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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Soil contamination affects microbial
processes and is widely spread.

• Biases of land surface model's hetero-
trophic respiration are not fully
understood.

• We hypothesized that soil contamina-
tion might be a missing driver.

• 11 land surfaces models residuals were
analyzed against soil Cu contamination.

• Total and free Cu in soils explain
partially some of the models biases.
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A B S T R A C T

Land Surface Models (LSMs) are crucial elements of Earth System Models used to estimate the effects of
anthropogenic greenhouse gas (GHG) emissions on Earth's climate. Nevertheless, as well as land use change and
direct GHG emissions, anthropogenic activities are also associated with contaminant emissions and depositions.
Although contamination has a recognized impact on soil processes such as GHG emissions, soil contamination is
currently not considered as an important process to consider into LSMs.
In this study we hypothesized that soil contamination has significant impact on soil CO2 emissions such as

heterotrophic respiration (Rh). To this end, we analyzed how soil contamination may account for residuals of
modeled Rh from 11 LSMs as compared to Rh products derived from observations over Europe. We used
generalized least squared mixed models to evaluate the primary factors driving of the model residuals. Among
contaminants, we focused on copper (Cu), which is widely used in industry or agriculture, causing significant
diffuse contamination. Additionally, research demonstrated a strong correlation between soil Rh and Cu avail-
ability to soil fauna and various soil pedological and climatic parameters. Hence, we completed our analysis by
including pedo-environmental parameters and by analyzing Rh against a proxy of bioavailable Cu.
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Our findings indicate that Cu is a non-negligible variable in explaining the Rh models inaccuracy considering
either total or free Cu forms. Therefore, it can be concluded that Cu should not be disregarded as a key factor in
predicting Rh.

1. Introduction

Land surface models (LSMs) are used within Earth Systems Models
since the 1970s to predict climate based on physical atmospheric and
oceanographic models (Fisher and Koven, 2020). For years they've been
acknowledged as beneficial and improved by several components such
as the continental biogeochemical cycle which considered the large
fluxes of carbon (C) (and more recently nitrous) between soils and at-
mosphere (Cox et al., 2000; Friedlingstein et al., 2006; Vuichard et al.,
2019; Zaehle and Friend, 2010). However, even with improvements
made over last decades there are still uncertainties in modelling some of
the major processes. For instance, soil C stocks represents 1500 PgC and
C fluxes between the soils and the atmosphere are on the order of 90 PgC
year− 1 (Hashimoto et al., 2015). Anav et al. (2013) estimated that only 6
over the 15 tested Earth system models correctly reproduce the land
carbon sink, and that all models underestimated C sink from 200 to 50 %
in the Northern Hemisphere.

Up to now models of soil C fluxes are mostly governed by soil tem-
perature, soil moisture, clay content, the amount of soil organic carbon
and the C input to the soil from primary production (Blyth et al., 2021;
Fisher and Koven, 2020). However, increasing human influence not only
impacts greenhouse gases (GHG) emissions but also significantly alters
soil contamination. For instance, industrial activities, urban traffic, or
agriculture may raise the concentration of contaminants in soil, such as
heavy metals or pesticides which can in turn impact soil functions
(Bååth, 1989; Cao et al., 1984; Steinnes et al., 1997; Yang et al., 2006).
Furthermore, soil contamination is predicted to fluctuate over the next
decades, mainly contingent on international or local policies (Ballabio
et al., 2018; Panagos et al., 2018). Thus, if soil contamination affects soil
GHG emissions, it is crucial to incorporate it into account into LSMs to 1)
adjust the scenario of climate change under the current contamination
and 2) acknowledge the impact of contamination on GHG emissions and
climate change when exploring land use change scenarios or defining
contamination guidelines. Among land-atmosphere fluxes, soil hetero-
trophic respiration (Rh) accounts for approximatively 40–50 PgC⋅yr− 1

(Konings et al., 2019; Yao et al., 2021), while soil contamination has
been found to affect soil's microbes at the origin of Rh (Giller et al., 2009,
1998; Sereni et al., 2021).

Among pollutants, Cu is widely used in industry or in agriculture
through fertilizers and pesticides which introduce contamination that
adds to soil natural background concentrations. These concentrations
vary from 5 to 50 mg Cu kg− 1 soil as a result of the different parent
materials (Thornton and Webb, 1980) while concentrations up to 150
mg Cu kg− 1 in vineyards or even 3000mg Cu kg− 1 close to industries can
be found (Ballabio et al., 2018; Smorkalov and Vorobeichik, 2011). Due
to the major use of Cu in different agricultural practices, its application
is strongly regulated at the European scale (Official Journal of the Eu-
ropean Union, 2018). Nevertheless, it has been reported that the accu-
mulation of Cu in soils are closely linked to soil factors like such as pH,
clay, CaCO3 or organic matter contents (Ballabio et al., 2018).
Furthermore, it has been demonstrated that soil Cu concentrations
significantly impact soil CO2 emissions in diverse contamination sce-
narios such as laboratory spikes, industrial or agricultural fields, forests,
etc. (Giller et al., 2009; Sereni et al., 2021). Besides, Cu have been
studied since a long time and several data and studies are available on its
soil concentration. However, the effect of soil Cu concentrations on
field-scale CO2 emissions remains uncertain.

