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Abstract

The formation of an amide bond is an essential step in the synthesis of materials

and drugs, and in the assembly of amino-acids to form peptides. The mechanism of

this reaction has been studied extensively, in particular to understand how it can be

catalyzed, but a representation capable of explaining all the experimental data is still

lacking. Numerical simulation should provide the necessary molecular description, but

the solvent involvement poses a number of challenges. Here, we combine the efficiency

and accuracy of neural network potential-based reactive molecular dynamics with the

extensive and unbiased exploration of reaction pathways provided by transition path

sampling. Using microsecond-scale simulations at the density functional theory level,

we show that this method reveals the presence of two competing distinct mechanisms for
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peptide bond formation between alanine esters in aqueous solution. We describe how

both reaction pathways, via a general base catalysis mechanism and via direct cleav-

age of the tetrahedral intermediate respectively, change with pH. This result contrasts

with the conventional mechanism involving a single pathway in which only the barrier

heights are affected by pH. We show that this new proposal involving two competing

mechanisms is consistent with the experimental data, and we discuss the implications

for peptide bond formation under prebiotic conditions and in the ribosome. Our work

shows that integrating deep potential molecular dynamics with path sampling provides

a powerful approach for exploring complex chemical mechanisms.

Introduction

The amide bond is a ubiquitous chemical motif and its formation is of central importance in

many areas of chemistry.1 In materials chemistry, it links the building blocks of polyamide,

which is used, for example, in synthetic fabrics such as nylon. In pharmaceutical chemistry,

it is present in more than half of all new drug candidates, making amine acylation one of the

most common reactions in the synthesis of pharmaceutical compounds.2,3 In biochemistry,

amide bonds are responsible for holding together the backbones of all proteins, since peptide

bonds are amide bonds between amino acids.

The direct formation of an amide by condensing an amine with a carboxylic acid is well

known to be extremely difficult, due to the very large energetic barrier. This is why, in

synthetic chemistry the reaction is usually preceded by a first step in which the carboxylic

acid is activated1,4,5 and in living organisms the formation of peptide bonds is catalyzed,

e.g., by the ribosome.6

However, critical questions remain unanswered. These include, for example, guidelines

for the design of industrial catalysts that provide atom-economic preparation routes for

amides,3,4,7,8 and a plausible reaction pathway for the formation of peptide bonds under

prebiotic conditions in the absence of enzyme catalysts to elucidate the origins of life.9 All
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these questions require a detailed characterization of the amide bond formation mechanism.

The commonly accepted mechanism is based on the works of Jencks10–13 and shown in

figure 1a. It successively involves the nucleophilic attack of the amine on the carbonyl to

yield a tetrahedral zwitterionic intermediate T±, followed by the amine deprotonation by

a general base to yield the negatively charged tetrahedral intermediate T−, and finally the

departure of the leaving group.
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Figure 1: a) Conventional mechanism of amide bond formation10–13 with general base catal-
ysis. b) Schematic free energy profiles for the conventional mechanism at lower pH (pH=8)
and at higher pH (pH=10).6,11

Breaks in the measured pH-rate profiles of amide formation revealed that the reaction

rate-limiting step changes with pH.10 It was proposed11,12 that at high pH (pH=10) the rate-

limiting step involves a tetrahedral transition state structure, consistent with the deprotona-

tion step between T± and T− (figure 1b). In contrast, at lower pH (pH=8), it involves the

breaking of the CO bond with the leaving group, the transition state is no longer tetrahedral

and the rate-limiting step was suggested to be the breakdown of T− (figure 1b).

However, while this mechanism is widely presented in chemistry textbooks, it has been

questioned by kinetic isotope substitution measurements at different pH values. A landmark

kinetic isotope effect (KIE) study14 of the amide bond formation between hydrazine and
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methyl formate raised questions regarding the stability of the tetrahedral intermediate.14–16

Other experimental studies on acyl transfer have further suggested that depending on the

nucleophile and nucleofuge structures the mechanism could become concerted.17–20 The con-

certed or stepwise character of the nucleophilic attack and proton transfer steps therefore

remains an open question.

An additional difficulty with the conventional mechanism (figure 1a) is that it leads to

a chemically surprising picture of pH effects on the successive barriers (figure 1b). pH is

indeed expected to affect the T± → T− proton rearrangement step much more than the

T±-forming nucleophilic attack and than the T− cleavage. In more basic pH conditions, the

T± → T− deprotonation is expected to be increasingly facilitated. In contrast, the KIE

study14,16 concludes that T± → T− is rate-limiting in very basic conditions whereas it is

not at almost neutral pH (figure 1b). This behavior is counter-intuitive and this suggests

that fundamental questions about the mechanism of this widely used reaction remain to be

answered.

Resolving these questions and obtaining a detailed characterization of the uncatalyzed

reference mechanism is a prerequisite for guiding the catalysis of this key reaction. The

molecular resolution provided by numerical simulations would therefore be extremely helpful.

Pioneering electronic structure calculations15,21–23 and molecular dynamics simulations24–36

of amide formation and hydrolysis reactions have been performed and have for example

confirmed the initial formation of the tetrahedral zwitterionic intermediate T±. However,

molecular simulations face two major difficulties in the description of the amide formation

reaction mechanism.

The first challenge arises from the active role played by the solvent. The rate-limiting

steps probed in the KIE study14 include proton transfers, which possibly involve the sur-

rounding water molecules. While previous simulations25,28,34 with a mixed quantum/classical

(QM/MM) description have provided important insight in this reaction, this method requires

an a priori partitioning of solvent molecules into reactive and non-reactive regions. This se-
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lection can be ambiguous and often imposes that only a small number of water molecules be

considered reactive.

The second challenge for simulations lies in the determination of a relevant reaction

coordinate. The mechanism is known to involve multiple coordinates, including at least the

CN amide bond that is formed, the CO ester bond that is cleaved by the leaving group

departure, and the two proton rearrangements on the attacking amine nitrogen and on the

leaving group oxygen atom. However, as emphasized in previous studies,14–16 the stepwise or

concerted character of these rearrangements and their specific order remain unknown. This

information must therefore result from the analysis of the mechanism and not be postulated

a priori to perform the analysis. While several techniques have been developed to determine

transition pathways between initial and final states across complex energetic landscapes,

their widespread application to the exploration of chemical reaction mechanisms has been so

far limited by their requirement of long simulations, resulting in tremendous computational

cost when used with ab initio or QM/MM molecular dynamics.

Here we solve both difficulties by taking advantage of recent developments in machine

learning.37,38 We design a reactive force field based on neural network potentials (NNPs)

which reproduces a high-level electronic structure description of the system but at a frac-

tion of the cost. The NNPs’ very moderate computational cost has two major advantages:

first the entire system can be described at the same electronic structure level so that any

solvent molecule can be involved in the reaction, and second, NNPs can be combined with

methods requiring extensive sampling to identify reaction pathways. Here we use transition

path sampling (TPS)39,40 and show how it can be advantageously integrated with NNPs to

characterize the peptide bond formation mechanism. The TPS method has already achieved

remarkable success for complex pathways in non-reactive physical and biophysical systems

(see, e.g., refs. 41–45), and although its potential for the study of chemical reactions has al-

ready been emphasized,46 with pioneering works on, e.g., water autodissociation,47 enzyme

catalysis48,49 and electron transfer,50 its general application to reactivity has so far been
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limited by its computational cost. Here, this is solved by the efficiency of the NNP, while

retaining a description of the energies and forces equivalent to that of accurate but costly

density functional theory (DFT) calculations.

In this study, we focus on the formation mechanism of a peptide bond, due to the ubiqui-

tous nature of this bond in biochemistry, and the important remaining questions regarding its

formation in prebiotic conditions and its catalysis by the ribosome. We consider the peptide

bond formation between two l-alanine methyl esters as a model system for peptide bond for-

mation in aqueous solution. In the following, we first describe our simulation methodology:

after an iterative training of the NNP at the DFT level to ensure that the system is properly

described along the entire transformation, we use TPS to identify the reaction pathway. We

then present our results: in contrast to the conventional picture, they reveal two competing

reaction mechanisms for peptide bond formation. We characterize these mechanisms and

show that they explain the experimental KIE measurements and elucidate the rate-limiting

step changes with pH. We finally present the implications of our results for amide bond and

peptide bond formation catalysis in the pharmaceutical and prebiotic chemistry contexts

and provide some concluding remarks.

