguishable, where (aλ)λ

$← Λy(T) and bµ
$← Zp.

Intuitively, given (aλ)λ∈LΓ\{µ}, one can complete it into a valid labeling by setting the right
value for aµ. Note that the root label can be any value y as T (Γ) = 0, thus y is unpredictable.
With the illustration on Figure 6.1, with a non-satisfied tree, when only colored leaves are set to
True, leaves λ3 and λ5 are independent among the True leaves {λ3, λ5, λ8, λ9, λ10}. But leaves
λ8, λ9 and λ10 are not independent as aλ8 = aλ9 + aλ10 mod 7 for any random labeling.

6.2 Switchable Leaves and Attributes

For a Key-Policy ABE with Switchable Attributes (SA-KP-ABE), leaves in the access-tree can
be made active or passive, and attributes in the ciphertext can be made valid or invalid. We
thus enhance the access-tree T into T̃ = (T ,La,Lp), where the implicit set of leaves L = La ·∪Lp

is now the explicit disjoint union of the active-leaf and passive-leaf sets. Similarly, a ciphertext
will be associated to the pair (Γv,Γi), also referred as a disjoint union Γ = Γv ·∪ Γi, of the
valid-attribute and invalid-attribute sets.

We note T̃ (Γv,Γi) = 1 if there is an evaluation pruned tree T ′ of T that is satisfied by
Γ = Γv ·∪Γi (i.e., T ′ ∈ EPT(T ,Γ)), with the additional condition that all the active leaves in T ′

correspond only to valid attributes in Γv: ∃T ′ ∈ EPT(T ,Γ),∀λ ∈ T ′ ∩ La, A(λ) ∈ Γv. In other
words, this means that an invalid attribute in the ciphertext should be considered non-existant
for active leaves only.

We also have to enhance the partial order on T to T̃ , so that we can deal with delegation:
T̃ ′ = (T ′,L′

a,L′
p) ≤ T̃ = (T ,La,Lp) if and only if T ′ ≤ T , L′

a ∩Lp = L′
p ∩La = ∅ and L′

a ⊆ La.
More concretely, T ′ must be more restrictive, existing leaves cannot change their passive or
active status, and new leaves can only be passive.

6.3 KP-ABE with Switchable Attributes (SA-KP-ABE)

6.3.1 Definition of SA-KP-ABE

We can now define the algorithms of an SA-KP-ABE, with the usual description of Key Encap-
sulation Mechanism. In our definitions, there are two secret keys: the master secret key MK
for the generation of users’ keys, and the secret key SK for running the advanced encapsulation
with invalid attributes:

6.3 - KP-ABE with Switchable Attributes (SA-KP-ABE) 73

Setup(1κ). From the security parameter κ, the algorithm defines all the global parameters PK,
the secret key SK and the master secret key MK;

KeyGen(MK, T̃). The algorithm outputs a key dkT̃ which enables the user to decapsulate keys
generated under a set of attributes Γ = Γv ·∪ Γi if and only if T̃ (Γv,Γi) = 1;

Delegate(dkT̃ , T̃ ′). Given a key dkT̃ , generated from either the KeyGen or the Delegate algo-
rithms, for a policy T̃ and a more restrictive policy T̃ ′ ≤ T̃ , the algorithm outputs a
decryption key dkT ′ ;

Encaps(PK,Γ). For a set Γ of (valid only) attributes, the algorithm generates the ciphertext C
and an encapsulated key K;

Encaps∗(SK,Γv,Γi). For a pair (Γv,Γi) of disjoint sets of valid/invalid attributes, the algorithm
generates the ciphertext C and an encapsulated key K;

Decaps(dkT̃ , C). Given the key dkT̃ from either KeyGen or Delegate, and the ciphertext C, the
algorithm outputs the encapsulated key K.

We stress that fresh keys (from the KeyGen algorithm) and delegated keys (from the Delegate
algorithm) can both be used for decryption and can both be delegated. This allows multi-hop
delegation.

On the other hand, one can note the difference between Encaps with PK and Encaps∗ with
SK, where the former runs the latter on the pair (Γ, ∅). And as Γi = ∅, the public key is
enough. This is thus still a public-key encryption scheme when only valid attributes are in the
ciphertext, but the invalidation of some attributes require the secret key SK. As explained later
in the section, this will lead to secret-key traceability, as only the owner of SK will be able to
invalidate attributes for the tracing procedure (see Section 6.5). For correctness, the Decaps
algorithm should output the encapsulated key K if and only if C has been generated for a pair
(Γv,Γi) that satisfies the policy T̃ of the decryption key dkT̃ : T̃ (Γv,Γi) = 1. The following
security notion enforces this property. But some other indistinguishability notions need to be
defined in order to be able to exploit these switchable attributes in more complex protocols.

6.3.2 Security Model for SA-KP-ABE

For the sake of simplicity, we focus on one-challenge definitions (one encapsulation with Real-or-
Random encapsulated key, one user key with Real-or-All-Passive leaves, and one encapsulation
with Real-or-All-Valid attributes), in the same vein as the Find-then-Guess security game. But
the adversary could generate additional values, as they can either be publicly generated or an
oracle is available. Then, the definitions can be turned into multi-challenge security games, with
an hybrid proof, as explained in [BDJR97].

Definition 10 (Delegation-Indistinguishability for SA-KP-ABE) Del-IND security for SA-
KP-ABE is defined by the following game:

Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives the public param-
eters PK to the adversary;

Oracles: The following oracles can be called in any order and any number of times, except for
RoREncaps which can be called only once.

OKeyGen(T̃): this models a KeyGen-query for any access-tree T̃ = (T ,La,Lp). It generates
the decryption key but only outputs the index k of the key;

ODelegate(k, T̃ ′): this models a Delegate-query for any more restrictive access-tree T̃ ′ ≤ T̃ ,
for the k-indexed generated decryption key for T̃ . It generates the decryption key
but only outputs the index k′ of the new key;

74 6 - ABE with Switchable Attributes

OGetKey(k): the adversary gets back the k-indexed decryption key generated by OKeyGen
or ODelegate oracles;

OEncaps(Γv,Γi): The adversary may be allowed to issue Encaps∗-queries, with (K,C) ←
Encaps∗(SK,Γv,Γi), and C is returned;

RoREncaps(Γv,Γi): The adversary submits a unique real-or-random encapsulation query
on a set of attributes Γ = Γv ·∪Γi. The challenger asks for an encapsulation query on
(Γv,Γi) and receives (K0, C). It also generates a random key K1. It eventually flips
a random coin b, and outputs (Kb, C) to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some access-tree T̃ ′ corresponding to
a key asked to the OGetKey-oracle, T̃ ′(Γv,Γi) = 1, on the challenge set (Γv,Γi), β $← {0, 1},
otherwise one sets β = b′. One outputs β.

Advdel-ind(A) denotes the advantage of an adversary A in this game.

In the basic form of Del-IND-security, where Encaps∗ encapsulations are not available, the
RoREncaps-oracle only allows Γi = ∅, and no OEncaps-oracle is available. But as Encaps (with
Γi = ∅) is a public-key algorithm, the adversary can generate valid ciphertexts by himself. We
will call it “Del-IND-security for Encaps”. For the more advanced security level, RoREncaps-
query will be allowed on any pair (Γv,Γi), with the additional OEncaps-oracle. We will call it
“Del-IND-security for Encaps∗”.

With these disjoint unions of L = La ·∪ Lp and Γ = Γv ·∪ Γi, we will also consider some
indistinguishability notions on (La,Lp) and (Γv,Γi), about which leaves are active or passive in
L = La ·∪ Lp for a given key, and which attributes are valid or invalid in Γ = Γv ·∪ Γi for a given
ciphertext. The former will be the key-indistinguishability, whereas the latter will be attribute-
indistinguishability. Again, as Encaps is public-key, the adversary can generate valid encapsula-
tions by himself. However, we may provide access to an OEncaps-oracle to allow Encaps∗ queries,
but with constraints in the final step, to exclude trivial attacks against key-indistinguishability.
Similarly there will be constraints in the final step on the OKeyGen/ODelegate-queries for the
attribute-indistinguishability.

Definition 11 (Key-Indistinguishability) Key-IND security for SA-KP-ABE is defined by
the following game:

Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives the public param-
eters PK to the adversary;

Oracles: OKeyGen(T̃), ODelegate(k, T̃ ′), OGetKey(k), OEncaps(Γv,Γi), and

RoAPKeyGen(T̃): The adversary submits one Real or All-Passive KeyGen-query for any
access structure T̃ of its choice, with a list L = La ·∪Lp of active and passive leaves, and
gets dk0 = KeyGen(MK, (T ,La,Lp)) or dk1 = KeyGen(MK, (T , ∅,L)). It eventually
flips a random coin b, and outputs dkb to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some (Γv,Γi) asked to the OEncaps-
oracle, T (Γv ·∪ Γi) = 1, for the challenge access-tree T where L = La ·∪ Lp, β $← {0, 1},
otherwise one sets β = b′. One outputs β.

Advkey-ind(A) denotes the advantage of an adversary A in this game.

In this first definition, the constraints in the finalize step require the adversary not to ask for an
encapsulation on attributes that would be accepted by the policy with all-passive attributes in
the leaves.

6.4 - Our SA-KP-ABE 75

A second version deals with accepting policies: it allows encapsulations on attributes that
would be accepted by the policy with all-passive leaves in the challenge key, as long as attributes
associated to the active leaves in the challenge key and invalid attributes in the ciphertexts
are distinct. Hence, the Distinct Key-Indistinguishability (dKey-IND) where Finalize(b′)
reads: The adversary outputs a guess b′ for b. If some active leaf λ ∈ La from the challenge key
corresponds to some invalid attribute t ∈ Γi in an OEncaps-query, then set β $← {0, 1}, otherwise
set β = b′. One outputs β.

Definition 12 (Attribute-Indistinguishability) Att-IND security for SA-KP-ABE is defined
by the following game:

Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives the public param-
eters PK to the adversary;

Oracles: OKeyGen(T̃), ODelegate(k, T̃ ′), OGetKey(k), OEncaps(Γv,Γi), and

RoAVEncaps(Γv,Γi): The adversary submits one Real-or-All-Valid encapsulation query on
the distinct sets of attributes (Γv,Γi). The challenger then generates (K,C) ←
Encaps∗(SK,Γv,Γi) as the real case, if b = 0, or (K,C) ← Encaps(PK,Γv ·∪ Γi) as
the all-valid case, if b = 1, and outputs C to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some access-tree T̃ ′ corresponding
to a key asked to the OGetKey-oracle, T̃ ′(Γv ·∪ Γi, ∅) = 1, on the challenge set (Γv,Γi),
β $← {0, 1}, else one sets β = b′. One outputs β.

Advatt-ind(A) denotes the advantage of an adversary A in this game.

This definition ensures that a user with keys for access-trees that are not satisfied by Γ = Γv ·∪Γi

cannot distinguish valid from invalid attributes in the ciphertext.
As above on key-indistinguishability, this first definition excludes accepting policies on the

challenge ciphertext. However, for tracing, one also needs to deal with ciphertexts on accepting
policies. More precisely, we must allow keys and a challenge ciphertext that would be accepted
in the all-valid case, and still have indistinguishability, until attributes associated to the active
leaves in the keys and invalid attributes in the challenge ciphertext are distinct. Hence, the
Distinct Attribute-Indistinguishability (dAtt-IND) where Finalize(b′) reads: The adver-
sary outputs a guess b′ for b. If some attribute t ∈ Γi from the challenge query corresponds to
some active leaf λ ∈ L′

a in a OGetKey-query, then set β $← {0, 1}, otherwise set β = b′. One
outputs β.

6.4 Our SA-KP-ABE

6.4.1 Construction

We extend the basic KP-ABE scheme proven in 5.2, with leaves that can be made active or
passive in a decryption key, and some attributes can be made valid or invalid in a ciphertext,
and prove that it still achieves the Del-IND-security. For our construction, we will use two DPVS,
of dimensions 3 and 9 respectively, in a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q), using
the notations introduced in the DPVS section (4). Essentially, we introduce a 7-th component
to deal with switchable attributes. The two new basis-vectors d7 and d∗

7 are in the secret key
SK and the master secret key MK respectively. The two additional 8-th and 9-th components
are to deal with the unbounded universe of attributes, to be able to use the adaptive Index-Ind
property (see Theorem 7), instead of the static one. These additional components are hidden,
and for the proof only:

76 6 - ABE with Switchable Attributes

Setup(1κ). The algorithm chooses two random dual orthogonal bases
B = (b1,b2,b3) B∗ = (b∗

1,b∗
2,b∗

3) D = (d1, . . . ,d9) D∗ = (d∗
1, . . . ,d∗

9).
It sets the public parameters PK = {(b1,b3,b∗

1), (d1,d2,d3,d∗
1,d∗

2,d∗
3)}, whereas the mas-

ter secret key is MK = {b∗
3,d∗

7} and the secret key is SK = {d7}. Other basis vectors are
kept hidden.

KeyGen(MK, T̃). For an extended access-tree T̃ = (T ,La,Lp), the algorithm first chooses a
random a0

$← Zq, and a random a0-labeling (aλ)λ of the access-tree T , and builds the key:

k∗
0 = (a0, 0, 1)B∗ k∗

λ = (πλ(1, tλ), aλ, 0, 0, 0, rλ, 0, 0)D∗

for all the leaves λ, where tλ = A(λ), πλ
$← Zq, and rλ

$← Z∗
q if λ is an active leaf in the

key (λ ∈ La) or else rλ = 0 for a passive leaf (λ ∈ Lp). The decryption key dkT̃ is then
(k∗

0, (k∗
λ)λ).

Delegate(dkT̃ , T̃ ′). Given a private key for a tree T̃ and a more restrictive subtree T̃ ′ ≤ T̃ ,
the algorithm creates a delegated key dkT̃ ′ . It chooses a random a′

0
$← Zq and a ran-

dom a′
0-labeling (a′

λ)λ of T ′; Then, it updates k∗
0 ← k∗

0 + (a′
0, 0, 0)B∗ ; It sets k∗

λ ← (π′
λ ·

(1, tλ), a′
λ, 0, 0, 0, 0, 0, 0)B∗ for a new leaf, or updates k∗

λ ← k∗
λ+(π′

λ·(1, tλ), a′
λ, 0, 0, 0, 0, 0, 0)B∗

for an old leaf, with π′
λ

$← Zq.

Encaps(PK,Γ). For a set Γ of attributes, the algorithm first chooses random scalars ω, ξ $← Zq.
It then sets K = gξ

t and generates the ciphertext C = (c0, (ct)t∈Γ) where
c0 = (ω, 0, ξ)B ct = (σt(t,−1), ω, 0, 0, 0, 0, 0, 0)D

for all the attributes t ∈ Γ, with σt
$← Zq.

Encaps∗(SK, (Γv,Γi)). For a disjoint union Γ = Γv ·∪ Γi of sets of attributes (Γv is the set of
valid attributes and Γi is the set of invalid attributes), the algorithm first chooses random
scalars ω, ξ $← Zq. It then sets K = gξ

t and generates the ciphertext C = (c0, (ct)t∈(Γv ·∪Γi))
where

c0 = (ω, 0, ξ)B ct = (σt(t,−1), ω, 0, 0, 0, ut, 0, 0)D
for all the attributes t ∈ Γv ·∪ Γi, σt

$← Zq and ut
$← Z∗

q if t ∈ Γi or ut = 0 if t ∈ Γv.

Decaps(dkT̃ , C). The algorithm first selects an evaluation pruned tree T ′ of T that is satisfied
by Γ = Γv∪Γi, such that any leaf λ in T ′ is either passive in the key (λ ∈ Lp) or associated
to a valid attribute in the ciphertext (tλ ∈ Γv). This means that the labels aλ for all the
leaves λ in T ′ allow to reconstruct a0 by simple additions, where t = tλ:

ct × k∗
λ = g

σt·πλ·⟨(t,−1),(1,tλ)⟩+ω·aλ+ut·rλ
t = gω·aλ

t ,

as ut = 0 or rλ = 0. Hence, the algorithm can derive gω·a0
t . From c0 and k∗

0, it can also
compute c0 × k∗

0 = gω·a0+ξ
t , which then easily leads to K = gξ

t .
First, note that the delegation works as b∗

1, d∗
1,d∗

2,d∗
3 are public. This allows to create a new

key for T̃ ′ ≤ T̃ . But as d∗
7 is not known, any new leaf is necessarily passive, and an active

existing leaf in the original key cannot be converted to passive, and vice-versa. Indeed, all
the randomnesses are fresh, except for the last components rλ that remain unchanged: this is
perfectly consistent with the definition of T̃ ′ ≤ T̃ .

Second, in encapsulation with Encaps∗, to invalidate a contribution ct in the ciphertext with
a non-zero ut, for t ∈ Γi, one needs to know d7, hence SK is required. On the contrary, when
using Encaps with Γi = ∅, one just needs PK.

Eventually, we stress that in the above decryption, one can recover gω·a0
t if and only if

there is an evaluation pruned tree T ′ of T that is satisfied by Γ and the active leaves in T̃ ′

correspond to valid attributes in Γv (used during the encapsulation). And this holds if and only
if T̃ (Γv,Γi) = 1.

6.4 - Our SA-KP-ABE 77

6.4.2 Security Results

Del-IND-Security of our SA-KP-ABE for Encaps For this security notion, we first consider
only valid contributions in the challenge ciphertext, with indistinguishability of the Encaps al-
gorithm. Which means that Γi = ∅ in the challenge pair. And the security result holds even if
the vector d7 is made public:

Theorem 12 Our SA-KP-ABE scheme is Del-IND for Encaps (with only valid attributes in the
challenge ciphertext), even if d7 is public.

The proof essentially reduces to the IND-security result of the KP-ABE scheme, and is presented
thereafter in 6.4.3.

Although the structure of the proof is the same as the one for the KP-ABE in Section 5.2, we
present again an overview of the proof for the reader’s convenience. We follow the traditional
Dual Encryption System, where the simulator first makes the ciphertext semi-functional in
games G1 and G2. Then, the simulator changes the keys into semi-functional keys one by one
in a hybrid game, up until all keys are semi-functional in game G3. Then the sequence of games
conclude as the adversary has no information on the encapsulated key in game G4.

The only difference with the former proof is the existence of vectors (d7,d∗
7). However, we

can still reduce to the classic Del-IND proof for KP-ABE as d7 is public, hence the adversary
can run by himself both Encaps and Encaps∗. Likewise, since d∗

7 is known to the simulator,
delegation can just be done by using the key generation algorithm, making sure we use the same
randomness for all the keys delegated from the same one.

The global sequence of games is described on Figure 6.2, where (c0, (ct)) is the challenge
ciphertext for all the attributes t ∈ Γ, and (k∗

ℓ,0, (k∗
ℓ,λ)) are the keys, for 1 ≤ ℓ ≤ K, and λ ∈ Lℓ

for each ℓ-query, with active and passive leaves.
We stress that our construction makes more basis vectors public than in the schemes from

Okamoto and Takashima [OT12b], as only b∗
3 is for the key issuer. This makes the proof more

tricky, but this is the reason why we can deal with delegation for any user.
Del-IND-Security of our SA-KP-ABE for Encaps∗ We now study the full indistinguisha-
bility of the ciphertext generated by an Encaps∗ challenge, with delegated keys. The intuition is
that when ut · rℓ,λ ̸= 0, the share aℓ,λ in g

ω·aℓ,λ+ut·rℓ,λ

t is hidden, but we have to formally prove
it.

The main issue in this proof is the need to anticipate whether ut · rℓ,λ = 0 or not when
simulating the keys, and the challenge ciphertext as well (even before knowing the exact query
(Γv,Γi)). Intuitively, if the adversary is able to switch an attribute in the ciphertext between
valid and invalid, it would leak too much information. Thus the possible sets of valid attributes
and invalid attributes must be decided before the game start. Concretely, without being in
the selective-set setting where both Γv and Γi would have to be specified before generating the
public parameters PK, we ask to know disjoint super-sets Av, Ai ⊆ U of attributes. Then, in
the challenge ciphertext query, we will ask that Γv ⊆ Av and Γi ⊆ Ai. We will call this setting
the semi-adaptive super-set setting, where the super-sets have to be specified before the first
decryption keys are issued. Furthermore, the set of attributes Γ = Γv ·∪ Γi used in the real
challenge query is only specified at the moment of the challenge, as in the adaptive setting. We
stress that the semi-adaptive super-set setting is much stronger than the selective-set setting
where the adversary would have to specify both Γv and Γi before the setup. Here, only super-
sets have to be specified, and just before the first key-query. The adversary is thus given much
more power.

For this proof, d7 must be kept secret (cannot be provided to the adversary). We will thus
give access to an Encaps∗ oracle. We then need to simulate it.

Theorem 13 Our SA-KP-ABE scheme is Del-IND for Encaps∗, in the semi-adaptive super-set
setting (where Av, Ai ⊆ U so that Γv ⊆ Av and Γi ⊆ Ai are specified before asking for keys).

78 6 - ABE with Switchable Attributes

The full proof can be found in 6.4.3. We still give some details here: we only consider keys
that are really provided to the adversary, and thus delegated keys. They can be generated as
fresh keys except for the rλ’s in the last position that have to be the same for leaves in keys
delegated from the same initial key. However, in order to randomize sℓ,0 once all of the shares
have been masked, one cannot directly conclude that sℓ,0 is independent from the view of the
adversary: we only know T̃ℓ(Γv,Γi) = 0, but not necessarily Tℓ(Γv ·∪ Γi) = 0, as in the previous
proof.

To this aim, we revisit this gap with an additional sequence where we focus on the k-th key
and the challenge ciphertext. In that sequence, we first prepare with additional random values
yℓ,λ in all the keys, with the same repetition properties as the rℓ,λ. Thereafter, in another sub-
sequence of games on the attributes, we can use the Swap-Ind property to completely randomize
sk,λ when utk,λ

· rk,λ ̸= 0. Hence, the sk,λ are unknown either when ztk,λ
is not known (the

corresponding element is not provided in the challenge ciphertext) or this is a random s′
k,λ when

there is enough noise, namely when utk,λ
· rk,λ ̸= 0. The property of the access-tree then makes

sk,0 perfectly unpredictable, which can be replaced by a random independent rk,0.
Distinct Indistinguishability Properties We first claim easy results, for which the proofs
are symmetrical:

Theorem 14 Our SA-KP-ABE scheme is dKey-IND, even if d∗
7 is public.

Theorem 15 Our SA-KP-ABE scheme is dAtt-IND, even if d7 is public.

Both proofs can be found in 6.4.3. In these alternative variants, all the invalid attributes in all the
queried ciphertexts do not correspond to any active leaf in the challenge keys (for dKey-IND) or
all active leaves in all the queried keys do not correspond to any invalid attribute in the challenge
ciphertext (for dAtt-IND). Then, we can gradually replace all the real keys by all-passive in the
former proof or all the real ciphertexts by all-valid in the latter proof.
Attribute-Indistinguishability

Theorem 16 Our SA-KP-ABE scheme is Att-IND, even if d7 is public, if all the active keys
correspond to independent leaves with respect to the set of attributes Γ = Γv ·∪Γi in the challenge
ciphertext.

The proof can be found in 6.4.3. This is an important result with respect to our target application
of tracing, combined with possible revocation. Indeed, with such a result, if a user is excluded
independently of the tracing procedure (the policy would reject him even if all his passive leaves
match valid attributes in the ciphertext), he will not be able to detect whether there are invalid
attributes in the ciphertext and thus that the ciphertext is from a tracing procedure. This gives
us a strong resistance to collusion for tracing.

6.4 - Our SA-KP-ABE 79

6.4.3 Security Proofs

Del-IND-Security for Encaps – Proof of Theorem 12

Proof We will proceed to prove this by a succession of games. At some point, our game will
be in the same state as Game G0 in the proof of IND for the KP-ABE scheme, in Section 5.2,
which allows us to conclude. We stress that we use the Adaptive Index-Ind instead of the static
version, but this just impacts the way we enumerate the attributes: instead of enumerating
all the universe that was polynomial-size, we enumerate them in the order the appear in the
security game (either in a policy or in a ciphertext). This will be important for hybrid sequences
of games on attributes: t or p will actually be the attributes but also associated to their order
number when they appear for the first time in the security game.

Game G0: The first game is the real game, where the simulator honestly runs the setup, with
PK = {(b1,b3,b∗

1), (d1,d2,d3,d∗
1,d∗

2,d∗
3)}, SK = {d7}, and MK = {b∗

3,d∗
7}, from random

dual orthogonal bases.

