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a LG-ENS (Laboratoire de géologie) - CNRS UMR 8538 - Ecole normale supérieure, PSL University IPSL, Paris, France
b European Commission, Joint Research Centre (JRC), Ispra, Italy
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• A novel calibration approach enhances
soil organic carbon stock simulations.

• Northern Europe requires higher C input
additions to reach the 4 ‰ target.

• Similar C input requirements under RCP
2.6 and RCP 6.0.

• C input change requirements exceed
predicted changes in net primary
productivity.
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A B S T R A C T

Increasing soil organic carbon (SOC) stocks in agricultural systems is a pivotal strategy for promoting soil health
and mitigating climate change. Global initiatives have set ambitious targets, aspiring to achieve an annual SOC
stock increase of 4 ‰. In the European Union, the recently approved Nature Restoration Law aims to increase
SOC stock trends in the top 30 cm of cropland mineral soils. However, current monitoring and reporting practices
in some countries rely on simplistic SOC models with default parameters, which may not provide reliable
predictions.

In this paper, we study the feasibility of a 4 ‰ target in European croplands (i.e., an aspirational target
proposed by The international “4 per 1000” Initiative), through estimations of required C input changes. To
ensure robust predictions, we propose a novel calibration approach that links model parameters to pedo-climatic
variables via statistical relationships from 16 long-term experiments. The effectiveness of the method is evalu-
ated for three SOC models across 4281 sites from the European LUCAS soil survey.

Our findings demonstrate that the statistical calibration of the multi-model ensemble improves the accuracy of
2015 and 2018 SOC stock predictions, compared to default parameterization. This improvement was however
mainly due to the substantial enhancement of one of the models. According to the weighted multi-model mean,
median C input changes to reach a 4 ‰ target for Northern, Central, and Southern Europe stand at 1.85, 1.20,
and 0.13 Mg C ha− 1 yr− 1 under RCP 2.6, and 2.21, 1.26, and − 0.10 Mg C ha− 1 yr− 1 under RCP 6.0, respectively.
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To achieve the aspirational 4‰ target, estimated C input change requirements exceed the predicted changes
in net primary productivity under RCP 2.6 and RCP 6.0. This emphasizes the importance of strategic land-use and
land-management interventions to enhance SOC stocks.

1. Introduction

The European Union (EU) has set ambitious targets to tackle climate
change. In comparison to the levels of 1990, one aim is to reach net zero
greenhouse gas (GHG) emissions by 2050 (European Commission,
2021). In addition, by 2030 the EU has also introduced an overall target
for land carbon (C) removals by natural sinks of 310 Tg of CO2 equiv-
alent (European Commission, 2021). Soil is recognized as the second
largest C sink after oceans, and among terrestrial ecosystems soil organic
carbon (SOC) stocks are the largest C pool (Lal, 2008). Policy frame-
works addressing land-use and land-use changes in Europe could
generate significant changes in SOC stock levels. For example, the
recently approved Nature Restoration Law of the EU sets binding
restoration targets to recover degraded ecosystems by 2050 (European
Commission, 2022a). Among these targets, one is to increase SOC stock
trends in the top 30 cm of croplandmineral soils (European Commission,
2022a) via carbon farming activities (European Commission, 2022b).

An aspiring target of an annual 0.4 % (i.e., 4‰) SOC stock increase
had been proposed in 2015 by The international “4 per 1000” Initiative
(https://www.4p1000.org/, last access: 25 June 2024). It suggested a
voluntary action plan to maintain and increase existing SOC stocks by 4
‰ yr− 1 to a 0 to 30–40 cm depth at the global scale, in order to mitigate
climate change and improve food security (Lal, 2016). The underlying
principle of the initiative is that, improving agricultural practices to
protect existing SOC stocks and, whenever possible, increase SOC stocks
by a relatively low annual rate can create a win-win scenario, by off-
setting some GHG emissions from human activities while sustaining soil
health for food productivity (Minasny et al., 2017). This approach aligns
with European climate targets to achieve C neutrality and combat soil
degradation. Since the “4 per 1000” initiative and the carbon voluntary
market were launched, a number of studies have investigated the
feasibility of a 4 ‰ annual SOC stock increase (Poulton et al., 2018;
Noulèkoun et al., 2021; Martin et al., 2021; Riggers et al., 2021; Bruni
et al., 2021, 2022a, 2022b; Bamière et al., 2023). However, a global
assessment at the European level is still missing.

There is a general consensus that the most efficient way to increase
SOC stocks is through increased C input (Virto et al., 2012; Autret et al.,
2016; Fujisaki et al., 2018), for example, via additional organic matter
inputs or increased atmospheric CO2 fixation through extended plant
growth. Examples of cropland practices that return additional C inputs
to the soil compared to conventional practices, include: agroforestry
systems, hedges, cover cropping, lengthening leys in temporary grass-
lands, and effective restitution of crop residues and organic amendments
to the soil (Chenu et al., 2019). In an effort to monitor and increment
SOC stocks, several organizations are supporting countries to report
their national C budgets using simple process-based models (e.g., FAO,
2018; Lesschen et al., 2021; Peralta et al., 2022). This is important and
effective to standardize SOC stock estimates across countries. It also
improves the level of methodological complexity of the estimation,
compared to a Tier 1 or Tier 2 approach (IPCC, 2006). These methods
use simpler, more generalized approaches to estimate SOC sequestra-
tion, requiring less data but resulting in lower accuracy. In contrast,
model-based Tier 3 methods employ high-quality, site-specific data and
complex models, making them the cutting-edge approach in SOC
sequestration estimation (IPCC, 2006). However, simulations based on a
single model with default constant parameters may not provide reliable
predictions, as they often fail to capture the dynamics and site-specific
variations in SOC (Luo and Schuur, 2020; Farina et al., 2021).

To increase reliability, models typically need to be calibrated and
validated against observed data (Garsia et al., 2023). Calibrated model

parameters integrate those processes that are not explicitly represented
in the models (i.e., processes at unresolved scales) (Luo and Schuur,
2020), which typically vary spatially with pedo-climatic conditions and
land-use. For example, the temperature sensitivity of soil respiration (i.
e., the increase of soil respiration due to temperature changes) is usually
represented by the fixed Q10 parameter (Davidson and Janssens, 2006),
although Q10 is known to vary with other environmental factors, such as
soil moisture, texture, pH, and land-use (Meyer et al., 2018; Wang et al.,
2010). Thus, it is important that parameters vary according to local
conditions. For future projections, it is also important to perform the
calibration on data that inform on the temporal dynamics of the system,
such as those obtained from long-term experiments (LTEs) (Le Noë et al.,
2023). The challenge lies in the scarcity of such experiments, the lack of
harmonization among soil surveys, and the difficulty of generalizing
findings from few experiments to entire countries or continents (Jandl
et al., 2014). Efforts to facilitate the parametrization of process-based
models should be undertaken to allow for a larger applicability. In
addition, multi-model ensembles should also be considered in order to
estimate and possibly reduce the uncertainties linked to the structure of
the models (Riggers et al., 2019; Bruni et al., 2022b).