Methods

System. Our simulated system comprises two l-alanine methyl ester molecules solvated by

300 water molecules in a cubic box of side 21.046 Å which is periodically replicated in three

dimensions, corresponding to an amino ester concentration of approximately 0.3 mol/L.

Neural network potential. We train a neural network potential to describe the poten-

tial energy surface of the entire system at the BLYP-D3 density functional level of theory

(DFT), thus treating all solvent water molecules as potentially reactive. Reference DFT cal-

culations are performed with CP2K51 with a triple-ζ (TZV2P) basis set. NNP training and

calculations employ the DeePMD-kit.52 The exploration of the potential energy surface is
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performed by short molecular dynamics trajectories propagated in the canonical ensemble at

300 K with LAMMPS53 using the NNP forces and biased sampling techniques implemented

in PLUMED.54 The training set is generated iteratively by adding configurations until the

NNP is able to correctly describe the part of the potential energy surface relevant for the

chemical reaction. Particular attention is paid to considering all possible mechanisms and

to sampling configurations close to the transition states. The training set thus combines

configurations from unconstrained trajectories respectively started in the reactant state, in

the product state and from guesses of the transition state, and configurations from biased

trajectories propagated with several enhanced sampling techniques including steered molec-

ular dynamics, metadynamics and umbrella sampling along coordinates which undergo an

important change during the reaction (see SI for details). The full training set contains more

than 76,000 configurations, covering every stage of the peptide bond formation. The final

converged NNP reproduces the BLYP energies and forces with a computational cost reduced

by approximately four orders of magnitude. It is validated on an independent set of close

to 4,000 configurations collected at different stages of the bond formation. The root mean

square error on the atomic forces is less than 0.04 eV·Å−1, which supports the validity of the

NNP description (see SI).

Transition path sampling. A number of techniques have been proposed to identify reac-

tion coordinates (see, e.g., refs. 55–59). When the reaction coordinate is expected to involve

only a few relevant degrees of freedom, approaches like the string method55 can successfully

provide the reaction pathway.60 However, these are not easily applied to the study of pep-

tide bond formation, which can require a series of proton transfers involving many solvent

molecules. We therefore use the transition path sampling (TPS) method39,40 which gener-

ates the transition path ensemble via an iterative Monte Carlo scheme and which presents

two key advantages. First, it includes the full set of system coordinates; it is free of any a

priori choice of reaction coordinate to drive the reaction and it only requires the definition

of reactant and product states. Its second important feature is that it provides an ensemble
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of unbiased trajectories connecting reactants and products; it therefore naturally accounts

for dynamical effects such as barrier recrossing, which have been suggested to be important

in prior applications of TPS to enzymatic reactions48,49 for example. We use the TPS im-

plementation in OpenPathSampling61,62 combined with the OpenMM63 molecular dynamics

engine, for which we wrote an interface to use the forces from the NNP calculated with

DeePMD. Transition pathways were generated via TPS from seven independent initial reac-

tive trajectories. The latter were obtained from steered molecular dynamics along different

coordinates and utilized to conduct 74 independent TPS simulations initiated with different

random seeds (see SI). More than 66,000 uncorrelated transition path trajectories have been

generated, for a total simulated time of more than 0.5 µs. These trajectories have then been

analyzed to determine the sequence of rearrangements and to identify the transition state

location via a committor analysis (see, e.g., refs.39,64).

Collective variables. A molecular interpretation of the reaction pathways is obtained

from the a posteriori projection of TPS trajectories onto a selection of coordinates. We

emphasize that, in contrast with many other methods, this selection is done after the tra-

jectories are generated, and the trajectories are independent of the selected coordinates. We

focus on five key coordinates. First, the progress of the nucleophilic attack is monitored by

considering the difference between the lengths of the CN bond being formed and of the CO

bond being cleaved, ∆d = dCN − dCO. Second, the deprotonation of the attacking amine

and the protonation of the leaving methoxy group are probed by the hydrogen coordina-

tion numbers of the amine nitrogen atom (CN) and of the leaving group oxygen atom (CO).

Finally, proton transfers involving solvent water molecules and leading to the formation of

hydronium or hydroxide ions in the solution are probed by the minimum and maximum

hydrogen coordination numbers of all water oxygen atoms, Cmin,max
w (see SI for details).

Free energy calculations. Free energy profiles are calculated along each of the two av-

erage pathways identified with TPS. Using the approach introduced in ref. 65, we define

path collective variables for each pathway, in order to measure the progress (s) along the
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curvilinear reaction coordinate and the deviation (z) away from the path (see SI). While the

free energy landscape can be estimated from an analysis of TPS trajectories,66 in order to

systematically converge the reaction barriers, we calculate the free energy profiles for each

mechanism from a weighted histogram analysis of a series of umbrella sampling simulations

along the reaction progress coordinate s for a total simulation time of more than 0.1 µs (see

SI).

Results and Discussion

We simulate the formation of a peptide bond between two methylated l-alanine amino acids

in neat water. l-alanine is chosen because it is the smallest natural amino acid with a side

chain. We consider the methylated form of the amino acids for two reasons. First, because it

has been used in a number of experimental and simulation studies9,14,22,28,67 of amide bond

formation which showed that the mechanism is the same with and without methylation.

Second, because methanolate is a better leaving group than hydroxide, making it interesting

in the context of uncatalyzed prebiotic peptide bond formation.

We consider the protonation state corresponding to neutral or moderately basic pH con-

ditions to connect to previous experimental studies.9,14 There is no ambiguity regarding

the protonation state of the carboxylic acids since the latter are methylated. Regarding

the amine groups, their pKais known from experiments to decrease by 2 units from 9.6 to

7.668,69 upon methylation of the carboxylic acid, which implies that the neutral and pro-

tonated forms have similar abundances at neutral pH conditions. Since the nucleophilic

addition requires the neutral amine lone pair’s availability and cannot take place with the

protonated ammonium, we focus on the neutral amine form for the reactant state.

We explore the reaction pathways for the peptide bond formation via TPS. The reactant

and product states are defined by specifying the difference ∆d = dCN − dCO (∆d >1.5 Å in

the reactant where the CN bond is not formed, and ∆d <-1.5 Å in the product where the CO
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bond is cleaved ), and the difference ∆C = CN −CO between the hydrogen coordinations of

the attacking amine nitrogen atom CN and of the leaving group oxygen atom CO (∆C >1.75

in the reactant where CN ' 2 and CO ' 0, and ∆C <O in the product where CN ' 1

and CO ' 1). After collecting a TPS ensemble of several tens of thousands of reactive

trajectories, we project them on the ∆d, CN , CO coordinates to obtain a molecular picture of

the reaction pathway. We determine the probability for each (∆d, CN , CO) configuration of

being visited by a reactive trajectory and we represent the contour surface of all points with

a probability above a minimum threshold to highlight the most important reaction pathways

(figure 2). We emphasize that while free energy profiles will be computed below, for now we

only consider the probability to be part of the TPS ensemble.

The major result revealed by figure 2 is that peptide bond formation can follow two

separate and very distinct reaction channels, each defined by different sequences of molec-

ular rearrangements. These pathways appear in figure 2 with finite widths, reflecting the

probability dispersion around minimum free energy paths due to thermal energy. These two

distinct concurrent mechanisms cannot be easily distinguished when only the conventional

nucleophilic attack coordinate ∆d is used, as done in some previous simulation studies. For

each pathway, TPS provides a straightforward identification of the transition states. Since

TPS trajectories are generated with unbiased dynamics, reaction transition states are located

by identifying the regions from which TPS trajectories have equal probabilities to end in the

reactant and product states from a committor analysis.39,64 Our results (colored symbols in

figure 2) clearly show that the two pathways have different transition state structures and,

thus, are expected to have different free energy barriers. Extending prior studies which had

already used TPS to reveal competing pathways in other contexts,42,43 our results therefore

further emphasize that it is a powerful method to explore chemical reaction mechanisms

without any a priori selection of coordinates.
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Figure 2: a) Contour surface of the most probable configurations within reactive trajec-
tories collected by TPS, represented in perspective along the ∆d = dCN − dCO difference
of distances and the oxygen CO and nitrogen CN coordination numbers (see definitions on
reactant structure), together with complementary views focusing b) on the (∆d, CN) plane
and c) on the (CO, CN) plane. Insets show key structures along the paths, yellow symbols
mark the transition state locations obtained from a committor analysis, the orange dashed
(mechanism 1) and solid (mechanism 2) lines show the most probable pathways, and the
surface is colored according to the ∆d value.
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The two reaction schemes identified by the TPS study are summarized in figure 3. Both

mechanisms initially involve the formation of the tetrahedral zwitterionic structure T±,

in agreement with the conventional picture in figure 1 and with previous calculations.28,34

However, the two mechanisms differ strongly in the order of the leaving group departure and

of the proton rearrangements involving the attacking amine deprotonation and the methoxy

leaving group protonation.