The effect of soil Cu on GHG emissions is expected to occur through
its effects on soil microbes' respiration. However, it is widely accepted
that not all the total metal content is biologically available. For instance,

according to the free ion activity model only the small amount of Cu in
the form of free ions in the soil solution, called available fraction, may be
the only effectively bio-available form that can have an impact on soil
fauna (Lanno et al., 2004; Lofts et al., 2013; Parker et al., 2001; Thakali
et al., 2006). Cu availability is greatly influenced by soil characteristics
such as soil pH or soil organic C, so that available Cu level increases at
low pH and low organic matter content (McBride et al., 1997). There-
fore, total Cu was sometimes found a suitable proxy to evaluate the ef-
fect of soil contamination on soil fauna, but in some cases free Cu should
be favored (Pauget et al., 2012).

In this study, our objective was to investigate the errors of conti-
nental biogeochemical models in reproducing observation-based prod-
ucts of Rh partially attributable to Cu content. Continental land surface
biogeochemical models differ in the mechanisms they simulate and the
incorporation of environmental factors. Additionally, models differ in
the spatial variations of soil Rh. Models intercomparison is then
frequently used to estimate the model's residual patterns and required
improvement. It is also used to differentiate between individual
misrepresentation and missing first order drivers that require better
representation residual (Huntzinger et al., 2017). Thus, we used models
output from the TRENDY database (Sitch et al., 2015) to investigate the
hypothesis that soil Cu concentrations, as an additional environmental
variable, affect the models' residuals. Because direct observations of Rh
fluxes on a large scale are seldom, we used two different products of
observation, hypothesizing that bias of importance varied between both
products. We investigated both the effects of total Cu and the effect of
free Cu (considered here as bioavailable) on soil CO2 emissions. How-
ever, available databases containing information suitable for large scale
only recorded total Cu as it is a simpler measurement to obtain than free
Cu (Ballabio et al., 2018; Tóth et al., 2016). Among the numerous
empirical existing equations to derive bioavailable Cu, we chose the
Tipping et al. (2003) estimation which is one of the most used transfer
functions based on >90 observations. This equation coupled with the
data on soil properties provided by the JRC enable estimation of free Cu
at the EU Level.

2. Materials and methods

2.1. Sources of soil data

Data of soil total Cu, soil organic C (SOC), soil pH, soil clay per-
centage, soil cationic exchange capacity (CEC) and soil CaCO3 content
were downloaded from the JRC data files. References can respectively
be found in Ballabio et al. (2018) for total Cu, de Brogniez et al. (2015)
for SOC, Ballabio et al. (2016) for clay and Ballabio et al. (2019) for
CaCO3 and CEC values. Samples were collected at approximately 14 *
14 km intervals across the 0–20 cm horizons. The initial Cu data ranged
from 0 to 496.3 mg⋅kg− 1 with a high variability (mean 16.9 mg kg− 1,
standard deviation is 21.9 mg kg− 1). The correlations between variables
are presented in supplementary Fig. S1. Statistical correlations have
been well described in Ballabio et al. (2018) including correlation with
land use and geographical administrative regions has been well
described. The regridded Cu data range from 2.0 to 103.1 mg kg− 1 with
mean 15.7 mg kg− 1and standard deviation at 10.3 mg kg− 1.

Net Primary Production (NPP) observations used are the products
provided by (Smith et al., 2016). This product relies on the Moderate
Resolution Imaging Spectroradiometer NPP algorithm, driven by long-
term Global Inventory Modelling and Mapping Studies (GIMMS) frac-
tion of photosynthetically active radiation and leaf area index data, to
compute a 30-year worldwide data set of satellite-derived NPP
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(1982–2011).
It was hypothesized that soil Cu concentration had remain relatively

stable in recent decades. As a result, the data provided by the JRC in
2015 was used for comparison over the 1982–2010-time span. The
concentration of free Cu was computed as proxy of bio available Cu
(Parker et al., 2001). Free ion Cu2+ concentration was expressed as pCu
= − log(Cu2+) with the Eq. (1) from Tipping et al. (2003):

pCu = 1.17 pH − 1.09 log10Cu+0.52 log10(2xSOC) − 5.35 (1)

Co-variables used to calculate free Cu were from the JRC databases
(Ballabio et al., 2019; de Brogniez et al., 2015). The correlations be-
tween pCu and others variables are presented in Fig. S2.

The data were collected at a scale of 0.5 km and regridded to a res-
olution of 0.5◦ using the climate data operator cdo at 0.5◦ to fit with the
TRENDY models' resolution.

2.2. Observations of heterotrophic respiration data

Two products of observation for Rh were used for comparison: one
was provided by Hashimoto as yearly means over the 1901–2010 period
and at the 0.5◦ scale (Hashimoto et al., 2015). Most of the observations
were conducted after 1990. Hashimoto's product is based on a semi-
empirical approach that defines Rh responses to temperature and rain-
fall based on observations. The product then estimates Rh at a global
scale on the based on climatic measurements. These observations-based
product will be further named Rh Hashimoto. The other observations-
based product of Rh is provided by Warner as mean of the 1961–2010
period at a 1 km scale (Warner et al., 2019). These observations product
was generated using machine learning trained on more than two thou-
sand observations that data base provides. The soil respiration fluxes
and two Rh fluxes derived from it are provided in Warner et al. (2019).
Since both derivations are linear products of the same co-factors, we
only use the estimation of heterotrophic respiration from the Subke
derivation (further referred to as RhWarner_S). These observations were
regridded at 0.5◦ to fit with the TRENDY simulation resolution. None of
these two databases is a direct observation of Rh but statistical estimate
of worldwide Rh based on punctual measurements. However, the deri-
vations methods being very different their combine use allows a much
stronger estimation of Rh.

