Geometry-dependent matching pursuit: a transition phase for convergence on linear regression and LASSO

Céline Moucer, Adrien B Taylor, Francis Bach

To cite this version:
Céline Moucer, Adrien B Taylor, Francis Bach. Geometry-dependent matching pursuit: a transition phase for convergence on linear regression and LASSO. 2024. hal-04491840

HAL Id: hal-04491840
https://ens.hal.science/hal-04491840
Preprint submitted on 6 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Geometry-dependent matching pursuit: a transition phase for convergence on linear regression and LASSO

Celine Moucer
CELINE.MOUCER@INRIA.FR
Inria, Département d’Informatique de l’Ecole Normale Supérieure, PSL Research University.
Ecole Nationale des Ponts et Chaussées, Marne-la-Vallée, France.

Adrien B. Taylor
ADRIEN.TAYLOR@INRIA.FR
Inria, Département d’Informatique de l’Ecole Normale Supérieure, PSL Research University.

Francis Bach
FRANCIS.BACH@INRIA.FR
Inria, Département d’Informatique de l’Ecole Normale Supérieure, PSL Research University.

Editor: Editors

Abstract
Greedy first-order methods, such as coordinate descent with Gauss-Southwell rule or matching pursuit, have become popular in optimization due to their natural tendency to propose sparse solutions and their refined convergence guarantees. In this work, we propose a principled approach to generating (regularized) matching pursuit algorithms adapted to the geometry of the problem at hand, as well as their convergence guarantees. Building on these results, we derive approximate convergence guarantees and describe a transition phenomenon in the convergence of (regularized) matching pursuit from underparametrized to overparametrized models.

Keywords: Optimization, first-order methods, matching pursuit, linear regression, LASSO.

1 Introduction
Many natural problems from machine learning and data science take the form of an ℓ_1-regularized minimization problem:

$$\min_{\alpha \in \mathbb{R}^d} \{ F(\alpha) + H(\alpha) \triangleq f(P\alpha) + \lambda \|\alpha\|_1 \},$$ (1)

where $f : \mathbb{R}^n \to \mathbb{R}$ is a smooth strongly convex function, $P \in \mathbb{R}^{n \times d}$ and n, d respectively denote the number of samples and the dimension of the problem. Typically, in the vanilla least-squares regression problem, $H(\alpha) = 0$ and $F(\alpha) = f(P\alpha) = \frac{1}{2n} \|P\alpha - y\|_2^2$, and P corresponds to the input data, $y \in \mathbb{R}^n$ to the labels, d to the number of features (or parameters) and n the number of observations. If in addition $H(\alpha) = \lambda \|\alpha\|_1$, Problem (1) is exactly the LASSO problem (Tibshirani, 1996), that belongs to more general variational problems appearing in Fenchel duality theory (Bauschke and Combettes, 2017, Section 15.3). Problem (1) is often compared to its constrained counterpart,

$$\min_{\alpha \in \mathbb{R}^d} F(\alpha), \text{ such that } \|\alpha\|_1 \leq R,$$ (2)

where λ may be seen as the Lagrange multiplier associated to the constraint $\|\alpha\|_1 \leq R$ with $R > 0$. Problems (1) and (2) arise when looking for sparsity patterns, such as in signal
processing where we aim for models depending on a small number of variables, or for trace-norm regularized problems, when looking for low-rank solutions (Dudik et al., 2012). In particular, Problem (1) is a popular way to induce sparsity on the solution for a well-chosen range of λ. Thus, ℓ_1-penalization (or constraint) is strongly connected to sparsity and can be seen as a convex substitute for ℓ_0-penalization problems (Candes and Tao, 2005, Section 1.2) for performing feature selection.

First-order methods have become popular to solve optimization Problems (1) and (2), due to their low cost per iteration and to the limited accuracy requirements in machine learning (Bottou et al., 2018, Section 7 and 8). Within these methods, different algorithms might be used, whose choice depends on the properties of functions F and H. For instance, a first-order method may rely on the gradient or the proximal operator (Parikh and Boyd, 2013) as in the proximal gradient method, or the linear minimization oracle as in the Frank-Wolfe algorithm (Jaggi, 2013) for the constrained version (2). These methods often benefit from convergence guarantees.

In the context of sparsity, traditional first-order methods, such as the proximal gradient, do not always lead to sparse solutions (Iutzeler and Malick, 2020). Boosting strategies (also known as matching pursuit) have been developed to ensure sparse representations of approximate solutions (Mallat and Zhang, 1993; Tropp, 2004). At each iteration, a possibly new atom (also referred to as a weak-learner in the boosting literature, or a coordinate in the context of coordinate descent) is greedily selected as a best candidate among a set of atoms, and combined to past iterates. While boosting benefits from strong statistical properties (Tropp, 2004), from an optimization perspective, their convergence analyses often rely on extra statistical assumptions (Zhang, 2011a). More recently, randomized and greedy coordinate descent methods have gained interest due to their low-cost per iteration even in high dimension (Nesterov, 2012) and to their implicit induced sparsity (Beck and Tetruashvili, 2013; Fang et al., 2020).

Correspondences have been highlighted between first-order methods and boosting strategies for non-regularized minimization problems ($\lambda = 0$), leading to convergence guarantees independent of traditional statistical assumptions. For example, coordinate descent has been interpreted as matching pursuit (Locatello et al., 2018), as well as Frank-Wolfe algorithms (Jaggi, 2013; Locatello et al., 2017) for constrained Problems (2), by formulating them as minimizers of well-chosen quadratic upper approximations. These analyses strongly rely on a well-chosen geometry, characterized by a gauge function (Friedlander et al., 2014). To our knowledge, this comparison was only drawn for non-regularized problems for which $\lambda = 0$ (Locatello et al., 2018) and for constrained problems (Sun and Bach, 2022).

Problem (1) in \mathbb{R}^d can be naturally formulated as an optimization problem in \mathbb{R}^n, letting the gauge geometry appear,

$$
\min_{\alpha \in \mathbb{R}^d, x \in \mathbb{R}^n} f(x) + \lambda \| \alpha \|_1, \text{ such that } x = P \alpha,
$$

$$
= \min_{x \in \mathbb{R}^n} f(x) + \lambda \inf_{\alpha \in \mathbb{R}^d, x = P \alpha} \| \alpha \|_1,
$$

$$
= \min_{x \in \mathbb{R}^n} f(x) + \lambda \gamma_P(x), \quad (3)
$$

where the gauge function is defined as $\gamma_P(x) \triangleq \inf_{\alpha \in \mathbb{R}^d, x = P \alpha} \| \alpha \|_1$ with $P = \text{conv}(\{ \pm P_{:, i}, i = 1, \ldots, d \})$ the centrally symmetric convex hull of the columns of P. Gauge functions may
be seen as generalized versions of the ℓ_1-norm, providing a sparse representation $\alpha \in \mathbb{R}^d$ of a vector $x \in \mathbb{R}^n$ with respect to a set of atoms. Under some assumptions on P, the gauge function may be a norm, as we will see in Section 2. Let us for example take $P = \text{conv}(\pm e_i)$, then $\gamma_P(x) = \|x\|_1$.

Due to the connection between optimizing in \mathbb{R}^d and in \mathbb{R}^n, it is possible to derive algorithms adapted to one geometry or to the other, and to formulate geometry-adapted convergence guarantees. For the ℓ_1-geometry, Nutini et al. (2018b, Section 4) analyzed greedy coordinate descent by considering strong convexity with respect to the ℓ_1-norm, and formulated the strong convexity parameter as an optimization problem (Nutini et al., 2018b, Appendix 4.1). More generally, d’Aspremont et al. (2018, Section 2) extended smoothness and strong convexity with respect to the gauge γ_P, which led to formulations of the smoothness parameter as an optimization problem in the work of Sun and Bach (2022, Section 2.5). These optimization problems are often hard to solve (yet, they have closed-form reformulation in some cases).

The main idea of this work is to propose a principled view on gradient boosting methods, that are obtained by minimizing a smoothness upper bound with respect to the ℓ_1-norm. This methodology leads to a new boosting strategy for regularized problems, that benefits from (sub)linear convergence properties. Unlike former methods, such as orthogonal matching pursuit under restricted isometry property (RIP) by Zhang (2011b), convergence analysis is performed without statistical assumptions on the data. Convergence guarantees let appear parameters characterizing the class of functions and the geometries of optimization problems (1) in \mathbb{R}^d and (3) in \mathbb{R}^n, but remain mostly intractable. To this end, we compute a priori refined estimates of convergence rates for boosting methods applied to a particular least-squares problem. We develop two approaches for computing on the one hand deterministic estimates using SDP relaxations (Goemans and Williamson, 1995), and on the other hand high probability bounds using random matrix theory. As a result, we observe a transition phase in the convergence rate of gradient descent (resp. coordinate descent), depending on (n, d). Surprisingly, we conclude that for a fixed number of samples n, adding features (dimension d) improves their convergence, which may be compared to the double descent phenomenon (Belkin et al., 2019) for the generalization error. Building on these results, we experimentally highlight a transition phase for the proximal gradient and regularized matching pursuit on a LASSO problem, depending on the value for λ. Finally, we define an ultimate method, enjoying linear convergence both in the underparametrized ($n \gg d$) and in the overparametrized ($n \ll d$) regime, that is nonetheless not a boosting method (it may indeed add more than one atom per iteration).

1.1 Prior works

Boosting algorithms. Boosting strategies, also known as matching pursuit in signal processing, have been initiated in the context of sparse recovery (Mallat and Zhang, 1993), and extended to the fitting of weak-learners with ‘gradient boosting’ techniques such as Adaboost by Freund and Schapire (1999). Matching pursuit (MP) algorithms produce sparse combinations of atoms by picking a direction from a set of atoms using information on the gradient. Boosting algorithms are suited to both constrained models, with for example orthogonal matching pursuit (Sheng Chen and Luo, 1989; Tropp, 2004; Zhang,
or greedy algorithms (Tewari et al., 2011), as well as to unconstrained (penalized) optimization problems, with for example the vanilla boosting strategy of (Zhang, 2011a), that minimizes a well-chosen quadratic upper-bound. Recently, Locatello et al. (2017) have unified the framework for matching pursuit and Frank-Wolfe algorithms (Frank and Wolfe, 1956) leading to non-statistical convergence guarantees for matching pursuit.

Coordinate descent. Coordinate descent has gained interest due to the increasing access to large amounts of data, and thereby to the use of large-scale optimization models. Tseng (2001) opened the path to convergence guarantees for proximal coordinate descent on composite minimization problems (Tseng and Yun, 2009). Nesterov (2012) derived global guarantees for coordinate gradient descent applied on convex objectives, paving the way to families of randomized coordinate updates (Richárik and Takáč, 2014), and greedy updates (Beck and Tetrushvili, 2013). Yet, these analyses often lead to dimension-dependent convergence guarantees. Nutini et al. (2018b) provided the first convergence guarantee of greedy coordinate descent (or coordinate descent with Gauss-Southwell rule) without dependence in the dimension, formulating the update as the minimization of a smoothness upper bound with respect to the ℓ_1-norm. More precisely, they showed a significantly better performance of greedy coordinate descent compared to randomized coordinate descent. However, the analysis did not extend well to proximal coordinate descent, letting a dependence in the dimension appear in the convergence bound. This led to refined techniques such as the greedy update of Karimireddy et al. (2019), with dimension-independent convergence guarantees. Finally, these methods often present the benefit of an induced sparsity, that can be linked to the ℓ_1-norm. Locatello et al. (2017) interpreted steepest coordinate descent as a matching pursuit algorithm, where the atoms corresponds to the unitary directions. More precisely, steepest coordinate descent may be seen as the minimization of a smoothness upper bound with respect to the ℓ_1-norm. Considering gauge functions, coordinate descent can be extended to producing solutions sparse with respect to atoms, as Sun and Bach (2022) did with the generalized conditional gradient method (Bach, 2015).

Refined convergence guarantees. Sparse optimization often reveals a gap between theoretical convergence guarantees and observed behaviors. The LASSO has been widely studied for statistical recovery. From an optimization point of view, most of the analyses depend on the statistical recovery efficiency. For constrained optimization problems, (Zhang, 2011b) proposed a forward-backward greedy algorithm for which he derived convergence guarantees under RIP. Similarly, Agarwal et al. (2010) analyzed the proximal gradient and the projected gradient under restricted strong convexity and smoothness, that comes directly from restricted eigenvalue conditions (Raskutti et al., 2010), that appear for example for random Gaussian matrices. A recent focus on average-case analysis of optimization methods under random matrices was initiated by Pedregosa and Scieur (2020), coming from the convergence analysis of the simplex method (Borgwardt, 1987; Spielman and Teng, 2001). On the contrary, other works improved global convergence guarantees considering well-chosen geometries. For separable quadratics, Nutini et al. (2018b, Section 4.1) have computed explicitly the strong convexity parameter in the ℓ_1-geometry. Generalizing unitary atoms from the ℓ_1-geometry to atoms, Sun and Bach (2022, Section 2.5) formulated smoothness and strong convexity with respect to gauge functions as optimization problems. However in most cases, since these parameters are hard to compute, both strong convexity and smoothness parameters remains formulated in the ℓ_2-norm. This often leads to additional terms in
Geometry-dependent matching pursuit convergence guarantees, coming from the norm equivalence (Nutini et al., 2018b, Appendix 4) or from the geometry such as the pyramidal width (Lacoste-Julien and Jaggi, 2015) or the directional width (Locatello et al., 2017) in Frank-Wolfe techniques, or to the Hoffman constant (Hoffman, 1957) for linear mappings with strongly convex functions (Necoara et al., 2019; Karimi et al., 2016; Guille-Escuret et al., 2021).

1.2 Assumptions

Convex optimization framework. In this work, functions \(f \) into consideration are convex, differentiable and Problem (3) admits at least one global minimizer \(x^* \in \mathbb{R}^n \). Functions \(F(\cdot) = f(P\cdot) : \mathbb{R}^d \rightarrow \mathbb{R} \) benefit from the same properties. We restrict ourselves to the analysis of first-order methods (linear combinations of past iterates and gradients).

In this paper, functions \(f \) may be smooth with respect to a generic norm \(\| \cdot \|_{\mathbb{R}^n} \), if they verify for all \(x, y \in \mathbb{R}^n \),

\[
f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L^f}{2} \| y - x \|_{\mathbb{R}^n}^2.
\]

(4)

Functions \(F(\cdot) = f(P\cdot) \) are therefore smooth with respect for any norm \(\| \cdot \|_{\mathbb{R}^d} \) with \(L^F \leq L^f L^P \), where \(L \) is defined such that for all \(\alpha, \beta \in \mathbb{R}^d \),

\[
\| P(\alpha - \beta) \|_{\mathbb{R}^n}^2 \leq L^P \| \alpha - \beta \|_{\mathbb{R}^d}^2,
\]

that is \(L^P = \sup_{\| \beta \|_{\mathbb{R}^d} \leq 1} \| P\beta \|_{\mathbb{R}^n}^2 \). For least-squares, functions \(F \) are exactly smooth with \(L^F = L^f L^P \). In addition, functions \(f \) are strongly convex with respect to a norm \(\| \cdot \|_{\mathbb{R}^n} \), if for all \(x, y \in \mathbb{R}^n \),

\[
f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu^f}{2} \| y - x \|_{\mathbb{R}^n}^2.
\]

(5)

Functions \(F(\cdot) = f(P\cdot) \) do not always inherit strong convexity. For example, for least-squares, functions \(F \) are not strongly convex as soon as the number of samples \(n \) is lower than the dimension \(d \). The 'natural' strong convexity parameter of functions \(F \) is given by \(\mu^F = \mu^f \mu^P \), with \(\mu^P = \inf_{\| \beta \|_{\mathbb{R}^d} \geq 1} \| P\beta \|_{\mathbb{R}^n}^2 \) and may indeed be zero. As we will see in Section 2.4, \(F \) however inherits the Lojasiewicz property with parameter \(\mu^F_L > 0 \), such that for all \(\beta \in \mathbb{R}^d \),

\[
\frac{1}{2} \| \nabla F(\beta) \|_{\mathbb{R}^d,*}^2 \geq \mu^F_L (F(\beta) - F^*),
\]

(6)

where \(\| \cdot \|_{\mathbb{R}^d,*} \) is the dual norm for \(\| \cdot \|_{\mathbb{R}^d} \).

Random matrices. A part of this work is devoted to approximating the strong convexity and smoothness parameters of \(f \) and \(F \). We consider on the one hand relaxed formulations for strong convexity and smoothness parameters with respect to the data \(P \) (i.e., geometry). On the other hand, we propose high probability bounds of these parameters, relying on random matrix theory. Random matrices often appears in statistical assumptions, such as with restricted isometry property (Candes and Tao, 2005) or the restricted eigenvalue condition (Raskutti et al., 2010). In the machine learning literature, random matrices appear in average-case analysis for quadratics (Pedregosa and Scieur, 2020) with the Marchenko-Pastur distribution (Marchenko and Pastur, 1967), or when studying the double descent phenomena for the generalization error (Belkin et al. 2019; Mei and Montanari, 2022).
2023) for Gaussian data. Most of the time, these analyses let two regimes appear, depending (among others) on the number of samples \(n \) and the dimension \(d \). Throughout this work, we thus consider two regimes depending on the linear mapping structure \(P \in \mathbb{R}^{n \times d} \): the underparametrized (respectively overparametrized) regime, characterized by matrices \(P \in \mathbb{R}^{n \times d} \) for which \(n \geq d \) (resp. \(d \geq n \)) and \(P^\top P \) (resp. \(PP^\top \)) is invertible. Note that the invertibility of \(PP^\top \) (resp. \(P^\top P \)) in the overparametrized (resp. underparametrized) regime can be obtained by adding sufficiently random noise. More assumptions on \(P \) and \(P^\top \) will be made across this study.

2 A transition phase for linear regression

We begin with the study of a linear regression problem, where problem (7) is a special case of the optimization Problem (1) with \(\lambda = 0 \),

\[
\min_{\alpha \in \mathbb{R}^d} \{ F(\alpha) = f(P\alpha) = \frac{1}{2n}\|P\alpha - y\|_2^2 \},
\]

where \(P \in \mathbb{R}^{n \times d} \), and \(n, d \) respectively denotes the number of samples and the dimension.