Mechanism 1 follows a pathway similar to that of the conventional mechanism proposed

by Jencks11–13 (but we already note that its free energy profile will be shown below to be

very different from that depicted in Figure 1b). First the amine of the T± intermediate

is deprotonated by general base catalysis, here involving a water molecule as the proton

acceptor in neutral pH conditions. This leads to the T− anionic tetrahedral intermediate,

which is the transition state structure for this mechanism (figure 3). This is finally followed

by CO bond elongation, prompting the departure of the methoxy leaving group and its

protonation by the solvent to yield the product.

Mechanism 2 revealed by our simulations had so far not been considered in the literature

on amide bond formation in solution. It contrasts with mechanism 1 because after formation

of the T± intermediate, it almost exclusively involves the CO bond elongation to reach its

transition state P±, without the proton transfer found in mechanism 1. The transition

state of mechanism 2 is structure P±, in which the carbonyl carbon atom is no longer

tetrahedral and approaches the planar geometry found in the peptide bond. The CO bond

elongation induces an increasingly negative charge on the leaving group oxygen atom, while

the nucleophilic nitrogen atom is still positively charged, leading to a marked zwitterionic

character for the transition state. The negative charge developed on the leaving group leads

to a nascent hydrogen-bond accepted from water. The latter explains the fairly broad range

of CO values at the transition state, corresponding to different hydrogen-bond strengths.

However, at the transition state CO remains below 1, showing that no proton exchange

occurs before the transition state is reached. Mechanism 2 therefore does not involve acid-
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energies and stabilities are examined in figure 4. b) Typical transition state structures for
both mechanisms, in which the N, C and O atoms involved in the CN bond formation and
CO bond cleavage are highlighted; the electrophilic carbon environment is tetrahedral in T−

and almost planar in P±.

base catalysis, in contrast with the general base catalysis in mechanism 1. Figure 2 shows

that it is only after the transition state is crossed that mechanism 2 involves the protonation

of the newly formed methoxide and the deprotonation of the amine. These two steps occur

in a stepwise fashion for most reaction pathways, starting with methoxide protonation, while

for a minority of trajectories, they take place in a quasi-concerted manner as shown by the
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pathways progressing along the diagonal in the (CN , CO) plane in figure 2c.

Some previous studies22,70,71 have proposed that peptide bond formation may proceed via

a protonated carbonyl oxygen intermediate, in a stepwise mechanism. However, this is not

supported by our simulations under neutral pH conditions. Our successful TPS pathways did

not involve such intermediate (see SI). In addition, we specifically performed complementary

simulations in which the carbonyl oxygen was prepared in its protonated form. They show

that this form is metastable under neutral pH conditions and does not provide a low-energy

pathway for peptide bond formation.

Our results emphasize the importance of proton transfers to and from the solvent water

molecules in both mechanisms, involving hydronium or hydroxide ions in the solution. While

QM/MM simulations on other systems34 found that direct intramolecular proton transfers

from the nucleophilic amine to the leaving group oxygen atom are the preferred pathway, in

our simulations concerted proton transfers between amine and methoxide, occurring either

directly via an intramolecular transfer or via a relay by one water molecule, represent only

a minority reaction channel. This may arise from the differences between the simulated

systems or from the description of all water molecules as reactive in our simulations.

We now characterize the free energy barriers associated with mechanisms 1 and 2. To

this end, we consider the average pathway of each mechanism identified by TPS, determine

a collective progress coordinate s for each pathway, and calculate the free energy profile

along each reaction coordinate (see Methods). For each mechanism, we determine the free

energy barrier, identify the stabilities of the intermediates and monitor the evolution of some

selected coordinates. The results are shown in Figure 4.

We first consider the reaction free energy barrier ∆G‡ associated with each mechanism.

∆G‡ governs the reaction rate constant and the relative importance of each pathway. Both

barriers are very high with respect to kBT , in agreement with the very slow kinetics of the

uncatalyzed amide bond formation. An important result is that mechanism 2 (which had so

far not been discussed in the literature) is kinetically much more favorable than mechanism
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1 in the neutral pH conditions considered here, since the respective barriers are ∆G‡1=38

kcal/mol and ∆G‡2=32 kcal/mol (Figure 4). The reaction along mechanism 2 is thus approx-

imately 20,000 times faster than that along mechanism 1. The ∆G‡2 barrier is consistent with

experimental rate constants for similar uncatalyzed amino acid condensations. For example,

glycine dimerization in water at neutral pH and 1 mol/L concentration yields an approximate

free energy barrier of 32 kcal/mol.72 While this value cannot be directly compared to ours

because of the different amino-acids, of the methylated form used in our study, and of the

need to correct for the concentration effect in the thermodynamic activity, this shows that

our simulations yield the right order of magnitude for the reaction barrier. Our simulated

barriers are also in good agreement with calculations performed with a different electronic

structure level for a similar system34 (24.3 kcal/mol at the M06-2X/MM level).

We now consider the formation of the tetrahedral zwitterion T± which is common to

both mechanisms. Figure 4 shows that this species is unstable in both mechanisms and only

appears as an inflection in the profiles (reaction coordinate s ' 0.36). This is in agreement

with previous calculations28,34 but this contrasts with the conventional mechanism of figure 1

that assumes a stable intermediate. Our results show that the free energy cost to reach this

transient structure is approximately 22 kcal/mol, which thus represents more than half of

the overall free energy barrier. The tetrahedral species includes an asymmetric carbon atom

and can therefore exist as two different stereoisomers. In our simulations we have considered

the nucleophilic attack of the carbonyl by the amine from both sides and we have confirmed

that the resulting free energy profiles are identical (see SI). Figure 4 reports the results for

the S stereoisomer. The geometry of T± is characterized by the lengths of the newly formed

CN bond dCN and of the CO bond to be cleaved dCO which are both smaller than 1.7 Å,

while the carbonyl CO bond slightly elongates, in agreement with the transition to a single

bond and a negative charge on the carbonyl oxygen (see figure 3a).

We then identify the rate-determining steps and transition state structures of mechanisms

1 and 2. We first compare the transition state locations obtained from the dynamical
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committor analysis of the TPS trajectories (symbols in figure 2 and green region in figure 4,

see typical structures in Figure 3b) with the saddle points on the equilibrium free energy

surfaces in figure 4. The transition state region is much narrower for mechanism 1 than for

mechanism 2. The agreement between the dynamical and free energy methods is excellent

for both T− and P±, which strongly supports our choice of coordinates for the free energy

profile calculation.

The equilibrium mechanisms obtained from the minimum free energy paths are also in

very good agreement with the dynamical mechanisms determined from the TPS trajectories.

In mechanism 1 (figures 3,4), the transition state structure is T− (s = 0.5), which results

from the deprotonation of the amine in T± by a proton transfer to a solvent water molecule

forming a hydronium ion in solution. The rate-limiting step therefore involves general-base

catalysis, here with water acting as the base. The transition state structure has a tetrahedral

geometry, with both CN and CO bonds formed, the carbonyl CO bond transiently elongated,

and with the central carbon atom in an sp3 configuration (see Figure 3b). After the transition

state is crossed, the methoxy group leaves (as seen by the increase in dCO), and becomes

protonated by the hydronium ion (as seen by the changes in the water and methoxy oxygen

coordination numbers at s = 0.66) to form methanol. While our mechanism 1 shares several

features with the conventional mechanism, we emphasize that our free energy profile shows

that it occurs in a single concerted step, and that the T± and T− structures are not stable

intermediates.