Based on these considerations, we developed a parametrization
method that relies on statistical relationships betweenmodel parameters
and observational data from LTEs. The statistical relationships were
established by linking model parameters associated to C decomposition
rates with the pedo-climatic conditions of the sites, through multiple
linear regression models. The method allows for the estimation of site-
specific parameter values, based on the application of simple mathe-
matical functions calculated with local pedo-climatic conditions. The
data used to estimate the statistical relationships spanned across 16
European sites and covered the major pedo-climatic gradients of the
continent, enabling the applicability of the methodology at the Euro-
pean scale. The choice of multiple linear regressions was based on the
need of a simple and interpretable model that could be trained on a
relatively small amount of data. We tested the performance of the sta-
tistical parametrization on three SOC models (AMG, Andriulo et al.,
1999; ICBM, Andrén and Kätterer, 1997; and Roth-C, Jenkinson, 1990)
over 4281 locations derived from the most extensive harmonized land-
use and soil survey available for the EU (Land Use and Coverage Area
frame Survey, LUCAS) (Orgiazzi et al., 2018). Then, we estimated the C
input change requirements to reach an annual 4 ‰ SOC stock increase
between 2015 and 2099 in European croplands. The proposed method
allows to employ simple multi-linear functions for parametrizing SOC
models. This has the potential to improve the reliability of large-scale
SOC simulations, particularly in situations where parameter calibra-
tion is not possible due to a lack of observational data.

2. Materials and methods

2.1. Soil data

The LUCAS database gathers harmonized data on land-use and land
cover across the EU, combining remote sensing and direct field obser-
vations (Ballabio et al., 2016). It provides topsoil data (0–20 cm) for
2009 (2012 for Romania and Bulgaria) on approximately 20,000 sam-
pling locations over all land-use and land cover types. The survey was
repeated in 2015 (Jones et al., 2020) and in 2018 (Fernandez-Ugalde
et al., 2022) over most of the same sampling points. For the purpose of
this study, we included only sites under agricultural land-use classified
as arable under rotational crops in all three sampling campaigns (i.e.,
2009/2012, 2015, and 2018). That is, 4281 points (Fig. S1). The
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properties considered for the topsoil layer include soil texture (i.e., clay
content), pH (in CaCl2), coarse fragments, carbonate (CaCO3) content,
total nitrogen (N) content, and SOC content in 2009/2012, 2015, and
2018. Bulk density (BD) was not directly measured in the initial cam-
paigns of the LUCAS framework, but was derived from a pedotransfer
function that uses soil texture and SOC concentration as inputs (Hollis
et al., 2012). Based on LUCAS data, SOC stocks where then calculated
with Eq. (1):

SOC
(
MgC ha− 1)

= SOC(%) • BD
(
g cm− 3) • sampling depth (cm)

• (1 − rock fragments fraction (vol.%/100) ), (1)

A recent study indicated that the BD estimated using the Hollis et al.
(2012) approach for the 2018 LUCAS survey in agricultural lands was,
on average, 8 % higher than measured values (Panagos et al., 2024),
potentially introducing some uncertainties in SOC stock estimations.
However, the authors demonstrated a strong alignment with measured
soil BD for agricultural soils, reinforcing its suitability for such estima-
tions (Panagos et al., 2024).

2.2. Climate data

Climate forcing data were derived from the Inter-Sectoral Impact
Model Intercomparison Project (ISIMIP) repository, protocol 2b (Frieler
et al., 2017). Climate data at this relatively large spatial scale (0.5◦) is
still highly correlated to meteorological station observations (Karger
et al., 2023). Data input values were extracted at the 4281 cropland
locations based on the geographic coordinates of the LUCAS database,
such that the spatial resolution of the data input was harmonized. Un-
certainty in the climate data was considered by averaging an ensemble
of different models. In particular, daily surface temperature and daily
precipitation from water and snowfall were derived and averaged from
the IPSL-CM5A-LR and MIROC5 models (Fig. S2). For potential evapo-
transpiration and soil moisture down to 18 cm depth, we derived and
averaged the monthly output from the ORCHIDEE model, coupled with
IPSL-CM5A-LR and MIROC5 climate models (Fig. S2). We used two
scenarios of global climate change projections: the Representative
Concentration Pathway (RCP) 2.6 and RCP 6.0. Recall that the RCP 2.6
scenario considers stringent mitigation policies and predicts an average
global land temperature increase of 1 ◦C during the period 2081–2100,
compared to mean temperatures in 1986–2005, while the RCP 6.0 es-
timates an average temperature increase of 2.2 ◦C, for the same time
period (Field et al., 2014). Both scenarios were run assuming a fixed
year-2005 land-use, nitrogen deposition and fertilizer input (Frieler
et al., 2017). The choice of using climate forcing generated with fixed
land-use from 2005 allowed us to estimate the additional C inputs to
reach the 4 ‰ target, relative to a business-as-usual scenario. To
compare simulated C input change requirements with predicted changes
in NPP due to shifts in land-use, we used ISIMIP simulations of NPP
between 2015 and 2099 (multi-model average between DLEM and LPJ-
GUESS, coupled with IPSL-CM5A-LR and MIROC5). The land-use sce-
nario consisted in varying land-use, water abstraction, nitrogen depo-
sition and fertilizer input according to the “Middle of the Road” shared
socio-economic pathway (SSP2), defined in the IPCC Sixth Assessment
Report (AR6) (Masson-Delmotte et al., 2021).

2.3. Carbon input

Carbon input levels were derived from three sources. The first is the
net primary productivity (NPP) product from the Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite data, covering the average
NPP between 2000 and 2009 (Zhao et al., 2005). The second source is
the multi-model average NPP between 2006 and 2015, calculated from a
combination of earth system models (DLEM and LPJ-GUESS) and
climate models (IPSL-CM5A-LR and MIROC5) derived from ISIMIP
(protocol 2b) (Frieler et al., 2017). The third source is the average C

input between 2015 and 2019 simulated by the DayCent model, which
includes both plant-derived and organic manure inputs (Lugato et al.,
2017). For MODIS and ISIMIP forcings, the C input was calculated by
multiplying the total annual NPP by the human appropriated NPP
fraction (HANPPf) from Plutzar et al. (2016), and adding the C input
from organic fertilizers. The HANPPf from Plutzar et al. (2016) includes
the human-induced alteration of NPP due to land-use and harvest. The
spatial resolution of MODIS NPP, human appropriated NPP fraction
(HANPPf), and C input from DayCent was 1 km, while for ISIMIP NPP, it
was 55 km2. Organic fertilization from animal manures was derived
from the ‘Gridded Livestock of the World’ FAO dataset (Robinson et al.,
2014; Lugato et al., 2014). For all datasets, the values were derived for
each cropland location of the LUCAS database. Running the models with
different C input sources (Fig. S3) enabled the consideration of potential
uncertainties associated with varying spatial resolutions. The temporal
scale of the initial C input data was harmonized by averaging the data
across different time periods (i.e., 2006–2009/2006–2015/2015–2019).