In this section, we focus on describing the convergence regimes of gradient descent in the \(\ell_2 \)-geometry and coordinate descent with the Gauss-Southwell (GS) rule (Karimi et al., 2016; Nutini et al., 2018b) in the \(\ell_1 \)-geometry. More precisely, we interpret gradient descent and coordinate descent as the minimizers of smoothness upper bound with respect to well-chosen norms, that is, as optimization problems in the geometry under consideration. This interpretation leads to linear convergence both in the underparametrized and the overparametrized regime, letting smoothness and strong convexity parameters appear, that are adapted to the geometry. For characterizing convergence properties of these methods, we provide estimates of these quantities. A first technique developed in this work is based on an SDP relaxation, and leads to deterministic estimates. A second technique, inspired from statistical assumptions and average-case analysis, leads to high probability bounds under statistical assumptions on the data. These estimates let a transition phase appear between the underparametrized and overparametrized regimes, that we illustrate in particular in a random feature experiment. Finally, we interpret coordinate descent as a matching pursuit algorithm depending on the geometry \(P \).

First, let us compute estimates of smoothness and strong convexity parameters by formulating their computation as optimization problems in a generic norm for the least-squares minimization (7). In this context, \(f \) is \(\frac{1}{n} \)-smooth \(\frac{1}{n} \)-strongly convex with respect to the norm \(\| \cdot \|_2 \). Thus, \(F \) is \(LF \)-smooth with respect to an arbitrary norm \(\| \cdot \| \) in \(\mathbb{R}^d \), with \(LF = \frac{1}{n} \sup_{\|\beta\|^2 \leq 1} \|P\beta\|^2_2 \). In addition, the function is (possibly) \(\mu F \)-strongly convex, with a parameter \(\mu F \) explicit in Lemma 1 and possibly equal to 0 (especially when dimension \(d < n \)).

Lemma 1. Let \(F = \frac{1}{n}\|P\alpha - y\|_2^2 \), where \(P \in \mathbb{R}^{n \times d} \). Then, \(F \) is \(\mu F \)-strongly convex with respect to a norm \(\| \cdot \| \) with,

\[
\mu F = \frac{1}{n} \inf_{\|\beta\|^2 \geq 1} \|P\beta\|_2^2 \quad \text{and} \quad \frac{1}{\mu F} = n \sup_{\|P\beta\|^2 \leq 1} \|\beta\|_2^2.
\]
We are interested in the convergence of gradient descent in the underparametrized and the overparametrized regime in which \(\mu \) quantities are high probability bounds based on a simple random model for \(P \). Again in Lemma 2, the strong convexity parameter for \(F \) verifies the Lojasiewicz inequality (6) with \(\mu^F \). Again \(\mu^F \) is formulated as an optimization problem.

Lemma 2. Let \(F = \frac{1}{n}\|P\alpha - y\|_2^2 \), where \(P \in \mathbb{R}^{n \times d} \). Then, \(F \) verifies the Lojasiewicz inequality (6) with respect to a (dual) norm \(\| \cdot \|_* \), with

\[
\mu^F_L = \frac{1}{n} \inf_{\|P\beta\|_2^2 \geq 1} \|P^\top P\beta\|_2^2 \quad \text{and} \quad \mu^F = \frac{1}{\mu^F_L} \sup_{\|P^\top P\beta\|_2^2 \leq 1} \|P\beta\|_2^2.
\]

Proof The proof follows from the Lojasiewicz inequality. Given that \(y = P\alpha_* \), where \(\alpha_* \) is an optimal point for \(F \), we have for all \(\alpha \in \mathbb{R}^d \):

\[
\|\nabla F(\alpha)\|_2^2 = \frac{1}{n}\|P^\top P(\alpha - \alpha_*)\|_*^2 \quad \text{and} \quad F(\alpha) - F_* = \frac{1}{2n}\|P(\alpha - \alpha_*)\|_2^2.
\]

Then, for all \(\beta \in \mathbb{R}^d \),

\[
\|P^\top P(\alpha - \alpha_*)\|_* \geq \mu^F_L \|P\beta\|_2^2.
\]

Again in Lemma 2, \(\mu^F_L \) is formulated as a (nonconvex) minimization problem. The two quantities \(\mu^F \) and \(\mu^F_L \) are compared in Lemma 3, with equality in the underparametized regime in which \(P^\top P \) is invertible.

Lemma 3. Let \(F = \frac{1}{n}\|P\alpha - y\|_2^2 \). Then, we have that \(\mu^F_L \geq \mu^F \) for \(\mu^F \) (resp. \(\mu^F_L \)) defined in Lemma 1 (resp. Lemma 2). If \(P^\top P \) is invertible, \(\mu^F_L = \mu^F \).

Proof Let us consider the squared-root formulations of \(\mu^F \) and \(\mu^F_L \) given in Lemma 1 and Lemma 2

\[
\frac{1}{\sqrt{n\mu^F}} = \sup_{\|P\beta\|_2 \leq 1} \|\beta\| = \sup_{\|z\|, \|\beta\| \leq 1} \langle \beta, z \rangle,
\]

\[
\frac{1}{\sqrt{n\mu^F_L}} = \sup_{\|P^\top P\beta\|_2 \leq 1} \|P\beta\| = \sup_{\|P^\top P\beta\|_2 \leq 1} \langle \beta, P^\top P\beta \rangle.
\]

Since \(\text{Im}(P^\top P) \subset \mathbb{R}^d \), we have

\[
\frac{1}{\sqrt{n\mu^F}} \geq \frac{1}{\sqrt{n\mu^F_L}},
\]

and therefore \(\mu^F \geq \mu^F_L \). In the special case where \(P^\top P \) is invertible, \(\text{Im}(P^\top P) = \mathbb{R}^d \), and \(\mu^F_L = \mu^F \).

In the next sections, we see the role of these parameters in the convergence guarantees of gradient descent and steepest coordinate descent, both in the underparametrized and overparametrized regime. We then propose deterministic estimates for \(\mu^F \) and \(\mu^F_L \), as well as high probability bounds based on a simple random model for \(P \).

2.1 Gradient descent in the \(\ell_2 \)-geometry

We are interested in the convergence of gradient descent in the underparametrized and the overparametrized regimes. Assume \(\mathbb{R}^d \) is equipped with the \(\ell_2 \)-norm. The function \(F \) is
convex, L^F_2-smooth with respect to the norm ℓ_2, with $L^F_2 = \frac{1}{n}\lambda_{\max}(PP^T)$. A common interpretation of gradient descent with fixed step size $\gamma = \frac{1}{L^2}$ comes from the minimization of a quadratic (smoothness) upper bound on F:

$$\alpha_1 = \alpha_0 - \frac{1}{L^2} \nabla F(\alpha_0) = \alpha_0 - \frac{1}{L^2} P^T (P\alpha_0 - y). \tag{8}$$

In the underparametrized regime, the function F is μ^F_2-strongly convex with respect to the ℓ_2-norm, with $\mu^F_2 = \lambda_{\min}(\frac{P^TP}{n}) > 0$. As a result, gradient descent (8) converges linearly. However, in the overparametrized regime in which $d \geq n$, $\mu^F_2 = 0$, F is not strongly convex. Yet, gradient descent still converges linearly (Bolte et al., 2010), since quadratics benefit from the Lojasiewicz inequality, with $\mu^F_{L,2} = \frac{1}{n}\lambda_{\min}(PP^T) > 0$.

Proposition 4. Let F be convex, L^F_2-smooth with respect to the norm $\|\cdot\|_2$, be μ^F_2-strongly convex and verify a Lojasiewicz inequality with parameter $\mu^F_{L,2}$, with $0 \leq \mu^F_2 \leq L^F_2$ and $0 \leq \mu^F_{L,2} \leq L^F_2$. Let $(\alpha_k)_{k \in \mathbb{N}}$ be generated by gradient descent in (8) starting from $\alpha_0 \in \mathbb{R}^d$. The sequence verifies:

$$F(\alpha_k) - F_* \leq \left(1 - \frac{\max(\mu^F_2, \mu^F_{L,2})}{L^F_2}\right)^k (F(\alpha_0) - F_*),$$

where $\mu^F_2 = \lambda_{\min}(PP^T/n)$, $\mu^F_{L,2} = \lambda_{\max}(PP^T P/n)$ and $L^F_2 = \lambda_{\max}(P^TP/n)$

Proof See appendix B.

Convergence speeds obtained in Proposition 4 depend on $\lambda_{\max}(P^TP/n)$, $\lambda_{\max}(P^TP/n)$ and $\lambda_{\min}(PP^T/n)$. In the case where P is generated randomly, we can derive estimates of these extremal eigenvalues, avoiding a full computation of the extremal eigenvalues, and thus, an approximate convergence guarantee of the method. In the following, we consider random data P, with i.i.d. entries having the same variance, so that P^TP and PP^T have a limiting Marchenko-Pastur distribution (Marchenko and Pastur, 1967), whose extremal eigenvalues are known. This distribution generalizes the Wishart distribution of P^TP and PP^T, obtained from Gaussian data P.

Theorem 5 (Limits of extreme eigenvalues - Theorem 5.11 (Bai and Silverstein, 2010)). Assume $P \in \mathbb{R}^{n \times d}$, where each entry is an i.i.d. random variable with mean 0, variance σ^2, $\mathbb{E}[P^4_{i,j}] < +\infty$ and let $H = \frac{1}{n}P^TP$. If $\frac{d}{n} \to r \in (0, \infty)$, then we have almost surely that

$$\lambda_{\min}(H) \to \sigma^2 (1 - \sqrt{r})^2,$$

$$\lambda_{\max}(H) \to \sigma^2 (1 + \sqrt{r})^2.$$

Combining Theorems 5 with Proposition 4, we obtain natural estimates of the convergence properties in the underparametrized and the overparametrized regimes for random P.

Corollary 6. Under the same assumptions than Theorem 5 and assuming $\mathbb{E}[\|P\|^4] < +\infty$, gradient descent with step size $\gamma = \frac{1}{L^2}$ converges linearly to the optimum. Then, if $\frac{d}{n} \to r \in (0, \infty)$, we have almost surely that
in the underparametrized regime \((r \ll 1)\): \(1 - \frac{\lambda_{\min}(P^T P)}{\lambda_{\max}(P^T P)} \to 1 - \frac{(1-\sqrt{r})^2}{(1+\sqrt{r})^2}\),

in the overparametrized regime \((r \gg 1)\): \(1 - \frac{\lambda_{\min}(PP^T)}{\lambda_{\max}(P^T P)} \to 1 - \frac{r(1-\sqrt{1/r})^2}{(1+\sqrt{r})^2}\).

Proof Applying the Marchenko-Pastur Theorem 5 with Proposition 4 leads to the result.

Given that \(\frac{d}{n} \to r\), we deduce approximate convergence guarantees from Corollary 6: in the underparametrized regime \((\frac{d}{n} \to r \ll 1)\), we have \(1 - \frac{\lambda_{\min}(P^T P)}{\lambda_{\max}(P^T P)} = 4\sqrt{r} + o(\sqrt{r}) \approx 4\sqrt{\frac{d}{n}}\), and in the overparametrized regime \((\frac{d}{n} \to r \gg 1)\), \(1 - \frac{\lambda_{\min}(PP^T)}{\lambda_{\max}(P^T P)} = 4\sqrt{1/r} + o(\sqrt{1/r}) \approx 4\sqrt{\frac{n}{d}}\). These approximate convergence rates should be compared to the average-case analysis of Pedregosa and Scieur (2020) for least-squares problems, and to the polynomial-based analysis for convergence of gossip developed by Berthier et al. (2020). Depending on the distribution under consideration, Scieur et Pedregosa developed average-case optimal accelerated methods, whose limit in the number of iterations happens to be the Polyak-Momentum (Scieur and Pedregosa, 2020). Its worst-case convergence guarantee verifies \(\sqrt{\frac{L}{F^2_{1/2}} - \sqrt{\mu F^2_{1/2}}} \approx \sqrt{\frac{d}{n}}\), can be compared to Nesterov’s accelerated gradient method (Nesterov, 1983) with \(1 - \sqrt{\frac{\mu F}{L^2}} \approx 2\sqrt{\frac{d}{n}}\) and to gradient descent with \(1 - \frac{\mu F}{L^2} \approx 4\sqrt{\frac{d}{n}}\). When considering their average-case guarantees, only a polynomial sublinear term is added (Paquette et al., 2023, Table 2) to the worst-case guarantee, without major modifications in the linear term. In other words, Polyak-Momentum (resp. Nesterov’s accelerated gradient method) converges four times (resp. twice) as fast as gradient descent with fixed step sizes.

We conclude from Corollary 6 that convergence of gradient descent depends on the degree of underparametrization (resp. overparametrization). The more independent samples (resp. features), the better the convergence. While the advantage of adding independent samples is well known for improving both learning and convergence speed, it appears that adding features improves the convergence speed too. We are now going the study approximate convergence guarantees of coordinate descent, that appears in the \(\ell_1\)-geometry.

2.2 Gauss-Southwell coordinate descent in the \(\ell_1\)-geometry

Similar to gradient descent, we study convergence guarantees of coordinate descent based on the Gauss-Southwell (GS) rule. The GS-rule can be obtained from a smoothness upper bound with respect to the \(\ell_1\)-norm, as shown by Nutini et al. (2018b, Section 4), for all \(\alpha_0, \alpha \in \mathbb{R}^d\),

\[
F(\alpha) \leq F(\alpha_0) + \langle \nabla F(\alpha_0), \alpha - \alpha_0 \rangle + \frac{L^F}{2}\|\alpha - \alpha_0\|^2_1. \tag{9}
\]

From this inequality, we compute \(L^F_1 = \frac{1}{n} \max_{\alpha \in \mathbb{R}^d, \|\alpha\|_1 = 1} \|Pz\|^2_2 = \frac{1}{n} \max_{i=1, \ldots, d} \|P_i\|^2_2\) (the maximization problem attains its optimum on the extremal point of the simplex). Gauss-
Southwell coordinate descent follows by minimizing over $\alpha \in \mathbb{R}^d$, for a fixed $\alpha_0 \in \mathbb{R}^d$,

$$i_0 = \arg \max_{k=1, \ldots, d} |\nabla_{i_k} F(\alpha_0)|,$$

$$\alpha_1 = \alpha_0 - \frac{1}{L^F_1} \nabla_{i_0} F(\alpha_0) e_{i_0}. \quad (10)$$

As for gradient descent, its convergence speed depends on the parametrization regime. Depending on the (n, d), F may be μ_1^F-strongly convex, or verify the Lojasiewicz inequality with parameter $\mu_{1,L}^F$. Both μ_1^F and $\mu_{1,L}^F$ can be formulated as optimization problems for computing explicit estimates. It follows from the strong convexity characterization given in Lemma 1 with the norm $\| \cdot \|_1$, that $\mu_1^F = \frac{1}{n} \inf_{\|z\|_1 \geq 1} \|Pz\|_2^2$, and from Lemma 2 with norm $\| \cdot \|$ for the Lojasiewicz inequality $\mu_{1,L}^F = \inf_{\|P\beta\|_2 \geq 1} \|P^TP\beta\|_\infty^2$.

In the regimes under consideration, Proposition 7 states that coordinate descent converges linearly, as already proven by Karimi et al. (2016, Theorem 1).

Proposition 7. (Karimi et al., 2016, Theorem 1) Let F be convex, L^F_1-smooth with respect to the norm $\| \cdot \|_1$, be μ_1^F-strongly convex and verify the Lojasiewicz inequality with $\mu_{1,L}^F$, where $0 \leq \mu_{1,L}^F \leq L^F_1$ and $0 \leq \mu_1^F \leq L^F_1$. Let (α_k) be generated by coordinate gradient descent (10) starting from $\alpha_0 \in \mathbb{R}^d$. The sequence verifies:

$$F(\alpha_k) - F_\ast \leq \left(1 - \frac{\max(\mu_1^F, \mu_{1,L}^F)}{L^F_1}\right)^k (F(\alpha_0) - F_\ast)$$

Proof See Appendix B

The convergence guarantee provided in Proposition 7 depends on μ_1^F and $\mu_{1,L}^F$, and hence complicated to compute. Although $L^F_1 = \frac{1}{n} \max_{i=1, \ldots, d} \|P_{.,i}\|_2^2$ has a closed-form solution, $\mu_1^F = \frac{1}{n} \inf_{\|z\|_1 \geq 1} \|Pz\|_2^2$ and $\mu_{1,L}^F = \inf_{\|P\beta\|_2 \geq 1} \|P^TP\beta\|_\infty^2$ are formulated as nonconvex minimization problems.

In the following, we construct estimates to these quantities, so that they may be computed a priori. First, we provide SDP relaxations for the optimization problems defining μ_1^F and $\mu_{1,L}^F$, that may differ from the exact solution. We thus propose to construct high probability bounds for μ_1^F and $\mu_{1,L}^F$, assuming randomly generated data.

SDP relaxations. Building on the formulation of μ_1^F and $\mu_{1,L}^F$ as optimization problems, we rephrase them into relaxed SDPs.

Proposition 8. Let $P \in \mathbb{R}^{n \times d}$, and let us define $\mu_1^F = \frac{1}{n} \inf_{\|z\|_1 \geq 1} \|Pz\|_2^2$ and $\mu_{1,L}^F = \inf_{\|P\beta\|_2 \geq 1} \|P^TP\beta\|_\infty^2$. Then the following inequality holds

- in the underparametrized regime, $\frac{1}{n\mu_1^F} = \sup_{X > 0} \text{Tr}((P^TP)^{-1}X)$, s.t. $\text{diag}(X) \leq 1$,

$$1 - \frac{\pi}{2} \frac{\tilde{\mu}_1^F}{L^F_1} \leq 1 - \frac{\mu_1^F}{L^F_1} \leq 1 - \frac{\tilde{\mu}_1^F}{L^F_1},$$

where μ_1^F and $\mu_{1,L}^F$ are defined as in Proposition 7.

$$\mu_1^F = \frac{1}{n} \inf_{\|z\|_1 \geq 1} \|Pz\|_2^2, \quad \mu_{1,L}^F = \inf_{\|P\beta\|_2 \geq 1} \|P^TP\beta\|_\infty^2.$$
in the overparametrized regime, 1/n\bar{\mu}_F = \sup_{X \succeq 0} \text{Tr}(P^T XP) \text{ s.t. } \|P^T XP P^T P\|_\infty \leq 1, \\
1 - \frac{\mu_{F, L}}{L_F} \leq 1 - \frac{\hat{\mu}_{1,L}}{L_F},

where \(L_F = \frac{1}{n} \max_{i=1,\ldots,d} \|P_{:,i}\|_2^2 \). In addition, we still have that \(\hat{\mu}_F \leq \bar{\mu}_F \).