We now turn to mechanism 2. In contrast with mechanism 1, in the transition state

geometry P± the CO bond with the leaving group is already cleaved (dCO '2.5 Å at s = 0.5)

and the central carbon atom lies in a planar trivalent sp2 configuration that already coincides

with the characteristic arrangement of the product peptide bond. The charge separation

between the positively charged moiety with the protonated amine and the negatively charged

methoxy leaving group leads to a zwitterionic character for the transition state. Here the

rate-limiting step involves only the nucleophilic attack and the departure of the leaving group,
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but no proton rearrangement (see the constant CO,N between T± and P± in figure 4d) and

therefore no acid-base catalysis. While the methoxide oxygen is not involved in any covalent

proton rearrangement before and at the transition state (i.e., that within a '1.3 Å radius

from the methoxide oxygen, no proton is transferred or shared by a donor), it undergoes

changes in its hydrogen bonds with the nearby water molecules. Proton transfers only occur

after the transition state is crossed. They successively involve the protonation of the leaving

group and the deprotonation of the amine (see figure 4b). The free energy profile shows that

mechanism 2, like mechanism 1, occurs in a single concerted step.

Our comparison of the two mechanisms highlights the importance of including the rele-

vant coordinates to distinguish the different pathways. In addition to the nucleophilic attack

coordinate ∆d, it is essential to consider hydrogen coordination numbers. Because proton

transfers involve the solvent, one should separately consider the CN and CO coordination

numbers, and not only their difference or only one of them. We note that a recent study73 of

peptide bond formation at the water–silica interface identified mechanism 1 but not mecha-

nism 2, probably because the CO coordination was not considered. Since proton exchanges

between solute and solvent occur on a slow timescale relative to the accessible simulation

times, their sampling is not spontaneous. Therefore, it is critical to include the slow coordi-

nation variable explicitly in the reaction path and free energy profile calculations.

We now show that our results are consistent with the large body of experimental data

on amide bond formation from isotope effects measurements and from linear free-energy

relationships (LFERs), but that they yield a picture of the reaction mechanism and of its

change with pH that exhibits critical differences with respect to the conventional image

of figure 1. In the conventional mechanism, the change in rate-limiting step with pH is

interpreted as indicating the presence of a stable intermediate, proposed to be T±, i.e., the

mechanism involves the same intermediates at every pH but with successive barriers which

depend on pH.6 In contrast, our results show that it is the preferred reaction pathway and

the nature of the intermediates that change with pH, and that each pathway is concerted
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a b

c d

Mechanism 1 Mechanism 2
T-

P±

T± T±

Figure 4: Free energy profiles along the path collective variable obtained via TPS, together
with the transition state locations obtained from the committor analysis, respectively for a)
mechanism 1 and b) mechanism 2. Evolution of key distances and coordination numbers
along the path collective variable, respectively for c) mechanism 1 and d) mechanism 2. In
addition to the coordinates defined in the text, the figures include the dC=O distance between
the carbonyl carbon and oxygen atoms, and the Cmin,max

w minimum and maximum hydrogen
coordination numbers of all water oxygen atoms. The green vertical lines mark the regions
where the reactant committor is 0.50±0.05 and show that this region is much narrower for
mechanism 1 than for mechanism 2.

(figure 5). In contrast to the conventional mechanism assuming a change in the rate-limiting

step with pH, our results point to a change in the preferred mechanism with pH. They suggest

that the pH-rate profile of peptide bond formation is expected to exhibit a flat region around
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neutral pH where the pH-independent mechanism 2 is favored and a positive slope at more

basic pH where the base-catalyzed mechanism 1 is dominant. We note that such a pH-rate

profile has been measured experimentally for another ester aminolysis.74
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lower pH higher pH

T-

P±

T-

P±

lower pH

general-base catalysis
mechanism 1

direct cleavage
mechanism 2

Figure 5: Schematic free energy profiles for the general-base catalysis mechanism 1 and the
direct cleavage mechanism 2 at lower and higher pH.

When connecting the experimental results to the mechanisms in the two pH ranges, we

particularly focus on two sets of KIE measurements. First, the KIE for the ester oxygen

is larger than unity at pH=8 but close to unity at pH=10, which shows that the CO ester

bond cleavage is involved in the rate-limiting step at pH=8 but not at pH=10. Second, the

KIE for the carbonyl carbon has a large normal value (i.e., >1) in both pH ranges, which

prompted questions about the stability of the T± intermediate.14,16

At high pH (pH=10), our simulations suggest that mechanism 1 is favored since it involves

general-base catalysis (figure 5). Experimentally, LFERs11 have shown that amine deproto-

nation is involved in the rate-limiting step. In addition, hydrogen KIE results14,16 suggest a

change of the carbonyl carbon atom hybridization from sp2 in the reactant to sp3 in the tran-

sition state, and the leaving group O KIE is very close to 1 since k(16O)/k(18O) =1.0048,75

which shows that cleavage of the CO ester bond occurs after the transition state. All these

experimental observations match the rate-limiting T− formation in our mechanism 1: the T−

structure is tetrahedral (figure 3), its formation involves the amine deprotonation (figure 4)

and the CO bond is still intact.

Regarding the large normal KIE measured14 for the carbonyl carbon atom k(12C)/k(13C) =
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1.02, its origin and compatibility with the conventional mechanism have led to conflicting

interpretations. It was first interpreted14 as showing that T− is formed by concerted nu-

cleophilic attack and proton transfer, thus suggesting that T± is unstable. A subsequent

calculation study15 offered a different interpretation based on CN bond weakening in T± due

to hyperconjugation between the ester oxygen lone pair and the CN+ antibonding orbital,

leading to the conclusion that the experimental KIE is consistent with the stable T± interme-

diate proposed in the conventional mechanism. Here, our calculations align with the original

interpretation of concerted T− formation,14 since our mechanism 1 involves concerted (but

asynchronous) nucleophilic attack and proton transfer steps without going through a sta-

ble T± intermediate. To explain the normal value of the carbonyl carbon KIE despite the

change in hybridization from sp2 to sp3 between reactant and T− transition state, calcula-

tions of isotope effects on the equilibrium constants of model reactions (see SI) concur with

the hyperconjugation suggestion of ref.15 and show the weakening of the bonds involving the

carbon atom at the transition state. However, these considerations are here applied to the

T− transition state and not to the T± intermediate.

At moderate pH (pH=8), KIE studies75 on the leaving-group oxygen atom exhibit a

large normal isotope effect of k(16O)/k(18O) =1.06, suggesting that the CO bond cleavage is

involved in the rate-determining step. This has so far been interpreted as arising from the

cleavage of T− becoming rate limiting. Our calculations suggest a different interpretation.

They show that around neutral pH conditions the predominant mechanism is mechanism

2, whose rate-determining step is indeed the cleavage of the CO bond, but from the sp2

zwitterionic intermediate P±, and not from T− (figure 5). KIE measurements14 reported

that for the carbonyl carbon atom the KIE at pH=8 increases with respect to its value at

pH=10 to reach k(12C)/k(13C) = 1.038. The normal KIE is due to the protonation of the N

atom at the transition state that weakens the CN bond (see SI), while the increase observed

with respect to pH=10 can be understood by the change in the transition state structure,

which is now planar with an sp2 hybridization of the carbon atom.
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Our analysis further provides some indications regarding the reverse reaction, which is

amide methanolysis. This reaction and the general case of amide hydrolysis have already

been extensively studied by simulations21,26,29–31,73,76 and by experiments.77–80 Our calculated

free energy profiles in figure 4 show that the peptide bond formation reaction is approxi-

mately thermoneutral (∆rG '0) and therefore similar free energy barriers are expected for

the condensation and hydrolysis reactions (we incidentally note that our simulations yield

∆rG '0 for both mechanisms, which indicates the good convergence of our calculations).

Our results suggest that the two pathways revealed here for the condensation reaction will be

important for the hydrolysis reaction and for understanding its changes with pH. We empha-

size that kinetic analyses of amide hydrolysis80 have typically assumed a stable tetrahedral

intermediate, which is not supported by our calculations.

Finally, we discuss the implications of our results obtained in aqueous conditions for the

comprehension of amide and peptide bond formation in other environments of importance.

Our simulations show that under close to neutral pH conditions, mechanism 2 is prevalent.