2.4. Models

We used three SOC models that were built to simulate the SOC stock
dynamics in agro-ecosystems and were largely evaluated in temperate
cropland sites: AMG (Andriulo et al., 1999), ICBM (Andrén and Kätterer,
1997) and Roth-C (Jenkinson, 1990). The choice of models was driven
by their structural simplicity, with the goal to select models that are
either currently used or have the potential to be used for national C
inventories at the European scale (Bouthier et al., 2014; Lesschen et al.,
2021; Peralta et al., 2022; Swedish Environmental Protection Agency,
2023). Improving the parametrization of these models could thus impact
the reporting of GHG inventories, which currently suffers from technical
and comparability flaws (Chevallier, 2021). All three models simulate
SOC stocks within a single topsoil layer (0–20 cm), using a conventional
multi-compartmental structure. Each model has a different number of
compartments, enabling different levels of flexibility in reproducing the
SOC dynamics (Bruni et al., 2022b). Carbon inputs enter the soil and are
transferred within the different SOC compartments. During the transfer,
the C is partially decomposed, following first order decay rates. The
decomposition rates depend on climate conditions with functions spe-
cific to each model. For example, ICBM uses soil moisture and temper-
ature as forcing variables, while AMG and Roth-C use precipitation and
potential evapotranspiration in addition to temperature. The only C
outputs considered are those from respirated CO2. A detailed description
of modeling assumptions is provided in Appendix A. Mathematical
equations of the models can be found in: Clivot et al. (2019) for AMG;
Andrén and Kätterer (1997) for ICBM; Coleman and Jenkinson (1996)
for Roth-C; and Parshotam (1996) for Roth-C's continuous version.
Contrary to the other models, the initial conditions in AMG are pre-
defined based on total initial SOC stocks (i.e., in 2015) and the previ-
ous land-use history of the site (Appendix A). This avoids the need of
steady-state assumption for initialization. For the other models (i.e.,
ICBM and Roth-C), the assumption that SOC stocks were at steady-state
at the onset of the simulations was made, in order to estimate the initial
conditions of the SOC pools through analytical or semi-analytical spin-
up. For spin-up, average climate forcing between 2006 and 2014 under
RCP 2.6 was used. It is important to note that for past periods both RCPs
are similar. We used 2015 SOC stocks as the initial date in order to have
sufficient data for the spin-up forcing (i.e., 2006–2014). Forward sim-
ulations were run from 2015 to 2099, with climate forcings from RCPs
2.6 and 6.0.

2.5. Parametrization of the models

Models were run in two configurations: 1) with default parametri-
zation and 2) with one or several statistically calibrated parameters. In
the default configuration, all parameters were constant across sites,
while statistically calibrated parameters varied spatially (Table 1). In
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the following paragraphs we describe the approach used to statistically
calibrate the parameters.

The first step was to derive from Bruni et al. (2022b) the values of
model parameters calibrated site-by-site to fit observed SOC stock evo-
lutions at 16 LTEs carried out in European croplands. The experiments
had an average duration of 26 years and spanned from approximately
42.81◦N to 59.82◦N in latitude and 3.76◦W to 21.66◦E in longitude (9
were located in France and 1 each in Spain, Great Britain, Sweden, Italy,
Germany, Poland and Austria) (Bruni et al., 2022b). Mean annual sur-
face temperatures ranged between 5.7 ◦C and 12.8 ◦C, and mean annual
precipitations between 613 mm and 1314 mm (Bruni et al., 2022b).
Soils were quite diversified, encompassing both highly calcareous (160
gCaCO3 kg− 1) and non-calcareous soils, with clay concentrations
ranging from 5 % to 36 %, and pH levels between 5.85 and 8.60 (Bruni
et al., 2022b). The parameters selected in Bruni et al. (2022b) for the
calibration affected the C decomposition rates, being either decompo-
sition rate coefficients of the model compartments, or parameters of the
environmental control functions modifying the decomposition rates.
That is, the k0 coefficient of the active pool in AMG, the k1 and k2 co-
efficients of the young and old pools in ICBM, respectively, the r envi-
ronmental factor altering both decomposition rates in ICBM, and the
reference temperature parameter (Tparam) of the temperature control
function in Roth-C (Appendix A).

The second step consisted in estimating a statistical relationship
between the calibrated parameters and the pedo-climatic conditions of
the 16 sites (mean values over the experiment duration). For that, we
used a multiple linear regression model where the response variable was
the calibrated parameter and the explanatory variables were: mean
annual surface temperature, mean annual precipitation, mean annual
potential evapotranspiration, mean C input, clay and CaCO3 content,
soil C:N and pH, initial SOC stocks and wetness index at the LTEs.
Climate variables used for SOCmodel simulations at the 16 LTEs, and for
statistical regressions (i.e., daily mean surface temperature, pre-
cipitations and potential evapotranspiration) were derived from an
hourly global climate dataset at 0.5◦ (GSWP3 http://hydro.iis.u-tokyo.
ac.jp/GSWP3/), and annually averaged. The wetness index was
derived from the 2015 Copernicus Land Monitoring Service products
(Langanke et al., 2018). To select the most parsimonious model and
reduce the risk of overfitting, we performed a step wise regression by
Akaike Information Criteria (AIC). The developed pedo-climatic statis-
tical functions estimated to derive the calibrated parameters are
described in Table 1. As a final step, we derived the statistically cali-
brated parameters values for all 4281 locations using the estimated
statistical functions for each parameter, the soil variables from the
LUCAS survey, the wetness index from Copernicus, and the climate
variables from the ISIMIP multi-model average (RCPs 2.6 and 6.0)
(Fig. 1 shows the latitudinal distribution of the statistically calibrated
parameters for RCP 2.6). See Appendix A for details on the parameter
bounds.