2.3. Model respiration data

The TRENDY-v9 project (Sitch et al., 2015) provides the land
component of the Global Carbon Project 2020 Budget with a collection
of land carbon simulations provided by and accessible for a consortium
of dynamic global vegetation model DGVM groups. Models are forced
over the 1700–2019 period with changing CO2, climate and land use
according to the S3 protocol detailed in https://sites.exeter.ac.
uk/trendy (last accessed on 17 September 2021). Briefly, the models
are forced over 1901–2019 using the monthly or 6 h historical forcing
data from Climate Research Units (CRU) provided by Ian Harris at UEA
1901–2019 and accessible at https://crudata.uea.ac.uk/cru/data/hrg/c
ru_ts_4.04/ (Mitchell et al., 2004). Atmospheric CO2 data for the
1700–2019 time period are derived from ice core CO2 data combined
with national oceanic and atmospheric administration (NOAA) data
from 1958 onwards. Land Use change data is derived from updated in-
formation contained within the History Database of the global Envi-
ronment (HYDE) for the years 1960–2020 alongside recent wood
harvest data from the food and agriculture organization of the united
nation (FAO). The Trendy-v9 database provides results for 20 models
with variable data presented in separate netcdf files. Files from the same
model were combined into a single netcdf file at a resolution of 0.5◦ and
aggregated into yearly data for the period 1900–2019. Finally, an
average was calculated over the period 1980–2011. Models with coarser
resolution were removed from the comparison.

Because Rh is strongly correlated with NPP, soil moisture, air

temperature and soil SOC content we aimed at including these variables
from the models before comparison with observations. Also, we
excluded models from the entire TRENDY database that lacked one of
these variables. This led to a total of 11 models: CLASSIC (Canadian
Land Surface Scheme including Biogeochemical Cycle (Melton et al.,
2020; Seiler et al., 2021)), CLM (Community Land Surface Model
(Lawrence et al., 2019)), IBIS (Integrated Biosphere Simulator (Yuan
et al., 2020)), ISAM (Integrated Science Assessment Model (Meiyappan
et al., 2015)), ISBA (Interaction Soil-Biosphere-Atmosphere (Delire
et al., 2020)), LPX (Land Surface Processes eXchanges (Lienert and Joos,
2018)), OCN (ORCHIDEE C N (Zaehle and Friend, 2010)), ORCHIDEE
(Organising Carbon and Hydrology In Dynamic Ecosystems (Krinner
et al., 2005)), ORCHIDEE v3 (Vuichard et al., 2019), ORCHIDEE CNP
(Goll et al., 2017) and SDGVM (Sheffield Dynamic Global Vegetation
Model (Walker et al., 2017)).

2.4. Statistical analysis

We investigated the disparities between Rh estimated by each model
and each Rh from observation-based products. To identify the drivers of
the model residuals we used two different sets of predictors. One set
consider total Cu and then included: clay, CEC, pH, total Cu, tempera-
ture, soil moisture, the differences between NPP (ΔNPP, Eq. (2)), CaCO3
and the differences between SOC (ΔSOC, Eq. (3)) and is named set T (for
total Cu). The second set consider free Cu and then included: clay, CEC,
free Cu (considered as a proxy for bioavailable Cu and defined based on
Eq. (1)), temperature, soil moisture, the differences of NPP (ΔNPP, Eq.
(2)) and CaCO3 and is named set F (for free Cu).

ΔNPPi = NPPi − NPP observed (2)

ΔSOCi = SOCi − SOC observed (3)

With i being a trendy model, NPP observed and SOC observed being
dataset described in Section 2.1.

When looking for second order processes, classical models such as
linear mixed-effect model were not relevant because we hypothesized
threshold in Cu effect and because neither raw nor log transformed
variables exhibited normal distribution. Also, we hypothesized that our
covariables were spatially correlated. Therefore, we adopted a two-fold
methodology. First, we compared several linear generalized least-square
models with no or different spatial structures (Gaussian, exponential,
spherical, linear or rational (using the gls package (Pinheiro et al.,
2023). Based on AIC values we selected exponential spatial correlations
with the smallest AIC values for the following analysis. In a second step,
we used polynomial generalized least square estimations (gls, package)
with all terms represented at their 3rd degree and exponential spatial
correlation. The use of this method allows us to account for the spatial
correlation between the different variables. In some cases (CLM,
CLASSIC, ISAM, OCN, ORCHIDEE CNP, SDGVM for comparison with set
T of predictors and for comparison with set F of predictors and War-
ner_S's Rh and for all except ORCHIDEE v3 with set F of predictors and
Hashimoto's Rh), we implemented degree 2 instead of degree 3 for CEC
and CaCO3 predictors to ensure convergence of the model. We used the
stepAIC function to select variables for the final model, aiming to
maintain the most parsimonious model based on the AIC criteria. All
statistical analysis were conducted using R v3.5 (R Core Team, 2018).
Finally, as the Cu maps provided by the JRC are generated at the EU-
scale, all the analyses were performed over the EU region.

3. Results

3.1. Observed heterotrophic respiration fluxes

The maps of mean Rh fluxes period for Europe are shown in Fig. S3
for both Hashimoto (a) andWarner_S (b) observations-derived products.
Hashimoto Rh’s fluxes were about 0.36 ± 0.06 kgC m− 2 y− 1 (mean, sd)
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with a minimum of 0.26 and maximum of 0.54 whereas Warner_S Rh’s
fluxes were about 0.34 ±0.01kgC m− 2 y− 1 (mean, sd) but varied from
0.07 to 0.66 kgC m− 2 y− 1 (Table S1). The Rh Warner_S also showed
variations in Rh at a finer scale than the observation of Hashimoto. In

both instances Rh fluxes increased from the south-west to the north-east
of Europe. However, Rh Warner_S displayed more scattered patterns
with more isolated variations. For instance, with Rh Warner_S, Croatia
and North-West of Italy presented higher fluxes than the South of Alps,

Fig. 1. Differences of heterotrophic respiration (Rh) fluxes between the different LSM models and Hashimoto's Rh in kgC m− 2 year− 1 (a) CLASSIC model, (b) CLM
model, (c) IBIS model, (d) ISAM model, (e) ISBA model, (f) LPX model, (g) OCN model, (h) ORCHIDEE model, (i) ORCHIDEE v3 model, (j) ORCHIDEE CNP model and
(k) SDGVM model filtered over the EU territory. Grid points in light grey are for zone without SOC data, for IBIS dark grey grid points correspond to negatives Rh
values and were removed.