Because this mechanism does not involve any proton transfer to reach the transition state

and is instead limited by the CO bond cleavage, its catalysis is expected to require the

stabilization of the negative charge appearing on the leaving group oxygen atom at the P±

transition state. Our results thus suggest that Brønstedt acids are not necessary; instead,

Lewis acids are good candidates, as proposed in the synthetic chemistry context to activate

the leaving group.3,4 While the chemical nature of the attacking amine and of the leaving

group is expected to influence the barrier heights of each mechanism (e.g., when the amino

acid is not methylated and the leaving group is a water molecule instead of methanol), we

expect that the presence of the two reaction pathways to be robust.

In the prebiotic context, our mechanism 2 further suggests that peptide bond formation

could be catalyzed by non-protic Lewis acids such as cations. It is thus consistent with

previous calculations showing the catalytic roles of surface Lewis sites on anatase TiO2
81

and of Mg2+ ions at the surface of clay.82 Futhermore, our results can explain the exper-
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imental observation of salt-induced peptide bond formation83,84 and the catalytic role of

Cu2+ cations.9,83 However, while the catalytic role of Cu2+ cations is often considered to

arise from a chelation effect, our results suggest that these cations probably also have an

important enthalpic impact by stabilizing the nascent negative charge on the leaving group.

For the peptide bond formation catalyzed by the ribosome, in addition to the catalytic

effect arising from an entropic factor,85,86 a particular attention has focused on a possible

proton shuttle between the nucleophile proton donor and the leaving group proton accep-

tor, mediated by bases and water molecules, rather than the general base catalysis mecha-

nism.6,87–90 Our results are consistent with the key role played by the A76 O2’H hydrogen-

bond donor group identified in the ribosome.6,87,88,90 Our mechanism 2 involving the P±

transition state shows why stabilizing the negative charge on the leaving group oxygen can

lower the reaction barrier. More generally, the P± transition state of this mechanism has a

strong ion pair character that can be stabilized by electric fields created in the active site of

ribosome.90,91 In solution, the KIE for the reaction of ribosomal substrates92 are similar to

these of the amide bond discussed here, suggesting that they react via the same mechanism

2 in which no proton transfer occurs before the transition state is reached. In the ribosome,

our results therefore suggest that in addition to proton relay considerations, the electrostatic

stabilization of the leaving group negative charge should also play an important role.

Conclusion

Our study shows that the combination of neural network-based reactive potentials with

transition path sampling provides a powerful method to determine reaction mechanisms.

Transition path sampling39,40 has already been successfully applied to a broad range of

biophysical transformations and our results show that it is a promising approach to explore

complex reactive pathways. Its application to the mechanism of peptide bond formation in

aqueous solution reveals two distinct competing reaction mechanisms. The first mechanism
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involves the conventional general-base catalysis pathway,11–13 but our results show that a

second mechanism is dominant at neutral pH conditions and that its rate-determining step

is the cleavage of the leaving group from the zwitterionic planar intermediate. In contrast

with the conventional picture which assumed that changing the pH does not change the

reaction pathway but only affects the successive barriers, our results show that two distinct

pathways coexist and that their relative importance depends on the pH. We have shown

that our proposed mechanisms are consistent with experimental data from kinetics, kinetic

isotope effects and linear free energy relationships. The nature of these two mechanisms

provides a valuable reference to understand how peptide bond formation can be catalyzed in

prebiotic conditions and in the ribosome. Finally, we anticipate that the method introduced

here could provide valuable insight into the mechanisms of a wide range of complex organic

reactions, particularly where important proton transfers with the solvent are involved (see,

e.g., refs. 93,94).
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Simulated system

Our simulated system consists of two methyl l-alaninates solvated with 300 water in a

21.046Å3 cubic box in the reactant state, and of one methyl l-alanyl-l-alaninate and one

methanol solvated with 300 water in a 21.046Å3 cubic box in the product state. Typical

configurations in the reactant and product states are shown in Figure S1.

a) b)

Figure S1: Simulation boxes where the molecules are represented in a ball-and-stick format
where oxygen atoms are in red, nitrogen atoms in blue, carbon atoms in grey, and hydrogen
atoms in white. a) Reactant state. b) Product state.
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Collective variables

The system is described with the following collective variables (CVs).

The CVs first include a set of distances:

• dCN : distance between the ester electrophilic carbon atom and the nucleophilic amine

nitrogen atom

• dCO: distance between the ester electrophilic carbon atom and the leaving methyl ester

oxygen atom

• dCOc=O
: distance between the ester electrophilic carbon atom (C) and the carbonyl

oxygen atom (OC=O)

• ∆d = dCN - dCO

They further include coordination numbers:

• CN : coordination number in labile hydrogen around the nucleophilic amine nitrogen

atom

• CO: coordination number in labile hydrogen around the leaving methyl ester oxygen

atom

• COC=O
: coordination number in labile hydrogen around the carbonyl oxygen atom

• ∆C = CN - CO

•
∑
C = CN+ CO

• Cmin
w : minimum coordination in labile hydrogen around water oxygen atoms Ow, with

Cmin
w '1 when a hydroxide is present in solution and Cmin

w '2 otherwise

• Cmax
w : maximum coordination in labile hydrogen around water oxygen atoms Ow, with

Cmax
w '3 when a hydronium is present in solution and Cmax

w '2 otherwise
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The coordination number C between heavy atoms and labile hydrogens is defined as

∑
A

∑
H

CA =
1−

(
rA−H

r0

)n
1−

(
rA−H

r0

)m ,
where for solute heavy atoms (A = N,O,OC=O), r0=1.3Å, n = 14, m = 24, and for water

oxygen atoms (A = Ow), r0 =1.3Å, n = 50, m = 10.

Finally, our CVs include two angles

• ω: peptide bond torsion angle in the product state defined between the alpha carbon

(Cα), the carbonyl carbon (C), the nitrogen of the nucleophile (Nnuc), and the alpha

carbon (Cα) of the nucleophilic amino acid; ω discriminates between the trans and cis

forms of the dipeptide

• θ: nucleophilic attack angle for the nucleophilic amine group on the electrophilic ester

carbon (see figure S2); θ is the angle between the normal vector of the plane (OC=OCO)

formed by the COC=O bond and the COme bond and the vector formed by the CαNnuc

bond; θ discriminates between the two stereoisomers of the tetrahedral T± zwitterion,

with −π
2

rad< θ <
π

2
rad for (R)-T± and

π

2
rad< θ <

3π

2
rad for (S)-T±
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θ

θ

V⊥

C
O

Oc=o

N

Cα

Cα

Figure S2: Representation of the θ angle and of the two possible angles of attack of the
nucleophile amine group on the ester carbon. Top: θ close to 0 rad, indicating an attack
of the nucleophile forming the R tetrahedral (T±) zwitterion. Bottom: θ close to π rad
indicating an attack of the nucleophile forming the S tetrahedral (T±) zwitterion. The violet
arrow represents the normal vector to the OC=OCO plane and the black arrow represents
the vector formed by the CαNnuc bond.
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Neural Network Potentials

Preparation of the initial training dataset

To obtain an initial dataset including positions, energies and forces for training the NNPs,

several unbiased molecular dynamics simulations were performed at the DFTB2/mio-1.11,2

level of theory using CP2K.3 The trajectories were propagated in the NVT ensemble, with

a 0.5 fs timestep and the temperature set to 300 K by a CSVR thermostat4 with a damping

parameter of 100 ps−1. Starting in the reactant state and in the product state arranged in

a 21.046Å3 cubic box, trajectories were propagated for 10 to 400 ps. Furthermore, multiple

exploratory metadynamics5 were performed to obtain reactive structures (e.g., transition

states and intermediates). The systems, starting from both reactant and product states,

were biased using the ∆d collective variable. The hills were added every 25 fs with a height

of 0.5 kcal ·mol−1 and a width of 0.05Å to ensure fast exploration of the energy lanscape

from reactants to products and from products to reactants. From all these simulations,

802 structures were extracted from the unbiased reactant trajectories, another 802 from

the unbiased product trajectories, and 1004 from the biased reactive trajectories. These

2602 structures were labeled with the method of reference, namely BLYP6,7 with dispertion

corrections D3,8 using TZV2P basis set9 and GTH pseudo-potentials,10,11 to create the

initial training dataset (i.e. to get the total energy and atomic forces for each structure).