2.6. Performance evaluation of the statistical parameter calibration

To evaluate the performance of the multiple linear regressions by
stepwise AIC, we performed a leave-one-out cross validation (LOOCV)
test (Table S1), where the regressions were iteratively trained over a
subset of the database and tested on the left-out samples. LOOCV is a
particular type of cross-validation, where the number of samples in the
training set is n-1 and the number of test samples is 1, with n being the
total number of samples. In our case, n = 16 and the training set had 15
samples. This was repeated iteratively for all samples in the dataset, with
a total of n models being trained and tested. The LOOCV test results are
provided as the relative root-mean-squared-error (r-RMSE), calculated
as the RMSE divided by the mean of the parameter's values, the coeffi-
cient of determination (R2), and the mean absolute error (MAE) of the
statistical models built for each statistically calibrated parameter
(Table S1).Ta
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For both default and statistically calibrated configurations, model
simulations of SOC stocks under RCP 2.6 were compared to LUCAS
measurements by estimating the RMSE at each site. For ICBM and Roth-
C models, both 2015 and 2018 measurements were considered. For
AMG, only 2018 measurements were used because 2015 SOC stock
measurements were prescribed to the model for initialization (Appendix
A). The performance of the models to simulate SOC stocks in 2018 and/
or 2015, i.e., their RMSE, was calculated as Eq. (2):

RMSEi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

j=1
∑M

z=1
(
SOCi,j,z − SOCj,z

obs)2

N • M

√

, for i = 1,…,18, (2)

where, i = 1,…,18 are the model configurations (i.e., 3 models × 3

input forcing × 2 calibrations); j = 1,…,N are the cropland locations of
the LUCAS database for which the forcing input was available; N being
equal to 4281 for MODIS forcing, 4233 for ISIMIP, and 3910 for Day-
Cent; z = 1,…,M are the number of years for which the models were
evaluated (i.e., 1 for AMG, and 2 for ICBM and Roth-C); SOCi,j,z is the
modeled SOC stock for model configuration i, location j, and number of
years z; and SOCj,z

obs is the observed SOC stock for location j and number
of years z.

The effect of the models and parametrizations (i.e., with or without
statistically calibrated parameters) on the RMSE was estimated with a

linear mixed-effect (LME) model, where we assumed fixed effects for the
explanatory variables: “model”, “parametrization”, and the interaction
between the two, and a random effect for the “forcing” variable. After
testing for normality of the residuals with a Shapiro-Wilk test, we
assessed the significance of fixed effect terms with an analysis of vari-
ance (ANOVA). The effect of the coefficients was considered significant
for p-values < 0.05.

2.7. Inverse modeling

The amount of C input required to increase SOC stocks by 4‰ yr− 1

over the period of 2015–2099 was calculated using an inverse modeling
approach that consisted of minimizing Eq. (3):

where SOCi,j
2015 and SOCi,j

2099 are the 2015 and 2099 SOC stock levels
simulated by model configuration i at location j, respectively, and
SOCi,j

2099 is a function of the C input to be optimized (I).
The amount of C input from livestock manure was assumed to be

maintained at current levels, unless the estimated C input to reach the 4
‰ target was lower than the amount of C input from livestock manure.
In that case, the amount of livestock manure was assumed to be 0 and
the estimated C input considered as plant material only. This allowed to
estimate the relative change of C input required to reach the 4‰ target
from plant material only. For each model configuration and at each
location, the additional C input required to reach the 4 ‰ target was
then estimated as Eq. (4):

ΔI*i,j = I*i,j − Ii,j
2015, for i = 1,…,18, and j = 1,…,N, (4)

where I*i,j is the required C input to reach the 4‰ target over the period
of 2015–2099, and Ii,j2015 is the amount of C input in 2015 for model
configuration i and location j. The change of C input required to reach
the 4‰ target, relative to 2015, was calculated as Eq. (5):

I*i,jrelative change(%) =
ΔI*i,j
Ii,j

2015 • 100. (5)

At each location, we calculated the weighted multi-model mean of
the required additional C input, using as weights the inverse of the
RMSE:

ΔI* j =

∑18

i=1

1
RMSEi

• ΔI*i,j

∑18

i=1

1
RMSEi

, for j = 1,…,N. (6)

The weighted standard deviation was then calculated with Eq. (7):

σΔI* j
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑18

i=1
1

RMSEi

(
ΔI*i,j − ΔI* j

)2

(18− 1)
18

∑18

i=1

1
RMSEi

√
√
√
√
√
√

. (7)

To assess the deviation of the models around the multi-model
weighted mean, the weighted relative standard deviation (wRSDj) was
computed as the absolute value of the coefficient of variation (note that
this measure is dimensionless and not expressed as a percentage):

wRSDj =

⃒
⃒
⃒
⃒

σΔI* j

ΔI* j

⃒
⃒
⃒
⃒. (8)

Fig. 1. Latitudinal distribution of the statistically calibrated parameters. The
average value of the statistically calibrated parameters for each latitude bin is
shown with different colored lines according to the different forcings, and the
standard deviation of the parameters across sites is represented by the colored
shades. Default parameter values in the non-calibrated configurations are
shown with the grey dashed vertical line.

Yi,j =
⃒
⃒ SOCi,j

2015 • (1+ 0.004 • 85) − SOCi,j
2099(I)

⃒
⃒, for i = 1,…,18 and j = 1,…,N, (3)
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3. Results

3.1. Evaluation of the multiple linear regressions for statistical parameter
calibration

Fig. 2 shows the correlation between the parameters predicted with
the multiple linear regressions (i.e., the statistically calibrated parame-
ters) and the values of the parameters calibrated on the 16 LTEs. The
reference temperature parameter (Tparam) of the Roth-C model showed
the highest R2 (0.96) between predicted and calibrated parameters,
followed by the decomposition rate parameter k0 of AMG (0.86), the
decomposition rate parameters k2 (0.83) and k1 (0.81) of ICBM, and the
environmental parameter r of ICBM (0.73) (Fig. 2). Despite the relatively
high portion of variance explained by the environmental variables in the
multiple linear regression models (adjusted R2≥ 0.55, Table 1), only the
statistical model built for the Roth-C parameter (Tparam) had good in-
dexes of performance when tested with the LOOCV test (Table S1). In
fact, the multiple linear regression model built for Tparam had the highest
average R2 (0.69) across the LOOCV test iterations, and lowest r-RMSE
(0.14), compared to the other models, and a MAE of 2.30 ◦C. All other
statistical models had an average R2 lower than 0.2 and a r-RMSE be-
tween 0.75 (k0) and 3.43 (k1) across the LOOCV test iterations
(Table S1).

3.2. Effect of the statistical calibration on the SOC stock predictions

Considering all models and forcings, compared to the default
parametrization, the statistical calibration reduced by almost half the
RMSE of the simulated SOC stocks, from 45.29 Mg C ha− 1 to 24.69 Mg C
ha− 1 (Table 2). However, this was mainly due to the improved perfor-
mance of the Roth-C model under statistical calibration. Instead, the
RMSE of ICBM and AMG were not reduced by the statistical calibration
(Table 2). In Fig. 3, the latitudinal distribution of the RMSE across model
configurations shows that all the models tend to have higher RMSEs at
high latitudes, especially under ISIMIP and MODIS forcings, which
generally appear to be more closely aligned. In Roth-C under statistical
calibration, this bias is significantly reduced (Fig. 3). From the statistical
analysis of the LME model (conditional R2 = 0.99), we found that the
models and parametrizations had a significant effect on the RMSE
(Table S2). There was also a significant interaction between models and

Fig. 2. Correlation between the predicted SOC model parameters estimated
with the multiple linear regression (see Table 1), and the calibrated parameters
estimated by fitting the SOC models to the measured SOC stock evolution in the
16 LTEs. (a) Tparam (◦C) is the reference temperature parameter of the tem-
perature control function in the Roth-C model, (b) k1 (yr− 1) and (c) k2 (yr− 1) are
the decomposition rate parameters of the young and the old pool in the ICBM
model, respectively, (d) r is the environmental modifier in the ICBM model, and
(e) k0 (yr− 1) is the decomposition rate parameter of the active pool in the
AMG model.