L. Sereni et al. Science of the Total Environment 957 (2024) 177574 

4 



Fig. 2. Differences of heterotrophic respiration (Rh) fluxes between the different LSM models and Warner_S's Rh in kgC m− 2 year-1. (a) CLASSIC model, (b) CLM
model, (c) IBIS model, (d) ISAM model, (e) ISBA model, (f) LPX model, (g) OCN model, (h) ORCHIDEE model, (i) ORCHIDEE v3 model, (j) ORCHIDEE CNP model and
(k) SDGVM model filtered over the EU territory. Grid points in light grey are for zone without SOC data, for IBIS dark grey grid points correspond to negatives Rh
values and were removed.

L. Sereni et al. Science of the Total Environment 957 (2024) 177574 

5 



whereas with Hashimoto's database the entire Alpine region exhibited
similar fluxes.

3.2. Modeled heterotrophic respiration fluxes at the European scale

Minimum, maximum, median, 1st and 3rd quartile and mean Rh
fluxes of the 11 models are presented in Table S1. The mean Rh fluxes
value across the 11 models is 0.35 kgC m− 2 y− 1 (standard deviation =

0.24). The median is 0.34, the maximum is 1.75 and the minimum is 0.
Most of the highest respiration fluxes are modeled by CLASSIC and OCN
(CLASSIC median Rh 0.79 kgC m− 2 y− 1 and 3rd quartile 0.85
kgC⋅m− 2⋅y− 1, OCN median Rh 0.75 kgC m− 2 y− 1 and 3rd quartile 0.82
kgC m− 2 y− 1). However, the maximum value is obtained with IBIS (1.75
kgC m− 2 y− 1). The modeled Rh fluxes at the EU scale are shown in
Fig. S4. Most of the models reproduce the North-East gradient of in-
crease in Rh fluxes and the decrease in Scandinavia but the respective
spatial extent differs. For instance, ISAM and OCN show a high contrast
between Scandinavia and Spain Rh fluxes. By contrast, ORCHIDEE v3 or
IBIS show a light gradient but particularly high respiration levels in
Germany.

3.3. Residuals of modeled Rh

Minimum, maximum, 1st and 3rd quartile, mean and median values
for ΔRh between each model and Hashimoto's Rh and between each

model and Warner_S's Rh are presented respectively in Tables S2a and
S2b. Over the studied area, we observed a widespread overestimation of
Rh fluxes with median and mean values for the differences between all
model and observed Rh > 0 (respectively mean = 0.08 kgC m− 2 y− 1 and
median = 0.05 kgC m− 2 y− 1 when compared with the Hashimoto's Rh
products and mean = 0.10 kgC m− 2 y− 1, median = 0.08 kgC m− 2 y− 1

when compared to Warner_S's products). When compared to the
Hashimoto's Rh products, 4 of the 11 models (ISBA, IBIS, ORCIDEE and
ORCHIDEE v3) underestimate Rh for more than half of the grid points
(median difference of Rh and Rh Hashimoto <0 for all these models).
When compared to the Warner_S's product only IBIS model un-
derestimates Rh for more than half of the grid points, see Table S2.

Differences between modeled Rh and Hashimoto's Rh are presented
in Fig. 1, while Fig. 2 presents the differences between modeled Rh and
Warner_S's Rh product. The comparison of each model to each obser-
vation product displays a global increase in overestimation towards the
North-Eastern area and in some cases in Spain or Italy (Classic, CLM,
OCN or ORCHIDEE vs Hashimoto's Rh and to a lesser extent vs Warner_S
observations products). Finally, if the models reproduce the global Rh’s
spatial, the magnitude is globally overestimated.

3.4. Statistical models to explain modeled Rh residuals

3.4.1. Effect of pedo-climatic predictors to explain modeled Rh residuals
The residuals of Rh (difference between model and observed Rh) for

Table 1
Predictors selected by the step AIC procedure to explain differences between modeled and observed Rh with the T set of predictors in initial gls model. Crosses indicate
that a predictor (column) has been selected as significant to explain difference between modeled Rh (row) and observed Rh. Residual standard error of the final model
are indicated. For CLM and ORCHIDEE the comparison with Rh Hashimoto's was made with the mean over 1990–2019 as gls didn't converged using the 1980–2010
mean. Corresponding partial plots are presented in Figs. S5 to S15 for Rh Hashimoto and Figs. S16 to S26 for Rh Warner_S (a): with Rh Hashimoto for comparison (b):
with Rh Warner_S for comparison; (c) is the number of times where each predictor is conserved over (a) and (b) Number of models tested are indicated in the pa-
rentheses in the first column.