Proof See Appendix C.1.

In Proposition 8, we find out SDP relaxations that yield a deterministic estimate for \(\mu_F \), and an exact lower bound for \(\mu_{F, L} \). Yet, the larger \(n, d \), the longer the computation of these SDPs.

High probability bounds. We now assume that \(P \) is randomly generated, as in the \(\ell_2 \)-geometry. Under subgaussian assumptions, we derive in Proposition 9 high probability bounds for \(\mu_F \), \(\mu_{F, L} \) and \(L_F \). More precisely, we prove that \(L_F \) concentrates around the variance \(\sigma^2 \), \(\mu_F \) around \(\sigma^2 \frac{d}{n} \) and \(\mu_{F, L} \) around \(\sigma^2 \frac{n}{d} \) with subgaussian tails.

Proposition 9. Let \(P \in \mathbb{R}^{n \times d} \), with \(P_i \in \mathbb{R}^d \) i.i.d. subgaussian such that \(\mathbb{E}[P_{i,j}] = 0 \), \(\mathbb{E}[P_{i,j}] = \sigma^2 \). There exists absolute constants \(C, C_1, C_2, C_3, C_4, K > 0 \) such that,

- For all \(u \geq 2K^2 \sqrt{\frac{C_1 \log(d)}{n}} \),

 \[
 \left(1 + C_2 K^2 \frac{1}{\sqrt{n}} - t \right)^2 \lesssim \frac{L_F}{\sigma^2} \lesssim \left(1 + 2K^2 \sqrt{\frac{C_1 \log(d)}{n}} + t \right)^2,
 \]
 holds with probability \(1 - e^{-\sigma^2K^2 \min(u_1(t),u_2(t))} \) where \(u_1(t) = \log(d) \sigma^2(t + \frac{C_2 K^2}{\sqrt{n}})^2 \) and \(u_2(t) = d \sigma^2(t - 2K^2 \sqrt{\frac{C_1 \log(d)}{n}})^2 \).

- For all \(t \geq 0 \), it holds with probability \(1 - 2 \exp(-t^2) \),

 \[
 \left(1 - C_3 K^2 \left(\frac{d}{\sqrt{n}} + \frac{t}{\sqrt{dn}}\right)\right)^2 \leq \mu_F \frac{d}{\sigma^2} \leq \left(1 + C_3 K^2 \left(\frac{1}{n} + \frac{t}{\sqrt{dn}}\right)\right)^2.
 \]

- For all \(t \geq 2\sigma K^2 \sqrt{\frac{C_1 \log(d)}{n}} \), it holds with probability \(1 - 2 \exp(-\min(t^2, u_2(t)) \),

 \[
 \left(1 - C_4 K^2 \left(\sqrt{\frac{n}{d}} + \frac{t}{\sqrt{dn}}\right)\right)^2 \leq \mu_{F, L} \frac{n}{\sigma^2} \leq \left(1 + 2K^2 \sqrt{\frac{C_1 \log(d)}{n}} + t \right)^2.
 \]

The constant \(K > 0 \) characterizes subgaussian vectors of \(P \) (and defined in Appendix C.2).

Proof See Appendix C.2
Compared with Proposition 4, Proposition 9 provides concentration inequalities for L^F_1, μ^F_1 and $\mu^{L,F}_1$, depending on dimension d, the variance σ^2, the number of samples n and absolute constants.

From Proposition 7, we have seen that coordinate descent with GS-rule (10) converges in function values with a rate $1 - \frac{\max(\mu^F_1, \mu^{L,F}_1)}{L^F_1}$. In the overparametrized regime (resp. underparametrized), we conclude in Corollary 10 with limiting concentration of the convergence rate for large dimensions (resp. large number of samples).

Corollary 10. Let $P \in \mathbb{R}^{n \times d}$, with $P_i \in \mathbb{R}^d$ i.i.d. subgaussian such that $\mathbb{E}[P_{i,j}] = 0$, $\mathbb{E}[P_{i,j}] = \sigma^2$. Then,

- in the underparametrized regime, when $n \to \infty$, the quantity $1 - \frac{\mu^F_1}{L^F_1}$ concentrates in $1 - \frac{1}{d} + O\left(\frac{1}{\sqrt{n}}\right)$ with subgaussian tails,

- in the overparametrized regime, when $d \to \infty$ and $\frac{\log(d)}{n} \to 0$, the quantity $1 - \frac{1}{\mu^{L,F}_1}$ concentrates in $1 - \frac{1}{n} + O\left(\frac{1}{\sqrt{d}}\right) + O\left(\frac{\log(d)}{n}\right)$ with subgaussian tails.

Proof See the proof in Appendix C.3. \[\square\]

For large overparametrized models (resp. underparametrized), the convergence guarantee of coordinate descent with GS rule concentrates to $(1 - \frac{1}{n})$ (resp. $(1 - \frac{1}{d})$), that is independent of the dimension d (resp. of the number of samples). Note that the condition $\log(d) \ll n$ is indeed reasonable, since e^n grows quickly (when $n = 50$, $e^n \approx 5 \times 10^{21}$). A numerical comparison for the expected and exact lower bounds for μ^F_1 and $\mu^{L,F}_1$ is provided in Appendix B. Unlike the approximate convergence guarantees for gradient descent in the underparametrized regime (resp. overparametrized) detailed in Corollary 6, coordinate descent with GS-rule does not improve when adding samples (resp. features).

As for gradient descent in the ℓ_2-geometry, we have formulated coordinate descent with GS rule as the minimization of the smoothness upper bound with respect to the ℓ_1-norm, leading its linear convergence in both the underparametrized and overparametrized regime. For a linear regression problem, nor the strong convexity parameter neither the Lojasiewicz in the ℓ_1-geometry benefit from a closed-form formulation (but it did in the ℓ_2-geometry). In a first approach, we approximate these quantities by SDPs, that may take longer computation in large models (either in the number of samples or the dimension). Instead of that, we consider randomly generated matrices P to approximate these parameters. Under subgaussian data, it appears μ^F_1, $\mu^{L,F}_1$ and L^F_1 concentrate to there expectation with subgaussian tails. In the next section, we perform numerical experiments showing the transition phase between the two regimes.

2.3 A transition phase phenomenon: experimental results

We compare approximate convergence guarantees to numerical experimental convergence for gradient descent from Corollary 6 and for coordinate descent from Corollary 10. More precisely, we verify the expected transition phase in (n, d): in the overparametrized (respectively underparametrized) regime, the larger the dimension (resp. the number of samples), the better the convergence. To this end, we perform a few experiments on several
Geometry-dependent matching pursuit

datasets: least-squares problems obtained either with synthetic Gaussian vectors or from the Leukemia dataset or from random features, described below.

Synthetic quadratics. We consider several least-squares problems (7), where the number of samples \(n = 50 \) is fixed, and the number of dimension varies so that both the overparametrized and the underparametrized regimes are explored. In this model, the feature matrix \(P \) into consideration is generated such that \(P_{i,j} \sim \mathcal{N}(0, I_d) \) are i.i.d, \(\alpha_\star \in \{-1, 1\}^d \) has a sparsity (that is, the number of non-zero entries) equal to \(s = 8 < d \), and \(y = P\alpha_\star + \epsilon \), where \(\epsilon \sim \mathcal{N}(0, \sigma) \).

Leukemia dataset. We consider the standard Leukemia dataset (Golub et al., 1999), where \(n = 72 \) and \(d = 7129 \). Again, we consider submatrices, so that the dimensions vary from the underparametrized regime to the overparametrized one. For each model, \(P \) has zero mean and features with unit variance.

Random features. We consider the example of random features for a fixed prediction model. We consider the regression model \(\hat{a} = \arg \min_{a \in \mathbb{R}^d} \frac{1}{2n} \| y - f(P, a, \theta) \|_2^2 \), where the family of models is given by \(F(\theta) = \{ f(P, a, \theta) = \sum_{i=1}^d a_i \sigma(\theta, i, P_{i,j}) = \phi P(\theta)^\top a, a \in \mathbb{R}^N \} \), where \(\theta \in \mathbb{R}^{d \times m} \sim \mathcal{N}(0, \nu^2) \), and \(\sigma(\cdot) = \max(0, \cdot) \). In this experiment, we increase the number of features \(d \) (from 10 to 1000) while the initial data taken from the leukemia dataset is such that \(n = 72, m = 200 \) and \(\theta \sim \mathcal{N}(0, I_m) \). In comparison to experiments on synthetic quadratics and on the leukemia dataset, the model does not vary in random features: all models converge to the same optimal solution \(y \).

![Figure 1](image)

Figure 1: \(\epsilon \)-curve for gradient descent (top) and coordinate descent with the GS-rule (bottom), for the three models: synthetic quadratics (on the left) with \(n = 50 \), the leukemia dataset (in the middle) with \(n = 72 \), a random feature model (on the right) with \(n = 72 \).
In Figure 1, we plot the iteration number $k(\epsilon)$ at which a certain accuracy ϵ is reached for the three models described above, both for gradient descent and coordinate descent with GS-rule. We consider accuracies $\epsilon = \{10^{-0}, \ldots, 10^{-10}\}$ and we refer to these curves by ϵ-curves. For the three models, both steepest coordinate descent and gradient descent converge faster when $n \gg d$ (resp. $d \gg n$) in the underparametrized (resp. overparametrized) regime in Figure 1. For $n \approx d$, convergence slows down and tends to be sublinear, as expected from the theory for smooth convex functions. In other words, we observe a transition phenomenon for dimensions $d \approx n$. For the random feature models, a double descent phenomena was empirically highlighted by Belkin et al. (2019), and formalized by Mei and Montanari (2022). For a fixed prediction model, as the number of features increase, the excess risk follows is U-shaped for underparametrized optimization models and goes down for overparametrized models. As for the excess risk, we observe a transition at $d \approx n$ as well as a better precision for overparametrized models. Contrary to the generalization error, underparametrized models ($d \ll n$) performs well even when $\frac{d}{n} \to 0$ and are not U-shaped. We refer to this phenomenon as a transition phase for gradient and coordinate descent.

![Figure 2](image)

Figure 2: Convergence in function value for gradient descent and coordinate descent with GS rule, on synthetic quadratics ($n = 20$) and on the leukemia dataset ($n = 72$), for different values for d. Dashed lines: comparison to the approximate convergence guarantees from Corollary 6 for synthetic quadratics, and to high probability estimates for the leukemia dataset from Proposition 9.

In Figure 2, we compare the exact and approximated upper bound to the convergence guarantee in function value for gradient descent and coordinate descent with the GS rule. For gradient descent, the theoretical approximation guarantee from Corollary 6 matches the observed convergence behavior of gradient descent. For steepest coordinate descent, we compare its convergence in function values to the exact upper bound obtained from the
SDP relaxation in Proposition 8 for ‘small’ values of \(d\) and \(n\), and to its high probability bound otherwise. In both cases, we numerically recover that convergence is improved as the dimension increases.

2.4 Coordinate descent is an instance of matching pursuit

Coordinate descent, as well as gradient descent, converge linearly both in the under-parametrized and overparametrized regime, as provided by Proposition 7, respectively due to strong convexity and the Lojasiewicz property. Given a certain structure on \(f\), we prove that \(F(\cdot) = f(P\cdot)\) inherits some regularity properties from \(f\) and that coordinate descent can be interpreted as a matching pursuit algorithm in either \(\mathbb{R}^d\) or \(\mathbb{R}^n\). Now, let us consider the more general formulation,

\[
\min_{\alpha \in \mathbb{R}^d} F(\alpha) = f(P\alpha),
\]

where \(f\) is \(L^f\)-smooth, \(\mu^f\)-strongly convex and \(F\) is \(L_1^F\)-smooth with respect to the \(\ell_1\)-norm.

Underparametrized regime. \(F\) is \(\mu^F\)-strongly convex (since \(P^TP\) is invertible). The connection between coordinate descent with GS-rule (10) and matching pursuit was highlighted by Locatello et al. (2018). Considering the set of unitary direction \(A = \text{conv}(\{\pm e_i, i = 1, \ldots, d\})\), that is the \(\ell_1\) unit ball, coordinate descent may be rewritten as a matching pursuit:

\[
\begin{align*}
& e_{i_0} \in -\text{LOMO}_A(\nabla F(\alpha_0)) = - \arg \min_{i=1,\ldots,d} \nabla F(\alpha_0)^\top e_i, \\
& \alpha_1 = \alpha_0 - \frac{1}{L_1^F} \nabla F(\alpha_0)^\top e_{i_0},
\end{align*}
\]

where \(\text{LOMO}_A(\nabla F(\alpha_0)) = \inf_{z \in A} (\nabla F(\alpha_0), z)\). Steepest coordinate descent converges linearly from Proposition 7, with the same convergence guarantee as in the context of matching pursuit (Locatello et al., 2018, Theorem 5).

Overparametrized regime. \(F\) does not inherit strong convexity. Yet, for least-squares, \(F\) but does inherit some structure from \(f\) (see Lemma 2). We prove that coordinate descent can be interpreted as a matching pursuit algorithm in \(\mathbb{R}^n\). Recall the gauge function, for \(x \in \mathbb{R}^n\), \(\gamma_P(x) = \inf_{\alpha \in \mathbb{R}^d, x = P\alpha} \|\alpha\|_1\). Lemma 11 ensures \(\gamma_P(\cdot)\) is a norm in the overparametrized regime.

Lemma 11. Let \(\alpha \in \mathbb{R}^d \rightarrow P\alpha \in \mathbb{R}^n\) be a surjection in \(\mathbb{R}^d\), and \(P = \text{conv}(P)\) be centrally symmetric. The function \(\gamma_P(\cdot)\) is a norm, and its dual norm is \(\gamma_P^*(\cdot) = \sup_{s \in P} \langle s, \cdot \rangle = \|P^\top \cdot\|_\infty\).

Proof See Appendix D.1.

Let \(f\) be convex, \(L^f_2\)-smooth and \(\mu^f_2\)-strongly convex with respect to the \(\ell_2\)-norm. We define \(L^f_P = L^f_2 \sup_{j=1,\ldots,d} \|P_j\|_2^2\) and \(\mu^f_P = \mu^f_2 \inf_{z \in \mathbb{R}^n} \|P^\top z\|_\infty^2\), such that \(\|z\|_2^2 = 1\). Then, \(f\) is convex, \(L^f_P\)-smooth and \(\mu^f_P\)-strongly convex with respect to the norm \(\gamma_P(\cdot)\). By definition, for all \(x \in \mathbb{R}^d\), \(L^f_2\|x\|_2^2 \leq L^f_P \gamma_P(x)^2\) and \(\mu^f_2\|x\|_2^2 \geq \mu^f_P \gamma_P(x)^2\). Thus \(f\) is \(L^f_P\)-smooth and \(\mu^f_P\)-strongly convex with respect to \(\gamma_P(\cdot)\) (that is a norm in this regime).
As before, our estimates for smoothness (resp. strong convexity) parameters are obtained by an optimization problem. They appear to be closely related to the parameters for least-squares from Lemma 1 and 2. In the context of least-squares where \(f(x) = \frac{1}{2n} \| x - y \|_2^2 \) for \(x \in \mathbb{R}^n \), we indeed have that \(L^f_2 = \mu^f_2 = \frac{1}{L} \). For the \(\ell_1 \)-norm, that \(L^f_1 = L^F_1 \) as defined in (9), and \(\mu^f_p = \mu^F_{1,p} \) as soon as \(PP^\top \) is invertible (which is the case here). Multiplying (10) by \(P \), noticing that \(\min_{e, \|e\|_1 = 1} (\nabla F(x), e) = \min_{p \in P} (\nabla f(x), p) \), coordinate descent with the GS-rule on \(F \) can be formulated as matching pursuit on \(f \),

\[
\begin{align*}
z_0 &\in \text{LMO}_P(\nabla f(x_0)), \\
x_1 &= x_0 - \frac{1}{L^f_p} \langle \nabla f(x_0), z_0 \rangle z_0.
\end{align*}
\]

Let \(x_k \) be generated by matching pursuit (11), starting from \(x_0 \in \mathbb{R}^n \) for \(L^f_p \)-smooth and \(\mu^f_p \)-strongly convex functions, then, Locatello et al (Locatello et al., 2018, Theorem 5) proved linear convergence of the sequence with

\[
f(x_k) - f_* \leq \left(1 - \frac{\mu^f_p}{L^f_p} \right) (f(x_0) - f_*).
\]

By construction, since \(x_k = P\alpha_k \), we have that \(F(\alpha_k) - F_* \leq (1 - \frac{\mu^f_p}{L^f_p})(F(\alpha_0) - F_*) = (1 - \frac{\mu^f_p}{L^f_1})(F(\alpha_0) - F_*) \). The same result could have been derived from Proposition 7 and the observation that strongly convex functions composed with a linear mapping verify a Lojasiewicz-inequality.

Lemma 12. Let \(f \) be \(\mu^f_p \)-strongly convex with respect to the norm \(\gamma_P(\cdot) \). Then, \(F \) verifies a Lojasiewicz inequality with parameters \(\mu^F_p \), that is for all \(\alpha \in \mathbb{R}^d \),

\[
\frac{1}{2} \| \nabla F(\alpha) \|_\infty \geq \mu^F_p (F(\alpha) - F_*).
\]

Proof Let \(x \in \mathbb{R}^n \), \(f_* \geq f(x) - \sup_z (\nabla f(x), y - x) - \frac{\mu^f_p}{2} \gamma_P^2 (y - x) \geq f(x) - \left(\frac{\mu^f_p}{2} \gamma_P (\cdot)^2 (\nabla f(x)) \right) f(x) - \frac{1}{2\mu^f_p} \| P^\top \nabla f(x) \|_2^2. \) Since \(F(\cdot) = f(P\cdot) \), the inequality is obtained by taking \(x = P\alpha \) and \(\nabla F(\alpha) = P^\top \nabla f(P\alpha) \).