Table 2
RMSE of the different model configurations (Eq. (2)), where N•M is the number
points for which the RMSE was calculated, N being the number of cropland
points and M the number of years.

Model × Forcing N•M RMSE

Mg C ha− 1

Non-
calibrated

Statistically
calibrated

ICBM × MODIS 4281•2 29.34 32.63
Roth-C × MODIS 4281•2 67.45 22.93
AMG × MODIS 4281 15.39 15.55
ICBM × ISIMIP 4233•2 29.19 32.32
Roth-C × ISIMIP 4233•2 67.30 23.69
AMG × ISIMIP 4233 15.44 15.60
ICBM × DayCent 3910•2 26.00 26.55
Roth-C × DayCent 3910•2 59.13 16.56
AMG × DayCent 3910 15.23 15.42

All models
MODIS 4281•(2 + 2 + 1) 47.03 26.16
ISIMIP 4233•(2 + 2 + 1) 46.90 26.29
DayCent 3910•(2 + 2 + 1) 41.42 20.96

All models and forcings
Total (4233 + 4281 + 3910)•5 45.29 24.69
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parametrizations, indicating that the effect of the parametrization on the
RMSE depended on the model considered (Table S2).

3.3. Carbon input changes required to reach a 4 ‰ SOC stock increase

Under both RCP 2.6 and RCP 6.0, the required additional C input to

reach a 4‰ SOC stock increase between 2015 and 2099 was higher in
Northern and Central Europe, compared to Southern Europe (Fig. 4). In
particular, the median additional C input was 1.85, 1.20, and 0.13 Mg C
ha− 1 yr− 1 under RCP 2.6, and 2.21, 1.26, and − 0.10 Mg C ha− 1 yr− 1

under RCP 6.0, for Northern, Central, and Southern Europe, respectively
(Table 3). Negative values indicate that less C input than what was
applied in 2015 would be sufficient to reach the 4 ‰ target. The pre-
dicted average requirements were found to be similar under the two
climate change scenarios (i.e., median of 41.8 and 41.4 % under RCP 2.6
and RCP 6.0, respectively), with differences of the required relative
changes in the range of − 6.2 % (Q1) and 6.3 % (Q3) (Table 3). Although
similar on average, the effect of the climate change scenarios differed
across regions. In particular, differences of the medians between the two
climate change scenarios were higher in Northern (16.0 %) and South-
ern Europe (− 7.1 %), compared to Central Europe (3.4 %). However,
while in Northern and Central sites the C input change requirements
were higher under RCP 6.0 (i.e., positive sign), Southern sites required
higher C input changes under RCP 2.6 (Table 3). In absolute values, the
predicted C input requirements within each region showed similar
variability. The distance from the median to the lower and upper
quartiles ranged between 0.31 Mg C ha− 1 yr− 1 and 0.92 Mg C ha− 1 yr− 1

across regions (Table 3). The weighted relative standard deviation was
higher in the Southern region, compared to the rest of Europe (Fig. 4b,
d), indicating a larger discrepancy across model predictions in the South.

We compared the 4 ‰ C input change requirements to the NPP
changes between 2015 and 2099, predicted by the ISIMIP multi-model
average under the varying land-use scenario (Fig. 5). We found a sta-
tistically significant difference between C input change requirements
and NPP changes under both RCPs (ANOVA p-value < 0.05). In partic-
ular, the median C input change requirements to reach the 4 ‰ target
were higher than the predicted NPP changes with varying land-use
(Fig. 5).

4. Discussion

4.1. An innovative method to improve the parametrization of process-
based models

The method that we propose defines generic mathematical functions
to parametrize simple process-based models. The idea is to link
parameter values to those processes that are not explicitly represented in
the models, and to find emerging statistical relationships with pedo-
climatic variables that affect these processes. By leveraging the data
from 16 LTEs, this allows to account for both the spatial variability of the
parameters and the temporal dynamics of SOC stocks. To our knowl-
edge, the method that we propose in this study is unique in that it allows
for the direct implementation of a spatialized parametrization into
simple SOC models, based on local pedo-climatic conditions.

This approach also allows for a more refined understanding of the
connections between model parameters and their environmental
drivers. For example, Fig. 1 shows that the decomposition rate of the
active pool in AMG increases at higher and lower latitudes, compared to
central Europe, and it is significantly correlated to water and soil vari-
ables (i.e., mean annual potential evapotranspiration, wetness index,
initial SOC stocks, and C:N ratio, Table 1). Also, the reference temper-
ature parameter in Roth-C significantly correlated to the amount of C
input in the LTEs (Table 1), which could partly explain why the RMSE in
Roth-C predictions had a different latitudinal distribution when forced
with DayCent inputs (Fig. 3). In fact, the DayCent forcing was derived
from direct model simulations of plant C inputs, whereas the other
forcings consisted in the correction of NPP data with values of human
appropriation from Plutzar et al. (2016). The lower spatial resolution of
ISIMIP data partly explains the generally lower performance of the
models when using ISIMIP forcing (Table 2, Fig. 3). This parametrization
approach also offers the advantage of being straightforward to imple-
ment since it consists in the application of mathematical functions to

Fig. 3. Latitudinal distribution of the RMSE for the different model
configurations.

Fig. 4. Map of the required additional C input (Mg C ha− 1 yr− 1) to reach an
annual 4 ‰ SOC stock increase between 2015 and 2099, relative to 2015, in
European croplands. Panel (a) and (c) show the weighted multi-model means
under RCP 2.6 and RCP 6.0, respectively, while panels (b) and (d) show the
weighted relative standard deviations (RSD) for the same climate change sce-
narios. Note that negative values indicate a required C input level lower than
the C input in 2015 (Eqs. (4), (6)).
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determine the parameter values at different locations, and only requires
data on the pedo-climatic conditions of the sites (that are in any case
needed to run the simulations).

Recently, the synergy between statistical methods and process-based
models has been gaining attention (Karpatne et al., 2017; Reichstein
et al., 2019; Daw et al., 2021). A few studies have applied machine
learning techniques to improve the parametrization of process-based
models. For example, Gentine et al. (2018) used a deep learning
approach to spatially parametrize moist convection in a global atmo-
spheric model. Also, Tao et al. (2020) have used a neural network
method combined with data assimilation to improve the representation
of SOC in a land C model.