OKeyGen(T̃ℓ): The adversary is allowed to issue KeyGen-queries on an access-tree T̃ℓ (for the
ℓ-th query), for which the simulator chooses a random scalar aℓ,0

$← Zq and a random
aℓ,0-labeling (aℓ,λ)λ of the access-tree T̃ℓ, and builds the key:

k∗
ℓ,0 = (aℓ,0, 0, 1)B∗ k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, 0, rℓ,λ, 0, 0)D∗

for all the leaves λ, where tℓ,λ = A(λ) in Tℓ, πℓ,λ
$← Zq and rℓ,λ

$← Z∗
q if λ is an active

leave or rℓ,λ = 0 if it is passive. The decryption key dkℓ = (k∗
ℓ,0, (k∗

ℓ,λ)λ) is kept private,
and will be used for delegation queries;

ODelegate(T̃ , T̃ ′): The adversary is allowed to issue Delegate-queries for an access-tree T̃ ′, of
an already queried decryption key with access-tree T̃ = T̃ℓ, with the only condition that
T̃ ′ ≤ T̃ . From dkℓ = (k∗

0, (k∗
λ)λ), for λ ∈ L, then the simulator computes the delegated

key as, ∀λ ∈ L′:

k′∗
0 = k∗

0 + (a′
0, 0, 0)B∗ k′∗

λ = k∗
λ + (π′

λ(tλ,−1), a′
λ, 0, 0, 0, 0, 0, 0)D∗ ,

where k∗
λ = (0, 0, 0, 0, 0, 0, 0)D∗ if λ was not in L, and a′

0
$← Zq and (a′

λ)λ is an a′
0-labeling

of T ′.
RoREncaps(Γv,Γi = ∅): On the unique query on a set of attributes Γ = Γv, the simulator

chooses random scalars ω, ξ, ξ′ $← Zq. It then sets K0 = gξ
t and K1 = gξ′

t . It generates
the ciphertext C = (c0, (ct)t∈Γ) where

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, 0, 0, 0)D

for all the attributes t ∈ Γ and σt
$← Zq. According to the real or random game (bit

b $← {0, 1}), one outputs (Kb, C).

From the adversary’s guess b′ for b, if for some T̃ ′ asked as a delegation-query, T̃ ′(Γv,Γi) = 1,
then β $← {0, 1}, otherwise β = b′. We denote Adv0 = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].
We stress that in this game, we deal with delegation queries, but only want to show they
do not help to break indistinguishability of the encapsulated keys with the official Encaps
algorithm, and not the private Encaps∗ one. Hence, Γi = ∅ in the challenge ciphertext.

Game G1: We now show it can be reduced to Game G0 from the IND security game on the
KP-ABE, in the proof provided in Section 5.2. The challenge ciphertext is already exactly the
same, as we only consider Encaps. However, we have to simulate the key-generation and key-
delegation oracles OKeyGen and ODelegate using only the key-generation oracle from Game G0

80 6 - ABE with Switchable Attributes

G0 Real Del-IND-Security game
c0 = (ω 0 ξ) ct = (σt(1, t) ω | 0 0 0 ut | 0 0)

k∗
ℓ,0 = (aℓ,0 0 1) k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 0 rℓ,λ | 0 0)

G1 SubSpace-Ind Property, on (B,B∗)1,2 and (D,D∗)3,4, between 0 and τ $← Zq

c0 = (ω τ ξ) ct = (σt(1, t) ω | τ 0 0 ut | 0 0)
k∗

ℓ,0 = (aℓ,0 0 1) k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 0 rℓ,λ | 0 0)

G2 SubSpace-Ind Property, on (D,D∗)1,2,6, between 0 and τzt

c0 = (ω τ ξ) ct = (σt(1, t) ω | τ 0 τzt ut | 0 0)
k∗

ℓ,0 = (aℓ,0 0 1) k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 0 rℓ,λ | 0 0)

G3 Introduction of an additional random-labeling. See Figure 6.3
c0 = (ω τ ξ) ct = (σt(1, t) ω | τ 0 τzt ut | 0 0)

k∗
ℓ,0 = (aℓ,0 rℓ,0 1) k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 sℓ,λ

ztℓ,λ
rℓ,λ | 0 0)

G4 Formal basis change, on (B,B∗)2,3, to randomize ξ
c0 = (ω τ ξ′′) ct = (σt(1, t) ω | τ 0 τzt ut | 0 0)

k∗
ℓ,0 = (aℓ,0 rℓ,0 1) k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 sℓ,λ

ztℓ,λ
rℓ,λ | 0 0)

Figure 6.2: Sequence of games on the keys for the Del-IND-security proof of our SA-KP-ABE

G2.k.0 Hybrid game for G2, with 1 ≤ k ≤ K + 1 (from Figure 6.2)
c0 = (ω τ ξ) ct = (σt(1, t) ω | τ 0 τzt ut | 0 0)

ℓ < k k∗
ℓ,0 = (aℓ,0 rℓ,0 1) k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 sℓ,λ

ztℓ,λ
rℓ,λ | 0 0)

ℓ ≥ k k∗
ℓ,0 = (aℓ,0 0 1) k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 0 rℓ,λ | 0 0)
G2.k.1 SubSpace-Ind Property, on (B∗,B)1,2 and (D∗,D)3,4, between 0 and sk,∗

k∗
k,0 = (ak,0 sk,0 1) k∗

k,λ = (πk,λ(tk,λ,−1) ak,λ |sk,λ 0 0 rk,λ | 0 0)
G2.k.2 Masking of the labeling. See Figure 5.3 for Encaps, or Figure 6.4 for Encaps∗

k∗
k,0 = (ak,0 sk,0 1) k∗

k,λ = (πk,λ(tk,λ,−1) ak,λ | 0 0 sk,λ

ztk,λ
rk,λ | 0 0)

G2.k.3 Limitations on KeyGen-queries: sk,0 unpredictable, replaced by a random rk,0

k∗
k,0 = (ak,0 rk,0 1) k∗

k,λ = (πk,λ(tk,λ,−1) ak,λ | 0 0 sk,λ

ztk,λ
rk,λ | 0 0)

Figure 6.3: Sequence of games on the keys for the Del-IND-security proof of our SA-KP-ABE

6.4 - Our SA-KP-ABE 81

in the proof provided in Section 5.2. We call OKeyGen′ the key generation simulator from
the classic KP-ABE proof in the SA-KP-ABE game, and note that it only partially generates
our new keys, without a 7-th coordinate rℓ,λ. To keep track of the rℓ,λ used in the game, we
instantiate a list Λ.

OKeyGen(T̃ℓ). The simulator calls the oracle OKeyGen′(Tℓ), and chooses rℓ,λ
$← Z∗

q or sets
rℓ,λ ← 0 according to whether λ ∈ La or λ ∈ Lp. It then adds the last component rℓ,λ on
every k∗

ℓ,λ using d∗
7 which is known to the simulator. Finally, it updates Λ with a new

entry Λℓ = (rℓ,λ)λ;
ODelegate(T̃ℓ, T̃ ′). The simulator calls the oracle OKeyGen′(T ′) to get the decryption key dk.

As already noted, in the KP-ABE, a delegated key is indistinguishable from a fresh key.
Then, we pick the entry rℓ,λ from Λℓ, to the last component rℓ,λ on every k∗

λ using d∗
7

which is known to the simulator. We stress that for any new leaf, not present in T̃ℓ is
necessarily passive in the delegated tree T̃ ′. So, if a leaf is not in Λℓ, rℓ,λ = 0.

In this new game, we are exactly using the security game from the IND security on the KP-
ABE, and simulating the 7-th component using d∗

7. As this component does not change nor
intervene at all in any of the games from the proof in Section 5.2, and this is exactly the same
situation as in Game G0 in that proof, we conclude by following those security games, which
leads to the adversary having the same advantage in the last game.

We stress that this simulation of ODelegate will be used in all the following proofs: a delegated
key is identical to a fresh key, except the rℓ,λ for keys delegated, which is the same value that
original key it comes from.
Del-IND-Security for Encaps∗ – Proof of Theorem 13

Proof The proof will proceed by games, with the first two games following exactly the same
sequence as in the previous IND-security proof of the KP-ABE in 5.2, except the RoREncaps-
challenge that allows non-empty Γi. We also have to consider how to simulate OEncaps-queries
on pairs (Γv,Γi), with Γi ̸= ∅, meaning there are invalid attributes in the ciphertext. In order
to do that, we remind that everything on the 7-th component can be done independently, using
both d7 and d∗

7, as these vectors will be known to the simulator almost all the time, except
in some specific gaps. In theses cases, we will have to make sure how to simulate the OEncaps
ciphertexts. As explained in the proof, Section 6.4.3, we can simulate ODelegate-queries as
OKeyGen-queries, since a delegated key is identical to a fresh key, except the common rℓ,λ for
keys delegated from the same original key. We thus just have to take care about the way we
choose rℓ,λ.

As in the IND-security proof of the KP-ABE, the idea of the sequence is to introduce an
additional labeling (sℓ,0, (sℓ,λ)λ) in each ℓ-th key (in G2.k.1, from Figure 5.2), where each label
is masked by a random zt for each attribute t (in G2.k.2).

However, in order to go to game G2.k.3, one cannot directly conclude that sk,0 is independent
from the view of the adversary: we only know T̃k(Γv,Γi) = 0, but not necessarily Tk(Γv ·∪Γi) = 0,
as in the previous proof. Hence, we revisit this gap with an additional sequence presented in the
Figure 6.4 where we focus on the k-th key and the ciphertext, with random ω, τ, ξ, ξ′, (σt), (zt) $←
Zq, but for all the OKeyGen-query, random aℓ,0, (πℓ,λ) $← Zq, as well as a random aℓ,0-labeling
(aℓ,λ)λ of the access-tree Tk, but also sℓ,0

$← Zq and a second independent random sℓ,0-labeling
(sℓ,λ)λ of the access-tree Tk, and an independent random rℓ,0

$← Zq. The goal is to replace each
label sk,λ by a random independent value s′

k,λ when utk,λ
· rk,λ ̸= 0. As a consequence, we will

consider below that s′
k,λ denotes either the label sk,λ when utk,λ

· rk,λ = 0 or a random scalar:

Game G2.k.2.0: The first game is exactly G2.k.2, where the simulator honestly runs the setup,
with PK = {(b1,b3,b∗

1), (d1,d2,d3,d∗
1,d∗

2,d∗
3)}, SK = {d7}, and MK = {b∗

3,d∗
7}, from ran-

dom dual orthogonal bases.

82 6 - ABE with Switchable Attributes

G2.k.2.0 Intermediate sequence from G2.k.2 (from Figure 6.3)
ct = (σt(1, t) ω | τ 0 τzt ut | 0 0)

ℓ < k k∗
ℓ,0 = (aℓ,0 rℓ,0 1)

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 s′

ℓ,λ/ztℓ,λ
rℓ,λ | 0 0)

ℓ = k k∗
k,0 = (ak,0 sk,0 1)

k∗
k,λ = (πk,λ(tk,λ,−1) ak,λ | 0 0 sk,λ/ztk,λ

rk,λ | 0 0)
ℓ > k k∗

ℓ,0 = (aℓ,0 0 1)
k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 0 rℓ,λ | 0 0)
s′

ℓ,λ is either the label sℓ,λ when rℓ,λ · utℓ,λ
= 0, or a random scalar in Zq otherwise

G2.k.2.1 SubSpace-Ind Property, on (D,D∗)4,5, between τ and 0
ct = (σt(1, t) ω | 0 0 τzt ut | 0 0)

G2.k.2.2 SubSpace-Ind Property, on (D∗,D)2,4, between 0 and yℓ,λ

k∗
k,0 = (ak,0 sk,0 1)

k∗
k,λ = (πk,λ(tk,λ,−1) ak,λ | yk,λ 0 sk,λ/ztk,λ

rk,λ | 0 0)

G2.k.2.3 Formal basis change, on (D,D∗)5,7, to duplicate rℓ,λ

ℓ < k k∗
ℓ,0 = (aℓ,0 rℓ,0 1) k∗

ℓ,λ = (. . . | yℓ,λ rℓ,λ s′
ℓ,λ/ztℓ,λ

rℓ,λ | 0 0)
ℓ = k k∗

k,0 = (ak,0 sk,0 1) k∗
k,λ = (. . . | yk,λ rk,λ sk,λ/ztk,λ

rk,λ | 0 0)
ℓ > k k∗

ℓ,0 = (aℓ,0 0 1) k∗
ℓ,λ = (. . . | yℓ,λ rℓ,λ 0 rℓ,λ | 0 0)

G2.k.2.4 Alteration of the labeling. See Figure 6.5
ℓ < k k∗

ℓ,0 = (aℓ,0 rℓ,0 1) k∗
ℓ,λ = (. . . | yℓ,λ 0 s′

ℓ,λ/ztℓ,λ
rl,λ | 0 0)

ℓ = k k∗
k,0 = (ak,0 sk,0 1) k∗

k,λ = (. . . | yk,λ 0 s′
k,λ/ztk,λ

rk,λ | 0 0)

ℓ > k k∗
ℓ,0 = (aℓ,0 0 1) k∗

ℓ,λ = (. . . | yℓ,λ 0 0 rℓ,λ | 0 0)
G2.k.2.5 Limitations on KeyGen-queries: sk,0 unpredictable, replaced by a random rk,0

ℓ = k k∗
k,0 = (ak,0 rk,0 1) k∗

k,λ = (. . . | yk,λ 0 s′
k,λ/ztk,λ

rk,λ | 0 0)

G2.k.2.6 SubSpace-Ind Property, on (D∗,D)2,4, between yℓ,λ and 0
k∗

k,0 = (ak,0 rk,0 1)
k∗

k,λ = (πk,λ(tk,λ,−1) ak,λ | 0 0 s′
k,λ/ztk,λ

rk,λ | 0 0)
G2.k.2.7 SubSpace-Ind Property, on (D,D∗)4,5, between 0 and τ

ct = (σt(1, t) ω | τ 0 τzt ut | 0 0)

Figure 6.4: Sequence of games on the keys for the Del-IND-security proof of our SA-KP-ABE

6.4 - Our SA-KP-ABE 83

G2.k.2.3.p.0 Hybrid game for G2.k.2.3, with 1 ≤ p ≤ P + 1 (from Figure 6.4)
c0 = (ω τ ξ)
ct = (σt(1, t) ω | 0 0 τzt ut | 0 0)

ℓ < k k∗
ℓ,0 = (aℓ,0 rℓ,0 1)

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | yℓ,λ rℓ,λ s′

ℓ,λ/ztℓ,λ
rℓ,λ | 0 0)

ℓ = k k∗
k,0 = (ak,0 sk,0 1)

tk,λ < p k∗
k,λ = (πk,λ(tk,λ,−1) ak,λ | yk,λ rk,λ s′

k,λ/ztk,λ
rk,λ | 0 0)

tk,λ ≥ p k∗
k,λ = (πk,λ(tk,λ,−1) ak,λ | yk,λ rk,λ sk,λ/ztk,λ

rk,λ | 0 0)
ℓ > k k∗

ℓ,0 = (aℓ,0 0 1)
k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | yℓ,λ rℓ,λ 0 rℓ,λ | 0 0)
s′

ℓ,λ is either the label sℓ,λ when rℓ,λ · utℓ,λ
= 0, or a random scalar in Zq otherwise

G2.k.2.3.p.1 Swap-Ind Property, on (D,D∗)5,7, for 0 and up in cp only
cp = (. . . | 0 up τzp 0 |0 0) ct = (. . . | 0 0 τzt ut | 0 0)

G2.k.2.3.p.2 Index-Ind Property, on (D∗,D)1,2,5, between rℓ,λ and 0, for all tℓ,λ ̸= p
cp = (. . . | 0 up τzp 0 |0 0) ct = (. . . | 0 0 τzt ut | 0 0)

tℓ,λ ̸= p, ℓ < k k∗
ℓ,λ = (. . . | yℓ,λ 0 s′

ℓ,λ/ztℓ,λ
rℓ,λ | 0 0)

k∗
ℓ,λ = (. . . | yℓ,λ rℓ,λ s′

ℓ,λ/zp rℓ,λ |0 0) tℓ,λ = p, ℓ < k

tk,λ < p, ℓ = k k∗
k,λ = (. . . | yk,λ 0 s′

k,λ/ztk,λ
rk,λ | 0 0)

k∗
k,λ = (. . . | yk,λ rk,λ sk,λ/zp rk,λ |0 0) tk,λ = p, ℓ = k

tk,λ > p, ℓ = k k∗
k,λ = (. . . | yk,λ 0 sk,λ/ztk,λ

rk,λ | 0 0)
tℓ,λ ̸= p, ℓ > k k∗

ℓ,λ = (. . . | yℓ,λ 0 0 rℓ,λ | 0 0)
k∗

ℓ,λ = (. . . | yℓ,λ rℓ,λ 0 rℓ,λ |0 0) tℓ,λ = p, ℓ > k

G2.k.2.3.p.3 Formal change of basis on column 5, multiplying ciphertext by τzp/up

cp = (. . . | 0 τzp τzp 0 |0 0) ct = (. . . | 0 0 τzt ut | 0 0)
k∗

ℓ,λ = (. . . | yℓ,λ rℓ,λup/τzp s′
ℓ,λ/zp rℓ,λ |0 0) tℓ,λ = p, ℓ < k

k∗
k,λ = (. . . | yk,λ rk,λup/τzp sk,λ/zp rk,λ |0 0) tk,λ = p, ℓ = k

k∗
ℓ,λ = (. . . | yℓ,λ rℓ,λup/τzp 0 rℓ,λ |0 0) tℓ,λ = p, ℓ > k

G2.k.2.3.p.4 Index-Ind Property, on (D,D∗)1,2,5, between 0 and τzt, for t ̸= p

cp = (. . . | 0 τzp τzp 0 |0 0) ct = (. . . | 0 τzt τzt ut | 0 0)
G2.k.2.3.p.5 Swap-Ind Property, on (D∗,D)4,5,6, between rk,λup/τzp and 0, for tk,λ = p only

cp = (. . . | 0 τzp τzp 0 |0 0) ct = (. . . | 0 τzt τzt ut | 0 0)
k∗

ℓ,λ = (. . . | yℓ,λ rℓ,λup/τzp s′
ℓ,λ/zp rℓ,λ |0 0) tℓ,λ = p, ℓ < k

k∗
k,λ = (. . . | yk,λ 0 sk,λ+rk,λup/τ

zp
rk,λ |0 0) tk,λ = p, ℓ = k

k∗
ℓ,λ = (. . . | yℓ,λ rℓ,λup/τzp 0 rℓ,λ |0 0) tℓ,λ = p, ℓ > k

Figure 6.5: Sequence of sub-games on the attributes for the Del-IND-security proof of our SA-
KP-ABE (Cont’ed on Figure 6.5)

84 6 - ABE with Switchable Attributes

G2.k.2.3.p.6 SubSpace-Ind Property, on (D∗,D)4,7, to randomize rk,λ for tk,λ = p
cp = (. . . | 0 τzp τzp 0 |0 0) ct = (. . . | 0 τzt τzt ut |0 0)

tℓ,λ ̸= p, ℓ < k k∗
ℓ,λ = (. . . | yℓ,λ 0 s′

ℓ,λ/ztℓ,λ
rℓ,λ |0 0)

tk,λ < p, ℓ = k k∗
k,λ = (. . . | yk,λ 0 s′

k,λ/ztk,λ
rk,λ |0 0)

k∗
ℓ,λ = (. . . | yℓ,λ rℓ,λup/τzp s′

ℓ,λ/zp rℓ,λ |0 0) tℓ,λ = p, ℓ < k

k∗
k,λ = (. . . | yk,λ 0 s′

k,λ/zp r′
k,λ |0 0) tk,λ = p, ℓ = k

k∗
ℓ,λ = (. . . | yℓ,λ rℓ,λup/τzp 0 rℓ,λ |0 0) tℓ,λ = p, ℓ > k

tk,λ > p, ℓ = k k∗
k,λ = (. . . | yk,λ 0 sk,λ/ztk,λ

rk,λ |0 0)
tℓ,λ ̸= p, ℓ > k k∗

ℓ,λ = (. . . | yℓ,λ 0 0 rℓ,λ |0 0)
G2.k.2.3.p.7 Swap-Ind Property, on (D∗,D)4,5,6, between 0 and r′

k,λup/τzp, for tk,λ = p only
cp = (. . . | 0 τzp τzp 0 |0 0) ct = (. . . | 0 τzt τzt ut |0 0)

k∗
ℓ,λ = (. . . | yℓ,λ rℓ,λup/τzp s′

ℓ,λ/zp rℓ,λ |0 0) tℓ,λ = p, ℓ < k

k∗
k,λ = (. . . | yk,λ r′

k,λup/τzp
s′

k,λ−r′
k,λup/τ

zp
r′

k,λ |0 0) tk,λ = p, ℓ = k

k∗
ℓ,λ = (. . . | yℓ,λ rℓ,λup/τzp 0 rℓ,λ |0 0) tℓ,λ = p, ℓ > k

G2.k.2.3.p.8 Index-Ind Property, on (D,D∗)1,2,5, between τzt and 0
cp = (. . . | 0 τzp τzp 0 |0 0) ct = (. . . | 0 0 τzt ut |0 0)

tℓ,λ ̸= p, ℓ < k k∗
ℓ,λ = (. . . | yℓ,λ 0 s′

ℓ,λ/ztℓ,λ
rℓ,λ |0 0)

tk,λ < p, ℓ = k k∗
k,λ = (. . . | yk,λ 0 s′

k,λ/ztk,λ
rk,λ |0 0)

k∗
ℓ,λ = (. . . | yℓ,λ rℓ,λup/τzp s′

ℓ,λ/zp rℓ,λ |0 0) tℓ,λ = p, ℓ ≤ k
k∗

ℓ,λ = (. . . | yℓ,λ rℓ,λup/τzp 0 rℓ,λ |0 0) tℓ,λ = p, ℓ > k

tk,λ > p, ℓ = k k∗
k,λ = (. . . | yk,λ 0 sk,λ/ztk,λ

rk,λ |0 0)
tℓ,λ ̸= p, ℓ > k k∗

ℓ,λ = (. . . | yℓ,λ 0 0 rℓ,λ |0 0)
G2.k.2.3.p.9 Formal change of basis

cp = (. . . | 0 up τzp 0 |0 0) ct = (. . . | 0 0 τzt ut |0 0)
k∗

ℓ,λ = (. . . | yℓ,λ rℓ,λ s′
ℓ,λ/zp rℓ,λ |0 0) tℓ,λ = p, ℓ ≤ k

k∗
ℓ,λ = (. . . | yℓ,λ rℓ,λ 0 rℓ,λ |0 0) tℓ,λ = p, ℓ > k

G2.k.2.3.p.10 Index-Ind Property, on (D∗,D)1,2,5, between 0 and rℓ,λ, for all tℓ,λ ̸= p
cp = (. . . | 0 up τzp 0 |0 0) ct = (. . . | 0 0 τzt ut |0 0)

tℓ,λ ̸= p, ℓ < k k∗
ℓ,λ = (. . . | yℓ,λ rℓ,λ s′

ℓ,λ/ztℓ,λ
rℓ,λ |0 0)

tk,λ < p, ℓ = k k∗
k,λ = (. . . | yk,λ rk,λ s′

k,λ/ztk,λ
rk,λ |0 0)

k∗
ℓ,λ = (. . . | yℓ,λ rℓ,λ s′

ℓ,λ/zp rℓ,λ |0 0) tℓ,λ = p, ℓ ≤ k
k∗

ℓ,λ = (. . . | 0 rℓ,λ 0 rℓ,λ |0 0) tℓ,λ = p, ℓ > k

tk,λ > p, ℓ = k k∗
k,λ = (. . . | yk,λ rk,λ sk,λ/ztk,λ

rk,λ |0 0)
tℓ,λ ̸= p, ℓ > k k∗

ℓ,λ = (. . . | yℓ,λ rℓ,λ 0 rℓ,λ |0 0)
G2.k.2.3.p.11 Swap-Ind Property, on (D,D∗)5,7, for 0 and up

cp = (. . . | 0 0 τzp up |0 0) ct = (. . . | 0 0 τzt ut |0 0)

Figure 6.5: Sequence of sub-games on the attributes for the Del-IND-security proof of our SA-
KP-ABE (Cont’ed)

6.4 - Our SA-KP-ABE 85

OKeyGen(Tℓ) (or ODelegate-queries): The simulator builds the ℓ-th key:

ℓ < k k∗
ℓ,0 = (aℓ,0, rℓ,0, 1)B∗

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, s′

ℓ,λ/ztℓ,λ
, rℓ,λ, 0, 0)D∗

ℓ = k k∗
k,0 = (ak,0, sk,0, 1)B∗

k∗
k,λ = (πk,λ(tk,λ,−1), ak,λ, 0, 0, sk,λ/ztk,λ

, rk,λ, 0, 0)D∗

ℓ > k k∗
ℓ,0 = (aℓ,0, 0, 1)B∗

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, 0, rℓ,λ, 0, 0)D∗

with rℓ,λ
$← Zq if λ ∈ La or rℓ,λ = 0 if λ ∈ Lp. The decryption key dkℓ is then

(k∗
ℓ,0, (k∗

ℓ,λ)λ).
OEncaps(Γm,v,Γm,i): The simulator builds the m-th ciphertext using all the known vectors of

the basis:

cm,0 = (ωm, 0, ξm)B cm,t = (σm,t(t,−1), ωm, 0, 0, 0, um,t, 0, 0)D

with ωm, ξm
$← Zq, σm,t

$← Zq and um,t
$← Z∗

q if t ∈ Γm,i or um,t ← 0 if t ∈ Γm,v. The
ciphertext Cm is then (cm,0, (cm,t)t);

RoREncaps(Γv,Γi): On the unique query on a set of attributes (Γv ·∪ Γi), the simulator gen-
erates the ciphertext C = (c0, (ct)t∈(Γv ·∪Γi)) where

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt, ut, 0, 0)D

for all the attributes t ∈ (Γv ·∪ Γi), with ut
$← Zq if t ∈ Γi or ut = 0 if t ∈ Γv. According

to the real or random game (bit b $← {0, 1}), one outputs (Kb, C).