(While the BLYP-D3 description remains approximate, it offers a compromise beytween

computational cost and chemical accuracy and it has been extensively used in ab initio

molecular dynamics; it would be straightforward to relabel our training set at a higher level

like the hybrid B3LYP-D3 functional.)

Training of the Neural Network Potentials

The initial dataset was used to train three NNPs using DeePMD-kit,12 version 2.0.3, with dif-

ferent random seeds, to obtain a committee of NNPs for concurrent learning. The DeepPot-
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SE scheme13 was employed and the cutoff for the radial and angular information was set

to 6Å with a cosine weight function for atoms beyond 0.5Å. The energy was minimized

using the Adam optimizer14 with an initial learning rate (α0) equal to 0.001 and a final

learning rate (αfinal) equal to 1× 10−6 over 600 000 steps. The full training parameters are

summarized in Table S1.

Table S1: Training Parameters

Parameters Iterative Training Final (Production) Training
Initial learning rate (α0) 0.001 0.001
Final learning rate (αfinal) 1e-6 1e-8
Number of training steps (tfinal) 600000 5700000
Number of neurons in the embedding network [25, 50, 100] [25, 50, 100]
Cutoff (Å) 6 6
Smoothing cutoff (Å) 0.5 0.5
Initial energy loss prefactor (p0e) 0.02 0.02
Final energy loss prefactor (p∞e ) 1 1
Initial force loss prefactor (p0f ) 1000 1000
Final force loss prefactor (p∞f ) 1 1
Number of neurons in the fitting network [240, 240, 240, 240] [240, 240, 240, 240]

The training set was expanded iteratively, following an approach inspired by the DP-

GEN procedure.15 Sequences of training, exploration, and labeling phases were performed

until very few candidates were added. The initial exploration phase consisted of two sets

of molecular dynamics simulations, starting respectively from the reactant state and from

the product state. For each set, each of the three NNPs was used as the reactive force

field, culminating in six simulations. They were propagated in the NVT ensemble, each

for 10 ps with a temperature of 300 K using the CVSR thermostat and a 0.5 fs timestep.

For each trajectory, a query-by-committee selection was performed: candidate geometries

were selected based on an error indicator, εt, defined as the maximal standard deviation

of the atomic force predicted by the NNPs. A lower bound, σlow, and an upper bound,

σhigh, were set respectively to 0.15 eV · Å−1 and 0.80 eV · Å−1. Structures for which εt < σlow

were considered as adequately described by the NNPs and those where εt > σhigh were

considered as unphysical and were discarded. The remaining structures, where 0.15 < εt <
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0.80 eV/Å were labeled with the method of reference (as per the initial training dataset),

BLYP-D3/TZV2P, hereby enriching the training dataset.

In iteration 4, the initial set (obtained from DFTB2 geometries) was removed from the

training dataset due to differences between the DFTB2 and BLYP-D3 equilibrium distribu-

tions. In iteration 6, several biased molecular dynamics were performed using PLUMED16

to enhance the exploration of the phase space and sample the transition region between

the reactant and product basins. In iteration 14, two-dimensions umbrella sampling simula-

tions along ∆d and ∆C were performed and the query-by-committee was performed on each

window trajectories.

In total, MD explorations were propageted for 10 ps to 1000 ps and biased MD explo-

rations were propagated for 10 ps to 1000 ps.

To avoid any bias in the training favoring a particular mechanism, a large number of

different parameters (e.g., strength of restraints for SMD, Gaussian deposition speed in

metadynamics), and various collective variables (e.g., distances, coordination numbers, com-

binations of multiple CVs) were used. Furthermore, from approximate transition states

estimated from these biased molecular dynamics (as metadynamics and umbrella sampling

can be readily used to calculate the underlying free energy surface), multiple committor-type

calculations were performed. Approximate transition state geometries were selected as start-

ing points, and for each of them 5 sets of initial velocities drawn from a Maxwell-Boltzmann

distribution at 300 K were created, together with 5 additional ones with the opposite veloci-

ties. These were used to propagate 10 unbiased molecular dynamics simulations in the NVT

ensemble from each starting point, generating more candidate structures to label and to add

to the training dataset. After the total number of candidates was less than ten for unbiased

exploration and less than two hundred for biased explorations, the iterative training was

considered to be completed.

It was after a total of 19 iterations with a final set of 76 656 structures, out of which 7693

were obtained from unbiased exploration (i.e. reactant and product states) and 68 963 were
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obtained from biased explorations. This final set was used as the training set and used to

train three new NNPs using the production parameters (see Table S1).

Validation of the Neural Network Potentials

A validation dataset was constructed by randomly selecting 450 structures in the reactant

state, 450 structures in the product state, and 2940 structures obtained from Umbrella

Sampling windows. This validation dataset, which consisted of a total of 3840 structures

with their energies and atomic forces, was used to test the accuracy and reliability of the

trained NNPs. After calculating the energy and forces of each structure in the training and

validation datasets with the three NNPs and with our reference method, the best NNP was

selected based on the lowest deviation in energy and forces on both sets, and kept as the

production NNP. It is worth mentioning that the other two NNPs showed highly comparable

deviations, indicating the completeness of the training by the fact that they all converged

to the same parameters. Figure S3 shows the correlation plots between the predicted forces

(NNPs) and the reference forces (BLYP-D3) for the [-2.0 eV/Å, +2.0 eV/Å] range for each

dataset.

Accuracy of the Neural Network Potentials along the reaction paths

After the pathways for mechanisms 1 and 2 were identified, we a posterio verified the ac-

curacy of the NNPs along the paths. For both paths 10 structures uniformely selected

within each umbrella sampling window, totaling 1290 structures for mechanism 1 and 1340

structures for mechanism 2.

The atomic forces were calculated using the NNPs and the reference method (BLYP-D3)

for each structure. The Root Mean Square Error (RMSE) of the predicted atomic forces

relative to the standard deviation of the reference atomic forces is reported in Figure S4. It

is 0.038 87 eV · Å−1 for mechanism 1 and 0.039 21 eV · Å−1 for mechanism 2, thus confirming
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a) b)

Figure S3: a) Correlations between the predicted forces (NNP) and reference forces (BLYP-
D3) for the training set, zoomed over the [−2.0, 2.0] eV/Å range. b) Correlations between
the predicted forces (NNP) and reference forces (BLYP-D3) for the validation set, zoomed
over the [−2.0, 2.0] eV/Å range.

that the atomic forces are very well predicted by the NNPs for both mechanisms.
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Figure S4: Root Mean Square Error (RMSE) on the predicted atomic forces relative to the
standard deviation of the reference atomic forces for each window along the path for both
mechanisms.
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Transition Path Sampling

Initial reactive trajectories

To generate the initial reactive trajectories required by Transition Path Sampling17–19 (TPS),

several steered molecular dynamics simulations (SMDs) were performed. These simulations

were started from the reactant and steered to the product, using a range of collective vari-

ables. They covered different possible mechanisms (mechanisms 1 and 2 notably, but also

the concerted mechanism and the stepwise mechanism through the protonation of the OC=O

suggested in ref.20) which had been explored via the biased simulations during the NNPs

training. From these SMD trajectories, a committor-type analysis was conducted on configu-

rations that were geometrically close to putative transition states. Subsequently, non biased

NVT molecular dynamics simulations were carried out at 300 K using a CVSR thermostat

and a timestep of 0.5 fs. These simulations involved random initial velocities drawn from

a Maxwell-Boltzmann distribution, along with their opposite velocity counterparts, for a

committor-type analysis. Candidates were selected from the configurations in which half of

the trajectories led to the reactant well and the other half to the product well. From these,

seven full trajectories were constructed, each comprising segments from the aforementioned

half-trajectories and were then used as input for the TPS simulations.

Transition Path Sampling simulations

The TPS simulations were performed using the OpenPathSampling (OPS) program,21,22

in conjunction with OpenMM,23 which was integrated with an in-house modified plugin,

enabling the calculation of forces using the NNPs within OpenMM, and with the PLUMED

package, facilitating the use of a wide range of collective variables.