Lemma 12 corresponds to the result of Karimi et al. (Karimi et al., 2016, Appendix B), that let a Hoffman constant appear (that is in their context equal to the smallest non-zero eigenvalue of \(P \)), as defined in (Necoara et al., 2019, Section 3 and 4.1) by \(\theta(P) = \max_{z, \| P^\top z \|_\infty = 1} \| z \|_2^2. \) They indeed proved that \(F \) verifies a Lojasiewicz inequality, for all \(\alpha \in \mathbb{R}^d, \frac{1}{2} \| \nabla F(\alpha) \|_2^2 \geq \theta(P) \mu^F (F(\alpha_k) - F_*) \).

Depending on the parametrization regime, we have proven that coordinate descent may be formulated as a (possibly rebased) matching pursuit method. In the underparametrized regime on the one hand, since \(F \) inherits all regularity properties from \(f \), the atoms are
defined by the Euclidean basis and the matching pursuit is formulated in \mathbb{R}^d. On the other hand in the overparametrized regime, the introduction of a well-chosen gauge function γ_P allows to formulated coordinate descent as a matching pursuit algorithm in \mathbb{R}^n, and to perform a convergence analysis using the strong convexity assumption on f. Again, global values of the smoothness and strong-convexity parameters can be formulated as optimization problems depending on the gauge. The gauge let also appear how F inherits some structure from f. In the next sections, we generalize this framework for analyzing penalized linear models.

3 Transition phase for penalized linear models

We now consider the penalized linear model,

$$ \min_{\alpha \in \mathbb{R}^d} \{ G(\alpha) \triangleq f(P\alpha) + \lambda \|\alpha\|_1 \}, \quad (13) $$

where $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is L_f^2-smooth, μ_F^2-strongly convex, (and thus, the function $F : \mathbb{R}^d \rightarrow \mathbb{R}$ such that $F(\cdot) = f(P \cdot)$, is L_F^2 smooth), $P \in \mathbb{R}^{n \times d}$, $\lambda > 0$ and where $H(\alpha) = \lambda \|\alpha\|_1$ is closed convex and proper. In this section, we derive a new matching pursuit algorithm for a ℓ_1-regularized model, that we compare to proximal coordinate descent with GS rule and to the proximal gradient descent. Building on the results of Section 2, we derive convergence guarantees depending on the properties of f and P, and notice a strong connection to the proximal coordinate descent with GS rule. Yet, in the overparametrized regime, neither the proximal gradient nor the regularized matching pursuit benefits from linear convergence. Instead of that, we describe experimentally the role of λ in the LASSO, as a continuous mapping between low-rank solutions and full-rank solution to the least-squares.

Proximal gradient descent. Proximal gradient descent, a.k.a. forward-backward (see e.g. (Combettes and Wajs, 2005)) was developed for such ‘composite’ convex optimization problems. Given a starting point $\alpha_0 \in \mathbb{R}^d$, each iterate is obtained by minimizing a smooth quadratic upper bound on F:

$$ G(\alpha) \leq F(\alpha_k) + \langle \nabla F(\alpha_k), \alpha - \alpha_k \rangle + \frac{L_F^2}{2} \|\alpha_k - \alpha\|^2 + \lambda \|\alpha\|_1. \quad (14) $$

Minimizing the right side of the inequality yields the proximal gradient method as follows:

$$ \alpha_{k+1} = \arg\min_{\alpha \in \mathbb{R}^d} \langle \nabla F(\alpha_k), \alpha - \alpha_k \rangle + \frac{L_F^2}{2} \|\alpha - \alpha_k\|^2 + \lambda \|\alpha\|_1. $$

The proximal gradient method converges sublinearly if F is smooth and convex, and linearly if F is in addition μ_F^2-strongly convex, such as in the underparametrized regime. Then, the sequence α_k starting from $\alpha_0 \in \mathbb{R}^d$ verifies ((Taylor et al., 2018, Theorem 2.1)),

$$ G(\alpha_k) - G_* \leq \left(1 - \frac{\mu_F^2}{L_F^2} \right)^k (G(\alpha_0) - G_*). $$

Coordinate descent. In practice, (randomized) coordinate gradient descent is widely used to avoid computing the full gradient (that costs $O(d)$), and is particularly suited to
sparse regression problems. Nutini et al. (2018b) analyzed coordinate descent with the Gauss-Southwell selection rule, that tends to perform better than randomized coordinate descent.

\begin{equation}
\alpha_{k+1} = \arg \min_{\alpha \in \mathbb{R}^d} \nabla_{i_k} F(\alpha_k)(\alpha^{(i_k)} - \alpha^{(i_k)}_k) + \frac{L_F}{2}(\alpha^{(i_k)} - \alpha^{(i_k)}_k)^2 + \lambda|\alpha^{(i_k)}_k|,
\end{equation}

where \(i_k = \arg \min_{l} \min_{t \in \mathbb{R}} \nabla_{l} F(P \alpha_k)(t - \alpha^{(l)}) + \frac{L_F}{2}(t - \alpha^{(l)})^2 + \lambda|t|\) corresponds to the GS rule. Nutini et al. (Nutini et al., 2018b, Appendix 8) proved that coordinate descent with the Gauss-Southwell rule makes at least as much progress as randomized coordinate descent,

\[G(\alpha_{k+1}) - G_* \leq \left(1 - \frac{\mu^F}{dL^F_2} \right) (G(\alpha_k) - G_*).\]

A refinement, that let a sublinear dependence in the parameter \(\mu^F\) appear, is mentioned in (Nutini et al., 2018b, Appendix 8). Coordinate descent with GS-rule is closely related to matching pursuit as for nonpenalized models, as detailed in Appendix E, where we formulate this method as a ‘nearly’ matching pursuit algorithm.

In the following, we derive a matching pursuit procedure for \(\ell_1\)-regularized problems (13), that we compare to classical boosting algorithm and coordinate descent with GS-rule. After that, we compute convergence guarantees for smooth (possibly) strong convex functions. Finally, we interpret the convergence regimes as a function of the penalty \(\lambda\).

3.1 Regularized matching pursuit

We propose a new regularized matching pursuit algorithm based on the \(\ell_1\)-geometry. The main idea is to replace the \(\ell_2\)-norm in the minimization Problem (14) leading to the proximal gradient by a \(\ell_1\)-norm. Let \(F\) be convex, \(L^F_1\)-smooth, as for coordinate descent with GS rule in the linear regression problem from Section 2. We define the penalized matching pursuit method starting from \(\alpha_0 \in \mathbb{R}^d\) as the sequence minimizing smoothness with respect to the \(\ell_1\)-norm at each iteration:

\begin{equation}
\alpha_{k+1} = \arg \min_{\alpha \in \mathbb{R}^d} \langle P^T \nabla f(P\alpha), \alpha - \alpha_k \rangle + \frac{L^F_1}{2}\|\alpha - \alpha_k\|^2_1 + \lambda\|\alpha\|_1.
\end{equation}

Whereas the optimization steps in proximal gradient descent (14) and proximal coordinate descent with the GS rule (15) can be decomposed coordinate-wise, the function \(\alpha \to \|\alpha\|^2_1\), that is not separable. Based on the same upper bound (16), Song et al. (2017, Algorithm 1) generalized greedy coordinate descent with the “SOft ThresOlding PrOjection” (SOTOPO) algorithm using a reweighted least-squares formulation (Appendix A). However, their methods is neither a coordinate-based method, nor a boosting method. We propose instead a regularized matching pursuit algorithm that draws a clean connection to boosting and proximal coordinate descent.

In the following, we formulate this optimization step (16) as a matching pursuit algorithm, that only calls for a linear minimization oracle. Using a variational trick detailed in Appendix A to approach \(\|\beta\|^2_1\), we begin by formulating Problem (16) starting from
$\alpha_k \in \mathbb{R}^d$ as a separable optimization problem,

\[
V_* = \min_{\beta \in \mathbb{R}^d} \langle \nabla F(\alpha_k), \beta \rangle + \frac{L_1^F}{2} \|\beta\|_1^2 + \lambda \|\beta + \alpha_k\|_1,
\]

\[
= \min_{\beta \in \mathbb{R}^d} \max_{z \geq 0} \langle \nabla F(\alpha_k), \beta \rangle - \frac{z^2}{2L_1^F} + z\|\beta\|_1 + \lambda \|\beta + \alpha_k\|_1,
\]

\[
= \max_{z \geq 0} -\frac{z^2}{2L_1^F} + \min_{\beta \in \mathbb{R}^d} \sum_{i=1}^d \{\nabla_i F(\alpha_k)\beta(i) + z|\beta(i)| + \lambda|\beta(i) + \alpha_k(i)|\}.
\]

At the optimum, $z = L_1^F\|\beta\|_1$. The problem is now separable in each coordinate $\beta(i)$, and can be reduced to an optimization problem in $z \geq 0$ in Lemma 13.

Lemma 13. The optimization step (16) can be reformulated as

\[
V_* = \max_{z_{\min} \leq z} \left\{ h(z) \triangleq -\frac{z^2}{2L_1^F} + \sum_{i \in I} \min \left(\lambda|\alpha_k^{(i)}|, -\nabla_i F(\alpha_k)\alpha_k^{(i)} + z|\alpha_k^{(i)}| \right) \right\},
\]

where $z_{\min} = (\max_i |\nabla_i F(\alpha_k)| - \lambda)_+$ and where $I = \{i, \alpha_k^{(i)} \neq 0\}$ is the set of active atoms.

Proof The function $\phi_i(z, \beta(i)) = \nabla_i F(\alpha_k)\beta(i) + z|\beta(i)| + \lambda|\beta(i) + \alpha_k^{(i)}|$ is lower bounded if $z \geq |\nabla_i F(\alpha_k)| - \lambda$ for all $i \in I$. Then, $\phi_i(z, \cdot)$ attains its minima in $\beta(i) = 0$ with $\phi_i(z, 0) = \lambda|\alpha_k^{(i)}|$ or in $\beta(i) = -\alpha_k^{(i)}$ with $\phi_i(z, -\alpha_k^{(i)}) = -\nabla_i F(\alpha_k)\alpha_k^{(i)} + z|\alpha_k^{(i)}|$ or in every possible value for $\beta(i)$ if $z = \pm\nabla_i F(\alpha_k) - \lambda$ with $\phi_i(z, 0) = \lambda|\alpha_k^{(i)}|$. \blacksquare

Lemma 13 leads to a convex constrained optimization problem in \mathbb{R}^+, whose objective is the sum of a quadratic and piecewise linear functions whose slope coefficients changing at $z_i = \lambda + |\nabla_i F(\alpha_k)|/|\alpha_k^{(i)}|$. Its constraints in z_{\min} includes the LMO. By construction, the LMO given by z_{\min} may correspond to several atoms β_j such that $j \in \text{arg min}_i |\nabla_i F(\alpha_k)|$. Since we aim at solving Problem (16) by constructing a solution as sparse as possible, we introduce Assumption 14.

Assumption 14. The algorithm only selects one atom corresponding to the LMO, that is $i_{\min} \in \text{arg max}_i |\nabla_i F(\alpha_k)|$, such that $z_{\min} = (\max_i |\nabla_i F(\alpha_k)| - \lambda)_+$.

In the following lemmas, we compute the minimum of h explicitly. Under Assumption 14, Lemma 15 first deals with the situation in which the objective is quadratic, that is for all $i \in I, z_i \geq z_{\min}$.

Lemma 15. Let (z_*, β_*) be a solution to (17), assume $\{i, z_i \geq z_{\min}\} = \emptyset$ and verify Assumption 14. Then $z_* = z_{\min}$, $\beta^{(i_{\min})}_* = -\text{sign}(\nabla_{i_{\min}} F(\alpha_k))\frac{z_{\min}}{L_1^F}$ and $\beta^{(i)}_* = 0$ for $i \neq i_{\min}$.

Proof The objective is quadratic and attains its minimum at $z_{\min} = L_1^F|\beta^{(i_{\min})}|$. \blacksquare

In the context of Lemma 15 and Assumption 14, only the atom given by the LMO in $z_{\min} = (\max_i |\nabla_i F(\alpha_k)| - \lambda)_+$ can be added to the set of active atoms. Now, we assume the objective is piecewise quadratic, that is $\mathcal{S} = \{i, z_i \geq z_{\min}\} \neq \emptyset$.

19
Lemma 16. Let z_*, β_* be a solution of (17) and assume $S = \{i, z_i \geq z_{\text{min}}\} \neq \emptyset$ and verify Assumption 14. There are four possible solutions to Problem (17),

- If $h'(z_{\text{min}}) \leq 0$, then $z_* = z_{\text{min}}$.

In addition, $\beta_*^{(i)} = \begin{cases} -\alpha_k^{(i)} & \text{if } z_i \geq z_*, \\ 0 & \text{if } z_i \leq z_*, \\ -\text{sign}(\nabla_{z_{\text{min}}^*} F(\alpha_k)) \frac{z_{\text{min}} - \sum_{i \in S} |\alpha_k^{(i)}|}{L^F_k} & \text{if } i = i_{\text{min}}. \end{cases}$

- If there exists $k \in S$ such that $h'(z_k^+) \geq 0$ and $h'(z_k^-) \leq 0$, then $z_* \in [z_k, z_{k+1}]$. In addition, $\beta_*^{(i)} = \begin{cases} -\alpha_k^{(i)} & \text{if } z_i \geq z_*, \\ 0 & \text{if } z_i \leq z_* \end{cases}$

- If there exists $k \in S$ such that $h'(z_k^-) \geq 0$ and $h'(z_k^+) \leq 0$ then $z_* = z_k$. In addition, $\beta_*^{(i)} = \begin{cases} -\alpha_k^{(i)} & \text{if } z_i > z_*, \\ 0 & \text{if } z_i < z_*, \\ -\text{sign}(\alpha_k^{(i)} \left(\frac{z_k}{L^F_k} - \sum_{i,z_i > z_k} |\alpha_k^{(i)}| \right) & \text{if } i = k. \end{cases}$

- If $h'(z_{|I|}) > 0$, then for all $i \in I$, $z_* > z_i$ and $\beta_*^{(i)} = \begin{cases} -\text{sign}(\alpha_k^{(i)}) \frac{z_i}{L^F_k} & \text{if } i = |I|, \\ 0 & \text{otherwise}. \end{cases}$

Proof The function h is strictly concave and piecewise quadratic on $[z_i, z_{i+1}]$. The solution to the optimization Problem (17) is thus obtained by studying the sign of $h'(\cdot)$ at z_i^- and z_i^+. By construction of the solution given in the proof of Lemma 13, for all i such that $z_* > z_i$ (resp. $z_* < z_i$), then $\beta^{(i)} = 0$ (resp. $\beta^{(i)} = -\alpha_k^{(i)}$). Finally, we have $z_* = L^F_k \|\beta_*\|_1$ which gives the solution for $z_* = z_{\text{min}}$ or $z_* = z_k$. ■

Lemmas 15 and 16 provides a closed form solution by calling only for the linear minimization oracle $\min_i |\nabla_i F(\alpha_k)|$, and performing $O(|I|)$ operations on the active atoms. From that, we deduce Algorithm 1. In short, at each iteration, Algorithm 1 performs one of the three possible actions: either one new atom is added (at most) by calling the $\text{LMO}(\nabla F(\alpha_k)) = \arg \max_i |\nabla_i F(\alpha_k)|$ or the generalized conditional gradient (Bach, 2015; Sun and Bach, 2022), active atoms are not modified uniformly since only some of them may be reduced to zero. The SOTOPO method of Song et al. (2017) minimizes the same upper bound with respect to the ℓ_1-norm (16). Yet, it is resolved with a different variational formulation, that does not let a linear minimization oracle appear. Compared to proximal coordinate descent with GS-rule (15) applied with L^F_1 (instead of L^F_2), the regularized matching pursuit happens to often follow exactly the same path when starting from zero (but not when starting from
Algorithm 1: Regularized matching pursuit (RMP)

\[\alpha \in \mathbb{R}^d, \ N \in \mathbb{N} \]

\textbf{for} \(k \in [0, \ldots, N] \) \textbf{do}

\[z_{\min} = (\max_i |\nabla_i F(\alpha_k)|) \lambda \] \text{ and } \(i_{\min} = \arg \max_i |\nabla_i F(\alpha_k)| \)

For \(\alpha_k^{(i)} \neq 0 \), compute \(z_i = \lambda + \frac{\alpha_k^{(i)}}{|\alpha_k^{(i)}|} \nabla_i F(\alpha_k) \) such that \(z_{i+1} \geq z_i \)

\[\text{if } \{i, z_i \geq z_{\min}\} = \emptyset \text{ then} \]

\[\beta^{(i_{\min})} = -\text{sign}(\nabla_{i_{\min}} F(\alpha_k)) \frac{z_{\min}}{L_1} \]

\textbf{else}

Compute \(u = \arg \min_i \{z_i \geq z_{\min}\} \) and for \(i \in [u, v] \), compute \(h'(z_i) \)

\textbf{if} \(h'(z_{\min}) \leq 0 \) or \(h'(z_u) \leq 0 \) \textbf{then}

\textbf{for} \(i \in [u, v] \), \(\beta^{(i)} = -\alpha_k^{(i)} \)

\[\text{if } h'(z_{\min}) \leq 0, \text{ then } \beta^{(i_{\min})} = -\text{sign}(\nabla_{i_{\min}} F(\alpha_k)) \left(\frac{z_{\min}}{L_1} \right) - \sum_{i=u}^{v} |\alpha_k^{(i)}| \]

\textbf{else}

\[n = \arg \max \{i, i \in [u, v-1], h'(z_i^+), h'(z_i^-) \geq 0\} \]

\textbf{if} \(n = v - 1 \) \textbf{then}

\[\beta^{(v)} = -\text{sign}(\alpha_v) \frac{1}{L_1} \left(\lambda + \frac{\alpha_v}{|\alpha_v|} \nabla_v F(\alpha_k) \right) \]

\textbf{else}

\textbf{for} \(i \in [n + 1, v] \), \(\beta^{(i)} = -\alpha_k^{(i)} \)

\textbf{if} \(h'(z_n^+) \leq 0 \), \textbf{then} \(\beta^{(n)} = -\text{sign}(\alpha_k^{(n)}) \frac{1}{L_1} \left(\lambda + \frac{\alpha_k^{(n)}}{|\alpha_k^{(n)}|} \nabla_n F(\alpha_k) \right) - \sum_{i=n+1}^{v} |\alpha_k^{(i)}| \)

\textbf{end if}

\textbf{end if}

\[\alpha_{k+1} = \alpha_k + \beta \]

\textbf{end for}
a nonzero point), as observed in Figure 3. This suggests a connection between regularized matching pursuit and proximal coordinate descent, as proven by Locatello et al. (2018) for gradient descent and steepest coordinate descent.