From the adversary’s guess b′ for b, if for some T̃ , T̃ (Γv,Γi) = 1, then β $← {0, 1}, otherwise
β = b′. We denote Adv2.k.2.0 = Pr[β = 1|b = 1] − Pr[β = 1|b = 0]. The goal of this sequence
of games is to replace sk,0, that can be derived by an acceptable set of sk,λ, by a random and
independent value rk,0, in the key generated during the k-th OKeyGen-query.
Indeed, to be a legitimate attack (that does not randomize the adversary’s guess b′), for all
the key queries T̃ℓ, one must have T̃ℓ(Γv,Γi) = 0. In particular, T̃k(Γv,Γi) = 0: this means
that

• either the regular access-tree policy is not met, i.e., Tk(Γv ·∪ Γi) = 0.
• or the regular access-tree policy is met, but one active key leaf matches one invalid

ciphertext attribute: ∀T ′ ∈ EPT(Tk,Γv ·∪ Γi), ∃λ ∈ T ′ ∩ La, A(λ) ∈ Γi, and from the
assumptions, for any such tree T ′, the active leave is an independent leave.

In both cases, we will use the same technique to show sk,0 is independent from any other
value. But first, we will replace all the active leaves associated to invalid ciphertexts in the
challenge ciphertext by inactive leaves.
Of course, in the following sequence, we will have to take care of the simulation of the challenge
ciphertext, but also of the OEncaps-oracle. For the latter, we will have to clarify how we do
the simulation when public vectors (d1,d2,d3) or the private vector d7 are impacted.

Game G2.k.2.1: In this game, we first clean the 4-th column of the ciphertext from the τ . To
this aim, we are given a tuple (a ·G1, b ·G1, c ·G1) in G1, where c = ab+ µ mod q with either

86 6 - ABE with Switchable Attributes

µ = 0 or µ = τ (fixed from c0). When we start from random dual orthogonal bases (U,U∗)
and (V,V∗) of size 3 and 7 respectively, one considers the matrices:

D =
(

1 a
0 1

)
3,4

D′ =
(

1 0
−a 1

)
3,4

D∗ = D′ · V∗ D = D · V

We can calculate all vectors but d∗
3. Hence, there is no problem for simulating the OEncaps-

queries. For the challenge ciphertext, we exploit the DSDH assumption:

ct = (σt(1, t), b, c, 0, τzt, ut, 0, 0)V = (σt(1, t), b, c− ab, 0, τzt, ut, 0, 0)D
= (σt(1, t), b, µ, 0, τzt, ut, 0, 0)D

which is correct, with ω = b and according to µ, this is either τ , as in the previous game or 0
as in this game. For the keys, one notes that the 4-th component is 0, and so the change of
basis has no impact on the 3-rd component, when using basis V∗:

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, . . .)V∗ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, . . .)D∗

Then, we have Adv2.k.2.0 − Adv2.k.2.1 ≤ 2 · Advddh
G1 (t).

Game G2.k.2.2: In this game, we can now introduce noise in the 4-th column the keys. In
order to properly deal with delegated keys, as for rℓ,λ that have to be the same values for all
the leaves delegated from the same initial key, we will also set the same random yℓ,λ. To this
aim, we are given a tuple (a · G2, b · G2, c · G2) in G2, where c = ab + ζ mod q with either
ζ = 0 or ζ $← Z∗

q . We choose additional random scalars αℓ,λ, βℓ,λ
$← Zq (but the same αℓ,λ for

all the leaves delegated from the same initial key), to virtually set bℓ,λ = αℓ,λ · b + βℓ,λ and
cℓ,λ = αℓ,λ · c+ βℓ,λ · a, then cℓ,λ − abℓ,λ = ζ · αℓ,λ, which are either 0 or independent random
values. When we start from random dual orthogonal bases (U,U∗) and (V,V∗) of size 3 and
7 respectively, one considers the matrices:

D =
(

1 0
a 1

)
2,4

D′ =
(

1 −a
0 1

)
2,4

D∗ = D′ · V∗ D = D · V

We can calculate all vectors but d4, which is not used anywhere. Then, for the keys, we
exploit the DDH assumption:

k∗
ℓ,λ = (bℓ,λ(tℓ,λ,−1), aℓ,λ, cℓ,λ, . . .)V∗ = (bℓ,λ(tℓ,λ,−1), aℓ,λ, cℓ,λ − abℓ,λ, . . .)D∗

= (bℓ,λ(tℓ,λ,−1), aℓ,λ, ζ · αℓ,λ, . . .)D∗

Which is either the previous game, with πℓ,λ = bℓ,λ, when ζ = 0, or the current game with
yℓ,λ = ζ · αℓ,λ (the same random yℓ,λ for all the leaves delegated from the same initial key):
Adv2.k.2.1 − Adv2.k.2.2 ≤ Advddh

G2 (t).

Game G2.k.2.3: In this game, we duplicate every rℓ,λ into the 5-th column of the key. To this
aim, one defines the matrices

D =
(

1 1
0 1

)
5,7

D′ =
(

1 0
−1 1

)
5,7

D∗ = D′ · V∗ D = D · V

which only modifies d5, which is hidden, and d∗
7, which is secret, so the change is indistin-

guishable for the adversary. One can compute the keys and ciphertexts as follows, for all
leaves λ of each query ℓ of the adversary:

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, yℓ,λ, 0, sℓ,λ/ztℓ,λ

, rℓ,λ, 0, 0)V∗

= (πℓ,λ(tℓ,λ,−1), aℓ,λ, yℓ,λ, rℓ,λ, sℓ,λ/ztℓ,λ
, rℓ,λ, 0, 0)D∗

ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)V = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D

6.4 - Our SA-KP-ABE 87

As the 5-th component in the ciphertext is 0, the change of basis makes no change. And
this is the same for the ciphertexts generated by the OEncaps-simulation. Hence, the perfect
indistinguishability between the two games: Adv2.k.2.3 = Adv2.k.2.2.

Game G2.k.2.4: In this game, we target the k-th OKeyGen-query, and replace sk,λ by an inde-
pendent s′

k,λ for all the active leaves that correspond to an invalid attribute in the challenge
ciphertext. For the sake of simplicity, s′

ℓ,λ is either the label sℓ,λ when rℓ,λ · utℓ,λ
= 0, or a

random independent scalar in Zq:

k∗
k,0 = (ak,0, sk,0, 1)B∗

k∗
k,λ = (πk,λ(tk,λ,−1), ak,λ, yk,λ, 0, s′

k,λ/ztk,λ
, rk,λ, 0, 0)D∗

But to this aim, we will need an additional sequence of sub-games G2.k.2.3.p.∗, that will operate
iteratively on each attribute p, to convert G2.k.2.3 into G2.k.2.4, as presented in the Figure 6.5.
But we first complete the first sequence, and details the sub-sequence afterwards.

Game G2.k.2.5: For the k-th key query, one can now replace sk,0 by rk,0. Indeed, as explained in
the Remark 1, for missing ciphertexts in the challenge ciphertext, the associated leaves in the
key have unpredictable sk,λ. In addition, for active leaves that correspond to invalid attributes
in the challenge ciphertext, sk,λ have been transformed into s′

k,λ, random independent values.
Then, we can consider that all the leaves associated to attributes not in Γ are false, but also
active leaves associated to attributes in Γi are false. As T̃k(Γv,Γi) = 0, the root label is
unpredictable. One thus generates the k-th key query as:

k∗
k,0 = (ak,0, rk,0, 1)B∗

k∗
k,λ = (πk,λ(tk,λ,−1), ak,λ, yk,λ, 0, s′

k,λ/ztk,λ
, rk,λ, 0, 0)D∗

Game G2.k.2.6: We can now invert the above step, when we added yℓ,λ: Adv2.k.2.5−Adv2.k.2.6 ≤
Advddh

G2 (t).

Game G2.k.2.7: We can now invert the above step, when we removed τ from the ciphertext:
Adv2.k.2.6 − Adv2.k.2.7 ≤ 2 · Advddh

G1 (t).

We now detail the sub-sequence starting from G2.k.2.3.p.0 to prove the indistinguishability be-
tween G2.k.2.3 and G2.k.2.4. In the new hybrid game G2.k.2.3.p.0, the critical point will be the p-th
ciphertext, where, when p = 1, this is exactly the above Game G2.k.2.3, and when p = P + 1,
this is the above Game G2.k.2.4. And it will be clear, for any p, that G2.k.2.3.p.11 = G2.k.2.3.p+1.0.

With random ω, τ, ξ, ξ′, (σt), (zt) $← Zq, but for all the OKeyGen-query, random aℓ,0, (yλ),
(πℓ,λ) $← Zq, as well as a random aℓ,0-labeling (aℓ,λ)λ of the access-tree Tk, but also sℓ,0

$← Zq

and a second independent random sℓ,0-labeling (sℓ,λ)λ of the access-tree Tk, and an independent
random rℓ,0

$← Zq:

Game G2.k.2.3.p.0: One defines the hybrid game for p:

k∗
k,0 = (ak,0, sk,0, 1)B∗

tk,λ < p k∗
k,λ = (πk,λ(tk,λ,−1), ak,λ, yk,λ, rk,λ, s

′
k,λ/ztk,λ

, rk,λ, 0, 0)D∗

tk,λ ≥ p k∗
k,λ = (πk,λ(tk,λ,−1), ak,λ, yk,λ, rk,λ, sk,λ/ztk,λ

, rk,λ, 0, 0)D∗

where s′
ℓ,λ is either the label sℓ,λ when rℓ,λ · utℓ,λ

= 0, or a random independent scalar in Zq

(when this is an active leaf that corresponds to an invalid ciphertext).
So one can note that if at the challenge query p ∈ Γv, then up = 0, and so we can jump to
G2.k.2.3.p.11, but we do not know it before the challenge-query is asked, whereas we have to
simulate the keys. This is the reason why we need to know the super sets Av and Ai: the
challenge ciphertext is anticipated with up = 0 if p ∈ Av or with up

$← Z∗
q if p ∈ Ai.

88 6 - ABE with Switchable Attributes

Game G2.k.2.3.p.1: The previous game and this game are indistinguishable under the DDH
assumption in G1: one essentially uses theorem 4. Given a tuple (a · G1, b · G1, c · G1) in
G1, where c = ab + µ mod q with either µ = 0 or µ = up, the 7-th component of the p-th
ciphertext. When we start from random dual orthogonal bases (U,U∗) and (V,V∗) of size 3
and 7 respectively, one considers the matrices:

D =

 1 a −a
0 1 0
0 0 1

1,5,7

D′ =

 1 0 0
−a 1 0
a 0 1

1,5,7

D = D · V D∗ = D′ · V∗

We can calculate all vectors but d∗
5 and d∗

7, which are not in the public key. Through V, we
calculate the challenge ciphertext for the attribute of the p-th ciphertext

cp = (0, 0, ω, 0, 0, τzp, up, 0, 0)D + (b(1, p), 0, 0, c, 0,−c, 0, 0)V
= (0, 0, ω, 0, 0, τzp, up, 0, 0)D + (b(1, p), 0, 0, c− ab, 0, ab− c, 0, 0)D
= (b(1, p), ω, 0, µ, τzp, up − µ, 0, 0)D

If µ = 0, we are in the previous game. If µ = up, then we are in the current game. Then,
every other ciphertext is computed directly in D:

∀t ̸= p, ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D

as well as the answers to OEncaps-queries. The keys are calculated through V∗ but are
unchanged by the change of basis because the 5-th and 7-th components are exactly the
same for every key query ℓ, and thus cancel themselves in the 1st component. We thus have
Adv2.k.2.3.p.0 − Adv2.k.2.3.p.1 ≤ 2 · Advddh

G1 (t).

Game G2.k.2.3.p.2: We keep the rℓ,λ value (at the 5-th hidden position) in the keys such that
tℓ,λ = p, and replace it in all other keys by 0, in order to prepare the possibility to later
modify the ciphertexts on this component. To show this is possible without impacting the
other vectors, we use the Index-Ind property from Theorem 7, but in another level of sequence
of hybrid games, for γ ∈ {1, . . . , P}\{p}. We will enumerate γ in their order of appearance in
the security game (wether in key queries, or ciphertexts), therefore we can treat an unbounded
number of γ.

Game G2.k.2.3.p.1.γ: We consider the following hybrid game, where the first satisfied condition
on the indices is applied:

cp = (σp(1, p), ω, 0, up, τzp, 0, 0, 0)D
ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D t ̸= p

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, yℓ,λ, rℓ,λ, s

∗
ℓ,λ/ztℓ,λ

, rℓ,λ, 0, 0)D∗ tℓ,λ = p

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, yℓ,λ, 0, s∗

ℓ,λ/ztℓ,λ
, rℓ,λ, 0, 0)D∗ p ̸= tℓ,λ < γ

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, yℓ,λ, rℓ,λ, s

∗
ℓ,λ/ztℓ,λ

, rℓ,λ, 0, 0)D∗ p ̸= tℓ,λ ≥ γ

where s∗
ℓ,λ is either s′

ℓ,λ, sℓ,λ, or 0:

s∗
ℓ,λ = s′

ℓ,λ if ℓ < k, or ℓ = k, tk,λ < p

s∗
ℓ,λ = sℓ,λ if ℓ = k, tk,λ ≥ p
s∗

ℓ,λ = 0 if ℓ > k

6.4 - Our SA-KP-ABE 89

When γ = 1, this is the previous game: G2.k.2.3.p.1.1 = G2.k.2.3.p.1, whereas with γ = P + 1,
this is the current game: G2.k.2.3.p.1.P +1 = G2.k.2.3.p.2.
We will gradually replace the rℓ,λ values, at the 5-th hidden position, by 0 (when tℓ,λ ̸= p):
in this game, we deal with the case tℓ,λ = γ, for all the ℓ-th keys.
For this, we use the Adaptive Index-Ind property on (D,D∗)1,2,5,8,9, with:

cp = (σp(1, p), ω, 0, up, τzp, 0, 0, 0)D
k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, yℓ,λ, rℓ,λ, s
∗
ℓ,λ/ztℓ,λ

, rℓ,λ, 0, 0)D∗ tℓ,λ = γ

With all this sequence, we have Adv2.k.2.3.p.1−Adv2.k.2.3.p.2 ≤ 2P ·(8×Advddh
G1 (t)+4×Advddh

G2 (t)).

Game G2.k.2.3.p.3: The last game (in bases (U,U∗,V,V∗)) and this game (in bases (B,B∗,D,D∗))
are perfectly indistinguishable by using a formal change of basis, on hidden vectors, with

D =
(

τzp

up

)
5

D′ =
(

up

τzp

)
5

D = D · V D∗ = D′ · V∗

The challenge ciphertext and keys that are impacted become:

cp = (σp(1, p), ω, 0, up, τzp, 0, 0, 0)V
= (σp(1, p), ω, 0, τzp, τzp, 0, 0, 0)D

∀ℓ, tℓ,λ = p, k∗
ℓ,λ = (πℓ,λ(p,−1), aℓ,λ, yℓ,λ, rℓ,λ, s

∗
ℓ,λ/zp, rℓ,λ, 0, 0)V∗

= (πℓ,λ(p,−1), aℓ,λ, yℓ,λ, rℓ,λup/τzp, s
∗
ℓ,λ/zp, rℓ,λ, 0, 0)D∗

All the other vectors have a zero in these components (included the OEncaps-ciphertexts).
Hence, Adv2.k.2.3.p.3 = Adv2.k.2.3.p.2. Note however this is because of this game the security
result requires the semi-adaptive super-set setting: the change of basis needs to know that
up ̸= 0.

Game G2.k.2.3.p.4: We keep the τzp value (at the 5-th hidden position) in the ciphertext for
the p-th attribute only, and replace all the other values from 0 to τzt, which is the same value
as in the 6-th component of each ciphertext, to allow a later swap of the key elements from
the 6-th component to the 5-th:

cp = (σt(1, t), ω, 0, τzp, τzp, 0, 0, 0)D
ct = (σt(1, t), ω, 0, τzt, τzt, ut, 0, 0)D t ̸= p

To show this is possible without impacting the other vectors, we use the Index-Ind property
from Theorem 7, but in another level of sequence of hybrid games, for γ ∈ {1, . . . , P}\{p}.
We will enumerate γ in their order of appearance in the security game (wether in key queries,
or in ciphertexts), therefore we can treat an unbounded number of γ.

Game G2.k.2.3.p.4.γ: We consider

cp = (σp(1, p), ω, 0, τzp, τzp, 0, 0, 0)D
ct = (σt(1, t), ω, 0, τzt, τzt, ut, 0, 0)D p ̸= t < γ

ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D p ̸= t ≥ γ
k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, yℓ,λ, rℓ,λ, s
∗
ℓ,λ/ztℓ,λ

, rℓ,λ, 0, 0)D∗ tℓ,λ = p

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, yℓ,λ, 0, s∗

ℓ,λ/ztℓ,λ
, rℓ,λ, 0, 0)D∗ tℓ,λ ̸= p

When γ = 1, this is the previous game: G2.k.2.3.p.4.1 = G2.k.2.3.p.3, whereas with γ = P + 1,
this is the current game: G2.k.2.3.p.4.P +1 = G2.k.2.3.p.4.
For this, we use the Adaptive Index-Ind property on (D∗,D)1,2,5,8,9, with:

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, yℓ,λ, rℓ,λ, s

∗
ℓ,λ/ztℓ,λ

, rℓ,λ, 0, 0)D∗ tℓ,λ = p

ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D t = γ

90 6 - ABE with Switchable Attributes

With all this sequence, we have Adv2.k.2.3.p.3−Adv2.k.2.3.p.4 ≤ 2P ·(8×Advddh
G2 (t)+4×Advddh

G1 (t)).

Game G2.k.2.3.p.5: All ciphertexts now have exactly the same value in 5-th and 6-th positions.
We will thus use rℓ,λ in the 5-th position, for keys with tℓ,λ = p, to modify the 6-th position of
said keys with a swap. The previous game and this game are indistinguishable under the DDH
assumption in G2: one essentially uses theorem 4. We consider a triple (a ·G2, b ·G2, c ·G2),
where c = ab+ζ mod q with either ζ = 0 or ζ = up/τzp, which are indistinguishable under the
DSDH assumption. When we start from random dual orthogonal bases (U,U∗) and (V,V∗) of
size 3 and 7 respectively, one considers the matrices:

D =

 1 0 0
−a 1 0
a 0 1

1,5,6

D′ =

 1 a −a
0 1 0
0 0 1

1,5,6

D = D · V D∗ = D′ · V∗

We can calculate all vectors but d5 and d6, which are not in the public key: However the
challenge ciphertext computation through V is trivial since the 5-th and 6-th components
cancel each other out. We can thus simulate them in D.
For challenge ciphertexts, we set

cp = (σt(1, t), ω, 0, τzp, τzp, 0, 0, 0)V = (σt(1, t), ω, 0, τzp, τzp, 0, 0, 0)D
ct = (σt(1, t), ω, 0, τzt, τzt, ut, 0, 0)V = (σt(1, t), ω, 0, τzt, τzt, ut, 0, 0)D t ̸= p

The only keys that are calculated through V∗ are the ones from the k-th query so that
tk,λ = p. We choose additional random scalars βk,λ

$← Zq, to virtually set bk,λ = rk,λ · b+ βk,λ

and ck,λ = rk,λ · c+ βk,λ · a, then ck,λ − abk,λ = ζ · rk,λ, which is either 0 or rk,λ · up/τzp.

k∗
k,λ = (0, 0, ak,λ, yk,λ, 0, 0, rk,λ, 0, 0)D∗

+ (b(p,−1), 0, 0, 0, rk,λ · up/τzp − ck,λ, ck,λ + sk,λ/zp, 0, 0, 0)V∗

k∗
k,λ = (0, 0, ak,λ, yk,λ, 0, 0, rk,λ, 0, 0)D∗

+ (b(p,−1), 0, 0, bk,λ, rk,λ · up/τzp − (ck,λ − abk,λ),
(ck,λ − abk,λ) + sk,λ/zp, 0, 0, 0)D∗

k∗
k,λ = (b(p,−1), ak,λ, yk,λ, rk,λ · up/τzp − ζ · rk,λ, ζ · rk,λ + sk,λ

zp
, rk,λ, 0, 0)D∗

If ζ = 0, we are in the previous game. If ζ = up/τzp, then ζ · rk,λ = rk,λ ·up/τzp and we are in
the current game. All other keys are unchanged and calculated through D∗ directly, without
any change. And, Adv2.k.2.3.p.4 − Adv2.k.2.3.p.5 ≤ 2 · Advddh

G2 (t).

Game G2.k.2.3.p.6: In this game, we want to replace rk,λ when tk,λ = p by a random value in
the 7-th column, independently of the value in the 6-th column, so that this 6-th column value
can be really random and independent from other values. We will exploit the random yk,λ

in the 4-th column: We consider a triple (a · G2, b · G2, c · G2), where c = ab + ζ mod q with
either ζ = 0 or ζ $← Z∗

q , which are indistinguishable under the DDH assumption. We choose
additional random scalars αλ, βλ

$← Zq, to virtually set bλ = αλ · b+βλ and cλ = αλ · c+βλ ·a,
then cλ− abλ = ζ ·αλ, which are either 0 or independent random values. When we start from
random dual orthogonal bases (U,U∗) and (V,V∗) of size 3 and 7 respectively, one considers
the matrices:

D =
(

1 0
−a 1

)
4,7

D′ =
(

1 a
0 1

)
4,7

D = D · V D∗ = D′ · V∗

6.4 - Our SA-KP-ABE 91

We can calculate all vectors but d7, which is not in the public key. Through V, we calculate
the challenge ciphertext, and the OEncaps-answers, when the 7-th component is non-zero, as
the 0 value of the 4-th component does not impact the 7-th during the change of basis.
On the other hand, all the keys can be directly generated in D∗, except kk,λ when tk,λ = p,
for which we use the DDH assumption:

k∗
k,λ = (πk,λ(p,−1), ak,λ, 0, 0,

sk,λ + rk,λ · up/τ

zp
, rk,λ, 0, 0)D∗

+ (0, 0, 0, bλ, 0, 0, cλ, 0, 0)V∗

= (πk,λ(p,−1), ak,λ, 0, 0,
sk,λ + rk,λ · up/τ

zp
, rk,λ, 0, 0)D∗

+ (0, 0, 0, bλ, 0, 0, cλ − abλ, 0, 0)D∗

= (πk,λ(p,−1), ak,λ, bλ, 0,
sk,λ + rk,λ · up/τ

zp
, rk,λ + ζ · αλ, 0, 0)V∗

When ζ = 0, this is the previous game, with yk,λ = bλ, when tk,λ = p. Whereas when ζ $← Z∗
q ,

r′
k,λ = rk,λ +ζ ·αλ is independent of rk,λ, which makes s′

k,λ = (sk,λ +rk,λ ·up/τ)/zp independent
of sk,λ when rk,λ · up ̸= 0. Then, Adv2.k.2.3.p.5 − Adv2.k.2.3.p.6 ≤ Advddh

G2 (t).
In order to keep the same rℓ,λ for all the leaves delegated from the same initial key, we also
apply this additional vector (0, 0, 0, bλ, 0, 0, cλ)V∗ . This will also keep the same yℓ,λ for all
these leaves.

Game G2.k.2.3.p.7: All ciphertexts have exactly the same value in 5-th and 6-th positions. We
will thus use the Swap-Ind property to revert the change made in game G2.k.2.3.p.5, with the
notable difference we are now working with r′

k,λ (which has just been randomized) instead
of rk,λ, for keys with tk,λ = p. We are thus not restoring the initial sk,λ but we get a truly
random value s′

k,λ. The previous game and this game are indistinguishable under the DDH
assumption in G2: one essentially uses theorem 4. We consider a triple (a ·G2, b ·G2, c ·G2),
where c = ab+ζ mod q with either ζ = 0 or ζ = up/τzp, which are indistinguishable under the
DSDH assumption. When we start from random dual orthogonal bases (U,U∗) and (V,V∗) of
size 3 and 7 respectively, one considers the matrices:

D =

 1 0 0
−a 1 0
a 0 1

4,5,6

D′ =

 1 a −a
0 1 0
0 0 1

4,5,6

D = D · V D∗ = D′ · V∗

We can calculate all vectors but d5 and d6, which are not in the public key: However, the
challenge ciphertext computation through V is trivial since the 5-th and 6-th component cancel
each other out. We can thus simulate them through V. We can revert as above by setting in V∗

the keys from the k-th query so that tk,λ = p. And, Adv2.k.2.3.p.6−Adv2.k.2.3.p.7 ≤ 2 ·Advddh
G2 (t).

We stress that after the swap, we get, for tk,λ = p

k∗
k,λ = (πk,λ(p,−1), ak,λ, yk,λ, r

′
k,λup/τzp, (s′

k,λ − r′
k,λup/τ)/zp, r

′
k,λ, 0, 0)D∗

where s′
k,λ is a truly random value independent of r′

k,λ. So we are not back to game G2.k.2.3.p.4,
but still with a random value in the 6-th component of the key.

Game G2.k.2.3.p.8: We keep the τzp value (at the 5-th hidden position) in the ciphertext for
the p-th attribute only, and replace all the other values from τzt to 0

cp = (σt(1, t), ω, 0, τzp, τzp, 0, 0, 0)D
ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D t ̸= p

92 6 - ABE with Switchable Attributes

To show this is possible without impacting the other vectors, we use the Index-Ind property
from Theorem 7, but in another level of sequence of hybrid games, for γ ∈ {1, . . . , P}\{p}.
We will enumerate γ in their order of appearance in the security game (wether in key queries,
or in ciphertexts), therefore we can treat an unbounded number of γ.