The reactant and product state basins were defined with the ∆d and ∆C collective

variables. The reactant well was defined by ∆d >1.5Å and ∆C >1.75. The product well

was defined by ∆d <−1.5Å and ∆C <0.
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For the TPS simulations, the VVVR-Langevin integrator24 with a collision rate of 20 ps−1

was used, alongside a timestep of 0.5 fs and a target temperature of 300 K. Starting from

the seven initial trajectories, 74 TPS equilibration runs were conducted using the One-Way

Shooting (OWS) move.25 Equilibration was deemed successful when a new trajectory added

to the transition path ensemble had no frames in common with the initial trajectory, i.e.,

was fully decorrelated. 70 of the 74 equilibration runs were successful and the last 4 were

discarded due to the lack of decorrelation within 400 Monte-Carlo steps. The last trajectories

(70 in total) from each TPS equilibrated run, now independent from the initial ones, along

with their corresponding velocities, were used as input for the production phase of the TPS

simulations. The same integrator parameters were maintained, but with the collision rate

adjusted to 1 ps−1. From these, a total of 30 independent runs were performed using the

OWS move, another 26 using the Two-Way Shooting (TWS) move,17,18 and finally, 14 using

the Spring Shooting (SS) move,26 each consisting on average of 8800 Monte-Carlo steps.

MC trials were halted if they did not reach any basin within 5 ps. For the TWS simulations,

random velocities were generated from a Maxwell-Boltzmann distribution at 300 K, and for

the SS simulations, the parameters were set as k = 1.0 and δ = 10.

Analysis of the Transition Path Sampling simulations

Table S2: TPS Simulations (production runs)

Details
MC Steps 616003
Total time [ns] 543
Accepted Steps 268106
Acceptance Rate % 43.5
Decorrelated Steps 65602
Rejected Steps 347897
Rejected Steps Truncated 35043

Statistics of the TPS simulations are shown in Table S2. From this entire ensemble of

trajectories, since both the OWS move and the SS move provide only half the trajectory,
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subsequents analysis were only done on decorrelated trajectories (i.e., on trajectories which

did not share any frame with each other) for a total of 65 602 independent trajectories. The

distribution of the path lengths for the decorrelated trajectories is reported in Figure S5.

They show that the two mechanisms have similar path lengths distributions, with a mean of

0.88 ps for mechanism 1 and 0.60 ps for mechanism 2. The slightly longer mean path length

for mechanism 1 is due to the involvement of a H3O
+ ion which can diffuse away before

protonating the leaving group, while in mechanism 2 protonation of the leaving group is

typically done by a water molecule, which relays the proton from the amine group to the

methoxide.

a) b)

Figure S5: Distributions of the path lengths for the decorrelated trajectories obtained from
the TPS simulations. a) Mechanism 1. b) Mechanism 2.

The transition path ensemble was extracted along three main coordinates: ∆d, CNnuc ,

and COme . To achieve this, the CV space was divided into bins, and a count was added

each time a bin is visited by a trajectory. If a trajectory visited a bin more than once or if

it stayed in a bin for multiple timesteps, the count for this trajectory and for this bin was

incremented only once. If the trajectory hops between non-adjacent bins (due to our finite

time step), interpolation is used to increment the count to the intermediate bins. In figure 2

in the main text, the transition path ensemble for each mechanism is represented in the ∆d,
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CN , and CO space, showing the contour surface of the 0.0015 probability. Although other

mechanisms from literature (e.g. from ref.20) were considered as starting trajectories, they

quickly evolved into the two mechanisms that we propose in this work.

Figure S6 shows the projected transition path density on the (∆d, CN) plane and on

the (∆d, CO) plane for mechanism 1 and for mechanism 2. It shows that for mechanism 1,

the reaction path first evolves along ∆d and CN , then along ∆d and CO. In contrast, for

mechanism 2, the reaction path first evolves along ∆d and CO, then along ∆d and CN .
a) b)

c) d)

Figure S6: Negative log density −ln(p) of the transition path ensemble projected on two
collective variables with the initial guess string (red solid line) and the final string (black
solid line) for each mechanism. Trajectories of mechanism 1 a) in the (∆d, CN) plane and
b) in the (∆d, CO) plane. Trajectories of mechanism 2 c) in the (∆d, CN) plane and d) in
the (∆d, CO) plane.

For each half-path, the string method27,28 (using 25 nodes) was used within the (∆d,CN ,

CO) space to extract the most probable path using the gradient descent method on the

negative log density. An initial string was created with equally spaced nodes and each node

was moved by following the gradient descent of the negative log density with a step of

0.01. Then, the nodes were reparametrized by equal arc lengths. The process was repeated

until a converged string was obtained. Trailing points were added (30 for mechanism 1,
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and 23 for mechanism 2) to extend the ∆d range from −2.5Å to 2.5Å. Both paths were

then reparametrized using equal arc-length parametrization. For both mechanisms, the

20 closest configurations to each node were extracted from the transition path ensemble,

with each configurations coming from independent TPS production runs. A new path,

comprising 80 nodes, was then constructed from these configurations using four CVs averaged

over the 20 configurations: dCNnuc , dCOme , CNnuc , and COme . Then again, equal arc-length

parametrization was used for both mechanisms to have 40 nodes. For both paths (consisting

of 4 CVs), a path CV29 was constructed to represent the progress along the path in s space

(represented in Figure S7).

a) b)

Figure S7: The 4 CVs (dCN , dCO, CN and CO) of the two mechanisms as a function of s. a)
Mechanism 1. b) Mechanism 2.

The collective variables were analyzed from the TPS simulations for each mechanism as

follows. First, the s values along each decorrelated trajectory were calculated. The time

origin was fixed to the point in each trajectory where the s value is nearest to 0.5. Given

the varying lengths of the trajectories, they were uniformly extended to cover a range from

-9 ps to 9 ps by duplicating the end values of the CVs at both extremes. Subsequently, for

every time step, the average and the 95% confidence interval were computed for each CV,

for both mechanisms and are represented in Figure S8. In both mechanisms, we can see the

importance of the solvent, as for mechanism 1, the increase of the Cmax
w coordination number
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from 2 to 3 is a clear indication of the proton transfer via a long-lived hydronium ion. For

mechanism 2, the small decrease in the Cmin
w coordination number from 2 to 1.8 indicates a

proton transfer via a water molecule, forming a transient hydroxide ion.

a b
Mechanism 1 Mechanism 2

Figure S8: Average of the CVs for the decorrelated trajectories obtained from the TPS
simulations. a) Mechanism 1. b) Mechanism 2.
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Free Energy calculations

Four initial trajectories were selected from the TPS ensemble, one for each mechanism and

each stereochemistry (R or S ) of the tetrahedral T±. For both mechanisms, umbrella sam-

pling along s was performed at a temperature of 300 K using a CSVR thermostat. For

mechanism 1, the path was linearly spaced into 119 windows from s = 0.0074 to s = 0.9926.

An additional 5 windows were linearly added between s = 0.7233 and s = 0.7640, and 5

more between s = 0.3711 and s = 0.4057, totaling 129 windows. For mechanism 2, the

path was linearly spaced into 119 windows from s = 0.0074 to s =0.9923. An additional 4

windows were linearly added between s = 0.7297 and s = 0.7563, 6 between s = 0.3632 and

s = 0.4059, and 6 between s = 0.8000 and s = 0.8416, totaling 134 windows.

For each window, the starting points were brought to the corresponding values of the

CVs (dCN , dCO, CN , and CO) via Steered MD with a harmonic constraint with a force

constant of 500 kcal ·mol−1 and a timestep of 0.25 fs for 50 ps. Then the force constant

was linearly increased from 500 kcal ·mol−1 to 1000 kcal ·mol−1 over another 50 ps. After-

ward, equilibration was performed by switching the constraint to the corresponding s value

with a 50 kcal ·mol−1 force constant, a timestep of 0.10 fs. The z transverse coordinate was

constrained to a value of -0.0012 with a force constant of 10 000 kcal ·mol−1. These equilibra-

tion trajectories were propagated for 20 ps. For the production, two sets of constraints were

used: one with a force constant of 10 kcal ·mol−1 and a second one with a force constant of

50 kcal ·mol−1. Each one was propagated for 40 ps. In Figure S9, the s distributions of the

windows for each mechanism and each stereochemistry show their good overlap.