![Figure 3: Convergence in function value of the proximal gradient descent, coordinate descent with Gauss-Southwell rule and with $L = L_1^F$ (instead of $L = L_2^F$) and of the regularized matching pursuit, for synthetic quadratics (see Section 2.3) with $n = 50, s = 8, \lambda = 0.001, \sigma = 0.5$ and for $d = 30$ starting from zero on the left (underparametrized regime), from a non zero point in the middle (underparametrized regime) and for $d = 500$ on the right (overparametrized regime). RMP and coordinate descent with GS-rule match exactly in these examples.]

In Figure 3, the RMP appears to converge linearly in the underparametrized regime, and sublinearly in the overparametrized regime. We compute some convergence guarantees in the next section.

3.2 Convergence guarantee

We now establish convergence guarantees for the RMP, both for strongly convex and non-strongly convex functions. We consider a more general composite minimization problem,

$$
\min_{\alpha \in \mathbb{R}^d} \left\{ G(\alpha) \triangleq F(\alpha) + H(\alpha) \right\},
$$

where H is closed, convex, proper, and where F is L_1^F-smooth and (possibly) μ_1^F-strongly convex with respect to the ℓ_1-norm. If in addition, F is a linear mapping, and $H(\cdot) = \| \cdot \|_1$, this is exactly the original optimization Problem (1). We evaluate the convergence guarantee a generalized version of the RMP (the GRMP), that is not always a boosting method,

$$
\alpha_{k+1} = \arg\min_{\alpha \in \mathbb{R}^d} \langle \nabla F(\alpha_k), \alpha - \alpha_k \rangle + \frac{L_1^F}{2} \| \alpha - \alpha_k \|_1^2 + H(\alpha).
$$

As we will see, our proofs are similar to those for randomized coordinate descent (Richtářik and Takáč, 2014, Theorem 5, 7).

3.2.1 Strongly convex functions

Let us assume that F is L_1^F-smooth and μ_1^F-strongly convex, typically in the underparametrized regime. Similarly to coordinate gradient descent with GS rule which converges linearly in
this context (Nutini et al., 2018b), regularized matching pursuit is formulated as the minimization of the smoothness upper bound with respect to the \(\ell_1 \)-norm. Therefore, it benefits from linear convergence guarantees, detailed below.

Proposition 17. (Nutini, 2018, Appendix A.8) If \(F \) be convex, \(L^F_1 \)-smooth with respect to the \(\ell_1 \)-norm, and \(\mu^F_1 \)-strongly convex with respect to the \(\ell_1 \)-norm. Then, the sequence \((\alpha_k)\) generated by (19) verifies,

\[
G(\alpha_{k+1}) - G_* \leq \left(1 - \frac{\mu^F_1}{L^F_1} \right) (G(\alpha_k) - G_*).
\]

Proof The proof is taken from Nutini (2018, Appendix A.8.) and consists in an optimization step over all trajectories. The argument is inspired from randomized coordinate descent (Richtárik and Takáč, 2014)).

The RMP is a special case of method (19), and verifies the convergence guarantee of Proposition 17. As a conclusion, it beats traditional boosting techniques converging sublinearly, such as coordinate descent with GS rule (with \(1 - \frac{\mu^F}{dL^F_2} \leq 1 - \frac{\mu^F_1}{L^F_1} \)), or the generalized conditional gradient that is also adapted to a gauge geometry. In addition, its linear guarantee only depends on the strong convexity and smoothness parameters of \(F \) with respect to the \(\ell_1 \)-norm. In the special case of the LASSO, the estimates established in Proposition 8 and 9 still apply. In the overparametrized regime however, Figure 3 suggests that the method does not converge linearly (since it is stuck at an accuracy of about around \(10^{-5} \)).

3.2.2 Smooth convex functions

Let now \(F \) be \(L^F_1 \)-smooth, convex, but not strongly convex (which is verified in the overparametrized regime). Usually, guarantees for splitting methods, such as proximal gradient, states a sublinear convergence guarantee. Similarly in Proposition 18, we prove sublinear convergence for the GRMP. To our knowledge, there is no such result for sublinear convergence for SOTOPO (Song et al., 2017) or for coordinate descent with the Gauss-Southwell rule, which is very close to the GRMP.

Proposition 18. Let \((\alpha_k)\) be generated by the generalized regularized matching pursuit (19), starting from \(\alpha_0 \in \mathbb{R}^d \)

\[
G(\alpha_k) - G_* \leq \frac{2L^F_1 \mathcal{R}^2_{\alpha_0}}{k+1},
\]

where \(\mathcal{R}^2_{\alpha_0} = \max_{\alpha \in \mathbb{R}^d} \max_{\alpha_* \in \mathbb{R}^d} \{ \| \alpha - \alpha_* \|_1^2, \text{ s.t. } G(\alpha) \leq G(\alpha_0) \} \).

Proof This technique is inspired from a proof for sublinear convergence of randomized proximal coordinate descent established by Richtarik and Takáč (Richtárik and Takáč, 2014).
2014, Theorem 5). Let $\alpha_{k+1} \in \mathbb{R}^d$ be a minimizer of the smooth upper bound:

$$
G(\alpha_{k+1}) \leq \inf_{\alpha \in \mathbb{R}^d} F(\alpha) + \langle \nabla F(\alpha), \alpha - \alpha_k \rangle + \frac{L^F}{2} \|\alpha - \alpha_k\|_1^2 + H(\alpha),
$$

$$
\leq \inf_{\alpha \in \mathbb{R}^d} F(\alpha) + H(\alpha) + \frac{L^F}{2} \|\alpha - \alpha_k\|_1^2 \quad (= G(\alpha) + \frac{L^F}{2} \|\alpha - \alpha_k\|_1^2) \quad (F \text{ convex}),
$$

$$
\leq \inf_{t \in [0,1]} G(t\alpha_* + (1-t)\alpha_k) + \frac{L^F t^2}{2} \|\alpha_k - \alpha_*\|_1^2,
$$

$$
\leq \inf_{t \in [0,1]} G(\alpha_k) - t(G(\alpha_k) - G_*) + \frac{L^F t^2}{2} \|\alpha_k - \alpha_*\|_1^2 \quad (\text{convexity of } H, F),
$$

$$
G(\alpha_{k+1}) - G_* \leq \inf_{t \in [0,1]} (1-t)(G(\alpha_k) - G_*) + \frac{L^F t^2}{2} \|\alpha_k - \alpha_*\|_1^2.
$$

The solution of this minimization problem is given by $t_* = \min(1, \frac{G(\alpha_k) - G_*}{L^F \|\alpha_k - \alpha_*\|_1^2})$. We conclude the minimization bound, depending on the sign of $G(\alpha_k) - G_* - L^F \|\alpha_k - \alpha_*\|_1^2$:

$$
G(\alpha_{k+1}) - G_* \leq \max \left(1 - \frac{G(\alpha_k) - G_*}{2L^F \|\alpha_k - \alpha_*\|_1^2}, \frac{1}{2} \right) (G(\alpha_k) - G_*).
$$

As a first conclusion, notice that $G(\alpha_k) - G_*$ is nonincreasing. Recall now that $\mathcal{R}_{\alpha_0}^2 = \max_{\alpha \in \mathbb{R}^d} \max_{\alpha_* \in \mathbb{R}^d} \{\|\alpha - \alpha_*\|_1^2, \text{ s.t. } G(\alpha) \leq G(\alpha_0)\}$. Then, using the notation $\delta_k = G(\alpha_k) - G_*$, an upper bound for δ_{k+1} is given by $\delta_{k+1} \leq \max \left(1 - \frac{\delta_0}{2L^F \mathcal{R}_{\alpha_0}^2}, \frac{1}{2} \right) \delta_k$. Assume now that $\delta_0 \leq L^F \mathcal{R}_{\alpha_0}^2$ and notice that $\delta_k \leq L^F \mathcal{R}_{\alpha_0}^2$ since δ_k is nonincreasing. If not, notice that the inequality satisfied at the next iteration $\delta_1 \leq \frac{1}{2} \mathcal{R}_{\alpha_0}^2$. Then, we have for $\omega = \frac{1}{2L^F \mathcal{R}_{\alpha_0}^2}$, $\delta_{k+1} \leq (1 - \omega \delta_k) \delta_k$. Following the same argument as in the proof for sublinear convergence of steepest coordinate descent, detailed in Appendix D, we arrive to a convergence guarantee $G(\alpha_k) - G_* \leq \frac{2L^F \mathcal{R}_{\alpha_0}^2}{k+1}$.

Proposition 18 provides a sublinear convergence guarantee for the GRMP for non-strongly convex functions. To our knowledge, this is the first sublinear guarantee for a boosting algorithm under classical assumptions from convex optimization. This method does not benefit from linear convergence guarantee. Yet, as we see from the numerical experiments in the next section that the RMP does converge linearly in certain regimes in the case of the ℓ_1-regularized model.

3.3 A transition phase depending on λ: experimental results

The RMP algorithm benefits from convergence guarantees similar to those for the proximal gradient: these methods converge linearly under strong convexity assumptions (underparametrized regime) but have sublinear guarantees for smooth convex problems (overparametrized regime). In the context of sparsity though, the proximal gradient descent benefits from linear convergence under additional assumptions on the problem classes such as restricted eigenvalue properties (Raskutti et al., 2010), and for a well-chosen parameter
Geometry-dependent matching pursuit

Figure 4: Convergence in function values for the proximal gradient on the left and the regularized matching pursuit on the right for $n = 50$, $d = 500$ and a sparsity $s = 8$ and for several penalty λ. Convergence is compared in dashed lines to local convergence guarantee, taken on the support S on the last iterates and the SDP relaxation from Proposition 8.

λ (Agarwal et al., 2010, Theorem 2). In this section, our experiments reveals a transition phenomenon driven by λ on a LASSO problem $F(\alpha) = \frac{1}{2n}\|P\alpha - y\|_2^2 + \lambda\|x\|_1$, where P are synthetic Gaussian data in the overparametrized setting as in Section 2.3.

The convergence behavior of proximal gradient descent follows a transition phase, that can be divided into three phases: first, the method converges linearly according to the nonregularized trajectory, then it converges sublinearly, and it converges linearly once the support is identified. Iutzeler and Malick (2020, Theorem 1) prove the proximal gradient identifies the structure of the solution (described by manifolds, or sparsity patterns) after a certain number of steps. For strongly convex functions, Nutini et al. (2018a) bounded the ‘active-set’-complexity of the proximal gradient method. The regularized matching pursuit follows the same behavior. It appears that the sparsity of the solution, and the sparsity identification highly depends on the value of λ: the larger λ, the sparser the solution and the quicker the identification. Thanks to this observation, we derive a posteriori guarantee in Figure 4, based on the sparsity of the solution to the optimization problem. In Figure 4, local strong convexity parameters are given by the estimated of Corollary 6 and Proposition 8. We recover that large parameter λ both induces a stricter sparsity on the solution and a better convergence.

We describe this transition phase numerically in Figure 5 by plotting the ϵ-curve (see Section 2.3) as a function of λ. For $\lambda = 0$, both methods converge linearly (as expected in the overparametrized regime for gradient descent and coordinate descent with the GS-rule). For ‘large’ values of λ for which the support is quickly identified, the convergence is linear too. In the intermediary phase however, convergence depends on the effective dimension of the trajectory, $d_{eff} \approx n$ by construction (and thus, on the effective strong convexity of f along the trajectory). The ϵ-curves can be seen as equivalent in the optimization perspective with the regularization path usually drawn in the context of statistical recovery.
The regularized matching pursuit Algorithm 1 formulation allows some intuition regarding the interplay between λ and the sparsity of the solution. Let $\mathcal{A} = \{i, \alpha_k(i) > 0\}$ be the set of active atoms. Algorithm 1 may reduce an active atom $i \in \mathcal{A}$ to zero if
$$\|\nabla F(\alpha)\|_\infty - \frac{\alpha_k(i)}{\alpha_k(i)} \nabla_i F(\alpha) \leq 2\lambda.$$
The larger λ, the more active directions may be canceled out. The smaller λ ($\lambda \ll \|\nabla F(\alpha)\|_\infty$), the closer is regularized matching pursuit to coordinate descent with GS rule (on the right in Figure 5): indeed, only the linear minimization oracle may be added to the set of atoms without modifying other active atoms ($z_i \lesssim z_{\text{min}}$).

For $\lambda \approx 0$, the regularized matching pursuit thus converges linearly up to a certain iteration number, which appears with the parallel level lines in Figure 5.

Based on the minimization of a smoothness upper bound with respect to the ℓ_1-norm, we have developed a regularized matching pursuit algorithm, that benefits from linear convergence in the underparametrized regime (where F is strongly convex), and sublinear convergence in the overparametrized regime (where F is not strongly convex). Thanks to the ϵ-curve, we numerically described the role of λ on the convergence of the method (and on the sparsity). In the following section, we propose to develop a method suited to the gauge geometry in the overparametrized regime.

3.4 An ultimate method adapted to the geometry of regularized models

The regularized matching pursuit 1 was derived from the ℓ_1-geometry. In Section 2.4 for non-regularized models, coordinate descent with GS-rule was interpreted as a matching pursuit algorithm in both the underparametrized and overparametrized regime. In what follow, we see that the regularized matching pursuit as developed above does not benefit from this formulation in the overparametrized regime. Instead, we propose an ‘ultimate method’ for the gauge geometry, that benefits from linear convergence in the overparametrized regime but lacks a simple formulation.

Recall the equivalent regularized minimization problems (1) and (3),

$$\min_{\alpha \in \mathbb{R}^d} f(P\alpha) + \lambda \|\alpha\|_1 = \min_{x \in \mathbb{R}^n} f(x) + \lambda \gamma p(x),$$

Figure 5: ϵ-curve of the proximal gradient, coordinate descent with the GS rule and regularized matching pursuit for a LASSO problem with $d = 500$, $n = 50$, a sparsity level $s = 8$, $\sigma = 0.5$, after $k = 10000$ iterations for several values of λ.

26
where γ_P is a gauge function as defined in Section 2.4, and f is $L_{\gamma_P}^f$-smooth and $\mu_{\gamma_P}^f$-strongly convex with respect to the gauge. The problem in \mathbb{R}^d is reformulated in \mathbb{R}^n, of lower dimension.

Remark 19. This reformulation only requires γ_P to be a gauge function, but not specifically to be a norm. Reversely, minimizing a function penalized by a gauge function (or a semi-norm) can be reformulated as minimizing a linear function penalized by and ℓ_1-norm.

As for the regularized matching pursuit, we formulate an optimization method as the minimization of the smoothness upper bound with respect to the gauge function, starting from $x_0 \in \mathbb{R}^n$:

$$x_{k+1} = \arg\min_{x \in \mathbb{R}^n} \langle \nabla f(x_k), x - x_k \rangle + \frac{L_{\gamma_P}^f}{2} \gamma_P(x - x_k)^2 + \lambda \gamma_P(x). \quad (20)$$

We refer to this method as the ultimate method for the gauge γ_P, that is adapted to the geometry of the regularized problem 1. Let us reformulate the minimization Problem (20) on \mathbb{R}^n into a minimization problem in \mathbb{R}^d. Let $x_k = P\alpha_k$ with $\alpha_k \in \mathbb{R}^d$, then

$$\min_{x \in \mathbb{R}^n} \langle \nabla f(x_k), x - x_k \rangle + \frac{L_{\gamma_P}^f}{2} \gamma_P(x - x_k)^2 + \lambda \gamma_P(x),$$

$$= \min_{\alpha, \nu \in \mathbb{R}^d} \langle \nabla f(P\alpha_k), P(\alpha - \alpha_k) \rangle + \frac{L_{\gamma_P}^f}{2} \|\alpha - \alpha_k\|_1^2 + \lambda \|\nu\|_1, \text{ s.t. } x = P\alpha = P\nu,$$

$$= \min_{\alpha, \nu \in \mathbb{R}^d} \langle \nabla F(\alpha_k), \alpha - \alpha_k \rangle + \frac{L_{\gamma_P}^f}{2} \|\alpha - \alpha_k\|_1^2 + \lambda \|\nu\|_1, \text{ s.t. } P\alpha = P\nu.$$

When $P\alpha = P\nu$ implies $\alpha = \nu$, such as in the underparametrized regime where P^TP is invertible, the ultimate method for the gauge is equivalent with the regularized matching pursuit (1). However, in the overparametrized regime, $P\alpha = P\nu$ does not imply $\alpha = \nu$ in general. This method does not belong to boosting algorithms due to the evaluation of the gauge function in x and in $x - x_k$ in (20). In addition, this minimization problem admits neither a simple closed-form solution in general nor a solution based on the KKT conditions (as we did for regularized matching pursuit). While not directly computable in general, the minimization step (20) converges linearly to the optimum, as proven below in Proposition 20.

Proposition 20. Let f be $L_{\gamma_P}^f$-smooth and $\mu_{\gamma_P}^f$-strongly convex with respect to the norm $\gamma_P(\cdot)$. The ultimate method (20) (x_k) converges linearly with

$$f(x_k) - f_* \leq \left(1 - \frac{\mu_{\gamma_P}^f}{L_{\gamma_P}^f}\right)^k (f(x_0) - f_*).$$

Proof The proof follows exactly the proof for Theorem 17, replacing the function F by f and the norm $\| \cdot \|_1$ by $\gamma_P(\cdot)$. □

Proposition 20 provides a linear convergence guarantee for the ultimate algorithm. We recover the convergence guarantee of coordinate descent with GS rule in the non regularized...
Figure 6: Convergence in function value and coordinates as a function of the iteration number for the proximal gradient descent, the proximal coordinate descent with GS rule, the regularized matching pursuit and the ultimate method on a LASSO problem, with $d = 500$, $n = 50$, $s = 8$, $\lambda = 0.2$. The approximate guarantee in provided in dashed lines.