Game G2.k.2.3.p.8.γ: We consider

cp = (σp(1, p), ω, 0, τzp, τzp, 0, 0, 0)D
ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D p ̸= t < γ

ct = (σt(1, t), ω, 0, τzt, τzt, ut, 0, 0)D p ̸= t ≥ γ
k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, yℓ,λ, r
′
ℓ,λ, s

∗
ℓ,λ/ztℓ,λ

, r′
ℓ,λ, 0, 0)D∗ tℓ,λ = p

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, yℓ,λ, 0, s∗

ℓ,λ/ztℓ,λ
, rℓ,λ, 0, 0)D∗ tℓ,λ ̸= p

When γ = 1, this is the previous game: G2.k.2.3.p.8.1 = G2.k.2.3.p.7, whereas with γ = P + 1,
this is the current game: G2.k.2.3.p.8.P +1 = G2.k.2.3.p.8.
For this, we use the Adaptive Index-Ind property on (D∗,D)1,2,5,8,9, with:

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, yℓ,λ, r

′
ℓ,λ, s

∗
ℓ,λ/ztℓ,λ

, r′
ℓ,λ, 0, 0)D∗ tℓ,λ = p

ct = (σt(1, t), ω, 0, τzt, τzt, ut, 0, 0)D t = γ

With all this sequence, we have Adv2.k.2.3.p.7−Adv2.k.2.3.p.8 ≤ 2P (8×Advddh
G2 (t)+4×Advddh

G1 (t)).

Game G2.k.2.3.p.9: The last game (in bases (U,U∗,V,V∗)) and this game (in bases (B,B∗,D,D∗))
are perfectly indistinguishable by using a formal change of basis, on hidden vectors, with

D =
(

up

τzp

)
5

D′ =
(

τzp

up

)
5

D = D · V D∗ = D′ · V∗

The challenge ciphertext and keys that are impacted become:

cp = (σp(1, p), ω, 0, τzp, τzp, 0, 0, 0)V
= (σp(1, p), ω, 0, up, τzp, 0, 0, 0)D

∀ℓ, tℓ,λ = p, k∗
ℓ,λ = (πℓ,λ(p,−1), aℓ,λ, yℓ,λ, rℓ,λ · up/τzp, s

∗
ℓ,λ/zp, rℓ,λ, 0, 0)D∗

= (πℓ,λ(p,−1), aℓ,λ, yℓ,λ, rℓ,λ, s
∗
ℓ,λ/zp, rℓ,λ, 0, 0)V∗

All the other vectors have a zero in these components (included the OEncaps-ciphertexts).
Hence, Adv2.k.2.3.p.9 = Adv2.k.2.3.p.8.

Game G2.k.2.3.p.10: We keep the r′
ℓ,λ value (at the 5-th hidden position) in the keys such that

tℓ,λ = p, and replace back the 0 in all other keys by rℓ,λ, in order to prepare the possibility to
later modify the ciphertexts on this component. To show this is possible without impacting
the other vectors, we use the Index-Ind property from Theorem 7, but in another level of
sequence of hybrid games, for γ ∈ {1, . . . , P}\{p}. We will enumerate γ in their order of
appearance in the security game (wether in key queries, or in ciphertexts), therefore we can
treat an unbounded number of γ.

Game G2.k.2.3.p.9.γ: We consider the following hybrid game, where the first satisfied condition
on the indices is applied:

cp = (σp(1, p), ω, 0, up, τzp, 0, 0, 0)D ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D t ̸= p

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, yℓ,λ, rℓ,λ, s

∗
ℓ,λ/ztℓ,λ

, rℓ,λ, 0, 0)D∗ tℓ,λ = p

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, yℓ,λ, rℓ,λ, s

∗
ℓ,λ/ztℓ,λ

, rℓ,λ, 0, 0)D∗ p ̸= tℓ,λ < γ

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, yℓ,λ, 0, s∗

ℓ,λ/ztℓ,λ
, rℓ,λ, 0, 0)D∗ p ̸= tℓ,λ ≥ γ

6.4 - Our SA-KP-ABE 93

where s∗
ℓ,λ is either s′

ℓ,λ, sℓ,λ, or 0
When γ = 1, this is the previous game: G2.k.2.3.p.9.1 = G2.k.2.3.p.9, whereas with γ = P + 1,
this is the current game: G2.k.2.3.p.9.P +1 = G2.k.2.3.p.10.
We will gradually replace the 0 values, at the 5-th hidden position, by rℓ,λ (when tℓ,λ ̸= p):
in this game, we deal with the case tℓ,λ = γ, for all the ℓ-th keys.
For this, we use the Adaptive Index-Ind property on (D,D∗)1,2,5,8,9, with:

cp = (σp(1, p), ω, 0, up, τzp, 0, 0, 0)D
k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, yℓ,λ, 0, s∗
ℓ,λ/ztℓ,λ

, rℓ,λ, 0, 0)D∗ tℓ,λ = γ

With all this sequence, we have Adv2.k.2.3.p.9−Adv2.k.2.3.p.10 ≤ 2P ·(8×Advddh
G1 (t)+4×Advddh

G2 (t)).

Game G2.k.2.3.p.11: The previous game and this game are indistinguishable under the DDH
assumption in G1: one essentially uses theorem 4. Given a tuple (a · G1, b · G1, c · G1) in
G1, where c = ab + µ mod q with either µ = 0 or µ = up, the 5-th component of the p-th
ciphertext. When we start from random dual orthogonal bases (U,U∗) and (V,V∗) of size 3
and 7 respectively, one considers the matrices:

D =

 1 a −a
0 1 0
0 0 1

1,5,7

D′ =

 1 0 0
−a 1 0
a 0 1

1,5,7

D = D · V D∗ = D′ · V∗

We can calculate all vectors but d∗
5 and d∗

7, which are not in the public key. Through V, we
calculate the challenge ciphertext for the attribute of the p-th ciphertext

cp = (0, 0, ω, 0, 0, τzp, up)D + (b(1, p), 0, 0, c, 0,−c, 0, 0)V
= (0, 0, ω, 0, 0, τzp, up)D + (b(1, p), 0, 0, c− ab, 0, ab− c, 0, 0)D
= (b(1, p), ω, 0, µ, τzp, up − µ, 0, 0)D

If µ = up, we are in the previous game. If µ = 0, then we are in the current game. Then,
every other ciphertext is computed directly in D:

∀t ̸= p, ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D

as well as the answers to OEncaps-queries. The keys are calculated through V∗ but are
unchanged by the change of basis because the 5-th and 7-th components are exactly the
same for every key query ℓ, and thus cancel themselves in the 1st component. We thus have
Adv2.k.2.3.p.10 − Adv2.k.2.3.p.11 ≤ 2 · Advddh

G1 (t).

dKey-IND-Security – Proof of Theorem 14

Proof In this security game, the adversary has access to the OEncaps-oracle, but only for dis-
tinct key-indistinguishability: all the invalid attributes t ∈ Γm,i in a OEncaps-query correspond
to passive leaves λ ∈ Lp from the challenge key. We will prove it as usual with a sequence of
games:

Game G0: The first game is the real game where the simulator plays the role of the chal-
lenger, with PK = {(b1,b3,b∗

1), (d1,d2,d3,d∗
1,d∗

2,d∗
3,d∗

7)}, SK = {d7}, and MK = {b∗
3},

from random dual orthogonal bases. We note that d∗
7 can be public.

OKeyGen(T̃ℓ) (or ODelegate-queries): The adversary is allowed to issue KeyGen-queries on an
access-tree T̃ℓ = (Tℓ,Lℓ,a,Lℓ,p) (for the ℓ-th query), for which the simulator chooses a

94 6 - ABE with Switchable Attributes

random scalar aℓ,0
$← Zq and a random aℓ,0-labeling (aℓ,λ)λ of the access-tree Tℓ, and

builds the key:

k∗
ℓ,0 = (aℓ,0, 0, 1)B∗ k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, 0, rℓ,λ, 0, 0)D∗

for all the leaves λ, where tℓ,λ = A(λ), πℓ,λ
$← Zq and rℓ,λ

$← Z∗
q if λ ∈ Lℓ,a, or else

rℓ,λ ← 0 if λ ∈ Lℓ,p. The decryption key dkℓ is then (k∗
ℓ,0, (k∗

ℓ,λ)λ);
OEncaps(Γm,v,Γm,i): The adversary is allowed to issue Encaps∗-queries on disjoint unions

Γm = Γm,v ·∪ Γm,i of sets of attributes, for which the simulator chooses random scalars
ωm, ξm

$← Zq. It setsKm = gξm
t and generates a ciphertext Cm = (cm,0, (cm,t)t∈(Γm,v ·∪Γm,i))

where

cm,0 = (ωm, 0, ξm)B cm,t = (σm,t(t,−1), ωm, 0, 0, 0, um,t, 0, 0)D

for all the attributes t ∈ Γm,v ·∪ Γm,i, σm,t
$← Zq and um,t

$← Z∗
q if t ∈ Γm,i or um,t ← 0 if

t ∈ Γm,v.
RoAPKeyGen(T̃ ,La,Lp): On the unique query on an access-tree T̃ of its choice, with a list

L = (La ·∪Lp) of active and passive leaves, the simulator chooses a random scalar a0
$← Zq,

and a random a0-labeling (aλ)λ of the access-tree. It then sets the real key dk0 as follows,
with rλ

$← Z∗
q if λ ∈ La, or rλ ← 0 if λ ∈ Lp:

k∗
0 = (a0, 0, 1)B∗ k∗

λ = (πλ(tλ,−1), aλ, 0, 0, 0, rλ, 0, 0)D∗

On the other hand, it sets the all-passive key dk1 as:

k∗
0 = (a0, 0, 1)B∗ k∗

λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0, 0, 0)D∗

for all λ. According to the real or all-passive (b $← {0, 1}), one outputs dkb.

From the adversary’s guess b′ for b, one forwards it as the output β, unless for some (Γm,v,Γm,i)
asked to the OEncaps-oracle, some active leaf λ ∈ La from the challenge key corresponds to
some invalid attribute t ∈ Γm,i, in which case one outputs a random β $← {0, 1}. We denote
Adv0 = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].
We stress that in this distinct key-indistinguishability security game, the active keys in the
challenge key (λ ∈ La with possibly rλ ̸= 0) correspond to valid ciphertexts only (t ∈ Γm,i

with um,t = 0, for all queries). But we do not exclude accepting access-trees.

Game G1: In the second and final game, we set rλ ← 0 for all the leaves in the real key dk0:

k∗
0 = (a0, 0, 0)B∗ k∗

λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0, 0, 0)D∗

It is then clear than Adv1 = 0, as all challenge keys are independent from b.
We detail the sub-sequence starting from G0.p.0 to prove the indistinguishability between
G0 and G1. In the new hybrid sequence G0.p.∗, we will modify all the keys associated to
the p-th attribute, in an indistinguishable way, using the Index-Ind property. It is clear that
G0.1.0 = G0, whereas G0.P +1.0 = G1, and G0.p.4 = G0.p+1.0.

Game G0.p.0: One defines the hybrid game for p :

cm,t = (σm,t(1, t), ωm, 0, 0, 0, um,t, 0, 0)D
tλ < p k∗

λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0, 0, 0)D∗

tλ ≥ p k∗
λ = (πλ(tλ,−1), aλ, 0, 0, 0, rλ, 0, 0)D∗

6.4 - Our SA-KP-ABE 95

c0 = (ω 0 ξ) k∗
ℓ,0 = (aℓ,0 0 1)

G0.p.0 Hybrid game for G0, with 1 ≤ p ≤ P + 1, such that um,p = 0 for all m
cm,t = (σm,t(1, t) ωm | 0 0 0 um,t | 0 0)

tλ < p k∗
λ = (πλ(tλ,−1) aλ | 0 0 0 0 | 0 0)

tλ ≥ p k∗
λ = (πλ(tλ,−1) aλ | 0 0 0 rλ | 0 0)

G0.p.1 Formal basis change, on (D,D∗)6,7, to duplicate um,t in the 6-th column
cm,t = (σm,t(1, t) ωm | 0 0 um,t um,t | 0 0)

tλ < p k∗
λ = (πλ(tλ,−1) aλ | 0 0 0 0 | 0 0)

tλ ≥ p k∗
λ = (πλ(tλ,−1) aλ | 0 0 0 rλ | 0 0)

G0.p.2 Swap-Ind Property, on (D,D∗)1,6,7, to swap rλ, for tλ = p, in the 6-th column
cm,t = (σm,t(1, t) ωm | 0 0 um,t um,t | 0 0)

tλ < p k∗
λ = (πλ(tλ,−1) aλ | 0 0 0 0 | 0 0)

tλ = p k∗
λ = (πλ(p,−1) aλ | 0 0 rλ 0 | 0 0)

tλ > p k∗
λ = (πλ(tλ,−1) aλ | 0 0 0 rλ | 0 0)

G0.p.3 Index-Ind Property, on (D,D∗)1,2,6, between um,t and 0, for t ̸= p
cm,p = (σm,t(1, t) ωm | 0 0 0 0 | 0 0)

t ̸= p cm,t = (σm,t(1, t) ωm | 0 0 0 um,t | 0 0)
tλ < p k∗

λ = (πλ(tλ,−1) aλ | 0 0 0 0 | 0 0)
tλ = p k∗

λ = (πλ(p,−1) aλ | 0 0 rλ 0 | 0 0)
tλ > p k∗

λ = (πλ(tλ,−1) aλ | 0 0 0 rλ | 0 0)
G0.p.4 SubSpace-Ind Property, on (D∗,D)1,6, between up and 0

cm,t = (σm,t(1, t) ωm | 0 0 0 um,t | 0 0)
tλ < p k∗

λ = (πλ(tλ,−1) aλ | 0 0 0 0 | 0 0)
tλ = p k∗

λ = (πλ(p,−1) aλ | 0 0 0 0 | 0 0)
tλ > p k∗

λ = (πλ(tλ,−1) aλ | 0 0 0 rλ | 0 0)

Figure 6.6: Sub-sequence of games for Distinct Key-Indistinguishability

96 6 - ABE with Switchable Attributes

Game G0.p.1: In this game, we duplicate every um,t into the 5-th column of the ciphertext.
To this aim, one defines the matrices

D =
(

1 0
1 1

)
6,7

D′ =
(

1 −1
0 1

)
6,7

D∗ = D′ · V∗ D = D · V

which only modifies d7, which is secret, and d∗
6, which is hidden, so the change is indistin-

guishable for the adversary. One can compute the keys and ciphertexts as follows, for all
leaves λ, and for each of each query m of the adversary:

cm,t = (σm,t(1, t), ωm, 0, 0, 0, um,t, 0, 0)V
= (σm,t(1, t), ωm, 0, 0, um,t, um,t, 0, 0)D

tλ < p k∗
λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0, 0, 0)V∗

= (πλ(tλ,−1), aλ, 0, 0, 0, 0, 0, 0)D∗

tλ ≥ p k∗
λ = (πλ(tλ,−1), aλ, 0, 0, 0, rλ, 0, 0)V∗

= (πλ(tλ,−1), aλ, 0, 0, 0, rλ, 0, 0)D∗

Hence, the perfect indistinguishability between the two games: Adv0.p.1 = Adv0.p.0.

Game G0.p.2: The previous game and this game are indistinguishable under the DSDH as-
sumption in G2: one essentially uses theorem 4. Given a tuple (a ·G2, b ·G2, c ·G2) in G2,
where c = ab+µ mod q with either µ = 0 or µ = 1, the 7-th component of the leaf λ of the
challenge key, with tλ = p. When we start from random dual orthogonal bases (U,U∗) and
(V,V∗) of size 3 and 7 respectively, one considers the matrices:

D =

 1 0 0
a 1 0
−a 0 1

2,6,7

D′ =

 1 −a a
0 1 0
0 0 1

2,6,7

D = D · V D∗ = D′ · V∗

We can calculate all vectors but d6 and d7, which are not in the public key. Through V,
we calculate the challenge key for the attribute of the p-th ciphertext
We choose additional random scalars βλ

$← Zq, to virtually set bλ = rλ · b + βλ and cλ =
rλ · c+ βλ · a, then cλ − abλ = µ · rλ, which is either 0 or rλ.

tλ = p k∗
λ = (0, 0, aλ, 0, 0, 0, rλ)D∗ + (bλ(tλ,−1), 0, 0, 0, cλ,−cλ, 0, 0)V∗

= (0, 0, aλ, 0, 0, 0, rλ, 0, 0)D∗ + (bλ(tλ,−1), 0, 0, 0, cλ − abλ,−cλ + abλ, 0, 0)D∗

= (bλ(tλ,−1), aλ, 0, 0, µ · rλ, rλ − µ · rλ, 0, 0)D∗

If µ = 0, we are in the previous game. If µ = 1, then we are in the current game. Then,
every other key is computed directly in D∗:

tλ < p k∗
λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0, 0, 0)D∗

tλ > p k∗
λ = (πλ(tλ,−1), aλ, 0, 0, 0, rλ, 0, 0)D∗

as well as the answers to OKeyGen-queries.
The ciphertexts are calculated through V but are unchanged by the change of basis because
the 6-th and 7-th components are exactly the same for every ciphertext query m, and thus
cancel themselves in the 2nd component. We thus have Adv0.p.1 − Adv0.p.2 ≤ 2 · Advddh

G2 (t).

Game G0.p.3: We keep the um,p value (at the 6-th hidden position) in the ciphertexts, and
replace it in all other ciphertexts by 0. To show this is possible without impacting the other

6.4 - Our SA-KP-ABE 97

vectors, we use the Index-Ind property from Theorem 7, but in another level of sequence of
hybrid games, for γ ∈ {1, . . . , P}\{p}. We will enumerate γ in their order of appearance
in the security game (wether in key queries, or in ciphertexts), therefore we can treat an
unbounded number of γ.
Game G0.p.2.γ: We consider the following hybrid game, where the first satisfied condition

on the indices is applied:

cm,p = (σm,p(1, p), ωm, 0, 0, um,p, um,p, 0, 0)D
cm,t = (σm,t(1, t), ωm, 0, 0, 0, um,t, 0, 0)D p ̸= t < γ

cm,t = (σm,t(1, t), ωm, 0, 0, um,t, um,t, 0, 0)D p ̸= t ≥ γ

Keys are unchanged throughout the hybrid game

k∗
λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0, 0, 0)D∗ tλ < p

k∗
λ = (πλ(tλ,−1), aλ, 0, 0, rλ, 0, 0, 0)D∗ tλ = p

k∗
λ = (πλ(tλ,−1), aλ, 0, 0, 0, rλ, 0, 0)D∗ tλ > p

When γ = 1, this is the previous game: G0.p.2.1 = G0.p.2, whereas with γ = P + 1, this
is the current game: G0.p.2.P +1 = G0.p.3.
We will gradually replace the um,t values, at the 6-th hidden position, by 0 (when t ̸= p):
in this game, we deal with the case t = γ, for the m-th ciphertext query.
For this, we use the Adaptive Index-Ind property on (D∗,D)1,2,6,8,9, with:

k∗
λ = (πλ(tλ,−1), aλ, 0, 0, rλ, 0, 0, 0)D∗ tλ = p

cm,t = (σm,t(1, t), ωm, 0, 0, um,t, um,t, 0, 0)D t = γ

We remind that um,p = 0 because rλ ̸= 0. If rλ = 0, then we would have skipped directly
to the hybrid p+ 1 game.

With all this sequence, we have Adv0.p.2 − Adv0.p.3 ≤ 2P · (8× Advddh
G2 (t) + 4× Advddh

G1 (t)).

Game G0.p.4: In this final game for p, we can finally cancel out rλ in each key with tλ = p
because it corresponds to a coordinate where all other values (in keys and ciphertexts) are
0. We consider a triple (a · G2, b · G2, c · G2), where c = ab + α mod q, with either α = 0
or α = rλ. One defines the matrices

D =
(

1 0
a 1

)
1,6

D′ =
(

1 −a
0 1

)
1,6

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d6, but all the ciphertexts have a
0 components in 6-th position. So one can set all the values honestly in D and D∗, except
for

kλ = (0, 0, aλ, 0, 0, 0, 0, 0, 0)D + (b(p,−1), 0, 0, 0, c, 0, 0, 0)V
= (0, 0, aλ, 0, 0, 0, 0, 0, 0)D + (b(p,−1), 0, 0, 0, c− ab, 0, 0, 0)D
= (b(1, p), aλ, 0, 0, α, 0, 0, 0)D

When α = 0, this is exactly the current game, with πλ = b, whereas α = rλ, this is the
previous game. Then, Adv0.p.3 − Adv0.p.4 ≤ 2 · Advddh

G2 (t).

In total, this sequence of games, for a given p, satisfies Then,

AdvG0.p.4 − AdvG0.p.0 ≤ 4 · Advddh
G2 (t) + 2P · (8× Advddh

G2 (t) + 4× Advddh
G1 (t))

≤ (24P + 4) · Advsxdh(t)

In the last game, the adversary has zero advantage. Indeed, whether b = 0 or b = 1, the
distributions of dk0 and dk1 are perfectly identical, with all-passive leaves.

98 6 - ABE with Switchable Attributes

dAtt-IND-Security – Proof of Theorem 15

Proof We start with the distinct variant, where all the invalid attributes in the challenge
ciphertext do not correspond to any active leaf in the obtained keys. Our proof will proceed by
games.
Game G0: This is the real security game, where the simulator honestly emulates the chal-

lenger, with PK = {(b1,b3,b∗
1), (d1,d2,d3,d7,d∗

1,d∗
2,d∗

3)} and MK = {b∗
3,d∗

7}, from random
dual orthogonal bases. The public parameters PK are provided to the adversary. Since d7 is
public (empty SK), there is no need to provide access to an encryption oracle.

OKeyGen(T̃ℓ) (or ODelegate-queries): The adversary is allowed to issue KeyGen-queries on an
access-tree T̃ℓ = (Tℓ,Lℓ,a,Lℓ,p) (for the ℓ-th query), for which the simulator chooses a
random scalar aℓ,0

$← Zq and a random aℓ,0-labeling (aℓ,λ)λ of the access-tree Tℓ, and
builds the key:

k∗
ℓ,0 = (aℓ,0, 0, 1)B∗ k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, 0, rℓ,λ, 0, 0)D∗

for all the leaves λ, where tℓ,λ = A(λ), πℓ,λ
$← Zq and rℓ,λ

$← Z∗
q if λ is an active leaf, or

rℓ,λ ← 0 otherwise. The decryption key is dkℓ = (k∗
ℓ,0, (k∗

ℓ,λ)λ);
RoAVEncaps(Γv,Γi): The challenge ciphertext is built on a set of attributes Γv ·∪ Γi, with

random scalars ω, ξ $← Zq to set K = gξ
t . Then, the simulator generates the ciphertext

C0 = (c0, (ct)t), for all the attributes t ∈ Γv ·∪ Γi, with σt
$← Zq, and where ut

$← Z∗
q if

t ∈ Γi, or ut = 0 if t ∈ Γv:

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, ut, 0, 0)D
On the other hand, it computes C1 = (c0, (ct)t) for all t ∈ Γv ·∪ Γi as:

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, 0, 0, 0)D

According to the real or all-valid game (bit b $← {0, 1}), one outputs (K,Cb).

From the adversary’s guess b′ for b, if for some T̃ℓ = (Tℓ,Lℓ,a,Lℓ,p), there is some active
leaf λ ∈ Lℓ,a such that tλ = A(λ) ∈ Γi, then β $← {0, 1}, otherwise β = b′. We denote
Adv0 = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].
We stress that in this distinct attribute-indistinguishability security game, the invalid at-
tributes in the challenge ciphertext (t ∈ Γi with possibly ut ̸= 0) correspond to passive leaves
only (λ ∈ Lℓ,p with rℓ,λ = 0, for all queries). But we do not exclude accepting access-trees.

Game G1: The second and final game simply corresponds to the situation where ut = 0 in
C0, clearly leading to Adv1 = 0.
Using the indexing technique, we can show this game is indistinguishable the previous game.
But we need to describe a sub-sequence of games (see Figure 6.7) for proving the gap from
the above G0 to G1, with the sequence G0.p.∗, that will modify the p-th ciphertext in the
challenge ciphertext, for p ∈ {1, . . . , P + 1}, where G0 = G0.1.0, and G1 = G0.P +1.0. In these
games, we describe how we generate the keys and the real encapsulation C0. C1 will be easily
simulated in an honest way.