These works are showing the potential of artificial intelligence to
reduce model biases and improve their ability to reproduce the spatial
patterns of physical variables. The primary strength of these approaches
lies in the substantial amount of data used to train and validate the

models. Deep learning techniques require large datasets to avoid over-
fitting and ensure robust performance. Our dataset, while extensive, was
not sufficiently large for such applications. Given the limitations of the
dataset, we opted for a simpler yet more interpretable multiple linear
regression model. This allowed to understand the relationships between
variables and gain insights into the factors influencing C dynamics. Our
work builds upon previous efforts to merge data-driven approaches with
process-based models, and it offers the added advantage of being readily
applicable. As more comprehensive datasets become available,
advanced modeling techniques should be employed to explore non-
linear relationships in the SOC system.

4.2. Feasibility of the 4 ‰ in Europe and comparison to other studies

Our maps show that C input change requirements will be higher in
Northern and Central Europe, compared to Southern Europe (Fig. 4).
This may be partly explained by the typically higher SOC stocks in those
cropland regions, as shown by Lugato et al. (2021) and De Rosa et al.
(2023), and by the sensitivity of SOC models to temperature and water-
related variables (Bruni et al., 2022b). However, model errors were also
higher at Northern latitudes (Fig. 3), which indicates that predictions in
those regions are also less robust.

Other works have recently estimated the required C input change to
reach a 4 ‰ target at a country or site-specific level. Those estimates
range widely between a 30–40 % increase over a 30-year period esti-
mated by Martin et al. (2021) for continental France, and a similar 43 %
increase for European cropland sites (Bruni et al., 2021), up to a 119 %
increase estimated with a multi-model ensemble over several European
cropland sites (Bruni et al., 2022b), and a 221 % increase in German
croplands for the period 2014–2099, under RCP 2.6 (Riggers et al.,
2021). Although highly variable across sites, the estimates provided in
our study fall in the lower range (Table 3). That is, a median 41.8 and
41.4 % C input increase over the whole European cropland area, under
RCP 2.6 and RCP 6.0, respectively. Different estimates across these
studies are mainly due to differences in modeling assumptions, such as
the parametrization used, the models considered, and the variables used
to force the models.

NPP changes due to projected land-use and climate were found to be
insufficient to meet the 4 ‰ target (Fig. 5). This implies that relying
solely on predicted NPP changes due to future land-use and climate will
not be sufficient to reach the 4 ‰ target, especially in Northern Euro-
pean sites, where the additional C input required was very high (Q3 =

132.2 % and 154.9 % under RCP 2.6 and 6.0, respectively, Table 3). As it
has already been extensively articulated in previous studies (Soussana
et al., 2019; Chenu et al., 2019; Wiesmeier et al., 2020; Martin et al.,

Table 3
Required C input change to reach the 4‰ target between 2015 and 2099, under RCP 2.6 and RCP 6.0 scenarios. The 1st, 2nd, and 3rd quartiles (Q1, Q2, andQ3, respectively)
of the multi-model simulations (weighted mean) are specified for North (≥55.5◦N), Center (<55.5◦N and>45.5◦N), and South (≤45.5◦N) Europe, as well as for the whole
4281 sites (Total).

European region RCP 2.6 RCP 6.0 Difference
RCP 6.0 − RCP2.6

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Required additional C input
(Mg C ha− 1 yr− 1)

North 1.37 1.85 2.67 1.63 2.21 3.13 0.24 0.34 0.51
Center 0.85 1.20 1.69 0.87 1.26 1.79 − 0.01 0.08 0.17
South − 0.23 0.13 0.76 − 0.41 − 0.10 0.45 − 0.35 − 0.19 − 0.12
Total 0.41 1.02 1.60 0.26 1.00 1.69 − 0.16 0.02 0.16

Required C input change
(%)

North 58.36 89.42 132.25 68.51 106.14 154.86 10.15 16.04 23.22
Center 33.56 53.09 80.88 35.11 55.68 84.54 − 0.05 3.37 7.35
South − 7.41 7.43 28.93 − 13.51 − 2.4 18.21 − 12.51 − 7.14 − 4.31
Total 15.72 41.85 74.30 10.50 41.37 76.90 − 6.24 0.86 6.35

Fig. 5. Comparison between ISIMIP predictions of NPP changes between 2099
and 2015 under RCP 2.6 and RCP 6.0 and required C input changes in the same
period according to the weighted multi-model mean. In panels (b) and (c), the
black horizontal bars indicate the median.
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2021; Bruni et al., 2022b), our findings highlight the necessity for
strategic land-management interventions in the coming decades to in-
crease SOC stocks in European croplands. Various practices to increase
total NPP of agro-ecosystems exist (Chenu et al., 2019; Soussana et al.,
2019). Among them, the adoption of continuous cover cropping has
been shown to increase SOC stocks due to higher C inputs, relative to its
non-adoption (Poeplau and Don, 2015). Similar effects have been found
with the implementation of agroforestry systems and hedges (Cardinael
et al., 2018). These practices are also associated to higher belowground
C inputs, which contribute more to relatively stable SOC (Kätterer et al.,
2011). Diversification of crop rotations has also been identified as a
potential strategy to increase SOC storage (Chenu et al., 2019). In fact,
greater crop diversity is associated to higher C input quality, quantity,
and chemical diversity, which fosters the growth and diversity of soil
microbial communities, thereby enhancing the formation and storage of
SOC (Zhang et al., 2021). Reduction of yield gaps could also contribute
to higher C inputs in some regions (Soussana et al., 2019). In particular,
by reducing the cereal yield gap from 42 % to 20 % of the yield potential
in Eastern Europe, it has been shown that there is the potential to boost
the production by almost 40 % (Schils et al., 2018), thus partially ful-
filling the additional C input needs in those regions.

It is important to note that the “4 per 1000” initiative's goals are
aspirational, with the 4‰ increase rate serving as a quantitative target
to explore the general feasibility of enhancing SOC stocks through
improved land management practices. As Minasny et al. (2017) high-
lighted, not all soils have the potential to store additional SOC. Soils with
inherently high SOC content may have already reached equilibrium
under current management practices, while soils with low SOC content
may struggle to increase SOC levels due for example to higher temper-
atures that accelerate decomposition (Minasny et al., 2017). In peat
soils, it is very unlikely to increase the SOC stocks by 4 ‰ even under
natural conditions (Minasny et al., 2017). Hence, in these regions the
main challenge is to ensure C neutrality by avoiding SOC losses. In
addition to the technical potential of management practices, adoption
constraints and socio-economic barriers that limit the feasibility of the 4
‰ target have seldom been accounted for, but should also be considered
(Soussana et al., 2019; Bamière et al., 2023).