In Figure 6, we solve the optimization step for the ultimate method for the gauge with the solver MOSEK (ApS, 2022) on a LASSO problem. It converges linearly in the overparametrized regime, while the other method are first stuck in a sublinear phase. Compared to the proximal gradient, proximal coordinate descent with GS rule, the regularized matching pursuit and the ultimate method starts with sparse solution, and differs after a small number of iteration (about 30 here). In the special case of the LASSO, it is possible to approximate its convergence guarantee as for the linear regression problem. Noticing that $L_{\gamma p}^f = L_1^f$ and $\mu_{\gamma p}^f = \mu_1^f$, the estimate of the convergence guarantee of coordinate descent with GS rule from Proposition 8 apply here. In the Appendix F, we propose an inner loop strategy to avoid the use of an optimization solver, together with the convergence analysis of the outer loop given the precision of the inner loop.

Conclusion and future works

In this paper, we developed a principled view for generating optimization algorithms from the minimization of a smoothness upper bound with respect to a well-chosen norm. For non-regularized models, this procedure leads to coordinate descent with GS-rule, that can be interpreted as a matching pursuit algorithm both in the ℓ_1-geometry for underparametrized models, and in the γ_p-geometry for overparametrized models. Building on these results, we derive a new regularized matching pursuit algorithm based on the minimization of smoothness with respect to the ℓ_1-norm (whose counterpart is proximal gradient descent in the ℓ_2-geometry). While strongly connected to proximal coordinate descent with GS-rule, the regularized matching pursuit cannot be interpreted as a matching pursuit algorithm in the gauge geometry for overparametrized models and does not converge linearly in this regime. We finally formulate an ultimate method adapted to overparametrized geometries. Yet, this method lacks a closed-form formulation. In numerical experiments, we approximate it using an inner-loop strategy.

From this approach, we obtain refined convergence guarantees for (resp. regularized) matching pursuit (resp. coordinate descent with GS rule), that are adapted to the geometry of the problem under consideration. For linear regression and the LASSO, we derive upper
Geometry-dependent matching pursuit bounds (resp. high probability bounds) for convergence guarantees using SDP relaxations (resp. under statistical assumptions on the data). As a byproduct, convergence guarantees of both gradient descent and steepest coordinate descent applied to least-squares follow a transition phase from the underparametrized to the overparametrized regime. For ℓ_1-regularized models, a similar transition phase for λ appears, and allows to interpret it as a measure of the sparsity of the solution.

Building on these results, we believe it could be of interest to extend this principled approach to accelerated matching pursuit algorithms (and thus, to accelerated coordinate descent algorithms). Some accelerated techniques have already been developed relying on randomly selected coordinates, such as those of Nesterov and Stich (2017) for nonregularized minimization and Fercoq and Richtárik (2015) or Locatello et al. (2018, Section 3) for composite minimization problems, but. Another interesting line of research could be to understand the connections between the observed transition phase for optimization methods and the double descent phenomenon observed for the generalization error in machine learning.

Acknowledgments and Disclosure of Funding

This work was funded by MTE and the Agence Nationale de la Recherche as part of the “Investissements d’avenir” program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute). We also acknowledge support from the European Research Council (grant SEQUOIA 724063).

Codes

All codes for numerical results are provided at https://github.com/CMoucer/Geometry_Dependent_Matching_Pursuit.

References

Appendix

In this document, we provide proofs for the main theorems of the paper as well as additional experiments offering a comprehensive overview of the main paper’s results. Table 1 summarizes the main contributions and results of the Appendix.

<table>
<thead>
<tr>
<th>Appendix A</th>
<th>Mathematical tools appearing in the proofs: η-tricks and computation of the basis of a kernel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B</td>
<td>Proof for linear convergence of matching pursuit (Proposition 7) and gradient descent (Proposition 4).</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Estimates for the convergence of steepest coordinate descent for least-squares: SDP relaxations and high-probability bounds for μ₁, μ₁,L and L₁, with numerical comparisons to μ₂ and μ₂,L.</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Matching pursuit in the gauge geometry: properties of the gauge and sublinear convergence guarantee.</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Formulation of steepest coordinate descent as a ‘nearly’ matching pursuit algorithm.</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Efficiently computing the ultimate method: an inner loop strategy.</td>
</tr>
</tbody>
</table>

Appendix A. Mathematical tools

A.1 The η-tricks: reweighted least-squares formulations

Due to non-smoothness, the ℓ₁-norm is often seen as difficult to optimize. A common way to simplify regularization term containing an ℓ₁-term, such as the LASSO, consists in formulating it as a reweighted least-square problems. We refer to the work of Bach et al. (2012) There are three common formulations:

- the variational formulation (Bach et al., 2012, Section 5)

\[
\|x\|_1 = \min_{\eta \in \mathbb{R}^n, \eta \geq 0} \frac{1}{2} \sum_{i=1}^{n} \frac{x_i^2}{\eta_i} + \frac{1}{2} \sum_{i=1}^{n} \eta_i,
\]

34
• the variational constrained formulation (Bach et al., 2012, Section 1)

\[\|x\|_1^2 = \min_{\eta \in \Delta_n} \sum_{i=1}^{n} \frac{x_i^2}{\eta_i}, \]

where \(\Delta_n = \{ \eta \in \mathbb{R}^n, \eta \geq 0, \sum_{i=1}^{n} \eta_i = 1 \} \) is the simplex,

• the maximization problem,

\[\|x\|_1 = \max_{\|s\|_{\infty} \leq 1} \langle s, x \rangle. \]

Finally, we notice a useful variational trick, in dimension 1. For \(x \in \mathbb{R}^n \),

\[\frac{L}{2} \|x\|_1^2 = \max_{z \geq 0} \frac{-z^2}{2L} + z \|x\|_1, \tag{21} \]

with the optimum \(z_* = L\|x\|_1 \).

A.2 Computing the basis of a kernel

To compute the basis of Ker(\(P \)), we perform a QR decomposition on \(P \) such that \(Q_1^T Q_1 = I_n \), \(Q_2^T Q_2 = I_{d-n} \) and \(Q_1^T Q_2 = 0 \): \(P^T = (Q_1 \quad Q_2 \begin{pmatrix} R \\ 0 \end{pmatrix}) \), where \(Q_2 \) is a basis for the nullspace of \(P \). Indeed, let \(z \in \mathbb{R}^{d-n} \), and \(AQ_2z = R^T Q_1^T Q_2 z = 0 \).

Appendix B. Proof for Propositions 4, 7

Let us prove linear convergence of gradient descent with fixed step size and coordinate descent with GS rule in a more general framework. This proof leads to the results of Propositions 4, 7 for the \(\ell_2, \ell_1 \) norm respectively.

Let \(F \) be \(L^F \)-smooth with respect to a norm \(\| \cdot \| \), (possibly) \(\mu^F \)-strongly convex with respect to \(\| \cdot \| \) and verify the Lojasiewicz inequality with parameter \(\mu^F_L \). We consider a method \((\alpha_k)\) starting from \(\alpha_0 \in \mathbb{R}^d \), and obtained by minimizing the smoothness quadratic upper bound:

\[F(\alpha_{k+1}) \leq F(\alpha_k) + \min_{\alpha \in \mathbb{R}^d} \left(\langle \nabla F(\alpha_k), \alpha - \alpha_k \rangle + \frac{L^F}{2} \| \alpha - \alpha_k \|^2 \right) \leq F(\alpha_k) - \frac{1}{2L^F} \| \nabla F(\alpha_k) \|^2. \]

If \(F \) is \(\mu^F \)-strongly convex, then \(F \) verifies the Lojasiewicz inequality with parameter \(\mu^F \): for all \(\alpha \in \mathbb{R}^d \), \(\mu^F(F(\alpha) - F_*) \leq \frac{1}{2} \| \nabla F(\alpha) \|^2_* \). Thus, substracting \(F_* \) on each side of the smoothness inequality, we have

\[F(\alpha_{k+1}) - F_* \leq \left(1 - \frac{\mu^F}{L^F} \right) (F(\alpha_k) - F_*). \]

Similarly, if \(F \) satisfies the Lojasiewicz inequality with parameter \(\mu^F_L \), but is not strongly convex (\(\mu^F = 0 \)).
Appendix C. Estimates for the convergence of steepest coordinate descent for least-squares

In Proposition 7, a sequence \((\alpha_k)\) generated by steepest coordinate descent for a linear regression problem has a linear convergence rate in function values,

\[
F(\alpha_k) - F_* \leq \left(1 - \frac{\max(\mu^F_1, \mu^F_{1,L})}{L^F_1}\right)^k (F(\alpha_0) - F_*).
\]

We assume that \(F\) is a quadratic, that is \(F(\alpha) = \frac{1}{2n}\|P\alpha - y\|^2\). We first derive SDP relaxations for the optimization problems characterizing \(\mu^F_1\), \(\mu^F_{1,L}\) and \(L^F_1\), and numerically compare these estimates to \(\mu^F_2\) and \(\mu^F_{2,L}\). Then, we compute inequalities connecting \(\mu^F_{1,L}\) and \(L^F_1\). Thanks to these inequalities, we prove concentration inequalities for \(\mu^F_{1,L}\), \(\mu^F_1\) and \(L^F_1\), and derive approximate convergence guarantees of steepest coordinate descent.

C.1 SDP relaxations for \(\mu^F_1\) and \(\mu^F_{1,L}\)

We look for exact lower bounds for \(\mu^F_1\) and \(\mu^F_{1,L}\). Both in the overparametrized and underparametrized regime, we are going to reformulate the optimization problems defining \(\mu^F_1\), \(\mu^F_{1,L}\) into SDPs, and relax some rank constraints. Then, we compare these estimates to \(\mu^F_2\) and \(\mu^F_{2,L}\) in numerical experiments.

C.1.1 Proof for Proposition 8

SDP relaxation for \(\mu^F_1\) in the underparametrized regime. Recall from Lemma 3 that \(\mu^F_1\) is non zero in this regime and given by \(\frac{1}{\sqrt{n\mu^F_1}} = \max_{\alpha, \|\alpha\|_{\infty} \leq 1} \max_{\nu, \|P\nu\|_2 \leq 1} \alpha^\top \nu\). Since \(P^\top P\) is invertible, we proceed to a change of variable in \(P^\top P\):

\[
\frac{1}{\sqrt{n\mu^F_1}} = \max_{\alpha, \|P^\top P\alpha\|_{\infty} \leq 1} \max_{\nu, \|P\nu\|_2 \leq 1} (P^\top P\alpha)^\top z,
\]

\[
= \max_{\alpha, \|P^\top P\alpha\|_{\infty} \leq 1} \max_{\nu, \|P\nu\|_2 \leq 1} (P\alpha)^\top (P\nu),
\]

\[
= \max_{\alpha, \|P^\top P\alpha\|_{\infty} \leq 1} \|P\alpha\|_2,
\]

\[
= \max_n \|P(P^\top P)^{-1}\alpha\|_2, \text{ s.t. } \|\alpha\|_{\infty} \leq 1.
\]

A first attempt to compute an exact solution to this problem is to consider \(\alpha \in \{-1, 1\}^d\) and compute all possible values for the \(\|\cdot\|_{\infty}\)-norm. However this computation would require \(2^d\) configurations. Instead, we compute an SDP relaxation of \(\frac{1}{\sqrt{\mu^F_1}}\) in Lemma 21.

Lemma 21. Let the regime be underparametrized \((n \geq d)\). \(\mu^F_1\) has a \(\frac{\pi}{2}\)-approximation:

\[
\tilde{\mu}^F_1 \leq \mu^F_1 \leq \frac{\pi}{2} \tilde{\mu}^F_1,
\]

where \(\tilde{\mu}^F_1\) has an SDP-formulation \(\frac{1}{\tilde{\mu}^F_1} = n \max_{X \succ 0, \text{diag}(X) \leq 1} \text{Tr}(CX), \text{ with } C = (P^\top P)^{-1}\).
Proof Let us reformulate an SDP relaxation to this problem. The problem $OPT = \frac{1}{\mu_1^F} = n \max_{\nu, \|\nu\|_\infty \leq 1} \|P(P^TP)^{-1}\nu\|_2^2 = n \max_{\nu, \nu_i^2 \leq 1} \nu^T(P^TP)^{-1}\nu$ can be relaxed into a SDP,

$$SDP = \frac{1}{\mu_1^F} = n \max_{Z \succeq 0} \text{Tr}(CZ), \quad \text{s.t. } \text{diag}(Z) \leq 1,$$

(22)

where $C = (P^TP)^{-1} \succ 0$. This is exactly the Max-Cut SDP relaxation, for which Goemans and Williamson (1995) proved the approximation $\frac{2}{\pi}SDP \leq OPT \leq SDP$. \blacksquare

SDP relaxation for μ_{1L}^F in the overparametrized regime. For μ_{1L}^F, the maximization problem does not correspond to Max-Cut. So it is possible to derive an SDP lower bound, but no SDP-approximation. Recall the formulation of μ_{1L}^F as an optimization problem $\mu_{1L}^F = \frac{1}{n} \inf_{\nu \in \mathbb{R}^d} \|P^TP\nu\|_\infty^2$, s.t. $\|\nu\|_2^2 = 1$. In Lemma 22, we derive a lower bound for μ_{1L}^F formulated as a SDP.

Lemma 22. Let PP^T be invertible, then,

$$\mu_{1L}^F \geq \frac{1}{n} \inf_{Z \geq 0} \|P^TPZP^T\|_\infty, \quad \text{s.t. } \text{Tr}(P^TPZ) = 1,$$

Proof We introduce $Z = \nu\nu^T \in \mathbb{R}^{d \times d}$, where rank$(Z) = 1$, and reformulate the problem into $\mu_{1L}^F = \frac{1}{n} \inf_{Z \geq 0, \text{rank}(Z)=1, \text{Tr}(P^TPZ)=1} \|P^TPZP^T\|_\infty$, which can be relaxed as an SDP $\mu_{1L}^F \geq \frac{1}{n} \inf_{Z \geq 0, \text{Tr}(P^TPZ)=1} \|P^TPZP^T\|_\infty$. \blacksquare

Comparison of $\tilde{\mu}_1^F$ and $\tilde{\mu}_{1L}^F$. First, let us notice that norm $\| \cdot \|_\infty$ corresponds to the infinite norm on the diagonal of the matrices. Consequently, the constraint diag$(X) \leq 1$ is equivalent with $\|X\|_\infty \leq 1$. In addition, in the underparametrized regime, a change of variable $X \rightarrow P^TPZP^T P$ leads to the reformulation of (22) as,

$$\frac{1}{\tilde{\mu}_1^F} = n \max_{X \succeq 0} \text{Tr}(P^TPX), \quad \text{s.t. } \|P^TPXP^T\|_\infty \leq 1.$$

Thus, we conclude with the fact that (P^TP) is not invertible in the overparametrized regime, and thus that $\frac{1}{\tilde{\mu}_1^F} \geq \frac{1}{\tilde{\mu}_{1L}^F}$.

C.1.2 Numerical comparison

In this section, we compare the estimate $\tilde{\mu}_1^F$ (resp. $\tilde{\mu}_1^F, \tilde{\mu}_{1L}^F$) for μ_1^F (resp. μ_1^F, μ_{1L}^F) to μ_2^F and μ_2^F/d (resp. μ_{2L}^F and μ_{2L}^F/d). We consider Gaussian matrices $X \in \mathbb{R}^{n \times d}$ such that $X_i \sim \mathcal{N}(0, \Sigma)$ are i.i.d., given four different diagonal variances: a uniform variance $\Sigma = I_d$, a non-uniform variance $\Sigma = \text{Diag}(1, \ldots, 1/d)$, a variance with only one small value $\Sigma = \text{Diag}(1, \ldots, 1, \frac{1}{100})$, a variance with only one large value $\Sigma = \text{Diag}(1, \ldots, 1, 100)$. These variances are inspired from the work of Nutini et al. (2018b, Section 4.1), who computed explicitly μ_1^F for separable quadratics.

37
Underparametrized regime: comparison for μ_1^F. In this regime, μ_1^F has a SDP approximation given by $\tilde{\mu}_1^F$, as proven in Appendix C.1. By norm equivalence, $\mu_2^F < \mu_1^F < \mu_2^F$, as proven by Nutini et al. (2018b, Appendix 4). The value of the SDP approximation for μ_1^F in Figure 7 is very close to its lower bound μ_2^F, except for the variance where only one diagonal element of the variance is very large.

Figure 7: Comparison of μ_1^F on the top (resp. $\mu_{1,L}^F$ on the bottom) with μ_2^F and μ_2^F/d (resp. $\mu_{2,L}^F$ and $\mu_{2,L}^F/d$) for $n = 50$ (resp. $n = 20$) averaged on 5 trials, for Gaussian random data with a variance equal from the left to the right to $\Sigma = I_d$, $\Sigma = \text{diag}(1, 1/2, \ldots, 1/d)$, $\Sigma = \text{diag}(1, \ldots, 1, 1/100)$ and $\text{diag}(1, \ldots, 1, 100)$.

Figure 8: Comparison of the SDP relaxation for μ_1^F on the left (resp. $\mu_{1,L}^F$ on the right) with μ_2^F and μ_2^F/d (resp. $\mu_{2,L}^F$ and $\mu_{2,L}^F/d$) for a random feature model generated from the Leukemia dataset with a number of samples $n = 50$ (resp. $n = 20$).
Overparametrized regime: comparison for $\mu_{1, L}^F$. In this regime, $\mu_{1, L}^F$ is lower bounded by $\hat{\mu}_{1, L}^F$ defined by a SDP (see Appendix C.1. By norm equivalence, we have that $\frac{\mu_{1, L}^F}{d} \leq \hat{\mu}_{1, L}^F \leq \mu_{2, L}^F$. The SDP relaxation provides a lower bound for $\mu_{1, L}^F$, that is always close to its lower bound $\frac{\mu_{1, L}^F}{d}$ as observed in Figure 7. We observe similar results for a random features model generated from the Leukemia dataset (libsvm) in Figure 8.