For each system (i.e., each mechanism and each stereochemistry), the free energy was

calculated using the weighted histogram analysis method (WHAM).30,31 Each 40 ps-long

production run was divided into 4 blocks of 10 ps and the free energy was calculated for each

block. 95% confidence intervals on the computed free energy were calculated for each block

by setting the free energy at 0 kcal ·mol−1 at s = 0.018 75. The free energy profile for a value

of θ=0 rad was calculated and is reported in Figure S10.
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a) b)

c) d)

Figure S9: s distributions of the windows for each mechanism and each stereochemistry. a)
Mechanism 1 and R-stereochemistry. b) Mechanism 1 and S -stereochemistry. c) Mechanism
2 and R-stereochemistry. d) Mechanism 2 and S -stereochemistry.

In table S3, the reaction free energy between the reactant and the product state and

the free energy barrier between the reactant and the transition state are reported for each

mechanism and each stereochemistry.

The free energy barrier for mechanism 1 is higher than that for mechanism 2. The
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a b

c d

Mechanism 1 Mechanism 2
T-

P±

T± T±

Figure S10: Free energy profiles along the path collective variable obtained via TPS, together
with the transition state locations obtained from the committor analysis, respectively for a)
mechanism 1 and b) mechanism 2 obtained for the (S)-T± stereoisomer (θ=0). Evolution
of key distances and coordination numbers along the path collective variable, respectively
for c) mechanism 1 and d) mechanism 2. In addition to the coordinates defined in the text,
the figures include the dC=O distance between the carbonyl carbon and oxygen atoms, and
the Cmin,max

w minimum and maximum hydrogen coordination numbers of all water oxygen
atoms. The green vertical lines show the regions where the reactant committor is 0.50±0.05.

results in Table S3 further confirm the good convergence of our calculations. As expected,

the reaction free energy is the same for both mechanisms within the confidence interval, and

the free energy barrier is independent of the stereochemistry.

S20



Table S3: Reaction free energy and free energy barrier.

Mechanism Stereochemistry ∆rG [kcal/mol] ∆G‡ [kcal/mol]
1 R −1.39 ± 2.17 36.90 ± 1.36
1 S −0.57 ± 2.76 38.43 ± 1.08
2 R −2.47 ± 0.98 32.49 ± 0.45
2 S −3.25 ± 2.68 32.16 ± 1.58
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Isotope Effects

Table S4 reports the calculated carbon isotope effect on the equilibrium constant of a series

of reactions that model the change between the peptide bond formation reactants and T−:

the carbonyl carbon atom changes from sp2 to sp3 hybridizations and the products exhibit

the type of hyperconjugation found in T−. The results show that the change from sp2 to

sp3 yields the expected inverse isotope effect, except when the carbonyl atom is negatively

charged and a normal isotope effect is obtained. This can be understood by the weakening

and lengthening of the carbon bonds. Calculations were done with Gaussian at the B3LYP/6-

31G∗ level at T=298.15 K and P=1 atm.

Table S4: Isotope effect on the equilibrium constant KL/KH = exp [−(∆GL −∆GH)/RT ]
for a carbon atom whose hybridization changes from sp2 to sp3, with and without a charged
carbonyl oxygen atom.

Reaction K(12C)/K(13C) length of new C-X bond in products (Å)
H2C=O + OH− → H2C(O−)-OH 1.004 1.554
H2C=O + H2O → H2C(OH)-OH 0.992 1.407
H2C=O + NH+

4 → H2C(OH)-NH+
3 1.000 1.567

H2C=O + NH3 → H2C(OH)-NH2 0.994 1.444

Table S5 reports the calculated carbon isotope effect on the equilibrium constant of a

series of reactions that model the change between the peptide bond formation reactants and

P±: the carbonyl carbon atom keeps its sp2 hybridization and the products exhibit the type

of hyperconjugation found in P±. The results show that when the N atom is not charged

in the product the isotope effect is very close to 1, whereas when the N atom is positively

charged in the product, a normal isotope effect is obtained, which can be understood by the

weakening and lengthening of the C-N bond. Calculations were done with Gaussian at the

B3LYP/6-31G∗ level at T=298.15 K and P=1 atm.
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Table S5: Isotope effect on the equilibrium constant KL/KH = exp [−(∆GL −∆GH)/RT ]
for a carbon atom which retains its sp2 hybridization, with different charges on the N atom.

Reaction K(12C)/K(13C) length of new C-N bond in products (Å)
HCO-OH + NH3 → H2CO-NH2 + H2O 1.001 1.362
HCO-OH + NH3 → H2CO-NH+

3 + OH− 1.024 1.584

S23



References

(1) Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Suhai, S.; Seifert, G.;

Frauenheim, Th. Phys. Rev. B 1998, 58, 7260–7268.

(2) Elstner, M.; Seifert, G. Phil. Trans. R. Soc. A. 2014, 372, 20120483.

(3) Kühne, T. D. et al. J. Chem. Phys. 2020, 152, 194103.

(4) Bussi, G.; Donadio, D.; Parrinello, M. J. Chem. Phys. 2007, 126, 014101.

(5) Laio, A.; Parrinello, M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12562–12566.

(6) Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100.

(7) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.

(8) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.

(9) VandeVondele, J.; Hutter, J. J. Chem. Phys. 2007, 127, 114105.

(10) Goedecker, S.; Teter, M.; Hutter, J. Phys. Rev. B 1996, 54, 1703–1710.

(11) Hartwigsen, C.; Goedecker, S.; Hutter, J. Phys. Rev. B 1998, 58, 3641–3662.

(12) Wang, H.; Zhang, L.; Han, J.; E, W. Comput. Phys. Commun. 2018, 228, 178–184.

(13) Zhang, L.; Han, J.; Wang, H.; Saidi, W. A.; Car, R.; E, W. NeurIPS 2018, 2018-Decem,

4436–4446.

(14) Kingma, D. P.; Ba, J. Adam: A Method for Stochastic Optimization. 2017.

(15) Zhang, Y.; Wang, H.; Chen, W.; Zeng, J.; Zhang, L.; Wang, H.; E, W. Comput. Phys.

Commun. 2020, 253, 107206.

(16) Tribello, G. A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. Comput. Phys.

Commun. 2014, 185, 604–613.

S24



(17) Bolhuis, P. G.; Dellago, C.; Chandler, D. Faraday Disc. 1998, 110, 421–436.

(18) Dellago, C.; Bolhuis, P. G.; Csajka, F. S.; Chandler, D. J. Chem. Phys. 1998, 108,

1964–1977.

(19) Bolhuis, P. G.; Chandler, D.; Dellago, C.; Geissler, P. L. Annu. Rev. Phys. Chem. 2002,

53, 291–318.

(20) Świderek, K.; Tuñón, I.; Martí, S.; Moliner, V.; Bertrán, J. J. Am. Chem. Soc. 2013,

135, 8708–8719.

(21) Swenson, D. W. H.; Prinz, J.-H.; Noe, F.; Chodera, J. D.; Bolhuis, P. G. J. Chem.

Theory Comput. 2019, 15, 813–836.

(22) Swenson, D. W. H.; Prinz, J.-H.; Noe, F.; Chodera, J. D.; Bolhuis, P. G. J. Chem.

Theory Comput. 2019, 15, 837–856.

(23) Eastman, P.; Swails, J.; Chodera, J. D.; McGibbon, R. T.; Zhao, Y.; Beauchamp, K. A.;

Wang, L.-P.; Simmonett, A. C.; Harrigan, M. P.; Stern, C. D.; Wiewiora, R. P.;

Brooks, B. R.; Pande, V. S. PLoS Comput. Biol. 2017, 13, e1005659.

(24) Sivak, D. A.; Chodera, J. D.; Crooks, G. E. J. Phys. Chem. B 2014, 118, 6466–6474.

(25) Bolhuis, P. G. J. Phys.: Condens. Matter 2003, 15, S113–S120.

(26) Brotzakis, Z. F.; Bolhuis, P. G. J. Chem. Phys. 2016, 145, 164112.

(27) E, W.; Ren, W.; Vanden-Eijnden, E. Phys. Rev. B 2002, 66, 052301.

(28) E, W.; Ren, W.; Vanden-Eijnden, E. J. Chem. Phys. 2007, 126, 164103.

(29) Branduardi, D.; Gervasio, F. L.; Parrinello, M. J. Chem. Phys. 2007, 126, 054103.

(30) Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A. J. Comput.

Chem. 1992, 13, 1011–1021.

S25



(31) Grossfield, A. WHAM: The Weighted Histogram Analysis Method. 2023.

S26