(a)

Rh Model-Rh Hashimoto Lithology Soil moisture Temperature Δ SOC Δ NPP Cu pH Clay CEC CaCO3 Residual error

CLASSIC X X X X X 0.45
CLM (90-19) X X X X X 0.2
ISAM X X X X X X X X 0.1
ISBA X X X X X X 0.1
IBIS X X X X X X X X 0.22
LPX X X X X X X X 0.06
OCN X X X X X X 0.12
ORCHIDEE (90-19) X X X X X 0.09
ORCHIDEE V3 X X X X X X 0.16
ORCHIDEE CNP X X X X X X 0.19
SDGVM X X X X X 0.16

(b)

Rh Model–Rh Warner_S Lithology Soil moisture Temperature Δ SOC Δ NPP Cu pH Clay CEC CaCO3 Residual error

CLASSIC X X X X X X 0.42
CLM X X X X X X X 0.22
ISAM X X X X X X 0.11
ISBA X X X X X X 0.12
IBIS X X X X X X X X 0.23
LPX X X X X X X 0.09
OCN X X X X X X X 0.13
ORCHIDEE X X X X X X 0.16
ORCHIDEE V3 X X X X X X 0.22
ORCHIDEE CNP
SDGVM X X X X X X X 0.13

(c)

Lithology Soil moisture Temperature Δ SOC Δ NPP Cu pH Clay CEC CaCO3

Occurrence Model – Rh Hashimoto's (/11) 0 11 11 11 10 5 8 6 5 1
Occurrence Model – Rh Warner's (/11) 0 9 11 10 9 7 8 10 4 5
Sum Occurrence (/22) 0 20 22 21 18 12 16 16 9 6
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the different models were analyzed against several driving factors (see
Section 2.4). After variable selections through stepAIC the mean residual
error for heterotrophic respiration of the statistical models were found to
be 0.17 ± 0.10 (set T) and 0.19 ± 0.12 (set F) when compared to
Hashimoto's Rh. When compared with Warner_S's Rh, statistical models'
residual error was found to be 0.18 ± 0.09 (set T) and 0.19 ± 0.10 (set
F). The ΔRhs were better captured by the statistical model for LPX
(smallest residual standard error) but not for CLASSIC (largest residual
standard error, see Table 1) for the comparison to both Hashimoto and
Warner_S's Rh. The terms conserved by the stepAIC selection and Rh are
respectively displayed in Tables 1a, 2a for the comparison with Hashi-
moto's Rh and 1b, 2b for the comparison with Warner_S's Rh. These
terms selection consider set T (Table 1) or set F (Table 2) of initial
predictors. The partial plots showing the selected terms are presented in
Figs. S5 to 46 for successively set T and set F of predictors as well as
Hashimoto's Rh and Warner_S's Rh. Figs. S5 to S15 (Hashimoto's Rh) and
16–26 (Warner_S's Rh) illustrate the selected terms for set T of pre-
dictors. Figs. S27 to S35 (Hashimoto's Rh) and S36 to S46 (Warner_S's
Rh) illustrate the selected terms for set F of predictors.

Soil moisture and air surface temperature (as well than ΔSOC in the
case of set T of initial predictors) were conserved by the stepAIC selec-
tion for all the models when Hashimoto's Rh was used for comparison
(Tables 1a, 2a). Similarly, the ΔNPP was selected as an explanatory
variable for all models except for ORCHIDEE models using the set T of
initial predictors, and for all models except for IBIS model using the set F

of initial predictors.
Air surface temperature was conserved for all models (Tables 1c, 2c).

Soil moisture was conserved for all models except for LPX and CLASSIC
models with set T of initial predictors and for all models with set F of
initial predictors using Warner_S's Rh for comparison. ΔSOC was
conserved for all models except for the ISBA model with set T of initial
predictors and Warner_S's Rh. When compared to Warner_S's Rh, the
ΔNPP was also selected as an explanatory variable for all models except
for the ORCHIDEE and ISBA models using both set T and F of predictors.

Soil clay was selected in 6/11 cases with the set T of initial predictors
and in 2/11 cases with the set F of initial predictors, when using
Hashimoto's Rh. By contrast, soil clay was often found to be a significant
factor to explain ΔRh with Warner_S's Rh with selection in 10/11 cases
(CLM being excluding) and 9/11 cases (all models except IBIS and
CLASSIC) respectively using the sets T and F of initial predictors. Ste-
pAIC selection conserved lithology, CEC and CaCO3 to a lesser extent.
Lithology was only found to explain model residuals for two cases
(namely ORCHIDEE and CLM) using Hashimoto's Rh for comparison and
the set F of initial predictors. CEC was found to be a significant factor in
explaining the model residuals in 11 over the 22 studied cases. These
cases include the CLM and ISAM models for the two sets of initial pre-
dictors and for the two observed Rh. Additionally, for the IBIS and
ORCHIDEE CNP models for set T of initial predictors and for the two
observed Rh, the SDGVM model for the 2 sets of initial predictors and
the LPX model for set F of initial predictors using Hashimoto's Rh

Table 2
Predictors selected by the step AIC procedure to explain differences between modeled and observed Rh with the F set of predictors in initial gls model. Crosses indicate
that a predictor (column) has been selected as significant to explain differences between modeled Rh (row) and observed Rh. Residuals standard errors of the final
model are indicated. For CLM and ORCHIDEE comparisons with Hashimoto's Rh gls did not converged neither with the 1980–2010 nor with the 1990–2019 means.
Corresponding partial plots are presented in Figs. S27 to S35 for Rh Hashimoto and in Figs. S36 to S46 for Warner_S's Rh (a): with Hashimoto's Rh for comparison (b):
with Warner_S's Rh for comparison. (c). is the number of times where each predictor is conserved over (a) and (b) Number of models tested are indicated in the
parentheses in the first column.