4.3. Limits of our study

Despite the abovementioned benefits of our approach, important
limitations and potential improvements must be pointed out. First, the
number of sites that we used for the parameter calibration (i.e., 16 LTEs)
is quite low for an extrapolation at the continental scale. Nevertheless,
we expect that the major pedo-climatic gradients are well captured by
the ensemble of sites. Also, default parameters in SOCmodels are usually
estimated with empirical functions derived from one or few experiments
in the same pedo-climatic conditions (e.g., the Rothamsted experiment
in UK for Roth-C (Coleman and Jenkinson, 1996); the Boigneville
experiment in France for AMG (Saffih-Hdadi and Mary, 2008); and the
Ultuna experiment in Sweden for ICBM (Andrén and Kätterer, 1997)).
Default parameters are generally used to forecast SOC dynamics without
considering their variability across sites (Martin et al., 2021). This
means that our approach necessarily improves the value of default pa-
rameters by including additional information from experiments in
different pedo-climatic conditions and considering processes at unre-
solved scales. Adding more LTEs to the statistical analysis is expected to
improve the performance of the approach and further reduce model
biases. In particular, increasing the number of sites from Northern lati-
tudes may help to better represent SOC stocks in those regions, where
models have the highest errors (Fig. 3).

Second, the statistical parametrization did not improve ICBM and
AMG simulations. For AMG, this may be due to the fact that the model
was initialized with observed 2015 SOC and, after three years, the dif-
ference of errors between default and statistically calibrated parameters
is expected to be quite low. It would be interesting to evaluate the

parametrization in the longer term to see whether the SOC stock dy-
namics is better captured with spatially variable parameters. For ICBM,
parameter calibration in the LTEs may be compensating for structural
lacks of the model. This means that the model may be omitting some
important processes that should be integrated to improve its validity.
Table 1 shows in fact that the majority of pedo-climatic variables were
not significantly correlated to ICBM parameters, indicating that the
empirical functions built for this model did not correctly capture missing
processes at unresolved scales. In general, simple model structures in-
crease parameter identifiability through observations, but over-
simplification of model structure can lead to a decline in model accuracy
(Her and Chaubey, 2015). Fig. 3 also shows that ICBM performance was
not particularly sensitive to the statistical calibration of k1. In general,
an effort should be made to link parameters to physical factors that can
be empirically estimated. On the contrary, the improved accuracy of
Roth-C was due to the good performance of the statistical model in
predicting its reference temperature parameter with pedo-climatic data
(Table S1, Fig. 2). With an increased number of data, it would also be
possible to employ deep learning techniques for the statistical analyses,
which are likely more powerful for finding relevant relationships be-
tween model parameters and pedo-climatic data (Tao et al., 2020). Ef-
forts from projects sharing data through open-source platforms (Ballabio
et al., 2016; Poggio et al., 2021) and compilations of existing LTEs
(Grosse et al., 2021; Donmez et al., 2022; Marazza et al., 2023) align
with the requirements of our work and are expected to enhance the
performance of the parametrization method that we propose.

Another important limitation of this study is that ensemble estimates
had higher weights on AMG, which was not changed much from the
default by the proposed calibration approach. Thus, the calibration did
not contribute considerably to refining the maps of required additional C
inputs (Fig. 4). High weights on AMG predictions also dragged down
estimates of C input requirements in Southern Europe (Table S3). Dif-
ferences in the levels of C input requirements among models were likely
due to differences in the initialization method used. In fact, the
assumption of steady-state for ICBM and Roth-C tended to stabilize SOC
stock trends also in the forward run, whereas in AMG initial SOC stocks
were prescribed and the model predicted overall increasing SOC stock
trends, particularly high in Southern regions (Table S4). These differ-
ences are important to have in mind, especially because estimations of
required C input additions to reach the 4‰ can be largely influenced by
the current trend of the SOC stocks (Bruni et al., 2022a). Other works
have predicted that SOC stocks will increase in Europe by 2050 and
2100 under current and projected land-use and different climate sce-
narios, but indicated SOC losses in Southern Europe (Lugato et al., 2014;
Yigini and Panagos, 2016). This suggests that our results may be
underestimating the level of C input required to increase the SOC stocks
in Southern regions.

Model simulations are still highly uncertain due to the complexity of
the processes represented, but also the parametrization and the data
used to constrain the models (such as climate forcing, C inputs and
initial SOC pools). To increase the reliability of projected SOC stocks,
future works should prioritize accurate determination of initial SOC
conditions (Kanari et al., 2022), independent and diachronic calibration
of model parameters using extensive datasets (Le Noë et al., 2023; Garsia
et al., 2023), and refinement of model representations of soil responses
to climate variables (Moyano et al., 2012; Todd-Brown et al., 2012). The
integration of different modeling approaches via multi-model ensemble
simulations offers a more robust and complete representation of SOC
processes (Farina et al., 2021; Bruni et al., 2022b; Le Noë et al., 2023).
Structural uncertainties can be reduced by selecting the best perfor-
mance models (Riggers et al., 2019) and identifying processes associated
with high prediction errors (Bruni et al., 2022b).

5. Conclusion

The EU climatic commitments require strong decreases in GHGs
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emissions, along with C removals by natural land sinks, such as soils.
Modeling exercises are needed to evaluate the potential of cropland soils
to store C. However, single model simulations with default parametri-
zation are not robust for predicting SOC stock changes.

We proposed a method to calibrate SOC models via simple multi-
linear functions linking model parameters to various pedo-climatic
variables. On average, the method improved the accuracy of first
years SOC stock predictions. Our multi-model simulations showed that
reaching a 4 ‰ SOC stock increase target in European croplands may
require large increases of C input to the soils and land-management
interventions to augment SOC stocks, especially in Northern Europe.

Our work builds upon previous efforts to integrate data-driven ap-
proaches with process-based models and has the advantage to be easy to
apply. The effectiveness of the method we proposed can be further
enhanced by incorporating additional LTEs into the statistical analysis.
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Appendix A. Models

AMG

AMG is a three compartmental model that simulates SOC dynamics at an annual time step (Andriulo et al., 1999). It has one fresh organic matter
pool, separated into aboveground and belowground material, and two SOC pools (active and stable). The C in the fresh organic matter pool is partly
respired and partly transferred to the active SOC pool, according to C input-specific humification coefficients (Levavasseur et al., 2020). In the active
pool, the C is decomposed following temperature, water, clay, and CaCO3 dependent functions, and a decomposition rate coefficient (k0) (Clivot et al.,
2019). The stable pool is considered constant throughout the simulation length. The model is initialized using the SOC stock value at the onset of the
simulation (Saffih-Hdadi andMary, 2008). For the initialization, total SOC is split among the active and stable pool according to the historical land-use
of the simulated site. Lacking information on historical land use, all sites were considered as having a long-term arable history (i.e., 65 % of initial SOC
stock was considered stable). For our simulations, each crop species from the LUCAS database was associated to its shoot:root ratio (Clivot et al.,
2019), in order to determine the repartition of the C input into its aboveground and belowground pools. Furthermore, each crop species was associated
to an aboveground crop humification rate, while the belowground crop humification rate was 0.4 for all species (Clivot et al., 2019). Since the crop
rotation at the different sites was unknown, we simulated the SOC dynamics using the weighted average shoot:root ratio and humification coefficients
for all sites. Test simulations showed that using values specific to the current crop did not affect the results.