C.2 High-probability bounds for μ_1^F, $\mu_{1, L}^F$ and L_1^F: proof for Proposition 9

In this proof, we look for concentration inequalities on μ_1^F, $\mu_{1, L}^F$ and L_1^F. To this end, we first establish deterministic inequalities connecting μ_1^F, $\mu_{1, L}^F$ and L_1^F. In a second part, we assume the data P are generated randomly, such that each row is subgaussian. Under some mild assumptions, we derive concentration inequalities on these parameters.

C.2.1 Deterministic inequalities connecting μ_1^F, $\mu_{1, L}^F$ and L_1^F

In this proof, we look for inequalities connecting L_1^F, μ_1^F and $\mu_{1, L}^F$ to minimal and maximal eigenvalues of $P^T P$ and PP^T. We first propose to establish deterministic inequalities characterizing these parameters.

We consider the special case of least-squares, for which $F(\alpha) = \frac{1}{n} \| P \alpha - y \|_2^2$ with $P \in \mathbb{R}^{n \times d}$. We have seen that:

- $L_1^F = \frac{1}{n} \max_{i=1, \ldots, d} \| P_i \|_2^2$,
- $\mu_1^F = \frac{1}{n} \inf_{\eta \in \mathbb{R}^d} \| P \eta \|_2^2$ such that $\| \eta \|_1 \geq 1$,
- $\mu_{1, L}^F = \frac{1}{n} \sup_{\eta \in \mathbb{R}^d} \| P^T P \eta \|_\infty^2$ such that $\| P \eta \|_2^2 = 1$.

In Lemma 23, we establish deterministic lower and upper bounds for both μ_1^F and $\mu_{1, L}^F$.

Lemma 23. Let $F(\alpha) = \frac{1}{n} \| P \alpha - y \|_2^2$ with $P \in \mathbb{R}^{n \times d}$. Denote μ_1^F (resp. $\mu_{1, L}^F$) the strongly convex (resp. Lojasiewicz) parameter of F with respect to the ℓ_1-norm. Then, μ_1^F verifies,

$$\frac{1}{n} \lambda_{\min}(P^T P) \leq \mu_1^F \leq \frac{1}{n} \frac{1^T d}{d^2} P^T P 1_d,$$

$$\frac{1}{n} \lambda_{\min}(PP^T) \leq \mu_{1, L}^F \leq \frac{L_1^F}{n}.$$

Proof From result of Nutini et al. (Nutini et al., 2018b, Appendix 4), we have by the norm equivalence $\frac{\mu_{1, L}^F}{d} \leq \mu_1^F$. In the special case of least-squares, $\mu_1^F = \frac{\lambda_{\min}(P^T P)}{n}$. In addition, we have that $\mu_1^F = \frac{1}{n} \inf_{\eta \in \mathbb{R}^d, \| \eta \|_1 = 1} \| P \eta \|_2^2 \leq \frac{1}{n} \frac{1^T d}{d^2} P 1_d$ by taking $\eta = \frac{1_d}{d}$.

39
Let us reformulate \(\mu_{1,L}^F \). Using the trick \(\forall \nu \in \mathbb{R}^d, \| \nu \|_1^2 = \inf_{\gamma \in \Delta_d} \sum_{i=1}^d \frac{\nu_i^2}{\gamma_i} \),
\[
\mu_{1,L}^F = \frac{1}{n} \inf_{\nu \in \mathbb{R}^d} \| P^T \nu \|_\infty^2, \quad \text{s.t.} \, \| \nu \|_2^2 = 1,
\]
\[
= \frac{1}{n} \inf_{\nu \in \mathbb{R}^d} \max_{\eta \in \Delta_d} \nu^T P\text{Diag}(\eta) P^T \nu, \quad \text{s.t.} \, \| \nu \|_2^2 = 1,
\]
\[
= \frac{1}{n} \max_{\eta \in \Delta_d} \inf_{\nu \in \mathbb{R}^d} \nu^T P\text{Diag}(\eta) P^T \nu, \quad \text{s.t.} \, \| \nu \|_2^2 = 1,
\]
\[
= \frac{1}{n} \max_{\eta \in \Delta_d} \lambda_{\min}(P\text{Diag}(\eta) P^T).
\]

For \(\eta = \frac{1}{d}1_d \), we have that \(\mu_{1,L}^F \geq \frac{1}{n} \lambda_{\min}(PP^T) \). In addition, we can reformulate \(\mu_{1,L}^F \) as follows:
\[
\mu_{1,L}^F = \frac{1}{n} \max_{\eta \in \Delta_d} \lambda_{\min}(P\text{Diag}(\eta) P^T) = \frac{1}{n} \max_{\eta \in \mathbb{R}^d} \sup_{\lambda \geq 0, \lambda(\lambda) = 1} \text{Tr}(P\text{Diag}(\eta) P^T M) = \frac{1}{n} \sup_{\lambda \geq 0, \lambda(\lambda) = 1} \| P^T MP \|_\infty \leq \frac{1}{n} \| P^T P \|_\infty, \quad \text{for} \ M = \frac{1}{n} \sum_{i=1}^n Y_i X_i.
\]

As expected by the norm equivalence (and already highlighted by Nutini et al. (Nutini et al., 2018b, Appendix 4)), strong convexity parameters verify \(\mu_{1,L}^F \geq \mu_1^F - \frac{\mu_2^L}{n} \). Lemma 23 states a similar comparison for Lojasiewicz parameters with \(\mu_{1,L}^F \geq \frac{\mu_2^L}{n} \). We recover that \(\mu_1^F \geq 0 \) (resp. \(\mu_{1,L} \geq 0 \)) in the overparametrized (resp. underparametrized) regime. Under subgaussian data, we now build high probability bounds for \(\mu_{1,L}^F, \mu_1^F \) and \(L_1^F \) based on these lower and upper bounds.

C.2.2 Generalities on subgaussian data

Before deriving concentration bounds, we detail the subgaussian assumptions on \(P \).

Definition 24. (Vershynin, 2018, Definition 2.5.2, Proposition 2.5.2) Let \(X \) be a subgaussian random with \(\tau > 0 \), and \(\mathbb{E}[X] = 0 \). Then, there exists absolute constants \(c_1, c_2 > 0 \) such that,
\[
\forall t \in \mathbb{R}, \mathbb{E}[e^{tX}] \leq e^{c_1 \|X\|_{\psi_2}^2 t^2},
\]
\[
\forall t \in \mathbb{R}, \mathbb{P}(|X| \geq t) \leq 2 \exp(- \frac{c_2}{\|X\|_{\psi_2}^2 t^2}),
\]
In addition, \(\|X\|_{\psi_2} = \inf \{ t > 0, \mathbb{E}[e^{X^2/2t^2}] \leq 2 \} \) is the subgaussian norm of \(X \).

Usually, a subgaussian variable \(X \) with \(\mathbb{E}[X] = 0, \mathbb{E}[x^2] = \sigma^2 \) is defined with a parameter \(\tau > 0 \) such that for all \(t \in \mathbb{R}, \mathbb{E}[\exp(tX)] \leq \exp(t^2 \sigma^2) \). Then, \(\sigma \leq \tau = \sqrt{2c_1} \|X\|_{\psi_2} \). As for gaussian data, Definition 24 can be extended to vectors.

Definition 25. (Vershynin, 2018, Definition 3.4.1) A random vector \(X \in \mathbb{R}^d \) is called subgaussian if the one-dimensional marginals \(\langle X, x \rangle \) are subgaussian random variables for all \(x \in \mathbb{R}^d \). The subgaussian norm of \(X \) is defined as \(\|X\|_{\psi_2} = \sup_{x \in \mathbb{S}^{d-1}} \| \langle X, x \rangle \|_{\psi_2} \).

Throughout this section, we assume the data \(P \) to be subgaussian as follows:

Assumption 26 (Subgaussian data). \(P_1, \ldots, P_n \in \mathbb{R}^d \) are i.i.d. subgaussian random vectors with \(\mathbb{E}[P_i] = 0, \mathbb{E}[P_i^2] = \sigma^2 \) and \(K = \max_i \| P_i \|_{\psi_2} \).
C.2.3 A concentration inequality for $\sqrt{L_1^F}$

Our goal is to obtain a concentration inequality for $L_1^F = \frac{1}{n} \max_{i=1,...,d} \|P_{:,i}\|_2^2$, where the data P is generated as in Assumption 26. We rather focus on $\sqrt{L_1^F} = \frac{1}{\sqrt{n}} \max_{i=1,...,d} \|P_{:,i}\|_2$.

Theorem 27. (Vershynin, 2018, Theorem 3.1.1, equation (3.3)) Let $p = (p_1, \ldots, p_n) \in \mathbb{R}^n$ be a random vector with independent subgaussian coordinates p_i that satisfy $\mathbb{E}[p_i^2] = 1$, and $K = \max_i \|p_i\|_{\psi_2}$. Then, there exists $C > 0$ an absolute constant such that, for all $t \in \mathbb{R}$

$$\mathbb{P}(\|p\|_2 - \sqrt{n} \geq t) \leq 2\exp\left(-\frac{C}{K^2}t^2\right).$$

Equivalently, the concentration result of Theorem 27 can be extended by a linearity argument to random variables with variance $\mathbb{E}[p_i^2] = \sigma^2$: for all $t \in \mathbb{R}$,

$$\mathbb{P}(\|p\|_2 - \sigma \sqrt{n} \geq t) \leq 2\exp\left(-\frac{C}{\sigma^2K^2}t^2\right).$$

In Theorem 27, vectors p correspond to columns of P as defined in Assumption 26. We conclude with the concentration of each norm of the columns $(P_{:,i})$ around $\sigma \sqrt{n}$. More precisely, according to Definition 24, $\|P_{:,i}\|_2^2 - \sigma \sqrt{n}$ are i.i.d. subgaussian variables. In Lemma 28, we provide a lower and an upper bound for the expectation of $\max_{i=1,...,d} \|P_{:,i}\|_2$.

Lemma 28. Let $P \in \mathbb{R}^{n \times d}$ be a collection of subgaussian elements as in Assumption 26. There exist $C_1, C_2 > 0$ absolute constant such that,

$$C_2K^2\sigma \leq \mathbb{E}\left[\max_{i=1,...,d} (\|P_{:,i}\|_2 - \sigma \sqrt{n}) \right] \leq 2\sigma K^2 \sqrt{C_1 \log(d)}.$$

Proof From Theorem 27 and Definition 24, there exists $C_1 > 0$ an absolute constant such that $Y = \|P\|_2 - \sigma \sqrt{n}$ is subgaussian for all $t \in \mathbb{R}$, $\mathbb{E}[\exp(tY)] \leq \exp(C_1t^2K^4\sigma^2) = \exp(\sigma^2 t^2/2)$. Boucheron et al. (Boucheron et al., 2013, Theorem 2.5) derived an upper bound for the expectation to the maximum of independent subgaussian random variables (and more generally, to subgamma random variables): $\mathbb{E}[Y] \leq \sqrt{2 \log(d)}$. For the left-hand side, first we have the following inequality $\mathbb{E}[\max_{i=1,...,d} \|P_{:,i}\|_2] \geq \mathbb{E}[\|P_{:,i}\|_2]$. This expectation can be lower bounded using (Vershynin, 2018, Theorem 3.1.1) and $1 + x \leq e^x$ for all $x > 0$.

Proposition 29. Let P be a subgaussian matrix generated as in Assumption 26 and $L_1^F = \frac{1}{n} \max_{i=1,...,d} \|P_{:,i}\|_2^2$. Then, there exists absolute constant $C, C_1, C_2 > 0$ such that for all $t \geq 2\sigma K^2 \sqrt{\frac{C_1 \log(d)}{n}}$,

$$\mathbb{P}\left(\sqrt{L_1^F} - \mathbb{E}[\sqrt{L_1^F}] \geq t \right) \leq e^{-\frac{C}{\sigma^2K^4} \min(u_1(t), u_2(t))}.$$

where $u_1(t) = \log(d)(t + \frac{C_2K^2\sigma}{\sqrt{n}})^2$ and $u_2(t) = d(t - 2\sigma K^2 \sqrt{\frac{C_1 \log(d)}{n}})^2$.

41
Proof Recall that $\sqrt{L_1^F} = \max_{i=1,\ldots,d} \|P_{i,:}\|_2$, where $\frac{1}{\sqrt{n}} \|P_{i,:}\|_2 - \sigma$ is subgaussian. For the right side event, notice that $P \left(\sqrt{L_1^F} \geq \mathbb{E}[\sqrt{L_1^F}] + t \right) \leq dP \left(\frac{\|P_{i,:}\|_2}{\sqrt{n}} - \sigma \geq \frac{C_2 \sqrt{2}}{\sqrt{n}} t + \frac{C_2 \sqrt{2} \sigma}{\sqrt{n}} \right)$ by the union bound. In addition, using the bounds on $\mathbb{E}(\max_{i=1,\ldots,d} \|P_{i,:}\|_2)$ from Lemma 28 and concentration from Theorem 27, there exists $C_2, C > 0$ such that $P \left(\frac{\|P_{i,:}\|_2}{\sqrt{n}} - \sigma \geq \frac{C_2 \sqrt{2}}{\sqrt{n}} t + \frac{C_2 \sqrt{2} \sigma}{\sqrt{n}} \right) \leq dP \left(\frac{\|P_{i,:}\|_2}{\sqrt{n}} - \sigma \geq \frac{C_2 \sqrt{2}}{\sqrt{n}} t + \frac{C_2 \sqrt{2} \sigma}{\sqrt{n}} \right) \leq \exp \left(-\frac{C}{\sigma^2 K^2} \right) \left(t + \frac{C_2 \sqrt{2} \sigma}{\sqrt{n}} \right)^2$. For the left side event, using independence of the $P_{i,j}$, we conclude from Theorem 27 that there exists an absolute constant $C_1 > 0$ such that $P \left(\sqrt{L_1^F} \leq -t + \mathbb{E}[\sqrt{L_1^F}] \right) \leq \mathbb{P} \left(\sqrt{L_1^F} \leq -t + \sigma + 2\sigma K^2 \sqrt{\frac{C_1 \log(d)}{n}} \right) \leq \mathbb{P} \left(\frac{\|P_{i,:}\|_2}{\sqrt{n}} - \sigma \leq -t + \frac{2\sigma K^2}{\sqrt{n}} \sqrt{\frac{C_1 \log(d)}{n}} \right) \leq \exp \left(-\frac{C d}{\sigma^2 K^2} \right) \left(t - 2\sigma K^2 \sqrt{\frac{C_1 \log(d)}{n}} \right)^2$.

We conclude from Proposition 29 that $\sqrt{L_1^F}$ concentrates around its mean, that admits lower and upper bounds as in Lemma 28. More precisely, there exist absolute constant $C, C_1, C_2 > 0$ such that for all $t \geq 2\sigma K^2 \sqrt{\frac{C_1 \log(d)}{n}}$, $C_2 K^2 \sigma \frac{1}{\sqrt{n}} + \sigma - t \leq \sqrt{L_1^F} \leq \sigma + 2\sigma K^2 \frac{C_1 \log(d)}{n} + t$, holds with probability $1 - \exp(-\frac{C}{\sigma^2 K^2} u(t))$, where $u(\cdot)$ is quadratic by part.

C.2.4 Concentration inequality for $\mu_{F,L}$ and μ_1^F under subgaussian data.

As we have seen in Lemma 23, μ_1^F and $\mu_{F,L}$ have deterministic approximants, closely related to the minimal eigenvalues of PP^\top and $P^\top P$. Under subgaussian Assumption 26, we provide concentration inequalities for μ_1^F and $\mu_{F,L}$.

More precisely, recall from Lemma 23 that μ_1^F (resp. $\mu_{F,L}$) is lower bounded by $\frac{1}{n} \frac{\lambda_{\min}(PP^\top)}{n}$ (resp. $\frac{1}{n} \frac{\lambda_{\min}(PP^\top)}{n}$). Let us begin by calling a concentration inequality (Vershynin, 2018, Theorem 4.6.1) for eigenvalues of such subgaussian matrices.

Theorem 30. (Vershynin, 2018, Theorem 4.6.1) Let $P \in \mathbb{R}^{n \times d}$ be a subgaussian matrix generated as in Assumption 26. Then, there exists an absolute constant $C_3 > 0$ such that, for all $t \geq 0$,

$$
\sqrt{n} - C_3 K^2 (\sqrt{d} + t) \leq \sqrt{\lambda_{\min}(PP^\top)} \leq \sqrt{\lambda_{\max}(PP^\top)} \leq \sqrt{n} + C_3 K^2 (\sqrt{d} + t),
$$

with probability at least $1 - 2 \exp(-t^2)$, with $K = \max_i \|P_i\|_{\infty}$. Similarly, we deduce from Theorem 30 that there exists $C_4 > 0$ such that for all $t \geq 0$,

$$
\sqrt{d} - C_4 K^2 (\sqrt{n} + t) \leq \sqrt{\lambda_{\min}(PP^\top)} \leq \sqrt{\lambda_{\max}(PP^\top)} \leq \sqrt{d} + C_4 K^2 (\sqrt{n} + t),
$$

holds with probability at least $1 - 2 \exp(-t^2)$. In particular, it is possible to derive bounds for quadratics of subgaussian data from Theorem 30. We provide a concentration result in Proposition 31 for $1_d^\top P^\top P 1_d$ that appears in Lemma 23.
Proposition 31. Let P be generated as in Assumption 26. Then, there exists $C_3 > 0$ such that, for all $t \geq 0$,
\[
\frac{1}{\sqrt{d}} - C_3 K^2 \left(\sqrt{\frac{1}{nd}} + \frac{t}{d \sqrt{n}} \right) \leq \sqrt{\frac{1}{d} P^T P 1_d} \leq \frac{1}{\sqrt{d}} + C_3 K^2 \left(\sqrt{\frac{1}{nd}} + \frac{t}{d \sqrt{n}} \right),
\]
holds with probability $1 - 2 \exp(-t^2)$.

