Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation - ENS - École normale supérieure
Communication Dans Un Congrès Année : 2024

Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation

Résumé

We address the problem of verifying neural networks against geometric transformations of the input image, including rotation, scaling, shearing, and translation. The proposed method computes provably sound piecewise linear constraints for the pixel values by using sampling and linear approximations in combination with branch-and-bound Lipschitz optimisation. The method obtains provably tighter over-approximations of the perturbation region than the present state-of-the-art. We report results from experiments on a comprehensive set of verification benchmarks on MNIST and CIFAR10. We show that our proposed implementation resolves up to 32% more verification cases than present approaches.
Fichier principal
Vignette du fichier
ecai24_m1462.pdf (1014.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04727955 , version 1 (09-10-2024)

Licence

Identifiants

  • HAL Id : hal-04727955 , version 1

Citer

Ben Batten, Yang Zheng, Alessandro De Palma, Panagiotis Kouvaros, Alessio Lomuscio. Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation. ECAI 2024 - European Conference on Artificial Intelligence, Oct 2024, Santiago de Compostela, Spain. ⟨hal-04727955⟩
15 Consultations
8 Téléchargements

Partager

More