(a)

Lithology Soil moisture Temperature pCu Clay Δ NPP CEC CaCO3 Residual error

CLASSIC X X X 0.43
CLM – – – – – – – – –
ISAM X X X X X 0.11
ISBA X X X X X 0.1
IBIS X X 0.33
LPX X X X X X X 0.07
OCN X X X 0.12
ORCHIDEE – – – – – – – – –
ORCHIDEE V3 X X X 0.16
ORCHIDEE CNP X X X 0.22
SDGVM X X X X 0.17

(b)

Lithology Soil moisture Temperature pCu Clay Δ NPP CEC CaCO3 Residual error

CLASSIC X X X 0.43
CLM X X X X X X 0.22
ISAM X X X X X 0.11
ISBA X X X X X 0.12
IBIS X X X 0.32
LPX X X X X X 0.09
OCN X X X X X 0.14
ORCHIDEE X X X X X 0.16
ORCHIDEE V3 X X X X X 0.22
OCRCH CNP X X X X X 0.19
SDGVM X X X X X 0.13

(c)

Lithology Soil moisture Temperature pCu Clay Δ NPP CEC CaCO3

Occurrence Model – Rh Hashimoto's (/9) 0 9 9 3 2 8 3 0
Occurrence Model – Rh Warner'S (/11) 0 9 11 9 9 9 2 3
Sum Occurrence (/20) 0 18 20 12 11 17 5 3
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(Tables 1c and 2c) CEC was found to be significant. CaCO3 was pre-
served solely for the CLASSIC model when using set T of initial pre-
dictors and for the ORCHIDEE residuals using set F of initial predictors
with Hashimoto's Rh for comparison. When using Warner_S's Rh, CaCO3
was found to be a significant factor to explain Rh residuals for the ISBA,
LPX, and ORCHIDEE models with the two sets of initial predictors as
well as the CLASSIC and OCHIDEE CNP models using set T of predictors.

3.4.2. Effect of total Cu or bio-available Cu as predictors of modeled Rh
residuals

Total Cu was conserved in 12 out of the 22 studied cases by the
stepAIC selection and pCu was conserved in 12 out of the 20 studied
cases by the stepAIC selection (Tables 1c and 2c respectively). Consid-
ering total Cu (set T of initials predictors), Cu was conserved for 5
models (ISAM, IBIS, LPX, OCN and ORCHIDEE v3 models) when
Hashimoto's Rh was used for comparison. Cu was conserved more often
by the stepAIC selection using Warner_S's Rh for comparison with se-
lection for 7 models (CLM, ISBA, IBIS, LPX, OCN, ORCHIDEE and
SDGVM). When using set F of initial predictors with Hahimoto's Rh for
comparison, pCu was conserved three times (ISAM, ISBA and LPX
models). By contrast, pCu was conserved 9 times using Warner_S's Rh
(CLM, CLASSIC, ISBA, LPX, OCN, ORCHIDEE, ORCHIDEE v3,
ORCHIDEE CNP and SDGVM models).

Thus, for the statistical models constructed through the stepAIC, both
Cu and pCu are identified as significant variables as often as soil

moisture and 2–3 times more often than CEC or CaCO3. When pCu (set F)
is considered in the initial variables, statistical models are constructed
with pCu as many times as clay. Figs. 3 and 4 show the partial effects of
total Cu, and Figs. 5 and 6 those of pCu as a predictor of differences
betweenmodeled and observed Rh (if Cu or pCuwere not conserved into
the final statistical model the plots are not shown). When conserved, the
partial effect of Cu was found to be of the same order of magnitude
(10− 1) as the other predictors in explaining Rh residuals, except for
temperature which had 10 times larger effect (Fig. S5-S44).

Considering the 11models and the two bases of observations, there is
a trend of global decrease in differences between modeled and observed
Rh with the increase in soil total Cu. Nevertheless, in certain instances,
an increase in differences between modeled and observed Rh was
detected for moderate (LPX, IBIS, ISAM) and/or very high Cu concen-
trations (SDGVM, ISBA but with limited data points).

Finally, the shifts in trends were found to be model dependent and
varied depending on the observation products. For instance, considering
Rh SDGVM - Rh Warner_S, the smallest differences occur at a total soil
Cu content around 80 mgCu⋅kg− 1. Meanwhile, Rh IBIS - Rh Hashimoto
consistently exhibits a decline, and the maximum difference between Rh
ISAM and Rh Hashimoto is observed around 50 mg Cu⋅kg− 1 (Figs. 3b,
4b, c).

Results with set F of predictors vary depending on the source of
observations. With Hashimoto's Rh, the differences between modeled
and observed Rh increase for very small pCu (high free Cu in soil

Fig. 3. Partial Cu effects plots for the differences between models and Hashimoto's Rh. Results are only shown for models where Cu was selected through step AIC
using set T of initial predictors. (a) IBIS model, (b) ISAM model, (c) LPX model, (d) OCN model and (e) ORCHIDEE v3 models.
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solution) and decrease for high pCu (low free Cu in soil solution), see
Fig. 5. By contrast, the differences between modeled Rh and Rh
Warner_S increase for low pCu (high free Cu in soil solution), decrease
for moderate pCu and increase for high pCu (low free Cu in soil solu-
tion), see Fig. 6.