Game G0.p.0: One thus chooses random scalars and defines the hybrid game for some p,
where the first components of the ciphertext are all-valid, and the last ones are real:

k∗
ℓ,0 = (aℓ,0, 0, 1)B∗ k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, 0, rℓ,λ, 0, 0)D∗

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, 0, 0, 0)D t < p

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, ut, 0, 0)D t ≥ p

6.4 - Our SA-KP-ABE 99

c0 = (ω 0 ξ) k∗
ℓ,0 = (aℓ,0 0 1)

G0.p.0 Hybrid game for G0 and G1, with 1 ≤ p ≤ P + 1
k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 0 rℓ,λ | 0 0)
t < p ct = (σt(1, t) ω | 0 0 0 0 | 0 0)
t ≥ p ct = (σt(1, t) ω | 0 0 0 ut | 0 0)

G0.p.1 Formal basis change, on (D,D∗)6,7, to duplicate rℓ,λ in the 6-th column
k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 rℓ,λ rℓ,λ | 0 0)
t < p ct = (σt(1, t) ω | 0 0 0 0 | 0 0)
t ≥ p ct = (σt(1, t) ω | 0 0 0 ut | 0 0)

G0.p.2 Swap-Ind Property, on (D,D∗)1,6,7, to swap up alone in the 6-th column
k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 rℓ,λ rℓ,λ | 0 0)
t < p ct = (σt(1, t) ω | 0 0 0 0 | 0 0)

cp = (σp(1, p) ω | 0 0 up 0 | 0 0)
t > p ct = (σt(1, t) ω | 0 0 0 ut | 0 0)

G0.p.3 Index-Ind Property, on (D,D∗)1,2,6, between rℓ,λ and 0, for tℓ,λ ̸= p
tℓ,λ = p k∗

ℓ,λ = (πℓ,λ(p,−1) aℓ,λ | 0 0 0 0 | 0 0)
tℓ,λ ̸= p k∗

ℓ,λ = (πℓ,λ(p,−1) aℓ,λ | 0 0 0 rℓ,λ | 0 0)
t < p ct = (σt(1, t) ω | 0 0 0 0 | 0 0)

cp = (σp(1, p) ω | 0 0 up 0 | 0 0)
t > p ct = (σt(1, t) ω | 0 0 0 ut | 0 0)

G0.p.4 SubSpace-Ind Property, on (D,D∗)1,6, between up and 0
k∗

ℓ,λ = (πℓ,λ(p,−1) aℓ,λ | 0 0 0 rℓ,λ | 0 0)
t < p ct = (σt(1, t) ω | 0 0 0 0 | 0 0)

cp = (σp(1, p) ω | 0 0 0 0 | 0 0)
t > p ct = (σt(1, t) ω | 0 0 0 ut | 0 0)

Figure 6.7: Sub-sequence of games for Distinct Attribute-Indistinguishability

100 6 - ABE with Switchable Attributes

Of course, the values rℓ,λ and ut are random in Z∗
q or 0 according to Lℓ,a/Lℓ,p and Γi/Γv.

In particular, if up = 0, we can directly go to G0.p.4, as there is no change from this game.
The following sequence only makes sense when up ̸= 0, but then necessarily rℓ,λ = 0 for all
the pairs (ℓ, λ) such that tℓ,λ = p. We thus assume this restriction in this sequence: up ̸= 0
and rℓ,λ = 0 for all (ℓ, λ) such that tℓ,λ = p.

Game G0.p.1: One defines the matrices

D =
(

1 1
0 1

)
6,7

D′ =
(

1 0
−1 1

)
6,7

D = D · V D∗ = D′ · V∗

which modifies the hidden and secret vectors d6 and d∗
7, and so are not in the view of the

adversary:

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, 0, rℓ,λ, 0, 0)V∗

= (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, rℓ,λ, rℓ,λ, 0, 0)D∗

ct = (σt(1, t), ω, 0, 0, 0, 0)V = (σt(1, t), ω, 0, 0, 0, 0, 0, 0)D if t < p

ct = (σt(1, t), ω, 0, 0, 0, ut)V = (σt(1, t), ω, 0, 0, 0, ut, 0, 0)D if t ≥ p

We thus have Adv0.p.1 = Adv0.p.0.

Game G0.p.2: We use the Swap-Ind-property on (D,D∗)1,6,7: Indeed, we can consider a triple
(a · G1, b · G1, c · G1), where c = ab + θ mod q with either θ = 0 or θ = up. We define the
matrices

D =

 1 a −a
0 1 0
0 0 1

1,6,7

D′ =

 1 0 0
−a 1 0
a 0 1

1,6,7

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d∗
6,d∗

7, but we define the keys on
the original basis V∗:

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, rℓ,λ, rℓ,λ, 0, 0)V∗

= (πℓ,λ · tℓ,λ + arℓ,λ − arℓ,λ,−πℓ,λ, aℓ,λ, 0, 0, rℓ,λ, rℓ,λ, 0, 0)D∗

= (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, rℓ,λ, rℓ,λ, 0, 0)D∗

ct = (σt(1, t), ω, 0, 0, 0, 0, 0, 0)D if t < p

cp = (σ(1, p), ω, 0, 0, 0, up, 0, 0)D + (b(1, p), 0, 0, 0, c,−c, 0, 0)V
= (σ(1, p), ω, 0, 0, 0, up, 0, 0)D + (b(1, p), 0, 0, 0, c− ab,−c+ ab, 0, 0)D
= ((σ + b)(1, p), ω, 0, 0, θ, up − θ, 0, 0)D

ct = (σt(1, t), ω, 0, 0, 0, ut, 0, 0)D if t > p

With θ = 0, this is as in the previous game, where σp = σ + b. When θ = up, this is the
current game: Adv0.p.1 − Adv0.p.2 ≤ 2 · Advddh

G1 (t).

Game G0.p.3: We make all the rℓ,λ values (at the 6-th hidden position) in the keys to be
0, excepted for tℓ,λ = p. The case tℓ,λ = p is already rℓ,λ = 0, by assumption in this
sequence, as up ̸= 0. For that, we iteratively replace all the values by zero, using the
Adaptive Index-Ind-property from theorem 7, in another level of sequence of hybrid games,
for γ ∈ {1, . . . , P}\{p}. We will enumerate γ in their order of appearance in the security
game (wether in key queries, or in ciphertexts), therefore we can treat an unbounded number
of γ.

6.4 - Our SA-KP-ABE 101

Game G0.p.2.γ: We consider

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, 0, 0, 0, 0)D∗ if tℓ,λ = p

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, 0, rℓ,λ, 0, 0)D∗ if p ̸= tℓ,λ < γ

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, rℓ,λ, rℓ,λ, 0, 0)D∗ if p ̸= tℓ,λ ≥ γ
ct = (σt(1, t), ω, 0, 0, 0, 0, 0, 0)D if t < p

cp = (σp(1, p), ω, 0, 0, up, 0, 0, 0)D
ct = (σt(1, t), ω, 0, 0, 0, ut, 0, 0)D if t > p

When γ = 1, this is the previous game: G0.p.2.1 = G0.p.2, whereas with γ = P + 1, this
is the current game: G0.p.2.P +1 = G0.p.3.
For this, we use the Adaptive Index-Ind property on (D∗,D)1,2,6,8,9, with:

cp = (σp(1, p), ω, 0, 0, up, 0, 0, 0)D
k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, rℓ,λ, rℓ,λ, 0, 0)D∗ tℓ,λ = γ

As a consequence, Adv0.p.2 − Adv0.p.3 ≤ 2P · (8× Advddh
G1 (t) + 4× Advddh

G2 (t)).

Game G0.p.4: One can easily conclude by removing up in the ciphertext cp, as it corresponds
to a coordinate where all the other values (in the keys and the ciphertext) are 0. To this
aim, we can consider a triple (a ·G1, b ·G1, c ·G1), where c = ab+α mod q with either α = 0
or α = up. One defines the matrices

D =
(

1 a
0 1

)
1,6

D′ =
(

1 0
−a 1

)
1,6

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d∗
6, which has only 0 components

in the keys. So one can set all the values honestly in D and D∗, excepted

cp = (b(1, p), ω, 0, 0, c, 0, 0, 0)V = (b(1, p), ω, 0, 0, c− ab, 0, 0, 0)D
= (b(1, p), ω, 0, 0, α, 0, 0, 0)D

When α = 0, this is exactly the current game, with σp = b, whereas for α = up, this is the
previous game. Then, Adv0.p.3 − Adv0.p.4 ≤ 2 · Advddh

G1 (t).

In total, this sequence of games, for a given p, satisfies Then,

AdvG0.p.4 − AdvG0.p.0 ≤ 4 · Advddh
G1 (t) + 2P · (8× Advddh

G1 (t) + 4× Advddh
G2 (t))

≤ (4 + 24P) · Advsxdh(t)

Att-IND-Security – Proof of Theorem 16

Proof We now prove the attribute-indistinguishability, where there are no restrictions between
active leaves in the keys and invalid attributes in the challenge ciphertext, but just that the
access-trees of the obtained keys reject the attribute-set of the challenge ciphertext, even in the
all-valid case. Our proof will proceed by games. Not that we also assume active keys correspond
to independent leaves with respect to the set of attributes Γ = Γv ·∪Γi in the challenge ciphertext.

Game G0: This is the real security game, where the simulator honestly emulates the chal-
lenger, with PK = {(b1,b3,b∗

1), (d1,d2,d3,d7,d∗
1,d∗

2,d∗
3)} and MK = {b∗

3,d∗
7}, from random

dual orthogonal bases. The public parameters PK are provided to the adversary. Since d7 is
public (empty SK), there is no need to provide access to an encryption oracle.

102 6 - ABE with Switchable Attributes

OKeyGen(T̃ℓ) (or ODelegate-queries): The adversary is allowed to issue KeyGen-queries on an
access-tree T̃ℓ = (Tℓ,Lℓ,a,Lℓ,p) (for the ℓ-th query), for which the simulator chooses a
random scalar aℓ,0

$← Zq and a random aℓ,0-labeling (aℓ,λ)λ of the access-tree Tℓ, and
builds the key:

k∗
ℓ,0 = (aℓ,0, 0, 1)B∗ k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, 0, rℓ,λ, 0, 0)D∗

for all the leaves λ, where tℓ,λ = A(λ), πℓ,λ
$← Zq and rℓ,λ

$← Z∗
q if λ is an active leaf, or

rℓ,λ ← 0 otherwise. The decryption key is dkℓ = (k∗
ℓ,0, (k∗

ℓ,λ)λ);
RoAVEncaps(Γv,Γi): The challenge ciphertext is built on a set of attributes Γv ·∪ Γi, with

random scalars ω, ξ $← Zq to set K = gξ
t . Then, the simulator generates the ciphertext

C1 = (c0, (ct)t), for all the attributes t ∈ Γv ·∪ Γi, with σt
$← Zq:

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, 0, 0, 0)D

On the other hand, it computes C0 = (c0, (ct +(0, 0, 0, 0, 0, 0, ut, 0, 0)D)t), where ut
$← Z∗

q

if t ∈ Γi, or ut = 0 if t ∈ Γv. According to the real or all-valid game (bit b $← {0, 1}), one
outputs (K,Cb).

From the adversary’s guess b′ for b, if for some T̃ℓ = (Tℓ,Lℓ,a,Lℓ,p), for which tree a key has
been obtained, T̃ℓ(Γv ·∪Γi, ∅) = 1 then β $← {0, 1}, otherwise β = b′. We denote Adv0 = Pr[β =
1|b = 1]− Pr[β = 1|b = 0].

We now proceed with exactly the same sequence as in the IND-security proof of the KP-ABE
in 8, except the RoREncaps-challenge is instead a RoAVEncaps-challenge, where we require
T̃ℓ(Γv ·∪ Γi, 0) = 0 for all the obtained keys. For the same reason, the OEncaps-queries on
pairs (Γm,v,Γm,i), with Γm,i ̸= ∅ can be simulated. Indeed, as above, everything on the 7-th
component can be done independently, knowing both d7 and d∗

7, as these vectors will be
known to the simulator, almost all the time, excepted in some specific gaps. In theses cases,
we will have to make sure how to simulate the OEncaps ciphertexts.

As in that proof, the idea of the sequence is to introduce an additional labeling (sℓ,0, (sℓ,λ)λ)
in the hidden components of each key, with a random sℓ,0, as the trees are rejecting. We are
thus able to go as in G3, from Figure 5.1, where each label is masked by a random zt for each
attribute t. The following sequence is described on Figure 6.8.

Game G1: This is as G1, with a random τ in the challenge ciphertext.

Game G2: This is as G2, with random zt in the challenge ciphertext.

Game G3: This is as G3, with an additional independent sℓ,0-labeling (sℓ,λ) for each access-
tree Tℓ and a random rℓ,0 to define

k∗
ℓ,0 = (aℓ,0, rℓ,0, 1)B∗ k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, sℓ,λ/ztk,λ
, rℓ,λ, 0, 0)D∗

We stress that all these steps are not impacted by the values ut in the 7-th component of the
challenge ciphertext:

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, τ, 0, τzt, (1− b) · ut, 0, 0)D

where b is the random bit of the challenger: when b = 0, the ciphertext is in the real case,
whereas for b = 1, one gets an all-valid ciphertext.

6.4 - Our SA-KP-ABE 103

G0 Real Att-IND-Security game
c0 = (ω 0 ξ) ct = (. . . | 0 0 0 (1− b) ·

ut

| 0 0)

k∗
ℓ,0 = (aℓ,0 0 1) k∗

ℓ,λ = (. . . | 0 0 0 rℓ,λ | 0 0)

G1 SubSpace-Ind Property, on (B,B∗)1,2 and (D,D∗)3,4, between 0 and τ $← Zq

c0 = (ω τ ξ) ct = (. . . | τ 0 0 (1− b) ·
ut

| 0 0)

k∗
ℓ,0 = (aℓ,0 0 1) k∗

ℓ,λ = (. . . | 0 0 0 rℓ,λ | 0 0)
G2 SubSpace-Ind Property, on (D,D∗)(1,2),6, between 0 and τzt

c0 = (ω τ ξ) ct = (. . . | τ 0 τzt (1− b) ·
ut

| 0 0)

k∗
ℓ,0 = (aℓ,0 0 1) k∗

ℓ,λ = (. . . | 0 0 0 rℓ,λ | 0 0)
G3 Additional random-labeling as in the IND-security proof. See Figure 5.2

c0 = (ω τ ξ) ct = (. . . | τ 0 τzt (1− b) ·
ut

| 0 0)

k∗
ℓ,0 = (aℓ,0 rℓ,0 1) k∗

ℓ,λ = (. . . | 0 0 sℓ,λ/ztℓ,λ
rℓ,λ | 0 0)

G4 Index-Ind property to suppress ut, when b = 0. See Figure 6.9
c0 = (ω τ ξ) ct = (. . . | τ 0 τzt 0 | 0 0)

k∗
ℓ,0 = (aℓ,0 rℓ,0 1) k∗

ℓ,λ = (. . . | 0 0 s′
ℓ,λ/ztℓ,λ

rℓ,λ | 0 0)
G5 Limitation of independent active leaves

c0 = (ω τ ξ) ct = (. . . | τ 0 τzt 0 | 0 0)
k∗

ℓ,0 = (aℓ,0 rℓ,0 1) k∗
ℓ,λ = (. . . | 0 0 sℓ,λ/ztℓ,λ

rℓ,λ | 0 0)

Figure 6.8: Global sequence of games for the Att-IND-security proof of our SA-KP-ABE

Game G4: We remove all ut from the RoAVEncaps challenge query, in the case b = 1:

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, τ, 0, τzt, 0, 0, 0)D
k∗

ℓ,0 = (aℓ,0, rℓ,0, 1)B∗ k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, s′

ℓ,λ/ztk,λ
, rℓ,λ, 0, 0)D∗

where s′
ℓ,λ is either the label sℓ,λ or an independent random value when utk,λ

· rk,λ ̸= 0, in the
case b = 0. And nothing is changed when b = 1. To this aim, we use a different sequence
G3.p.∗ presented in the Figure 6.9, when b = 1 only, for p ∈ {1, . . . , P}, that will modify the
p-th ciphertext in the challenge ciphertext, where G3 = G3.1.0, and G4 = G3.P +1.0.

Game G3.p.0: One thus chooses random scalars and defines the hybrid game for some p,
where the first components of the ciphertext are all-valid, and the last ones are real:

k∗
ℓ,0 = (aℓ,0, rℓ,0, 1)B∗ k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, sℓ,λ/ztℓ,λ
, rℓ,λ, 0, 0)D∗

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, τ, 0, τzt, 0, 0, 0)D if t < p

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, τ, 0, τzt, ut, 0, 0)D if t ≥ p

Of course, the values rℓ,λ and ut are random in Z∗
q or 0 according to Lℓ,a/Lℓ,p and Γi/Γv.

In particular, if up = 0, we can directly go to G3.p.5, as there is no change from this game.
But there is no need to know it in advance, and so we can follow this sequence in any case
and set up in the ciphertext at the challenge-time.

104 6 - ABE with Switchable Attributes

G3.p.0 Hybrid game for G3 and G4, with 1 ≤ p ≤ P + 1
t < p ct = (σt(1, t) ω | τ 0 τzt 0 | 0 0)
t ≥ p ct = (σt(1, t) ω | τ 0 τzt ut | 0 0)

k∗
ℓ,0 = (aℓ,0 rℓ,0 1)

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 sℓ,λ/ztℓ,λ

rℓ,λ | 0 0)
G3.p.1 Formal basis change, on (D,D∗)5,7, to duplicate rℓ,λ in the 5-th column

cp = (σp(1, p) ω | τ 0 τzp up | 0 0)
k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 rℓ,λ sℓ,λ/ztℓ,λ
rℓ,λ | 0 0)

G3.p.2 Swap-Ind Property, on (D,D∗)1,5,7, to swap up alone in the 5-th column
cp = (σp(1, p) ω | τ up τzp 0 | 0 0)

t ̸= p ct = (σt(1, t) ω | τ 0 τzt ut | 0 0)
G3.p.3 Index-Ind Property, on (D∗,D)1,2,5, between rℓ,λ and 0, for tℓ,λ ̸= p

cp = (σp(1, p) ω | τ up τzp 0 | 0 0)
tℓ,λ ̸= p k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 sℓ,λ/ztℓ,λ
rℓ,λ | 0 0)

tℓ,λ = p k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 rℓ,λ sℓ,λ/ztℓ,λ

rℓ,λ | 0 0)
G3.p.4 SubSpace-Ind Property, on (D,D∗)6,5, between up and 0

cp = (σp(1, p) ω | τ 0 τzp 0 | 0 0)
tℓ,λ ̸= p k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 sℓ,λ/ztℓ,λ
rℓ,λ | 0 0)

tℓ,λ = p k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 rℓ,λ s′

ℓ,λ/ztℓ,λ
rℓ,λ | 0 0)

G3.p.5 SubSpace-Ind Property, on (D∗,D)6,5, between rℓ,λ and 0, for tℓ,λ = p
t ≤ p ct = (σt(1, t) ω | τ 0 τzt 0 | 0 0)
t > p ct = (σt(1, t) ω | τ 0 τzt ut | 0 0)
tℓ,λ ̸= p k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 sℓ,λ/ztℓ,λ
rℓ,λ | 0 0)

tℓ,λ = p k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1) aℓ,λ | 0 0 s′

ℓ,λ/ztℓ,λ
rℓ,λ | 0 0)

Figure 6.9: Hybrid game on p for the Att-IND-security proof of our SA-KP-ABE, when b = 0

6.4 - Our SA-KP-ABE 105

Game G3.p.1: One defines the matrices

D =
(

1 1
0 1

)
5,7

D′ =
(

1 0
−1 1

)
5,7

D = D · V D∗ = D′ · V∗

which modifies the hidden and secret vectors d6 and d∗
7, and so are not in the view of the

adversary:

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, sℓ,λ/ztℓ,λ

, rℓ,λ, 0, 0)V∗

= (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, rℓ,λ, sℓ,λ/ztℓ,λ
, rℓ,λ, 0, 0)D∗

ct = (σt(1, t), ω, τ, 0, τzt, 0, 0, 0)V = (σt(1, t), ω, τ, 0, τzt, 0, 0, 0)D if t < p

ct = (σt(1, t), ω, τ, 0, τzt, ut, 0, 0)V = (σt(1, t), ω, τ, 0, τzt, ut, 0, 0)D if t ≥ p

We thus have Adv3.p.1 = Adv3.p.0.

Game G3.p.2: We use the Swap-Ind-property on (D,D∗)1,5,7: Indeed, we can consider a triple
(a · G1, b · G1, c · G1), where c = ab + θ mod q with either θ = 0 or θ = up. We define the
matrices

D =

 1 a −a
0 1 0
0 0 1

1,5,7

D′ =

 1 0 0
−a 1 0
a 0 1

1,5,7

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d∗
5,d∗

7, but we define the keys on
the original basis V∗:

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, rℓ,λ, sℓ,λ/ztℓ,λ

, rℓ,λ, 0, 0)V∗

= (πℓ,λ · tℓ,λ + arℓ,λ − arℓ,λ,−πℓ,λ, aℓ,λ, 0, rℓ,λ, sℓ,λ/ztℓ,λ
, rℓ,λ, 0, 0)D∗

= (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, rℓ,λ, sℓ,λ/ztℓ,λ
, rℓ,λ, 0, 0)D∗

ct = (σt(1, t), ω, τ, 0, τzt, 0, 0, 0)D if t < p

cp = (σ(1, p), ω, τ, 0, τzp, up)D + (b(1, p), 0, 0, c, 0,−c, 0, 0)V
= (σ(1, p), ω, τ, 0, τzp, up)D + (b(1, p), 0, 0, c− ab, 0,−c+ ab, 0, 0)D
= ((σ + b)(1, p), ω, τ, θ, τzp, up − θ, 0, 0)D

ct = (σt(1, t), ω, τ, 0, τzt, ut, 0, 0)D if t > p

With θ = 0, this is as in the previous game, where σp = σ + b. When θ = up, this is the
current game: Adv3.p.1 − Adv3.p.2 ≤ 2 · Advddh

G1 (t).

Game G3.p.3: We make all the rℓ,λ values (at the 5-th hidden position) in the keys to be
0, excepted when tℓ,λ = p. For that, we iteratively replace all the values by zero, using
Adaptive Index-Ind-property from theorem 7, in another level of sequence of hybrid games,
for γ ∈ {1, . . . , P}\{p}. We will enumerate γ in their order of appearance in the security
game (wether in key queries, or in ciphertexts), therefore we can treat an unbounded number
of γ.
Game G3.p.2.γ: We consider

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, rℓ,λ, sℓ,λ/ztℓ,λ

, rℓ,λ, 0, 0)D∗ if tℓ,λ = p

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, 0, sℓ,λ/ztℓ,λ

, rℓ,λ, 0, 0)D∗ if p ̸= tℓ,λ < γ

k∗
ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, rℓ,λ, sℓ,λ/ztℓ,λ

, rℓ,λ, 0, 0)D∗ if p ̸= tℓ,λ ≥ γ
ct = (σt(1, t), ω, τ, 0, τzt, 0, 0, 0)D if t < p

cp = (σp(1, p), ω, τ, up, τzp, 0, 0, 0)D
ct = (σt(1, t), ω, τ, 0, τzt, ut, 0, 0)D if t > p

106 6 - ABE with Switchable Attributes

When γ = 1, this is the previous game: G3.p.2.1 = G3.p.2, whereas with γ = P + 1, this
is the current game: G3.p.2.P +1 = G3.p.3.
For this, we use the Adaptive Index-Ind property on (D∗,D)1,2,5,8,9, with:

cp = (σp(1, p), ω, τ, up, τzp, 0, 0, 0)D
k∗

ℓ,λ = (πℓ,λ(tℓ,λ,−1), aℓ,λ, 0, rℓ,λ, sℓ,λ/ztℓ,λ
, rℓ,λ, 0, 0)D∗ tℓ,λ = γ

Game G3.p.4: We use the SubSpace-Ind-property on (D,D∗)6,5: Indeed, we can consider a
triple (a ·G1, b ·G1, c ·G1), where c = ab+ θ mod q with either θ = 0 or θ = up. We define
the matrices

D =
(

1 0
a 1

)
5,6

D′ =
(

1 −a
0 1

)
5,6

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d∗
5 that is not public, and not used

excepted for the keys with tℓ,λ = p, which will be defined in the original basis V∗:

k∗
ℓ,λ = (πℓ,λ(p,−1), aℓ,λ, 0, rℓ,λ, sℓ,λ/zp, rℓ,λ, 0, 0)V∗

= (πℓ,λ(p,−1), aℓ,λ, 0, rℓ,λ, sℓ,λ/zp + arℓ,λ, rℓ,λ, 0, 0)D∗

= (πℓ,λ(p,−1), aℓ,λ, 0, rℓ,λ, s
′
ℓ,λ/zp, rℓ,λ, 0, 0)D∗

ct = (σt(1, t), ω, b, 0, bzt, 0, 0, 0)D if t < p

cp = (σp(1, p), ω, b, c, bzp, 0, 0, 0)V = (σp(1, p), ω, b, c− ab, bzp, 0, 0, 0)D
= (σp(1, p), ω, b, θ, bzp, 0, 0, 0)D

ct = (σt(1, t), ω, b, 0, bzt, ut, 0, 0)D if t > p

When θ = 0, this is this game, whereas when θ = up, this is the previous game, with τ = b
and s′

ℓ,λ = sℓ,λ +azprℓ,λ a new random and independent value for each active leaf associated
to the attribute p.

Game G3.p.5: We use the SubSpace-Ind-property on (D∗,D)6,5: Indeed, we can consider a
triple (a ·G2, b ·G2, c ·G2), where c = ab+ ζ mod q with either ζ = 0 or ζ = 1. We define
the matrices

D′ =
(

1 0
a 1

)
5,6

D =
(

1 −a
0 1

)
5,6

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d5 that is not public, and not used
in the ciphertext. All the vectors can be computed in the new bases, excepted the keys
for tℓ,λ = p, for which one chooses additional random scalars βℓ,λ

$← Zq, to virtually set
bℓ,λ = rℓ,λ · b+ βℓ,λ and cℓ,λ = rℓ,λ · c+ βℓ,λ · a, cℓ,λ − abℓ,λ = rℓ,λ · ζ.

k∗
ℓ,λ = (πℓ,λ(p,−1), aℓ,λ, 0, cℓ,λ, bℓ,λ, rℓ,λ, 0, 0)V∗

= (πℓ,λ(p,−1), aℓ,λ, 0, cℓ,λ − abℓ,λ, bℓ,λ, rℓ,λ, 0, 0)D∗

= (πℓ,λ(p,−1), aℓ,λ, 0, ζ · rℓ,λ, bℓ,λ, rℓ,λ, 0, 0)D∗

When ζ = 0, this is this game, whereas when ζ = 1, this is the previous game, with
s′

ℓ,λ = zp · bℓ,λ, a truly random and independent value for each active leaf associated to the
attribute p.