For livestock manures, since the animal source was unknown, we used the average optimized humification coefficients for different types of animal
manures from Levavasseur et al. (2020) (i.e. h= 0.548 for all sites). Animal manures were supposed to be spreadmainly on the soil surface (i.e. 90% of
total animal manure was spread aboveground and the rest 10 % belowground).

ICBM

ICBM is a two compartmental SOC model that is run at an annual time step and can be solved analytically (Andrén and Kätterer, 1997). C input is
directly transferred to the young and the old SOC pools, where the C is decomposed according to: a C input type-dependent humification coefficient,
decomposition constants (k1 and k2 for the young and the old pool, respectively), and environmental factors. The environmental factors are sum-
marized into one parameter (r), which is calibrated from temperature and soil moisture response functions (Fortin et al., 2011; Karlsson et al., 2011)
and normalized against a Swedish north-temperate site. For our simulations, we normalized the environmental parameter against a site situated at
59.82◦N–17.28◦E.

Roth-C

Roth-C is a five SOC pools model that is run at a monthly time step (Jenkinson, 1990). It was converted to its matrix continuous form following
Parshotam (1996). The C input is split into the decomposable and resistant plant material (DPM and RPM) pools. For agricultural crops, a DPM/RPM
ratio of 1.44 is used. Carbon from both DPM and RPM are partly respired as CO2 and partly split into the humified organic matter (HUM) andmicrobial
biomass (MIC) pools, depending on the clay content of the soil. Afterwards, the BIO and HUM pools decompose to form more CO2, HUM and BIO. SOC
decomposition is dependent on temperature and moisture control functions, the first one being a logistic function that depends on mean monthly
temperature and a temperature reference parameter (Tparam), and the latter being a piecewise function depending on mean monthly precipitation,
mean monthly potential evapotranspiration, clay, and a soil cover coefficient (0.6 for vegetated soil) (Coleman and Jenkinson, 1996). A small amount
of total initial SOC is considered inert (IOM) and is constant through time. Roth-C was solved semi-analytically, following the method described in
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Huang et al. (2018) and Xia et al. (2012). That is to say: 1) the set of differential equations were solved by inverse calculations to determine pools sizes
at steady state 2) the model was run numerically for the rest of the simulations.
Parameter bounds

The statistically calibrated parameters were bound to ensure physical, realistic values. The AMG decomposition rate parameter (k0) was bound
between 0 and 1 (Clivot et al., 2019). The Roth-C reference temperature parameter (Tparam) was bound between 15 ◦C and 30 ◦C. The temperature
response function (a) of Roth-C was additionally constrained to be lower than 4.5, to avoid completely decomposed SOC when the values of the
calibrated Tparam were close to the upper bound (see Coleman and Jenkinson, 1996). The ICBM decomposition rate parameter of the young pool (k1)
was bound between 1 • 10− 1 and 15, the decomposition rate parameter of the old pool (k2) was bound between 1 • 10− 3 and 1, and the environmental
factor parameter (r) was bound between 1 • 10− 3 and 10 (Andrén and Kätterer, 1997). Additionally, k1 was constrained to be higher than k2, to ensure
that the turnover rate of the young pool was faster than the old pool. Since ICBMwas calibrated on the 16 LTEs with multiple parameters, we tested the
performance of the model using different combinations of statistically calibrated parameters: (i.e., k1, k2 and r; k1 and k2; k1 and r; k1; and k2). Then,
we selected the combination of statistically calibrated parameters that minimized the root mean squared error (RMSE) between simulated and
observed SOC stocks in 2015 and 2018 (Eq. (2)). That is to say, the configuration where only k1 was statistically calibrated.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2024.176525.
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Noulèkoun, F., Birhane, E., Kassa, H., Berhe, A., Gebremichael, Z.M., Adem, N.M.,
Syoum, Y., Mengistu, T., Lemma, B., Hagazi, N., Abrha, H., Rannestad, M.M.,
Mensah, S., 2021. Grazing exclosures increase soil organic carbon stock at a rate
greater than “4 per 1000” per year across agricultural landscapes in Northern
Ethiopia. Sci. Total Environ. 782, 146821. https://doi.org/10.1016/j.
scitotenv.2021.146821.

Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., Fernández-Ugalde, O., 2018. LUCAS
Soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69,
140–153. https://doi.org/10.1111/ejss.12499.

Panagos, P., De Rosa, D., Liakos, L., Labouyrie, M., Borrelli, P., Ballabio, C., 2024. Soil
bulk density assessment in Europe. Agr Ecosyst Environ 364, 108907. https://doi.
org/10.1016/j.agee.2024.108907.

Parshotam, A., 1996. The Rothamsted soil-carbon turnover model — discrete to
continuous form. Ecol. Model. 86, 283–289. https://doi.org/10.1016/0304-3800
(95)00065-8.

Peralta, G., Di Paolo, L., Luotto, I., Omuto, C., Mainka, M., Viatkin, K., Yigini, Y., 2022.
Global Soil Organic Carbon Sequestration Potential Map – GSOCseq v.1.1. FAO,
Rome.

Plutzar, C., Kroisleitner, C., Haberl, H., Fetzel, T., Bulgheroni, C., Beringer, T.,
Hostert, P., Kastner, T., Kuemmerle, T., Lauk, C., Levers, C., Lindner, M., Moser, D.,
Müller, D., Niedertscheider, M., Paracchini, M.L., Schaphoff, S., Verburg, P.H.,
Verkerk, P.J., Erb, K.-H., 2016. Changes in the spatial patterns of human
appropriation of net primary production (HANPP) in Europe 1990–2006. Reg.
Environ. Chang. 16, 1225–1238. https://doi.org/10.1007/s10113-015-0820-3.

Poeplau, C., Don, A., 2015. Carbon sequestration in agricultural soils via cultivation of
cover crops – a meta-analysis. Agr Ecosyst Environ 200, 33–41. https://doi.org/
10.1016/j.agee.2014.10.024.

Poggio, L., De Sousa, L.M., Batjes, N.H., Heuvelink, G.B.M., Kempen, B., Ribeiro, E.,
Rossiter, D., 2021. SoilGrids 2.0: producing soil information for the globe with
quantified spatial uncertainty. SOIL 7, 217–240. https://doi.org/10.5194/soil-7-
217-2021.

Poulton, P., Johnston, J., Macdonald, A., White, R., Powlson, D., 2018. Major limitations
to achieving “4 per 1000” increases in soil organic carbon stock in temperate
regions: Evidence from long-term experiments at Rothamsted Research, United
Kingdom. Glob Change Biol 24, 2563–2584. https://doi.org/10.1111/gcb.14066.

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N.,
Prabhat, 2019. Deep learning and process understanding for data-driven Earth
system science. Nature 566, 195–204. https://doi.org/10.1038/s41586-019-0912-1.

Riggers, C., Poeplau, C., Don, A., Bamminger, C., Höper, H., Dechow, R., 2019. Multi-
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