4. Discussion

4.1. Integrating soil contamination into LSMs

The present study undoubtedly confirms the necessity of considering
the effects of soil moisture, temperature, SOC and NPP in soil Rh
modelling. The direct effects of climate and of substrate availability
(SOC and NPP) on Rh are well known and numerous attempts are made

Fig. 4. Partial Cu effects plots for the differences between models and Warner_S's Rh. Results are only show for models where Cu was selected through step AIC using
set T of initial predictors. (a) CLM model, (b) IBIS model, (c) ISBA model, (d) LPX model, (e) OCN model, (f) ORCHIDEE model, (g) SDGVM model.
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to precisely account for them in LSMs (Blyth et al., 2021; Vargas et al.,
2011). Here, we found that the concentration of soil Cu concentration
was also a significant factor to explain differences between modeled Rh
and Rh derived from observation products. We observed that in the
different models tested against the different dataset used here, Cu was
detected as significant explanatory variable as frequently as more
traditionally tested variables such as clay, CEC…Moreover, even though
lithology has been suggested to be a key factor in explaining soil carbon
dynamic (Doetterl et al., 2015), our analysis did not find lithology to be
significant. Instead, it appears that Cu may be a more important factor in
explaining soil Rh biases in LSMs across Europe. It is noteworthy to note
that lithology has been found to be highly correlated with native soil
heavy metal contents (Alloway, 2013; Ballabio et al., 2018), which may
also be correlated with each other. Nonetheless, the Rh bias of the
models was found here to rather results from anthropogenic Cu
contamination instead of Cu from the pedological background. Hence,
taking soil Cu concentration into account in LSMs may improve their
predictive capacities.

Taking into account soil contamination as a novel parameter may be
achieved by two approaches: either by defining empirical functions that
correct the models based onmodels' differences to observations products
or by establishing mechanistic functions that adjust the modeled
component affected by soil contamination.

The first approach requires large databases of chosen endpoints (Rh,
NPP, GPP, etc.) and of soil contamination to calibrate the model. The
present study illustrates the limitation of this approach, with different
results depending on the observation products and the models consid-
ered. Additionally, the calibration of statistical functions through
observational databases limits the possibility to use the resulting func-
tions for prospective studies. Indeed, the strength of such calibration is
to reproduce as well as possible the present state of endpoints in
response to the current soil contamination. But the extrapolation over
the range of calibration is difficult. In order to estimate the future of
areas that are soon to be contaminated several ecotoxicological studies
employed a space for time approach. This approach may be reliable for
nearby areas; however, studies suggest that ecosystem responses to soil
contamination may vary depending on regional weather conditions (Li
et al., 2017; Moe et al., 2013; Tobor-Kapłon et al., 2006). Therefore,
generalizing response functions to soil contamination may be unreliable
over large area.

The second approach is better suited for prospective studies as lab-
oratory studies enable the use of higher concentrations of contaminants
to investigate endpoints responses. However, this requires to conduct
many experimental studies taking into account the multiplicity of co-
factors (soil pH, texture, climate…). Moreover, the processes studied
in micro or mesocosms for calibration functions purposes may not reflect

the ecosystem's responses or the large-scale processes being modeled.
For instance, it has been shown that soil contamination may affect both
the microbial efficiency and the microbial amount. The outcomes of
these two effects may vary for key long-term processes in LSMs, such as
soil CO2 emissions and SOC concentrations. However, as the explicit
representation of microbial biomass has not yet been implemented in
LSMs, model-specific adaptations of response functions to soil contam-
ination will be required. More generally, the explicit representations of
small scale processes into LSMs is still under investigation (Fisher and
Koven, 2020).

4.2. Regional analysis of soil contamination

Our study was enable by the extensive and accurate soil survey's
carried out by the JRC, providing soil data (including SOC, pH, CEC,
CaCO3, Cu) with a precision close to 0.1◦ across the entire European
Union (Ballabio et al., 2019, 2016). This allowed us to confront several
LSMs bias to all soil properties across many grid points and at one of the
most precise scales available for LSMs (0.5◦). However, the resolution
for geochemical and contaminant variations is coarse (Anav et al., 2013;
Tóth et al., 2016). The mapping of soil Cu at 0.5◦ used here limits the hot
spots of Cu concentration, with only 1/1570 grid points with Cu > 100
mgCu⋅kg − 1 and 13/1570 grid points with Cu > 50 mgCu⋅kg− 1. The
results presented here also relate to more diffuse contamination, limited
to areas of at least 0.5◦ and a few decades to hundred mgCu⋅kg − 1. In
contrast, (Ballabio et al., 2018) soil survey study found Cu concentra-
tions > 100 mgCu⋅kg− 1 in 1.1 % of the samples with vineyards exhib-
iting a Cu mean close to 50 mgCu⋅kg− 1. Previous study on laboratory
incubation found a general decrease in soil Rh with an increase in soil Cu
contamination despite an increase in soil Rh at limited Cu concentration
for freshly contaminated soils (Sereni et al., 2021).

Due to the small number of grids point available at high concentra-
tions, it is difficult to establish the robustness of the observed decrease
trend. Moreover, our study was restricted to the European scale, while
the response of ecosystems to external disruption may significantly
differ across various biomes (Beaumelle et al., 2021; Bowler et al., 2020;
Clements and Rohr, 2009). With growing interest in soil Rh, databases at
large scale and coarse resolutions are regularly published based on
different aggregation procedures. Thus, it could enhance our analysis if
we compared coarser and broader databases established worldwide
(Bond-Lamberty et al., 2020; Jian et al., 2021).