Game G5: Under the assumption of independent active leaves with respect to the set of at-
tributes Γ = Γv ·∪ Γi in the challenge ciphertext, the random values s′

ℓ,λ are indistinguishable
from real labels s′

ℓ,λ. Indeed, labels that correspond to leaves that are associated to attributes
not in Γ are unknown, as the masks zt are not revealed. This shows that the advantage of the
adversary in this last game is 0.

6.5 - Application to Traitor-Tracing 107

AND

AND
A1,1 A2,0 A3,1

T
Leaf Gate

Figure 6.10: Tracing sub-tree for the codeword w = (1, 0, 1)

6.5 Application to Traitor-Tracing
Before going into the formalism, we give an intuition of our method. In our Traitor-Tracing
approach, any user would be given a key associated to a word in a traceable code at key
generation time. To embed a word inside a key, the key generation authority only needs to
create a new policy for a user with policy T : the new policy will be a root AND gate, that
connects the original access-tree T as one child, and a word-based access-tree composed of
active leaves as another child, as illustrated on Figure 6.10.

From there, the tracing authority, using the secret key SK, could trace any Pirate Decoder
by invalidating attributes associated to the positions in words, one position at a time. Since an
adversary cannot know whether attributes are valid or invalid, he will answer each queries of
the tracer, as long as not impacted by the invalid attributes (thanks to the Distinct Attribute-
Indistinguishability), effectively revealing the bits of his word on each position. When the
tracer finds his complete word, he eventually traces back the traitors, from the traceable-code
properties. Furthermore, thanks to the Attribute-Indistinguishability (not Distinct), a traitor
that has been identified by the tracing authority can be removed from the target set at tracing
time, and can thus no longer participate in the coalition, as it will be excluded from the policy,
whatever the valid/invalid attributes. We stress that the secret key SK is required for invalidating
some attributes, and so for the tracing. We thus have secret-key black-box traceability.

6.5.1 Delegatable and Traceable KP-ABE
Our initial motivation was to adapt KP-ABE with delegation to support tracing, which should
not be detectable by the pirate decoder. We now explain how our SA-KP-ABE primitive allows
that. We recall the definitions of tracing, and then we illustrate with a possible family of policies
with switchable leaves and attributes. We first add a Tracing algorithm to the initial definition
of delegatable KP-ABE from 5.2:

Setup(1κ, n, t). From the security parameter κ, the total number n of users in the system, and
the maximal size t on the collusion, the algorithm defines all the global parameters PK,
the master secret key MK, and the tracing key TK;

KeyGen(MK, T , id). From a master key MK and an access tree T , the algorithm outputs a key
dkid,T , specific to the user id;

Delegate(dkid,T , T ′, id′). Given a key dkid,T and a more restrictive access-tree T ′ ≤ T , the algo-
rithm outputs a decryption key dkid′,T ′ ;

Encaps(PK,Γ). For a set Γ of attributes, the algorithm generates the ciphertext C and an
encapsulated key K;

Decaps(dkid,T , C). Given the key dkid,T and the ciphertext C, the algorithm outputs the encap-
sulated key K;

TraceD(SK,Γ). Given the secret key SK, and a black-box access to a Pirate Decoder D, the
tracing algorithm outputs an index set I which identifies a set of malicious users, among
the users id and id′ compatible with Γ.

108 6 - ABE with Switchable Attributes

In the above definition, id′ might be for a specific device of user id. Then the authority generates
keys for users, and users delegate for devices, with any more restrictive policy T ′ ≤ T : one can
consider that id′ = id∥d, for device d. One can then trace users and devices.

We expect two properties from the Trace algorithm on a perfect Pirate Decoder for a set
Γ (that always decrypts the encapsulated key), when the number of traitors compatible with
Γ is at most t: it always outputs a non-empty set of traitors, but does never wrongly accuse
anybody.

Definition 13 (Traceability) Initialize: The challenger runs the Setup algorithm and gives
the public parameters PK to the adversary;

OKeyGen(id, T): The adversary is allowed to issue KeyGen-queries for any access-tree T
of its choice, the corresponding secret key dkid,T is generated;

ODelegate(id, T , id′, T ′): The adversary is allowed to issue several Delegate-queries for any
more restrictive access-tree T ′ ≤ T of its choice, for an already generated decryption
key for T , and the corresponding secret key dkid′,T ′ is generated;

OGetKey(id, T): The adversary can then ask and see the secret key dkid,T , if it has been
generated, else it gets ⊥;

Finalize: The adversary generates a set of attributes Γ and a perfect Decoder D on Γ, the
challenger runs TraceD(SK,Γ) to get back I. Let us denote Uc (corrupted users) the set
of id′ for which T ′ has been asked such that T ′(Γ) = 1. If the size of Uc is at most t, but
I ̸⊂ Uc or I is empty, one outputs 1, otherwise one outputs 0.

The success Advtrace(A) of an adversary A in this game is the probability to have 1 as output.

We stress that the above definition requires a perfect Pirate Decoder. This could be relaxed,
but this is enough for our illustration.

6.5.2 Fingerprinting Code

Our technique will exploit traceable codes as in [CFN94] that allow to trace back codewords
from words that have been derived from legitimate codewords. It uses the definition of feasible
set, the list the words that can be derived from a set of words:

Definition 14 (Feasible Set) Let W = {w(1), . . . , w(t)} be a set of t words in {0, 1}ℓ. We
say a word w ∈ {0, 1}ℓ is feasible for W if for all i = 1, . . . , ℓ, there is a j ∈ {1, . . . , t}
such that wi = w

(j)
i . The set of words feasible for W is the feasible set of W , denoted

F (W) = {w ∈ {0, 1}ℓ,∀i,∃w′ ∈W,wi = w′
i}.

A fingerprinting code is a particular traceable code. It defines a set of codewords that allows
correct and efficient tracing to recover the traitor codewords from a word derived from them (in
the feasible set). For the sake of clarity, we focus on binary codes:

Definition 15 (Fingerprinting Code) A fingerprinting code is a pair of algorithms (G,T)
defined as follows:

Code generator G is a probabilistic algorithm that takes a tuple (n, t) as input, where n is
the number of codewords to output, and t is the maximal collusion size. The algorithm
outputs a code Π of n codewords of bit-length ℓ.

Tracing algorithm T is a deterministic algorithm that takes as input a word w∗ ∈ {0, 1}ℓ to
trace. The algorithm T outputs a subset S ⊆ Π of possible traitors.

6.5 - Application to Traitor-Tracing 109

Such a fingerprinting code is said t-secure if for all n > t and all subsets C ⊆ {1, . . . , n} of
size at most t, when we set Π = {w(1), . . . , w(n)} ← G(n, t) and WC = {w(i)}i∈C , for any word
w∗ ∈ F (WC), then ∅ ≠ T (w∗) ⊆ C.

Again, we could relax the definition with error probabilities in identifying a traitor and in
framing an honest user. Tardos codes [Tar03] are examples of short codes with probabilistic
tracing capabilities and low error rates.

6.5.3 Delegatable and Traceable KP-ABE from SA-KP-ABE
We now explain how our SA-KP-ABE primitive is enough for tracing. For the sake of simplicity,
in the following, we will keep id′ = id, without specifying the device, still with any T ′ ≤ T , but
then devices of the same user cannot be traced. Only users can be traced, but various devices
might have different policies:
SetupTr(1κ, n, t). The algorithm calls Setup(1κ) and gets back PK,MK, SK. It also calls code

generator algorithm G(n, t) to get the code Π. It sets the parameters as PKTr = PK,
MKTr = (MK,Π) and TKTr = (SK, T).

KeyGenTr(MKTr, id, T). For an access-tree T , the algorithm defines T Tr, where T Tr = T ∧ TTr
are linked by an AND-gate at their root. The access-tree TTr is constructed as follows (see
Figure 6.10) :

• Choose a word wid = wid,1 . . . wid,ℓ from Π, for any new id;
• Set TTr as the AND of active leaves λi associated to the attributes Ai,wid,i

, for i =
1, . . . , ℓ.

The algorithm then calls KeyGen(MK, T̃ Tr), where all leaves are passive in T and all leaves
are active in TTr, and gets back dkT̃ Tr , and finally sets dkTr

id,T ← dkT̃ Tr .

DelegateTr(dkTr
id,T , T ′). Given a private key for an access-tree T and a more restrictive sub-

tree T ′ ≤ T , but for the same identity (as we focus on id′ = id), the algorithm calls
Delegate(dkT̃ , T̃ ′), where T̃ and T̃ ′ are T and T ′ combined with TTr as above, to get a new
delegated key dkT̃ ′ , and sets dkTr

id,T ′ = dkT̃ ′ .

EncapsTr(PKTr,Γ). For a set Γ of attributes, the algorithm defines ΓTr = {A1,0, A1,1, . . . , Aℓ,0, Aℓ,1}.
It then calls Encaps(PK,Γ∪ΓTr) and gets the output K and C. It then sets KTr = K and
CTr = C.

DecapsTr(dkTr
id,T , C). The algorithm calls DecapsTr(dkT̃ , C), for dkT̃ = dkTr

id,T , to get K, and
outputs KTr = K.

TraceTr(TKTr,Γ). On input the tracing key TKTr = (SK, T), and access to a perfect Pirate
Decoder D, the algorithm repeats the following experiment, for j = 1, . . . , ℓ, to build the
word w∗:

1. Set Γ(0)
v = Γ ∪ {Ak,ℓ, k ̸= j, ℓ ∈ {0, 1}} ∪ {Aj,0} and Γ(0)

i = {Aj,1};
2. Set Γ(1)

v = Γ ∪ {Ak,ℓ, k ̸= j, ℓ ∈ {0, 1}} ∪ {Aj,1} and Γ(1)
i = {Aj,0};

3. Compute the two challenges (K0, C0)← Encaps∗(SK, (Γ(0)
v ,Γ(0)

i)) and
(K1, C1)← Encaps∗(SK, (Γ(1)

v ,Γ(1)
i));

4. Flip a random coin b $← {0, 1}, and ask for the decryption K ′ of Cb to D;
5. If K ′ = Kb then set w∗

j ← b, else set w∗
j ← 1− b.

Eventually, the algorithm runs the tracing algorithm T (w∗) to get S, the set of traitors,
that it outputs.

110 6 - ABE with Switchable Attributes

AND

AND

A1,1 A2,0 A3,1

T

Leaf Gate

Figure 6.11: Tracing sub-tree for the codeword w = (1, 0, 1)

Security Analysis. Again, we stress that we assume perfect Pirate Decoder D, but relaxed
version would be possible. Hence, here, we know that D will successfully decrypt any normal
ciphertext when Γ is acceptable for all the traitors. Then, during the tracing procedure, for any
index j, there are three possibilities:

• If wj = b for all keys in Uc, then the ciphertext Cb is indistinguishable from the one where
Aj,1−b is in Γv because of the Distinct Attribute-Indistinguishability (Att-IND) property of
the scheme, hence D will always output Kb. We correctly set w∗

j = b.

• If wj = 1 − b for all keys in Uc, Kb will be unpredictable because of the Delegation-
Indistinguishability for Encaps∗, we correctly set w∗

j = 1− b.

• If wj has mixed values in 0 and 1 among users in Uc, D can detect that Cb involves active
keys. But we could anyway set w∗

j ← 0 or w∗
j ← 1.

This way, the built word w∗ satisfies that, for each position j, w∗
j = wj , for some w in Uc:

w∗ ∈ F (Uc). If the fingerprinting code is t-secure, since the size of Uc is at most t, ∅ ≠ T (w∗) ⊆
Uc. As a consequence, under the Distinct Attribute-Indistinguishability and the Delegation-
Indistinguishability for Encaps∗, the delegatable KP-ABE is traceable.
Discussions. Our tracing system is presented with basic fingerprinting notions, for the sake
of clarity, but more advanced features are possible. In particular, our tracing algorithm works
as well with non-perfect Pirate Decoder, at the cost of more calls to D to increase the quality
of the estimation. It is also compatible with [BN08], to drastically reduce the ciphertext size.
Eventually, one could also let the user to delegate traceable keys to each devices. However, as
we do not allow public traceability, only the tracing authority can run the tracing procedure, to
trace users or devices.

Chapter

7
ABS with Delegation and
Tracing

Chapter content
7.1 Attribute and Policy Delegations . 111

7.1.1 Definition of Delegateable ABS . 111
7.1.2 Security Model for Delegateable ABS 112

7.2 Description of our Delegateable ABS 113
7.2.1 Security Results . 114
7.2.2 Security Proofs . 115

7.3 Traceable ABS . 116
7.3.1 Definition of Traceable ABS and Security Model 116
7.3.2 One-Time Linearly-Homomorphic Signature 117

7.4 Description of our Traceable ABS . 118
7.4.1 Security Results . 120
7.4.2 Proof of the Traceability . 120

Our last contribution is to improve the ABS scheme presented in Section 5.3.2 with two
different kinds of delegation, either delegating a subset of attributes from a key, or restricting
the signing rights to a specific policy, while still keeping anonymity. This goal was the motivation
behind separating message and policy in two different hash values in the signature. Furthermore,
we prove that our new delegateable signature scheme is compatible with the tracing, which is
a common feature for signatures. We deploy this traceability through the use of One-Time
Linearly Homomorphic Signature.

7.1 Attribute and Policy Delegations

7.1.1 Definition of Delegateable ABS

In addition to the initial definition of an ABS, with the algorithms Setup, KeyGen, Sig, and Verif,
we also consider delegation algorithms, with an additional signing algorithm:

Delegate-Attributes(SKid,Γ, īd,Γ′). From SKid,Γ, and for a subset Γ′ ⊂ Γ, one can derive a signing
key SKīd,Γ′ for a user īd.

Delegate-Policy(SKid,Γ, īd,P). For a private key SKid,Γ on a set of attributes Γ and a policy P
that accepts Γ, the algorithm outputs a policy key SKīd,P ;

DelegateSig(SKid,P ,m). For a delegated key SKid,P on a policy P and a message m, the algorithm
outputs a signature σ;

112 7 - ABS with Delegation and Tracing

The delegated keys from the first algorithm can be used in a similar way as a fresh key. For this
reason, when we refer to a key in the following, it can be from either KeyGen or Delegate-Attributes
without distinction, except if specified otherwise. It thus allows multi-hop delegation of at-
tributes. On the other hand, policy delegation provides different keys, hence another signing
algorithm, and will usually be called policy keys. However, for the correctness, we add that
the Verif algorithm should output 1 with overwhelming probability on (σ,m,P) even if σ has
been generated on m with a policy key SKīd,P . In both cases, we note īd the new full identity
associated to the keys, which could be formed for example by concatenation: īd = id||id′, for
some id′, and even possibly a longer chain, as only delegated attributes under the exact same
chain might be combined as a new key.

7.1.2 Security Model for Delegateable ABS

Unforgeability and Privacy need some changes to be consistent with the new nature of delegated
keys: One should not be able to produce an accepted signature under a policy P if one does not
own the appropriate attributes or the delegated key for unforgeability, and signatures generated
by fresh keys or delegated keys should be indistinguishable for privacy. Thus, we update the
security definitions given in Section 3.4.2 to take delegation into account. In particular, for the
delegation of attributes, we now consider that the adversary will have access to delegated keys
via the ODelegateAttributes oracle, which he can use on keys he previously queried for via either
OKeyGen or ODelegateAttributes. Regarding the policy delegation, we add two additional oracles:
ODelegatePolicy to obtain a policy key from a previous OKeyGen or ODelegateAttributes query,
and ODelegateSig to obtain a signature from a policy key ODelegatePolicy that has already been
queried. None of the keys are actually revealed to the adversary, unless he queries specifically
for them via OGet, to model the real information learnt by the adversary. Indeed, some keys
can be generated, but only as source of delegations, and only delegated keys will be known to
the adversary, in case the adversary is just a delegatee.

Definition 16 (Existential Unforgeability) EUF for ABS with delegation is defined by the
following game between the adversary and a challenger:

Initialize: The challenger runs the Setup algorithm of ABS and gives the public parameters PK
to the adversary;

Oracles: The following oracles can be called in any order and any number of times:

OKeyGen(id,Γ): to model KeyGen-queries for any identity id and any set of attributes Γ
of its choice, and gets back the index k of the key;

ODelegateAttributes(k, īd,Γ′): to model Delegate-Attributes-queries for identity īd and any
subset of attributes Γ′ ⊂ Γ, for the k-indexed generated key from Γ. It generates the
decryption key but only outputs the index k′ of the new key;

ODelegatePolicy(k, īd,P): to model Delegate-Policy-queries for identity īd and any policy
P, from the k-indexed generated key for Γ so that P(Γ) = 1. It generates the new
policy key but only outputs the index k′ of the new policy key;

OGet(k): the adversary gets back the k-indexed key generated by one of the above oracles;
OSig(id,m,P): to model Sig-queries under any policy P of its choice for a message m, for

the identity id, and gets back the signature;
ODelegateSig(īd,m,P)): to model DelegateSig-queries for any message m, for identity īd

and policy P. It generates and outputs the signature.

Finalize(b′): The adversary outputs a forgery (m′,P ′, σ′). If for some attribute set Γ corre-
sponding to a key asked to the OGet oracle, P ′(Γ) = 1, or if the adversary queried OSig or

7.2 - Description of our Delegateable ABS 113

ODelegateSig on (m′,P ′), or if the adversary queries ODelegatePolicy on P ′, one outputs
0. Otherwise one outputs Verif(PK,m′,P ′, σ′).

The advantage Advdel-euf(A) of an adversary A in this game is defined as the probability to
output 1.

As usual, the Finalize-step excludes trivial attacks, where the adversary owns a key able to
generate an acceptable signature or just forwards a query asked to the signing oracle.

We also update the definition of anonymity, to take into account the possibilities of delega-
tion: whether coming from some kind of delegation or not, every signature must depend only
on the policy that is signed, and not on the specific user’s keys.

Definition 17 (Anonymity) An ABS with delegation scheme is said anonymous if :

• for any (PK,MK) $← Setup, any message m, any identities id0, id1, any attribute sets Γ0,Γ1

• for any signing keys SK0
$← KeyGen(MK, id0,Γ0), SK1

$← KeyGen(MK, id1,Γ1)

• for any delegated keys, with Γ′
0 ⊂ Γ0 and Γ′

1 ⊂ Γ1, SK′
0

$← Delegate-Attributes(SK0, id′
0,Γ′

0),
SK′

1
$← Delegate-Attributes(SK1, id′

1,Γ′
1)

• for any policy keys ˜SK′
0

$← Delegate-Policy(SK0,P), ˜SK′
1

$← Delegate-Attributes(SK1,P),
for any policy P that accepts both Γ′

0 and Γ′
1

the six distributions of the signatures from Sig(SK0,m,P),Sig(SK′
0,m,P),DelegateSig(˜SK′

0,m),
Sig(SK1,m,P), Sig(SK′

1,m,P),DelegateSig(˜SK′
1,m) are indistinguishable.

Indistinguishability can be perfect, statistical or computational, which leads to perfect, sta-
tistical or computational anonymity.

7.2 Description of our Delegateable ABS
Setup(1κ). The algorithm chooses three random dual orthogonal bases, in a pairing-friendly

setting PG = (G1,G2,Gt, e,G1, G2, q):

B = (b1, . . . ,b4) D = (d1, . . . ,d10) H = (h1, . . . ,h8)
B∗ = (b∗

1, . . . ,b∗
4) D∗ = (d∗

1, . . . ,d∗
10) H∗ = (h∗

1, . . . ,h∗
8).

It picks two hash functions H and H′ onto Zq. It sets the public parameters PK =
{PG,H,H′, (b1,b3), (b∗

2), (d1,d2,d3,d5), (d∗
1,d∗

2,d∗
3,d∗

4), (h1,h2,h3,h5), (h∗
4)}, and mas-

ter secret key MK = {(b∗
1), (h∗

1,h∗
2,h∗

3)} ∪ PK.

KeyGen(MK, id,Γ). A random scalar δ $← Z∗
q is associated to id, to define

k∗
0 = δ · b∗

1 + ϕ0 · b∗
2 k∗

t = δ · d∗
1 + πt · d∗

2 + tπt · d∗
3 + ϕt · d∗

4

r∗
1 = δ · h∗

1 + ψ1 · h∗
4 r∗

2 = δ · h∗
2 + ψ2 · h∗

4 r∗
3 = δ · h∗

3 + ψ3 · h∗
4

for all attributes t ∈ Γ, with ϕ0, ψ1, ψ2, ψ3, (ϕt)t, (πt)t
$← Z∗

q for each t. The signing key
SKid,Γ is then (k∗

0, (k∗
t)t∈Γ, r∗

1, r∗
2, r∗

3). It can be completed later for new attributes for id,
with extra k∗

t , using the same δ.

Delegate-Attributes(SKid,Γ, īd,Γ′). Pick random scalars α, ϕ′
0, (ϕ′

t)t, ψ
′
1, ψ

′
2, ψ

′
3

$← Zq for t ∈ Γ′ ⊂
Γ, and compute

k̄∗
0 = α · k∗

0 + ϕ′
0 · b∗

2 k̄∗
t = α · k∗

t + ϕ′
t · d∗

4

r̄∗
1 = α · r∗

1 + ψ′
1 · h∗

4 r̄∗
2 = α · r∗

2 + ψ′
2 · h∗

4 r̄∗
3 = α · r∗

3 + ψ′
3 · h∗

4

114 7 - ABS with Delegation and Tracing

The delegated signing key SKīd,Γ′ is then set as (k̄∗
0, (k̄∗

t)t∈Γ′ , r̄∗
1, r̄∗

2, r̄∗
3). More delegations

can be provided with additional k̄∗
t for īd from id using the same α, specific to the attribute-

delegation from id to īd.

Delegate-Policy(SKid,Γ, īd, T). Let T ′ ∈ EPT(T ,Γ) be an Evaluation Pruned Tree, ν, ξ, ζ, ψ, (ωλ)λ
$← Z∗

q , and (αλ)λ the 1-labeling of T ∗ associated to T ′ (see Proposition 2), where αλ = 1 if
λ ∈ LT ′ , else αλ = 0. This is possible as T (Γ) = 1. Then, compute (βλ)λ to be a random
0-labeling of T ∗, and (qλ)λ random scalars. Eventually, set, for H = H(T):

U∗ = ξk∗
0 + ζb∗

2 S∗
λ = αλξ · k∗

tλ
+ βλd∗

1 + ωλ(d∗
2 + tλ · d∗

3) + qλ · d∗
4

r′∗
3 = ξr∗

3 + ψh∗
4 V ∗ = ξ(r∗

1 +H · r∗
2) + ν · h∗

4

for all the leaves λ, where tλ is the associated attribute of λ. The delegated key is thus
SKīd,T = (U∗, V ∗, r′∗

3 , (S∗
λ)λ).

Sig(SKid,Γ, T ,m). Let T ′ ∈ EPT(T ,Γ) be an Evaluation Pruned Tree, and pick ν, ξ, ζ, (ωλ)λ
$←

Z∗
q , and (αλ) the 1-labeling of T ∗ associated to T ′ (see Proposition 2), where αλ = 1 if

λ ∈ LT ′ , else αλ = 0. This is possible as T (Γ) = 1. Then, compute (βλ) to be a random
0-labeling of T ∗, and (qλ)λ random scalars. Set, for H = H(T) and H ′ = H′(m):

U ′∗ = ξk∗
0 + ζb∗

2 S′∗
λ = αλξ · k∗

tλ
+ βλd∗

1 + ωλ(d∗
2 + tλ · d∗

3) + qλ · d∗
4

V ′∗ = ξ(r∗
1 +H · r∗

2 +H ′ · r∗
3) + ν · h∗

4

for all the leaves λ, where tλ is the associated attribute of λ.
The signature is thus σ = (U ′∗, V ′∗, (S′∗

λ)λ).

DelegateSig(SKid,T ,m). Let T ′ ∈ EPT(T ,Γ) be an Evaluation Pruned Tree, ν, ξ, ζ, (ωλ)λ
$← Z∗

q ,
(βλ)λ a random 0-labeling of T ∗, and (qλ)λ random scalars. Set, for H ′ = H′(m):

U ′∗ = ξU∗ + ζb∗
2 S′∗

λ = ξ · S∗
λ + βλd∗

1 + ωλ(d∗
2 + tλ · d∗

3) + qλ · d∗
4

V ′∗ = ξ(V ∗ +H ′ · r′∗
3) + ν · h∗

4

for all the leaves λ, where tλ is the associated attribute of λ.
The signature is thus σ = (U ′∗, V ′∗, (S′∗

λ)λ).

Verif(PK,m, T , σ). Let κ, κ0, (κλ)λ, s, s0, θ, θ
′, (θλ)λ

$← Zq. Let (sλ)λ be a random s0-labeling of
T , then set, for H̄ = H(T), H̄ ′ = H′(m):

u = −(s0 + s) · b1 + κ0 · b3 cλ = sλ · d1 + θλtλ · d2 − θλ · d3 + κλ · d5

v = (s+ θH̄ + θ′H̄ ′) · h1 − θ · h2 − θ′ · h3 + κ · h5

If e(b1, U
∗) ̸= 1Gt ∧ e(u, U∗) · e(v, V ∗) ·∏ e(cλ, S

∗
λ) = 1Gt , accept, else reject.

Correctness for the algorithm without delegation is the exact same as for the construction
from Section 5.3.2. We detail the distribution of the new delegation algorithms in the first
game of the unforgeability proof in Section 7.2.2, just after stating the security theorem for our
construction.

7.2.1 Security Results

About the above ABS with delegation, one can still claim the unforgeability and the perfect
anonymity.

7.2 - Description of our Delegateable ABS 115

Theorem 17 (Existential Unforgeability) The ABS scheme with delegation described in
Section 7.2 is existentially unforgeable under the collision-resistance of the hash functions H,H′

and the SXDH assumption.

Theorem 18 (Perfect Anonymity) The ABS scheme with delegation described in Section 7.2
is perfectly anonymous.

7.2.2 Security Proofs

We start by the anonymity result, as this will allow to perfectly simulate signing queries in the
proof of unforgeability.
Perfect Anonymity. We prove anonymity with the same alternative signing algorithm AltSig
as in the anonymity proof of Theorem 11, that uses the master secret key instead of an individual
signing key. As an additional important note for the incoming EUF proof, we note that, should
it be necessary, AltSig would also be able to return the value r∗

3 = δ′ ·h∗
3, which will be useful to

simulate answer to ODelegatePolicy queries, and output r′∗
3 .

Existential unforgeability We can reduce the EUF proof for our ABS with delegation to
our proof for simple ABS. To do this, we need to prove that each new oracle can be sim-
ulated with oracles from the former proof: keys from ODelegateAttributes can be simulated
with OKeyGen,signatures from ODelegateSig can be simulated with AltSig, and policy keys
from ODelegatePolicy can be simulated with AltSig. For this reason, we will use the same
notation id to count ODelegateAttributes and OKeyGen queries, and the notation i to count
OSig,ODelegatePolicy and ODelegateSig.

Game G0: Setup, KeyGen, Sig and Verif work exactly as in game G0.
We detail here the distribution of the new algorithms output. Keys generated by the algorithm
Delegate-Attributes, for user id and subset Γ′, follow the distribution

r∗
id,1 = (αδid, 0, 0, ψid,1, 04)H∗

r∗
id,2 = (0, αδid, 0, ψid,2, 04)H∗ r∗

id,3 = (0, 0, αδid, ψid,3, 04)H∗

k∗
id,0 = (αδid, ϕid,0, 02)B∗ k∗

id,t = (αδid, απid,t(1, t), ϕid,t, 06)D∗ ∀t ∈ Γ′

for random α, δid, ψid,1, ψid,2, ψid,3, ϕid,0, (ϕid,t)t, (πid,t)t
$← Zq for t ∈ Γ′.

The i-th policy keys generated by the Delegate-Policy algorithm, for user id and access-tree
T , follow the distribution, for H = H(T):

U∗
i = (δi, ζi, 02)B∗ S∗

λ = ((αλ,iδi + βλ,i), ωi,λ(1, tλ), qi,λ, 06)D∗

V ∗ = (δi · (1, H, 0), νi, 04)H∗ r∗
3 = (δi · (0, 0, 1), ψ′

i,3, 04)H∗

for random scalars δi, ζi, (qi,λ)λ, (ωi,λ)λ, νi, ψi,3
$← Zq for λ ∈ LT .

Signatures generated via policy keys with the DelegateSig algorithm for the i-th signature are
generated as, for Hi = H(Ti), H ′

i = H′(mi):

U∗ = (δi, ζi, 02)B∗ S∗
λ = ((αλ,iδi + βλ,i), ωλ,i(1, tλ), qi,λ, 06)D∗

V ∗ = (δi · (1, Hi, H
′
i), νi, 04)H∗

for random scalars δi, ζi, νi, (qi,λ)λ, (ωi,λ)λ
$← Z∗

q , and still (αλ,i) a 1-labeling of T ∗, and (βλ,i)
a random 0-labeling of T ∗.

116 7 - ABS with Delegation and Tracing

Game G1: We simulate all Delegate-Attributes queries using KeyGen exclusively. When the
adversary ask for Delegate-Attributes on the set Γ′ from another key SKid,Γ, where Γ′ ⊂ Γ, we
simulate the answer as KeyGen(MK, id′,Γ′) for a new random id′. As the correctness analysis
has shown, the distribution between original keys and delegated keys is exactly the same,
hence: Adv0 = Adv1

Game G2: We simulate all Sig and DelegateSig queries with the AltSig algorithm. Queries
for the i-th Sig, or the i-th signature with DelegateSig, on access-tree Ti and message mi, is
simulated as, for Hi = H(Ti), H ′

i = H′
i(mi):

U∗
i = (δi, ζi, 02)B∗ S∗

i,λ = (δiβ
′
i,λ, γλ,i(1, tλ), qi,λ, 0,6)D∗

V ∗
i = (δi · (1, Hi, H

′
i), νi, 04)H∗

where (β′
λ)λ is a random 1-labeling of T ∗ and (γλ,i) $← Z∗

q . As shown in the above perfect
anonymity proof, the distribution is exactly the same, hence the simulation is perfect: Adv1 =
Adv2.

Game G3: We simulate the Delegate-Policy queries with the AltSig algorithm, with only a
simple tweak on the element V ∗. Queries for the i-th Delegate-Policy, on identity īd, access-
tree Ti and message mi, is simulated by calling AltSig(MK,m, Ti) for a random m to get back
(U∗

i , V
∗

i , (S∗
i,λ)λ∈LTi

). We then set r∗
i,3 = δi ·h∗

3 +ψi,3h∗
4 and V ′∗

i = V ∗
i −H ′

i ·r∗
i,3, for ψi,3

$← Z∗
q :

V ′∗
i = V ∗

i − H ′
i · r∗

i,3 = (δi · (1, Hi, H
′
i), νi, 04)H∗ − (δi · (0, 0, H ′

i), ψi,3H
′
i, 04)H∗ , which is thus

as (δi · (1, Hi, 0), ν ′
i, 04)H∗ , for ν ′

i
$← Z∗

q . To properly simulate these queries, we only need to
ensure that we can simulate r∗

i,3 in all games where we modify the answers of the signature
oracle. We finally output the policy key from the query as: (U∗

i , V
′∗

i , r∗
i,3, (S∗

i,λ)λ∈LTi
). Once

again the simulation is perfect: Adv2 = Adv3.

Then, we are in a similar game as G0 for the Existential Unforgeability proof of Theorem 10.
The sequence of games can continue the same way, with thus the same security bounds. The
only difference is we need to ensure we can properly simulate r∗

i,3 in all games.

7.3 Traceable ABS
7.3.1 Definition of Traceable ABS and Security Model

A common property of signature scheme is traceability of the signer, as in group signatures [Cv91,
BMW03], where an opener is able to trace back the signer of a message and prove it. For the
sake of simplicity, our tracing scheme doesn’t include the delegation features we introduced
above, but we claim that both this scheme and the delegation one are fully compatible, to make
a scheme with delegation and tracing.

We extend the initial definition of an ABS, with the algorithms Setup (with additional tracing
key TK and verification key VK), KeyGen, Sig, and Verif, to also consider the Trace and Judge
algorithms:

Trace(TK,m,P, σ). Given the tracing key TK and a valid signature σ on (m,P), the algorithm
outputs the identity id of the signer together with a proof π, both set to ⊥ in case of
failure.

Judge(VK,m, σ, id, π). Given the verification key VK, a signature σ for a message m, and a proof
π that user id generated (m,P, σ), the algorithm outputs 1 if π is valid or 0 else.

Correctness, unforgeability and anonymity are the same as for a regular ABS (see Definitions 6
and 7), except that anonymity cannot be perfect, but computational. We also ask for any valid

7.3 - Traceable ABS 117

signature to be traced back to its signer, with a convincing proof π, either for a judge or anybody
when VK is public.

Definition 18 (Traceability) Traceability for ABS is defined by the following game between
the adversary and a challenger:

Initialize: The challenger runs the Setup algorithm of ABS and gives the public parameters PK
to the adversary;

Oracles: The following oracles can be called in any order and any number of times.

OKeyGen(id,Γ): to model KeyGen-queries for any identity id and any set of attributes Γ
of its choice, and the adversary gets back the key SKid,Γ;

OSig(id,m,P): to model Sig-queries for any identity id and under any policy P of its choice
for a message m, and the adversary gets the signature σ;

Finalize(b′): The adversary outputs a signature (m′,P ′, σ′). One asks (id, π) = Trace(TK, σ′).
If one of the following is true (non-legitimate attack)

• (m′,P ′) has been queried to the OSig-oracle;
• id has been queried to the OKeyGen-oracle with Γ such that Judge(VK,m′, σ′, id, π) =

1 and P ′(Γ) = 1;

then output 0, otherwise output Verif(PK,m′,P ′, σ′).

The success Advtrace(A) of an adversary A against traceability is the probability to have 1 as
output in this game.

More precisely, we consider the adversary wins the traceability game if it manages to mislead the
tracing procedure: by making it either fail or output an honest user (not under the control of the
adversary, with a key asked to the key-oracle), or by making the result of the tracing impossible
to prove. Of course, we will ignore the output if it exactly corresponds to a signing-query.

We stress that key-queries model corruptions of some signers. In the literature, corruptions
can be static (all the corrupted users are known before generating the global parameters) or
adaptive (the corrupted users are chosen adaptively by the adversary during the security game).
Even in the adaptive case, we can add some restriction of disjoint sets of identities in key-queries
and signing-queries. We will call it the distinct-user setting.

7.3.2 One-Time Linearly-Homomorphic Signature

For our traceable ABS scheme derived from the scheme detailed in Section 5.3.2, we will make
use of a (One-Time) Linearly-Homomorphic Signature (OT-LH). Let us first recall the definition.

KeyGen(1κ, n). From the security parameter κ, and a dimension n, the algorithm outputs a
signing key sk and a verification key vk;

Sig(sk,m). For a signing key sk and a message m of dimension n, the algorithm outputs a
signature σ;

DerivSign(vk, (αi,mi, σi)). For a verification key vk, several messages mi together with their
signatures σi, and some coefficients αi, the algorithm outputs a signature σ of the linear
combination ∑i αimi;

Verif(vk,m, σ). Given a verification key vk, a message m, and a signature σ, the algorithm
outputs 1 for accept or 0 for reject;

118 7 - ABS with Delegation and Tracing

Correctness and unforgeability are similar as for usual signature schemes, except that an output
(m′, σ′) will be considered a forgery if m′ is not in the span of the messages mi asked to the
signing oracle. Indeed, linear combination of signatures on the mi’s is accessible to the adversary.
We will then denote by Adveuf

OT-LH the best advantage an adversary can have in generating a
valid signature for a message out of the span of the initially signed messages. Furthermore, any
signature generated by linear combinations using DerivSign should be perfectly indistinguishable
from a fresh signature generated by Sig.

Such linearly-homomorphic signatures have been proposed in the literature, as in [LPJY13,
FHS19]. But we can also use the simplified version from [HPP20] which has been proven in the
generic group model, even together with an extractor that provides the coefficients in the linear
combination of the initial messages for the new signed message. From this paper, we will also
use the following theorem, that states the intractability of the Linear-Square problem:
Theorem 19 (Linear-Square Problem) Given n Square Diffie-Hellman tuples (gi, ai = gwi

i ,

bi = awi
i), together with wi, for random gi

$← G∗ and wi
$← Z∗

q, outputting (αi)i=1,...,n such that
(G = ∏

gαi
i , A = ∏

aαi
i , B = ∏

bαi
i) is a valid Square Diffie-Hellman, with at least two non-zero

coefficients αi, is computationally hard under the Discrete Logarithm assumption.

7.4 Description of our Traceable ABS
We consider any OT-LH scheme (KeyGen′,Sig′,DerivSign′,Verif ′) in Gn

2 . We will also use a non-
interactive zero-knowledge proof of knowledge (NIZKPoK-SqDH,VERIF-SqDH) of the witness
w for a Square Diffie-Hellman tuple (ht, h

w
t , h

w2
t) in Gt and a non-interactive zero-knowledge

proof (NIZKPoK-DH,VERIF-DH) of Diffie-Hellman tuple (gt, g
w
t , g

δ
t , g

δw
t) in Gt. For both proofs,

one can simply use Schnorr-like proofs with the Fiat-Shamir paradigm [Sch91, FS87]. They
are known to be sound, with simulation-extractability in the Random Oracle Model, as well as
perfectly zero-knowledge. We refer to [FKMV12] for more details.

We now detail our construction, with access-trees for policies, where we just complete the
signing key k∗

0 with a square Diffie-Hellman tuple where one can identify the signer, if and only
if the scalar wid is known. The public value gwid

t associated to user id will then be enough to
verify the tracing, without revealing wid:
Setup(1κ). The algorithm chooses three random dual orthogonal bases, in a pairing-friendly

setting PG = (G1,G2,Gt, e,G1, G2, q):
B = (b1, . . . ,b6) D = (d1, . . . ,d10) H = (h1, . . . ,h8)
B∗ = (b∗

1, . . . ,b∗
6) D∗ = (d∗

1, . . . ,d∗
10) H∗ = (h∗

1, . . . ,h∗
8).

It also chooses two hash function H and H′ onto Zq. The algorithm calls the OT-LH signa-
ture algorithm KeyGen′(1κ, 6), for vectors in G6

2, and gets back the keys sk and vk. It also
gets Σ2 = Sig′(sk,b∗

2), and sets the public parameters as PK = {PG,H, (b1,b3,b5,b6), (b∗
2,

Σ2), (d1,d2,d3,d5), (d∗
1,d∗

2,d∗
3,d∗

4), (h1,h2,h3,h5), (h∗
4), vk}, and the master secret key is

set as MK = {(b∗
1,b∗

5,b∗
6), (h∗

1,h∗
2,h∗

3), sk}. Finally, the tracing key TK and the verification
key VK are initialized as empty sets.

KeyGen(MK, id,Γ). Random scalars δid, wid
$← Z∗

q are associated to id, with

k∗
0 = δid · b∗

1 + ϕ0 · b∗
2 + δid · wid · b∗

5 + δid · w2
id · b∗

6

k∗
t = δid · d∗

1 + πt · (d∗
2 + t · d∗

3) + ϕt · d∗
4

r∗
1 = δid · h∗

1 + ψ1 · h∗
4 r∗

2 = δid · h∗
2 + ψ2 · h∗

4 r∗
3 = δid · h∗

3 + ψ3 · h∗
4

for all attributes t ∈ Γ, with ϕ0, (ϕt)t, (πt)t
$← Z∗

q for each t. The algorithm calls for
Σid = Sig′(sk,k∗

0). The signing key SKid,Γ is set as (wid,k∗
0,Σid, (k∗

t)t∈Γ, r∗
1, r∗

2, r∗
3), for id.

It can be completed later for new attributes, but only by using the same δid. The pair
(id, wid) is appended to TK, and (id, gwid

t) is appended to VK.

7.4 - Description of our Traceable ABS 119

Sig(SKid,Γ,m, T). Let T ′ ∈ EPT(T ,Γ) be an Evaluation Pruned Tree, ν, ξ, ζ $← Z∗
q . Compute

the following 1-labeling of the dual tree T ∗: for each leaf λ, choose αλ = 1 if λ ∈ LT ′ , else
αλ = 0. Then, choose a random 0-labeling (βλ) of T ∗, and (qλ)λ, (ωλ)λ random scalars,
and set, for H = H(T), H ′ = H′(m):

U∗ = ξk∗
0 + ζb∗

2 S∗
λ = αλξ · k∗

tλ
+ βλd∗

1 + ωλ(d∗
2 + tλ · d∗

3) + qλ · d∗
4

V ∗ = ξ(r∗
1 +H · r∗

2 +H ′ · r∗
3) + ν · h∗

4

for all the leaves λ, where tλ is the associated attribute of λ. From the linearly-homomorphic
property, one can compute a signature on U∗ ∈ G6

2:

Σ = DerivSign′(vk, ((ξ,k∗
0,Σid), (ζ,b∗

2,Σ2))

Eventually, using wid, one can generate the proof of Square Diffie-Hellman tuple :

Π = NIZKPoK-SqDH(wid, (e(b1, U
∗), e(b5, U

∗), e(b6, U
∗)))

as this tuple is equal to (ht, h
wid
t , h

w2
id

t), for some ht ∈ Gt. The final signature consists of
the tuple σ = (U∗, V ∗, (S∗

λ)λ),Σ,Π).

Verif(PK,m, T , σ). Let κ, κ0, (κλ)λ, s, s0, θ, θ
′(θλ)λ

$← Zq. Let (sλ)λ be a random s0-labeling of
T , then set, for H̄ = H(T), H̄ ′ = H′(T):

u = −(s0 + s) · b1 + κ0 · b3 cλ = sλ · d1 + θλtλ · d2 − θλ · d3 + κλ · d5

v = (s+ θH̄ + θ′H̄ ′) · h1 − θ · h2 − θ′ · h3 + κ · h5

Accept if e(b1, U
∗) ̸= 1Gt and e(u, U∗)·e(v, V ∗)·∏ e(cλ, S

∗
λ) = 1Gt , but also if Verif ′(vk, U∗,Σ) =

1 and VERIF-SqDH((e(b1, U
∗), e(b5, U

∗), e(b6, U
∗)),Π) = 1, otherwise reject.

Trace(TK, σ′). Compute B1 = e(b1, U
∗) and B2 = e(b5, U

∗). Then, for (id, wid) ∈ TK, check
until Bwid

1 = B2. When the equality holds, generate the proof

π = NIZKPoK-DH(gt, g
wid
t , (e(b1, U

∗), e(b5, U
∗)))

and output (id, π). Otherwise output ⊥.

Judge(VK,m, σ′, id, π). Extract gwid
t corresponding to id from VK and output :

VERIF-DH(gt, g
wid
t , (e(b1, U

∗), e(b5, U
∗)), π)

.

As VK can be a public list, anybody can run the Judge algorithm.
Correctness This construction is a slight variation of the previous ABS scheme:

KeyGen(MK, id,Γ). The difference is only in the 5-th and 6-th positions of k∗
0, with δid · wid

and δid · w2
id, which will help for the tracing procedure of the generated signature: k∗

0 =
(δid, ϕ0, 0, 0, δid · wid, δid · w2

id)B∗ .

Sig(SKid,Γ,m, T). The first difference is again in the 5-th and 6-th positions of U∗, with ξδid ·wid
and ξδid · w2

id, which will be used in the tracing procedure: U∗ = (ξδid, ξϕ0 + ζ, 0, 0, ξδid ·
wid, ξδ · w2

id)B∗ . There are also the two additional elements to provide the collusion-
resistance, with the signature Σ on U∗ that can be built thanks to the linear property
of the signature, and the proof Π that ensure the presence of a square Diffie-Hellman
tuple.

Verif(PK,m, T , σ). The verification is the same as before, with vectors u, v, and cλ, to check the
previous relations. One additionally checks the signature Σ and the square Diffie-Hellman
tuple (e(b1, U

∗), e(b5, U
∗), e(b6, U

∗)) in Gt.

120 7 - ABS with Delegation and Tracing

7.4.1 Security Results

Since the verification process is even more restrictive than in the previous scheme, one can claim
the same unforgeability result:

Theorem 20 (Existential Unforgeability) The ABS scheme described in Section 7.4 is ex-
istentially unforgeable under the collision-resistance of the hash functions H,H′ and the SXDH
assumption, according to the Definition 6.

Because of the additional elements in the signature (which are useful for tracing), the signature
is no longer perfectly anonymous, but still computationally anonymous:

Theorem 21 (Computational Anonymity) The ABS scheme described in Section 7.4 is
computationally anonymous, according to the Definition 7, when w0 and w1, in SK0 and SK1,
are unknown, under the Decisional Square Diffie-Hellman assumption in G2, and the perfect
zero-knowledge of the NIZKPoK-SqDH in the ROM.

Proof The additional elements are the Square Diffie-Hellman tuple in the 1-st, 5-th, and 6-th
components of U∗ = (δ′, ϕ′

0, 0, 0, δ′ · wid, δ
′ · w2

id)B∗ , the signature Σ, and the proof Π.
The Square Diffie-Hellman tuple in U∗ can be generated from a Square Diffie-Hellman tuple

(δ′G2, w · δ′G2, w
2 · δ′G2) ∈ G3

2. Under the Decisional Square Diffie-Hellman assumption in G2,
such a tuple is indistinguishable from a random tuple in G3

2. This makes U∗ generated from
w0 or w1 indistinguishable when those scalars are unknown. Since Σ is a signature of U∗ that
is itself indistinguishable for w0 and w1, Σ is also indistinguishable for w0 and w1. Eventually,
Π being a zero-knowledge proof on the above tuple, it can be simulated without knowing the
witness. It thus does not leak any additional information. Hence the anonymity under the
Decisional Square Diffie-Hellman assumption in G2.

We can state the traceability result.

Theorem 22 (Traceability) The ABS scheme described in Section 7.4 is traceable in the
ROM, in the distinct-user setting, under the security of the OT-LH signature scheme, the in-
tractability of the Linear-Square problem, the simulation-extractability of the NIZKPoK-SqDH,
and the soundness of the NIZKPoK-DH, according to the Definition 18.

7.4.2 Proof of the Traceability

In this proof, we will first recall the way we can simulate the keys and the signatures. Then, we
will show how the linearly-homomorphic signature and the Linear-Square problem will prevent
attacks:

Game G0: As shown in the previous section, keys generated by the KeyGen algorithm, for
user id, follow the distribution:

k∗
id,0 = (δid, ϕid,0, 0, 0, δid · wid, δid · w2

id)B∗ r∗
id,1 = (δid, 0, 0, ψid,1, 0, 0, 0, 0)H∗

k∗
id,t = (δid, πid,t(1, t), ϕid,t, 0, 0, 0, 0, 0, 0)D∗ r∗

id,2 = (0, δid, 0, ψid,2, 0, 0, 0, 0)H∗

Σid = Sig′(sk,k∗
id,0) r∗

id,3 = (0, 0, δid, ψid,3, 0, 0, 0, 0)H∗

The i-th signature generated by the Sig algorithm follows the distribution

U∗
i = (ξiδi, ζi, 0, 0, ξiδi · wi, ξiδi · w2

i)B∗ V ∗
i = (ξiδi(1, Hi, H

′
i), νi, 0, 0, 0, 0)H∗

S∗
i,λ = (β′

i,λ, γi,λ(1, tλ), qi,λ, 0, 0, 0, 0, 0, 0)D∗

where δi, wi,k∗
i,0,Σi correspond to new and fresh δid, wid,k∗

id,0,Σid of the signer id (for an
implicitly freshly generated key as signing queries and key queries should not correspond to

7.4 - Description of our Traceable ABS 121

the same identities, as we are in the distinct-user setting), and Hi = H(Ti), H ′
i = H′(mi),

together with

Σ = DerivSign′(vk, ((ξi,k∗
i,0,Σi), (ζi,b∗

2,Σ2))
Π = NIZKPoK-SqDH(wi, (e(b1, U

∗), e(b5, U
∗), e(b6, U

∗)))

For the decision of the challenge signature σ = (U∗, V ∗, (S∗
λ)λ,Σ,Π) on message m and policy

T , different from any query-answer to the signing oracle, one uses

u = (−s0 − s, 0, κ0, 0, 0, 0)B v = (s+ θ · H̄ + θ′ · H̄ ′,−θ,−θ′, 0, κ, 0, 0, 0)H
cλ = (sλ, θλ(tλ,−1), 0, κλ, 0, 0, 0, 0, 0)D

where (H̄, H̄ ′) ̸= (Hi, H
′
i) for all i. Instead of outputting just the decision, one can consider

the challenger outputs (u, v, (cλ)λ), and everybody can make the final verification, with B1 =
e(b1, U

∗), B2 = e(b5, U
∗), and B3 = e(b6, U

∗):

e(b1, U
∗) ̸= 1Gt e(u, U∗) · e(v, V ∗) ·

∏
e(cλ, S

∗
λ) = 1Gt

Verif ′(vk, U∗,Σ) = 1 VERIF-SqDH((B1, B2, B3),Π) = 1

For the tracing procedure, one checks Bwid
1 = B2 for all the id’s asked to the key generation

oracle. If no wid matches, we output 1. Otherwise we output 0. We denote by Adv0 the
probability to output 1 in this game.

Game G1: We replace Σ by a fresh signature (during the signing queries), Σ = Sig′(sk, U∗),
as signatures from DerivSign′ and Sig′ follows perfectly indistinguishable distributions in an
OT-LH signature scheme: Adv0 = Adv1.

Game G2: The simulator generates the proofs Π, during the signing queries only, with the
zero-knowledge simulator. Thanks to the (perfect) zero-knowledge property, this game is
indistinguishable from the previous one: Adv1 = Adv2. Now, the simulator does not need to
know the scalars wid for signing queries, but only for key queries.

Game G3: The simulator generates the signatures using Square Diffie-Hellman tuples (hi, h
′
i, h

′′
i),

with unknown scalars wi: Adv2 = Adv3.