Moreover, we focused on the soil Cu concentration as a model for soil
contamination because Cu is widely used in agricultural sectors and
well-studied. However, soil contamination rarely occurs with a single
contaminant. Indeed, atmospheric deposition from industries or trans-
ports is often a mixture of heavy metals while agricultural fungicides

Fig. 5. Partial pCu effects plots for the differences between models and Hashimoto's Rh. Results are only shown for models where pCu was selected through step AIC
using set F of initial predictors. (a) IBIS model, (b) ISBA model, (c) LPX model.
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and pesticides also contain organic components. For instance, in Europe,
(Tóth et al., 2016) found that, Cu concentrations were highly correlated
to Co, Cr, Mn, Ni and Sb concentrations. The impact of multiple con-
taminations on soil functions is still poorly documented. In some cases,
soil fauna adaptation to one contaminant may limit the effects of the
others, while in other cases stress combination can escalate the effects on
fauna or functions (Rillig et al., 2019; Wakelin et al., 2014; Zeng et al.,
2017). Finally, contaminants have different sources and environmental
mobilities so that the scale of contamination diffusion may vary. Hence,
if our study emphasized the significance of Cu contamination for Rh
modelling at 0.5◦, dominant contaminant may differ with spatial

resolution. However, as it arise 1) from the Tóth et al. (2016) study that
soil contaminants behave by pools and 2) from our study that Cu con-
centration is correlated with models bias at the 0.5◦ scale, these two
points made Cu a good candidate to proxy soil contamination at this
scale and to account for it in LSM. However, further research is needed
to understand co-pollutants and the mechanisms of Rh changes to help
design policies to address the impact of soil contamination on soil CO2.

4.3. Uncertainties in Rh estimations

In this study we observed differences between Warner_S's Rh

Fig. 6. Partial pCu effects plots for the differences between models and Warner_S's Rh. Results are only shown for models where pCu was selected through step AIC
using set F of initial predictors. (a) CLASSIC model, (b) CLM model, (c) ISBA, (d) LPX, (e) OCN, (f) ORCHIDEE, (g) ORCHIDEE v3, (h) ORCHIDEE CNP, (i) SDGVM.
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observation's derived products and Hashimoto et al. (2015)’s Rh
observation derived products. These two products are based on different
statistical mapping at the worldwide scale based on few thousand points.
Thus, the predictors conserved to explain Rh bias by comparison of each
of the two observation products differ. The strong dependency of
Hashimoto's Rh on climate factors might be explained by its construction
involving a semi empirical function of temperature and rainfall
(Hashimoto et al., 2015). In contrast, Warner_S's Rh is constructed uti-
lizing a random forest algorithm and is explained by several pedological
factors even if the factors for the published data base construction were
restricted to temperature, rainfall (annual mean and mean from
November to January) and enhanced vegetation indexes. Over Europe,
(Ballabio et al., 2018) found that there was a correlation between soil Cu
concentration and spring temperature and rainfall. More precisely, Cu
concentration was high in areas with high levels of humidity and heat,
especially in vineyards where fungicides were frequently applied to
combat downy mildew. Thus, with the inclusion of enhanced vegetation
index Warner_S's Rh random forests algorithm might take into account
predictors as CaCO3, clay, pH or Cu. Due to their statistical derivations,
the observation products differ in their strength of Rh variability
reproduction. Therefore, to limit false positives and negatives resulting
from the methods of deriving observation products, several products
were analyzed in the residual analysis of the model.

Among the 11 models analyzed, the bias towards observations varies
largely in mean or median, with most models mean and median very
close to the observed mean or median while CLASSIC or OCN twice
larges. CLASSIC model differences can be explained by the initial reso-
lution of the model that was provided at the 2.8◦ × 2.8◦ scale, limiting
the spatial variability as well than missing some region such as Brittany.
Besides, models differ in the process they include such as fire manage-
ment, explicit N processes … (Friedlingstein et al., 2020) that plays a
role in C cycle and Rh estimations. However, themodels also differ in the
conceptualization of soil C cycle and parametrization. Also, the direct
extraction of key processes that have to be represented to limit bias is not
possible. The parameters selection conducted in the present study does
not allowto assess which exact processes involved in Rh is not well
modeled but it allows the identification of environmental parameters for
which the response is not well accounted for.

4.4. Implications for soil management

Numerous policies aim at increasing the C stocks in soils (European
Comission Directorate-General for Research and Innovation et al.,
2020), with one of the most efficient way being to use organic fertilizers.
For instance, sewage water or pig slurry are often used for soil amend-
ment but are also riches in heavy metals such as Cu. Regular amendment
with organic fertilizers can thus affect both soil organic C and soil Cu
content (Denaix et al., 2013; Jensen et al., 2016; Parat et al., 2007;
Smolders et al., 2012), but also pH leading to supplementary un-
certainties (Laurent et al., 2020). Here, we showed that the soil Cu
concentrationmight affect soil Rh but that it is not accounted properly in
current soil model used to estimate the effect of land use change or
climate change on soil C emissions. Given that soil Rh represents one of
the main soil-atmosphere C flux, our study argues that a better under-
standing and representation of the effect of soil Cu contamination on soil
Rh is of major interest for soil C storage policies.

5. Conclusion

The comparison of Rh to soil Cu concentration databases revealed
that soil Cu concentration was a relevant predictor for Rh defined at 0.5◦

scale across Europe. Indeed, limited significant effect of Cu was found by
comparison to Hashimoto's Rh whereas significant effect of Cu was
found by comparison to Warner_S's Rh, that also show coarser variations
at the regional scale. Our results also show that both total Cu and free Cu
were relevant predictors of Rh. Although there was little accuracy

improvement using free Cu. The analysis conducted on 11 LSMs indi-
cated that in most cases, Cu may account for the residuals. Cu (expressed
as a total content or as a bioavailable pool) was found significant with an
effect of the same order of magnitude than the other soil factors in 24 of
the 42 studied cases. For both total Cu and free Cu, soilΔRhwas found to
globally decrease with an increase in soil Cu. In some cases, ΔRh in-
creases for moderate and/or very large Cu concentrations. However, the
Cu concentration with inversion from an increase to a decrease in soil
ΔRh largely varied among the models and the observations considered.
None of these LSMs accounted for Cu. Also, the various responses we
observed could be attributed to the varying calibration of response
functions to co-varying parameters such as pH or climate.
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