Game G4: In this game, we always output 0, meaning the tracing procedure always succeeds,
and so Adv4 = 0.
Let us study the gap:

• If we consider OSig′(m) the signature oracle in the EUF security game of the OT-LH
scheme, under the unforgeability result on Σ, the U∗ of the output signature (m′, T ′, σ)
of our adversary necessarily involves a linear combination of the U∗

i , which implies a
linear combination of the k∗

id,0 and b∗
2. Using the signature from [HPP20], we even get

the coefficients of this linear combination;
• If we consider the 1-st, 5-th and 6-th components, which constitute a Square Diffie-

Hellman tuple with an exponent that is a (known) linear combination of the scalars
involved in the keys or signatures, the Theorem 19 implies that there is necessarily either
a wi involved in a signing-query or a wid involved in a key-query in this U∗;

• With the additional proof of knowledge Π, from the simulation-extractability, one can
extract this scalar: which is as hard as breaking the Decisional Square Diffie-Hellman if
this is a wi from a signing-query, because of the challenge (hi, h

′
i, h

′′
i), which could either

be a random tuple or a Square Diffie-Hellman tuple.

122 7 - ABS with Delegation and Tracing

As a consequence, except with probability bounded by Adveuf
OT-LH(t) + Advlsqp(t) + Advdsqdh(t),

this is necessarily a wid from a key-query, which can thus be extracted by the tracing algorithm:
Adv3 − Adv4 ≤ Adveuf

OT-LH(t) + Advlsqp(t) + Advdsqdh(t).

Chapter

8
Conclusion

In this thesis, we studied attribute-based constructions in cryptography with the DPVS frame-
work, and in particular how to make these constructions delegatable and traceable.

We first introduced Attribute-Based Encryption and Attribute-Based Signature, in particular
we showed how these primitives can guarantee cryptographic access-control based on policies
expressed as logical access-trees.

Then, we presented our new approach to the DPVS framework, originally designed by
Okamoto and Takashima. In particular, we provided a simple generic toolbox that can be used
to prove constructions in the DPVS. This work is proved under the SXDH assumption, which is
the DDH assumption on the two source groups of a pairing (typically of type 3). We also proved
a new theorem for unbounded universe of attributes, that we use in our later constructions.

Finally, we detailed our concrete ABE and ABS constructions, with the DPVS framework,
in two steps. The first step was to prove the original constructions of Okamoto and Takashima
with our new setting and a few adjustments. Despite their similarities, a few tweaks had to
be considered to achieve adaptive security on both schemes, in particular the new theorem for
unbounded universe of attributes that we mentioned above. The second step was to augment
these base constructions with our new features, which we separate in two paragraphs in the
following.

Concerning encryption, we augmented the original construction into a new primitive called
SA-KP-ABE, for Key-Policy ABE with Switchable Attributes. This original approach allows
the central authority to deactivate the attributes of the messages and keys of the users in an
indistinguishable manner. As a direct application, we showed how to construct a traceable
ABE from our primitive by using the traditional fingerprinting approach, where each user is
associated to a unique fingerprint that is embedded inside his keys. Our new method incurs
better performances than the standard ABE to traceable ABE conversion regarding the size of
the keys, which is generally inefficient.

Concerning signature, we designed two modular approaches, one for delegation, one for
signature, which are suitable to be used together or separately, depending on the need. In
particular, our delegation approach allows to delegate, in a totally independent manner, pre-
signed policies that can then be used to sign messages exclusively, or delegated keys that are
subset of the original keys for the attributes. Our tracing approach is also different from the
usual tracing for signatures, as we use a One-Time Linearly Homomorphic Signature scheme to
make the user prove he didn’t tamper with his keys in an unintended manner to make a valid
signature.

124 8 - Conclusion

Bibliography

[AKPS12] Murat Ak, Aggelos Kiayias, Serdar Pehlivanoglu, and Ali Aydin Selcuk. Generic con-
struction of trace and revoke schemes. Cryptology ePrint Archive, Report 2012/531,
2012. https://eprint.iacr.org/2012/531. 14

[AT20] Nuttapong Attrapadung and Junichi Tomida. Unbounded dynamic predicate compo-
sitions in ABE from standard assumptions. In Shiho Moriai and Huaxiong Wang, ed-
itors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 405–436. Springer,
Heidelberg, December 2020. 14

[Att16] Nuttapong Attrapadung. Dual system encryption framework in prime-order groups
via computational pair encodings. In Jung Hee Cheon and Tsuyoshi Takagi, edi-
tors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 591–623. Springer,
Heidelberg, December 2016. 13

[BCC+15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and
Christophe Petit. Short accountable ring signatures based on DDH. In Günther
Pernul, Peter Y. A. Ryan, and Edgar R. Weippl, editors, ESORICS 2015, Part I,
volume 9326 of LNCS, pages 243–265. Springer, Heidelberg, September 2015. 15

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In 38th FOCS, pages 394–403. IEEE Computer
Society Press, October 1997. 73

[BF03] Dan Boneh and Matthew K. Franklin. Identity based encryption from the Weil
pairing. SIAM Journal on Computing, 32(3):586–615, 2003. 2, 10

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of
LNCS, pages 614–629. Springer, Heidelberg, May 2003. 15, 116

[BN08] Dan Boneh and Moni Naor. Traitor tracing with constant size ciphertext. In Peng
Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008, pages 501–510.
ACM Press, October 2008. 13, 110

[BS95] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data (ex-
tended abstract). In Don Coppersmith, editor, CRYPTO’95, volume 963 of LNCS,
pages 452–465. Springer, Heidelberg, August 1995. 13, 15

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor trac-
ing with short ciphertexts and private keys. In Serge Vaudenay, editor, EU-
ROCRYPT 2006, volume 4004 of LNCS, pages 573–592. Springer, Heidelberg,
May / June 2006. 13

https://eprint.iacr.org/2012/531

126 BIBLIOGRAPHY

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In 2007 IEEE Symposium on Security and Privacy, pages 321–334. IEEE
Computer Society Press, May 2007. 3, 11, 13

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273.
Springer, Heidelberg, March 2011. 2, 10

[BW06] Dan Boneh and Brent Waters. A fully collusion resistant broadcast, trace, and revoke
system. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati,
editors, ACM CCS 2006, pages 211–220. ACM Press, October / November 2006. 13,
15

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Yvo Desmedt, editor,
CRYPTO’94, volume 839 of LNCS, pages 257–270. Springer, Heidelberg, August
1994. 108

[CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-
order groups via predicate encodings. In Elisabeth Oswald and Marc Fischlin, edi-
tors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 595–624. Springer,
Heidelberg, April 2015. 13, 14

[CGW18] Jie Chen, Junqing Gong, and Hoeteck Wee. Improved inner-product encryption
with adaptive security and full attribute-hiding. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 673–
702. Springer, Heidelberg, December 2018. 6, 14, 17

[CLL+13] Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter
IBE and signatures via asymmetric pairings. In Michel Abdalla and Tanja Lange,
editors, PAIRING 2012, volume 7708 of LNCS, pages 122–140. Springer, Heidelberg,
May 2013. 27

[CPP17] Jérémy Chotard, Duong Hieu Phan, and David Pointcheval. Homomorphic-policy
attribute-based key encapsulation mechanisms. In Phong Q. Nguyen and Jianying
Zhou, editors, ISC 2017, volume 10599 of LNCS, pages 155–172. Springer, Heidel-
berg, November 2017. 3, 11

[Cv91] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies,
editor, EUROCRYPT’91, volume 547 of LNCS, pages 257–265. Springer, Heidelberg,
April 1991. 2, 10, 15, 116

[DGM18] Constantin Catalin Dragan, Daniel Gardham, and Mark Manulis. Hierarchical
attribute-based signatures. In Jan Camenisch and Panos Papadimitratos, editors,
CANS 18, volume 11124 of LNCS, pages 213–234. Springer, Heidelberg, Septem-
ber / October 2018. 15, 16

[DGP22] Cécile Delerablée, Lénaïck Gouriou, and David Pointcheval. Key-policy ABE with
switchable attributes. In Clemente Galdi and Stanislaw Jarecki, editors, The 13th
Conference on Security in Communication Networks (SCN ’22), volume 13409 of
LNCS, pages 147–171, Amalfi, Italy, 2022. Springer, Heidelberg. https://eprint.
iacr.org/2021/867. 51

[DOT18] Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima. Adaptively
simulation-secure attribute-hiding predicate encryption. In Thomas Peyrin and
Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages
640–672. Springer, Heidelberg, December 2018. 13

https://eprint.iacr.org/2021/867
https://eprint.iacr.org/2021/867

BIBLIOGRAPHY 127

[DOT19] Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima. Efficient attribute-
based signatures for unbounded arithmetic branching programs. In Dongdai Lin
and Kazue Sako, editors, PKC 2019, Part I, volume 11442 of LNCS, pages 127–158.
Springer, Heidelberg, April 2019. 15

[EGK14] Ali El Kaafarani, Essam Ghadafi, and Dalia Khader. Decentralized traceable
attribute-based signatures. In Josh Benaloh, editor, CT-RSA 2014, volume 8366
of LNCS, pages 327–348. Springer, Heidelberg, February 2014. 15, 70

[FHS19] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-preserving
signatures on equivalence classes and constant-size anonymous credentials. Journal
of Cryptology, 32(2):498–546, April 2019. 118

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi.
On the non-malleability of the Fiat-Shamir transform. In Steven D. Galbraith and
Mridul Nandi, editors, INDOCRYPT 2012, volume 7668 of LNCS, pages 60–79.
Springer, Heidelberg, December 2012. 118

[Fre10] David Mandell Freeman. Converting pairing-based cryptosystems from composite-
order groups to prime-order groups. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 44–61. Springer, Heidelberg, May / June 2010. 13

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume
263 of LNCS, pages 186–194. Springer, Heidelberg, August 1987. 118

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant traitor
tracing from learning with errors. Cryptology ePrint Archive, Report 2018/346,
2018. https://eprint.iacr.org/2018/346. 13

[GM19] Daniel Gardham and Mark Manulis. Hierarchical attribute-based signatures: Short
keys and optimal signature length. In Robert H. Deng, Valérie Gauthier-Umaña,
Martín Ochoa, and Moti Yung, editors, ACNS 19, volume 11464 of LNCS, pages
89–109. Springer, Heidelberg, June 2019. 7, 8, 16, 18

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 89–
98. ACM Press, October / November 2006. Available as Cryptology ePrint Archive
Report 2006/309. 1, 2, 3, 5, 6, 10, 11, 13, 14, 15, 16, 17, 20, 23, 24, 38

[Gui13] Aurore Guillevic. Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In Michael J. Jacobson Jr., Michael E. Locasto, Payman Mo-
hassel, and Reihaneh Safavi-Naini, editors, ACNS 13, volume 7954 of LNCS, pages
357–372. Springer, Heidelberg, June 2013. 13

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In
Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 466–481.
Springer, Heidelberg, April / May 2002. 14

[HPP20] Chloé Hébant, Duong Hieu Phan, and David Pointcheval. Linearly-homomorphic
signatures and scalable mix-nets. In Aggelos Kiayias, Markulf Kohlweiss, Petros
Wallden, and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS,
pages 597–627. Springer, Heidelberg, May 2020. 7, 16, 18, 70, 118, 121

https://eprint.iacr.org/2018/346

128 BIBLIOGRAPHY

[Kha07] Dalia Khader. Attribute based group signatures. Cryptology ePrint Archive, Report
2007/159, 2007. https://eprint.iacr.org/2007/159. 15

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In Nigel P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 146–162. Springer, Heidelberg,
April 2008. 14

[KY05] Aggelos Kiayias and Moti Yung. Group signatures with efficient concurrent join. In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 198–214.
Springer, Heidelberg, May 2005. 15

[Lew12] Allison B. Lewko. Tools for simulating features of composite order bilinear groups
in the prime order setting. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 318–335. Springer, Heidelberg,
April 2012. 13

[LLLW17] Xiaoyi Li, Kaitai Liang, Zhen Liu, and Duncan S. Wong. Attribute based encryption:
Traitor tracing, revocation and fully security on prime order groups. In Donald
Ferguson, Víctor Méndez Muñoz, Jorge S. Cardoso, Markus Helfert, and Claus Pahl,
editors, CLOSER 2017, pages 281–292. SciTePress, 2017. 15

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hier-
archical) inner product encryption. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 62–91. Springer, Heidelberg, May / June 2010. 13, 27,
38

[LPJY13] Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung. Linearly homomor-
phic structure-preserving signatures and their applications. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 289–
307. Springer, Heidelberg, August 2013. 118

[LPQ12] Benoît Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia. Anonymous broad-
cast encryption: Adaptive security and efficient constructions in the standard model.
In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012, vol-
ume 7293 of LNCS, pages 206–224. Springer, Heidelberg, May 2012. 14

[LT18] Junzuo Lai and Qiang Tang. Making any attribute-based encryption account-
able, efficiently. In Javier López, Jianying Zhou, and Miguel Soriano, editors, ES-
ORICS 2018, Part II, volume 11099 of LNCS, pages 527–547. Springer, Heidelberg,
September 2018. 5, 15, 16

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and
fully secure HIBE with short ciphertexts. In Daniele Micciancio, editor, TCC 2010,
volume 5978 of LNCS, pages 455–479. Springer, Heidelberg, February 2010. 27

[LW11] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In
Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages
568–588. Springer, Heidelberg, May 2011. 3, 11

[LW15] Zhen Liu and Duncan S. Wong. Practical ciphertext-policy attribute-based en-
cryption: Traitor tracing, revocation, and large universe. In Tal Malkin, Vladimir
Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis, editors, ACNS 15,
volume 9092 of LNCS, pages 127–146. Springer, Heidelberg, June 2015. 6, 15, 17

https://eprint.iacr.org/2007/159

BIBLIOGRAPHY 129

[LWW04] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spontaneous anony-
mous group signature for ad hoc groups (extended abstract). In Huaxiong Wang,
Josef Pieprzyk, and Vijay Varadharajan, editors, ACISP 04, volume 3108 of LNCS,
pages 325–335. Springer, Heidelberg, July 2004. 15

[LYZ19] Jiguo Li, Qihong Yu, and Yichen Zhang. Hierarchical attribute based encryption
with continuous leakage-resilience. Inf. Sci., 484(C):113–134, may 2019. 14

[MPR11] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based sig-
natures. In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS, pages
376–392. Springer, Heidelberg, February 2011. 2, 10, 15, 25

[NNL01] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for
stateless receivers. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 41–62. Springer, Heidelberg, August 2001. 14

[OT08] Tatsuaki Okamoto and Katsuyuki Takashima. Homomorphic encryption and signa-
tures from vector decomposition. In Steven D. Galbraith and Kenneth G. Paterson,
editors, PAIRING 2008, volume 5209 of LNCS, pages 57–74. Springer, Heidelberg,
September 2008. 27

[OT09] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption
for inner-products. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of
LNCS, pages 214–231. Springer, Heidelberg, December 2009. 2, 10, 13

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption
with general relations from the decisional linear assumption. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 191–208. Springer, Heidelberg, August
2010. 14, 27, 33

[OT11] Tatsuaki Okamoto and Katsuyuki Takashima. Efficient attribute-based signatures
for non-monotone predicates in the standard model. In Dario Catalano, Nelly Fazio,
Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011, volume 6571 of LNCS,
pages 35–52. Springer, Heidelberg, March 2011. 5, 7, 8, 13, 15, 16, 18, 37, 70

[OT12a] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hier-
archical) inner product encryption. In David Pointcheval and Thomas Johansson,
editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 591–608. Springer, Hei-
delberg, April 2012. 5, 6, 13, 14, 16, 17

[OT12b] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-
product and attribute-based encryption. In Xiaoyun Wang and Kazue Sako, editors,
ASIACRYPT 2012, volume 7658 of LNCS, pages 349–366. Springer, Heidelberg, De-
cember 2012. 14, 27, 32, 33, 37, 39, 41, 69, 77

[OT13] Tatsuaki Okamoto and Katsuyuki Takashima. Decentralized attribute-based signa-
tures. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778
of LNCS, pages 125–142. Springer, Heidelberg, February / March 2013. 51, 69

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin
Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565. Springer,
Heidelberg, December 2001. 2, 10, 15

[SAH16] Yusuke Sakai, Nuttapong Attrapadung, and Goichiro Hanaoka. Attribute-based
signatures for circuits from bilinear map. In Chen-Mou Cheng, Kai-Min Chung,

130 BIBLIOGRAPHY

Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I, volume 9614 of
LNCS, pages 283–300. Springer, Heidelberg, March 2016. 15

[Sch91] Claus-Peter Schnorr. Factoring integers and computing discrete logarithms via Dio-
phantine approximations. In Donald W. Davies, editor, EUROCRYPT’91, volume
547 of LNCS, pages 281–293. Springer, Heidelberg, April 1991. 118

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blak-
ley and David Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 47–53.
Springer, Heidelberg, August 1984. 2, 10

[SKAH18] Yusuke Sakai, Shuichi Katsumata, Nuttapong Attrapadung, and Goichiro Hanaoka.
Attribute-based signatures for unbounded languages from standard assumptions. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume
11273 of LNCS, pages 493–522. Springer, Heidelberg, December 2018. 15

[SW08] Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption sys-
tems. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II, volume
5126 of LNCS, pages 560–578. Springer, Heidelberg, July 2008. 14

[Tar03] Gábor Tardos. Optimal probabilistic fingerprint codes. In 35th ACM STOC, pages
116–125. ACM Press, June 2003. 109

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127.
Springer, Heidelberg, May 2005. 37

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,
pages 619–636. Springer, Heidelberg, August 2009. 2, 6, 10, 13, 17, 24, 27, 37, 71

[WLW10] Guojun Wang, Qin Liu, and Jie Wu. Hierarchical attribute-based encryption for
fine-grained access control in cloud storage services (poster presentation). In Ehab
Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 2010,
pages 735–737. ACM Press, October 2010. 14

[Zha21] Mark Zhandry. White box traitor tracing. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 303–333, Virtual Event,
August 2021. Springer, Heidelberg. 13

MOTS CLÉS

Chiffrement basé sur les attributs ⋆ Signature basée sur les attributs ⋆ Délégation ⋆ Traçage

RÉSUMÉ

Le nombre d’appareils connectés par personne a massivement augmenté lors de la dernière décennie, en particulier dans
les pays occidentaux. Étant donné que la sécurité des structures connectées au réseau peut être compromise à partir de
n’importe quel point d’entrée par un attaquant malveillant, la sécurisation des trousseaux de clefs cryptographiques des
utilisateurs devient centrale pour construire une infrastructure sécurisée. Afin d’explorer les réponses à cette probléma-
tique, nous proposons des solutions pour que les utilisateurs puissent gérer des appareils multiples. En particulier, nous
nous penchons sur les pratiques cryptographiques qui sont compatibles avec les méthodologies modernes de contrôle
d’accès basées sur des attributs. Ces pratiques doivent aussi intégrer les outils qui sont au cœur de la gestion d’appareils
multiples par des utilisateurs. Le premier de ces outils est la délégation, qui permet aux utilisateurs de délimiter les ca-
pacités de déchiffrement de chacun de leurs appareils en fonction de leurs besoins. La délégation doit être possible sans
nécessiter d’interaction avec une quelconque autorité, afin de préserver la vie privée et l’autonomie de l’utilisateur. Le
second outil est le traçage, où nous exigeons que les appareils des utilisateurs puissent être identifiés en cas d’abus ou
d’utilisation illégitime, afin que tout utilisateur puisse être tenu responsable de la gestion de ses appareils.
Nous commençons par présenter une approche pratique des Dual Pairing Vector Spaces (DPVS), qui est un système
de construction et de preuves qui permet d’assurer le meilleur niveau de sécurité pour la cryptographie basée sur les
attributs. Le DPVS est compatible avec des caractéristiques importantes de cette cryptographie telles que la richesse de
l’expression des politiques de contrôle d’accès. Ensuite, nous présentons une nouvelle contribution pour le chiffrement
basé sur les attributs sous la forme d’une nouvelle primitive : le Switchable-Attribute Key-Policy Attribute-Based Encryp-
tion (SA-KP-ABE). Dans un SA-KP-ABE, les attributs des utilisateurs et des chiffrés peuvent être "activés/désactivés"
d’une manière indistinguable pour les utilisateurs. Nous prouvons que cette approche permet le traçage et qu’elle
est compatible avec la délégation. Nous fournissons également une construction de SA-KP-ABE avec le DPVS. Notre
dernière contribution est un schéma de signature basée sur des attributs qui permet deux méthodes de délégation. La
première est la délégation habituelle de clefs, et la seconde permet de déléguer des politiques d’accès pré-approuvées
qui peuvent être réutilisées pour signer différents messages. L’une ou l’autre de ces deux méthodes peut être utilisée
en fonction du risque liée à une mauvaise gestion ou de la compromission de l’appareil recevant les clefs déléguées,
car la seconde méthode implique moins de dommages potentiels que la première. De plus, nous prouvons également
que notre schéma est compatible avec le traçage de signatures, où une autorité désignée peut lever l’anonymat des
signatures suspectes.

ABSTRACT

The last decade has seen a massive increase in the number of connected devices per person, especially in western
countries. As the security of connected structures can be compromised from any entry point by a malicious attacker,
securing sets of cryptographic keys of users becomes an important keystone to build secure infrastructure. To explore
answers to this problem, we propose solutions oriented towards the management of multiple devices for each user. In
particular, we consider cryptographic practices that are compatible with modern access-control methodologies based on
attributes. These practices should be compatible with features that are central to management of multiple devices. The
first is delegation, as a means for users to delimit the decryption capabilities of each of their devices depending on their
needs. Delegation should be doable without requiring interaction with any sort of authority, in order to preserve the user’s
intimacy and autonomy. The second is tracing, in the sense that we require that devices can be tracked in the case of
abuse or illegitimate use so that any user can be held accountable.
We begin by presenting a practical approach to the Dual Pairing Vector Spaces (DPVS), a framework that allows for full
security of attribute-based schemes, while being compatible with important features like expressive policies. Then, we
present a new contribution for attribute-based encryption schemes in the form of a new primitive: Switchable-Attribute
Key-Policy Attribute-Based Encryption (SA-KP-ABE). In a SA-KP-ABE, the attributes of users and ciphertexts can be
"turned on/off" in a way that is indistinguishable for the users. We prove that this approach allows for tracing, and is fully
compatible with delegation. We also provide a construction of SA-KP-ABE in the DPVS framework. Our last contribution
is an attribute-based signature scheme that allows for two types of delegation. The first one is the usual delegation of
keys, and the second one allows to delegate pre-approved policies that can be re-used to sign different messages. Either
of these two approaches can be used depending on the risk of mismanagement or corruption of the device receiving the
delegated keys, as the latter incurs less possible damage than the first one. Furthermore, we also prove our scheme to
be compatible with tracing techniques, where a designated authority can lift the anonymity of suspicious signatures.

KEYWORDS

Attribute-Based Encryption ⋆ Attribute-Based Signature ⋆ Delegation ⋆ Traitor-Tracing

	Résumé
	Abstract
	Remerciements
	Introduction en Français
	Contexte et Motivations
	Contributions
	Dual Pairing Vector Spaces
	Chiffrement basé sur les attributs
	Signature basée sur les attributs

	Introduction
	Context and Motivations
	Related Work
	Frameworks for Attribute-Based Cryptography
	Traitor-Tracing
	Multi-Receiver Encryption
	Anonymous Signatures

	Contributions
	Dual Pairing Vector Spaces
	Attribute-Based Encryption
	Attribute-Based Signature

	Definitions
	Hardness Assumptions
	Access-Trees
	Definition of a Policy
	Labeling of Access-Trees

	Attribute-Based Encryption (ABE)
	Definition of ABE
	Security Model for ABE

	Attribute-Based Signature (ABS)
	Definition of ABS
	Security Model for ABS

	Dual Pairing Vector Spaces (DPVS)
	Pairing Vector Spaces
	Dual Pairing Vector Spaces
	Change of Basis
	Definition
	Partial Change of Basis

	Particular Changes of Bases
	Diffie-Hellman Tuple in Basis Change
	Indistinguishability of Sub-Spaces (SubSpace-Ind)
	Indistinguishability of Position (Pos-Ind)
	Indexing and Randomness Amplification (Index-Ind)

	Basic ABE and ABS Constructions
	Overview of the Dual System Encryption (DSE)
	A Key-Policy Attribute-Based Encryption (KP-ABE) Construction
	Description of the KP-ABE Scheme
	Security Analysis of the KP-ABE

	An Attribute-Based Signature (ABS) Construction
	Complementary Properties
	Description of our ABS Scheme
	Security Analysis of the ABS

	Discussion
	ABE
	ABS

	ABE with Switchable Attributes
	Independent Leaves
	Switchable Leaves and Attributes
	KP-ABE with Switchable Attributes (SA-KP-ABE)
	Definition of SA-KP-ABE
	Security Model for SA-KP-ABE

	Our SA-KP-ABE
	Construction
	Security Results
	Security Proofs

	Application to Traitor-Tracing
	Delegatable and Traceable KP-ABE
	Fingerprinting Code
	Delegatable and Traceable KP-ABE from SA-KP-ABE

	ABS with Delegation and Tracing
	Attribute and Policy Delegations
	Definition of Delegateable ABS
	Security Model for Delegateable ABS

	Description of our Delegateable ABS
	Security Results
	Security Proofs

	Traceable ABS
	Definition of Traceable ABS and Security Model
	One-Time Linearly-Homomorphic Signature

	Description of our Traceable ABS
	Security Results
	Proof of the Traceability

	Conclusion