Proof This result is directly obtained from Vershynin (Vershynin, 2018, Theorem 4.6.1). Under the same assumptions than in Theorem 30, there exists an absolute constant $C_3 > 0$ such that, for all $t \geq 0$, $\| \frac{1}{n} P^T P - I_d \| \leq K^2 \max(\delta, \delta^2)$, where $\delta = C_3 K^2 (\sqrt{\frac{d}{n}} + \frac{t}{\sqrt{n}})$. From this, Vershynin concludes an approximate isometry for P (Vershynin, 2018, Lemma 4.1.5). For all $x \in \mathbb{R}^d$, $(1 - \delta) \| x \|_2 \leq \| P x \|_2 \leq (1 + \delta) \| x \|_2$. Note that this is exactly the same constant than in Theorem 30.

Using Theorem 30, Proposition 31 and Lemma 23, we get the expected concentration bounds $n \mu_{1,F}^F$ and $\mu_{1,L,F}^F$.

C.3 Proof for Corollary 10

Given the convergence guarantee for coordinate descent with GS-rule from Theorem 7, we conclude concentration for the convergence rate. We provide the proof for convergence in the underparametrized regime, where the convergence guarantee is given by $1 - \frac{\mu_{1,F}^F}{L_{1,F}^F}$, and let the overparametrized regime to the reader. Recall from Proposition C.2 that, there exists absolute constant $C, C_1, C_2, C_3, K > 0$ such that,

\[
1 - \frac{1}{d} \left(1 + \frac{C_3 K^2 (\frac{1}{\sqrt{n}} + \frac{t}{\sqrt{nd}})^2}{1 + C_2 K^2 (\frac{1}{\sqrt{n}} + \frac{t}{\sqrt{nd}})} \right) \leq 1 - \frac{1}{d} \left(1 + \frac{C_3 K^2 (\frac{1}{\sqrt{n}} + \frac{t}{\sqrt{nd}})^2}{2 K^2 C_1 \log(d) + \frac{1}{\sqrt{n}} \right)^2,
\]

with probability $p(t) = 1 - 4 \exp \left(-\frac{\min(t^2, \frac{d \sigma^2}{n} (t - 2 K^2 \sqrt{C_1 \log(d)}), \frac{\log(d) \sigma^2}{n} (t + C_2 K^2)^2) \right)$. Applying a limited development in $\frac{1}{\sqrt{n}}$, the left term is equal to

\[
1 - \frac{1}{d} \left(1 + \frac{2}{\sqrt{n}} [(C_3 - C_2) K^2 + \frac{t}{\sqrt{d}} - t] + o(\frac{1}{\sqrt{n}}) \right),
\]

and the right term,

\[
1 - \frac{1}{d} \left(1 - \frac{2}{\sqrt{n}} [K^2(C_3 + 2 \sqrt{C_1 \log(d)}) + \frac{t}{\sqrt{d}} + t] + o(\frac{1}{\sqrt{n}}) \right).
\]

These two limited development allows to conclude to the limiting convergence rate for coordinate descent with GS rule in the underparametrized regime.
Appendix D. Matching pursuit in the gauge geometry

D.1 The gauge is a norm: proof for Lemma 11

Since \(\alpha \to P\alpha \) is surjective, the function \(\gamma_P(x) \) is well-defined. Let us prove subbaditivity, positive definiteness and absolute homogeneity.

- Let \(t > 0 \) and \(x \in \mathbb{R}^n \),
 \[
 \gamma(tx) = \inf_{\alpha \in \mathbb{R}^d, tx = P\alpha} \|\alpha\|_1 = \inf_{\hat{\alpha}(-\frac{x}{\|x\|_1}) \in \mathbb{R}^d, x = P\hat{\alpha}} \|t\hat{\alpha}\|_1 = t \inf_{\hat{\alpha} \in \mathbb{R}^d, x = P\hat{\alpha}} \|\hat{\alpha}\|_1 = t\gamma(x).
 \]

Since \(\mathcal{P} = \text{conv}(P) \) is centrally symmetric, we conclude that for all \(t \neq 0 \), \(\gamma(tx) = |t|\gamma(x) \). Finally, letting \(t \to 0 \), we conclude that \(\gamma(0) = 0 \).

- Let \(x \in \mathbb{R}^n \) be such that \(\gamma(x) = 0 \). We have \(0 = \inf_{\alpha \in \mathbb{R}^d} \|\alpha\|_1, \text{s.t. } x = P\alpha \). There exists \(\alpha_k \) a sequence in \(\mathbb{R}^d \) such that \(x = P\alpha_k \) and \(\|\alpha_k\|_1 \to 0 \), meaning that \(\alpha_k \to 0 \).

 By linearity of \(P\alpha \), we obtain \(x = 0 \).

- Let \(x, y \in \mathbb{R}^n \), \(\gamma(x + y) = \inf_{\eta} \|\eta\|_1, \text{s.t. } x + y = P\eta \). Let \(\alpha, \beta \) be the minimal representation for \(x, y \), such that \(x = P\alpha \) and \(y = P\beta \). We have that
 \[
 \gamma(x + y) = \inf_{\eta, P(\alpha + \beta) = P\eta} \|\eta\|_1 \leq \|\alpha + \beta\|_1 \leq \|\alpha\|_1 + \|\beta\|_1 = \gamma(x) + \gamma(y).
 \]

If \(\gamma(\cdot) \) is a norm, we compute its dual norm \(\gamma^*(z) = \sup_{x, \gamma(x) \leq 1} \langle z, x \rangle = \sup_x \inf_{\lambda \geq 0} \langle z, x \rangle + \lambda - \lambda\gamma(x) = \sup_x \inf_{\lambda \geq 0} \sup_{\alpha, x = P\alpha} \langle z, x \rangle + \lambda - \lambda\|\alpha\|_1 = \inf_{\lambda \geq 0} \lambda + \sup_{\alpha} \gamma_P(\alpha, P^T z) - \lambda\|\alpha\|_1 = \inf_{\lambda \geq 0, \|P^T z\|_\infty \leq \lambda} \lambda = \|P^T z\|_\infty.

D.2 Proof for sublinear convergence of matching pursuit

We have seen in Section 2.4 that matching pursuit converges linearly in both the underparametrized and overparametrized regime. This result improves the sublinear guarantee of matching pursuit proven by Locatello et al. (2018, Theorem 3) letting a sublevel set radius appear (as usual in the coordinate descent literature).

Theorem 32. Let \(f \) be convex, \(L^f \)-smooth with respect to the norm \(\gamma_P(\cdot) \). Then, the sequence verifies for \(R = \max_{x_*, \in X_*} \max_{x \in \mathbb{R}^d} \gamma_P(x - x_*) \), s.t. \(f(x) \leq f(x_0) < +\infty \),
\[
 f(x_k) - f_* \leq \frac{2L^f \gamma_P^2}{k-1}.
\]

Proof The sequence \((x_k) \) verifies the descent lemma:
\[
 f(x_{k+1}) - f(x_k) \leq -\frac{1}{2L^f \gamma_P} \sigma_P(\nabla f(x_k))^2.
\]

We introduce \(\delta_k = f(x_k) - f_* \), so that \(\delta_{k+1} = \delta_k - \frac{1}{L^f \gamma_P} \sigma_P(\nabla f(x_k))^2 \). By convexity and Cauchy-Schwarz inequality, we have \(\delta_k \leq \langle x_k - x_*, \nabla f(x_k) \rangle \leq \gamma_P(x_k - x_*) \sigma_P(\nabla f(x_k)) \).

Then,
\[
 \delta_{k+1} \leq \delta_k - \frac{1}{L^f \gamma_P (x_k - x_*)^2} \delta_k^2 \leq \delta_k - \frac{1}{L^f \gamma_P R^2} \delta_k^2.
\]
where \(R = \max_{x_*, x \in \mathbb{R}^d} \gamma_P(x_k - x_*) \), s.t. \(f(x) \leq f(x_0) \) is assumed to be finite. Denoting \(\omega = \frac{1}{L_P R^2} \), and dividing by \(\delta_k \), we have that \(\frac{1}{\delta_k} + \omega \frac{\delta_k}{\delta_{k+1}} \leq \frac{1}{\delta_{k+1}} \). Since \(\delta_k \) is nonincreasing with \(k \), \(\frac{1}{\delta_{k+1}} \geq \frac{1}{\delta_k} + \omega \). By summation, \(\frac{1}{\delta_k} \geq \omega (t - 1) \) and the result follows.

Appendix E. Steepest coordinate descent is ‘nearly’ a matching pursuit algorithm

Coordinate descent with a Gauss-Southwell rule can be formulated using an LMO. Indeed, recall its formulation,

\[
\alpha_{k+1} = \arg \min_{\alpha \in \mathbb{R}^d} \langle \nabla_i F(\alpha) e_i, \alpha - \alpha_k \rangle + \frac{L_F}{2} \|\alpha - \alpha_k\|_2^2 + \lambda |\alpha_i|,
\]

where \(i_k = \arg \min_{i \in \mathbb{R}} \min_{u > 0} P_{i,k}^T \nabla f(P\alpha)(t) + \frac{L_F}{2} (t - \alpha_k)^2 + \lambda t \). We introduce the gauge function \(\gamma_P(x) = \inf_{\alpha \in (\mathbb{R}^+)^d} \sum_{i=1}^d \alpha_i P_i \). Then, applying the GS-rule can be formulated as,

\[
i_k = \arg \min_{\alpha} \min_{u > 0} P_{i,k}^T \nabla f(P\alpha) u + \frac{L_F}{2} u^2 + \lambda u + \alpha_k,
\]

\[
= \arg \min_{\Delta_k} \Delta_k = \frac{1}{2L_p^2} (P_{i,k}^T \nabla f(P\alpha) + \lambda - L_p \alpha_k)^2 - \frac{1}{2L_p^2} (P_{i,k}^T \nabla f(P\alpha) + \lambda)^2.
\]

Let \(P \) be the set of atoms, \(P_k = \{ k, \alpha_k \neq 0 \} \) the set of visited atoms at iteration \(k \). The algorithm consists in computing:

- for non visited atoms \(k \in P \setminus P \) (\(\alpha_k = 0 \)), \(\Delta_k = -\frac{1}{2L_p^2} (-P_{i,k}^T \nabla f(P\alpha) - \lambda)^2_+ \) and this value can be computed using the LMO_{\mathcal{P} \setminus P_k}(\nabla f(P\alpha_k)) = p_{\text{out}}\), leading to \(\Delta_{\text{out}} = \frac{1}{2L_p^2} (-p_{\text{out}}^T \nabla f(P\alpha_k) - \lambda)^2_+ \), which costs \(O(|P \setminus P_k|) \),

- for visited atoms, the objective needs to be computed completely in at most \(|P_k|\) iterations: \(\Delta_{\text{in}} = \frac{1}{2L_p^2} \sup_{p \in P_k} (p^T \nabla f(P\alpha_k) + \lambda)^2 - (p^T \nabla f(P\alpha_k) + \lambda - L_p \alpha_k)^2_+ \).

Then, we compute \(i_k \) corresponding to the minimizer of \(\min(\Delta_{\text{in}}, \Delta_{\text{out}}) \), and compute the update \(\alpha_{k+1} = (\alpha_k - \frac{1}{L_p^2} (p_{i_k}^T \nabla f(P\alpha_k) + \lambda))^+ \).

Appendix F. The ultimate method: an inner loop strategy

The ultimate method is defined as a minimization problem, that has no closed-form solution. To overcome this issue, at each iteration \(k \), we will solve iteratively the inner minimization problem using a randomized alternating minimization technique:

\[
\min_{\eta, \beta \in \mathbb{R}^d} \langle P^T \nabla f(P\alpha), \beta - \alpha \rangle + \frac{L_F}{2} \|\beta - \alpha\|_1^2 + \lambda \|\nu\|_1, \text{ such that } P\beta = P\nu.
\]

First, we give the guarantees of an inner loop strategy, and in a second part, the result when applying a randomized alternating minimization technique to the inner loop.
Let us provide the convergence guarantees of the inner loop strategy, following the example of d’Aspremont et al. (2021, Section 5.2). Let $L(\beta, \nu) = \langle P^\top \nabla f(\alpha), \beta - \alpha \rangle \leq L_f^k \|\beta - \alpha\|^2 + \lambda \|\nu\|_1$ and $L^*_f = \min_{\beta, \nu} L(\beta, \nu)$, such that $P \beta = P \nu$. Given an approximate solution to this problem at iteration k, Theorem 33 provides a guarantee on the outer loop.

Theorem 33. Let $(\hat{\beta}_k, \nu_k)$ with $\hat{x}_k = P \hat{\beta}_k = P \nu_k$ be an approximate solution of x_k produced by the ultimate method (3.8) such that $L^k(\hat{\beta}_k, \nu_k) - \tilde{L}^k \geq \epsilon_k$, then we have

$$f(\hat{x}) - f_* \leq \left(1 - \frac{\mu_f^L}{L_f^\gamma} \right)^k (f(x_0) - f_*) + \sum_{i=0}^{k-1} \left(1 - \frac{\mu_f^L}{L_f^\gamma} \right)^i \epsilon_{k-i}.$$

Proof

$$f(\hat{x}) - f_* \leq f(\hat{x}) + L^k(\hat{\beta}_k+1),$$
$$\leq f(\hat{x}) + \epsilon_k,$$
$$\leq f(\hat{x}) - \frac{\mu_f^L}{L_f^\gamma}(f(\hat{x}) - f_*) + \epsilon_k,$$
$$f(\hat{x}) - f_* \leq \left(1 - \frac{\mu_f^L}{L_f^\gamma} \right)^k (f(\hat{x}) - f_*) + \epsilon_k.$$

The result is obtained by a direct summation. \hfill \blacksquare

The precision of the outer loop depends on the precision ϵ_k of the inner loop at each iteration k. Given an iterative method with iteration number t to obtain $(\hat{\beta}^t_k, \nu^t_k)$, Theorem 33 ensures that the better the precision of the inner loop, the better the convergence guarantee of the outer loop. More precisely, if the error is constant $\epsilon_k = \epsilon$, the global convergence guarantee becomes $f(\hat{x}) - f_* \leq \left(1 - \frac{\mu_f^L}{L_f^\gamma} \right)^k (f(x_0) - f_*) + \epsilon \frac{L_f^k}{\mu_f^L} \left(1 - \left(1 - \frac{\mu_f^L}{L_f^\gamma} \right)^k \right)$. For a linearly decreasing inner precision $\epsilon_i = \left(1 - \frac{\mu_f^L}{L_f^\gamma} \right)^i$, the global convergence rate is exactly $1 - \frac{\mu_f^L}{L_f^\gamma}$. Finally, for a sublinearly inner precision, the global convergence guarantee is given by $F(\hat{x}) - F_* \leq \left(1 - \frac{\mu_f^L}{L_f^\gamma} \right)^k (F(x_0) - F_*) + \sum_{i=0}^{k-1} \left(1 - \frac{\mu_f^L}{L_f^\gamma} \right)^i \frac{1}{(k-i+1)\alpha}$. The inner precision ϵ_k can slow down the global convergence of the ultimate method. However, achieving a low precision in the inner loop can be very costly, especially if the inner method converges sublinearly.

F.1 Alternating randomized block coordinate descent

We propose to solve this minimization problem that defines matching pursuit using an alternating minimization technique. Diakonikolas and Orecchia (2018) developed the alternating randomized block coordinate descent (AR-BCD), that generalizes alternating minimization to more than two blocks.
The AR-BCD algorithm converges sublinearly for a non-smooth objective, according to Theorem 34. Let us first reformulate the minimization problem as an unconstrained problem, calling $\alpha = \alpha_k$:

$$
\min_{\eta, \beta} \langle P^T \nabla f(P\alpha), \beta - \alpha \rangle + \frac{L_{fp}}{2} \| \beta - \alpha \|_1^2 + \lambda \| \eta \|_1,
$$

such that $P\beta = P\eta$,

$$
= \min_{\eta, k} \langle P^T \nabla f(P\alpha), \eta - \alpha \rangle + \frac{L_{tp}}{2} \| \eta + k - \alpha \|_1^2 + \lambda \| \eta \|_1,
$$

such that $k \in \text{Ker}(P)$,

$$
= \min_{\eta} \langle P^T \nabla f(P\alpha), \eta - \alpha \rangle + \frac{L_{tp}}{2} \| \eta + Qz - \alpha \|_1^2 + \lambda \| \eta \|_1,
$$

where Q is a basis for Ker(P) and $d_Q = \text{dim(Ker(Q))}$, obtained using a QR decomposition. We now use the eta-trick on $\| \cdot \|_1^2$ and an other η-trick on $\| \cdot \|_1$ (see A.1), which leads to the equivalent minimization problem,

$$
\min_{\eta} \min_{z, \gamma, \theta} G(\eta, z, \gamma, \theta) = \langle P^T \nabla f(P\alpha), \eta - \alpha \rangle + \frac{\lambda}{2} \left(\eta^\top \text{Diag}(\theta)^{-1} \eta + \text{Diag}(\theta)1 \right)
$$

$$
+ \frac{L_{fp}}{2} (\eta + Qz - \alpha)^\top \text{Diag}(\gamma)^{-1} (\eta + Qz - \alpha).
$$

Remark 35. Note that without applying the second η-trick on $\| \cdot \|_1$, the objective function is smooth with respect to z, no non-smooth with respect to η, γ, which prevents us from using the alternating minimization technique.

Each coordinate can be solved as follows:

$$
z_{opt} = \left(Q^\top \text{Diag}(\gamma)\gamma_{k}^{-1} Q \right)^{-1} Q^\top \text{Diag}(\gamma)\gamma_{k}^{-1} (\alpha - \eta),
$$

$$
\eta_{opt} = \text{Diag}(L_{tp}^f / \gamma + \lambda / \theta)^{-1} \left(L_{tp}^f \text{Diag}(\gamma)^{-1} (\alpha - Qz) - P^T \nabla f(P\alpha) \right),
$$

$$
\gamma_{opt} = \frac{|\eta|^i + (Qz)^i - \alpha^i}{\| \eta + (Qz) - \alpha \|_1},
$$

$$
\theta_{opt} = |\eta|.
$$

Let us rewrite our problem into $\min_{\eta \in \mathbb{R}^d, z \in \mathbb{R}^r} \min_{\gamma \in \Delta_d, \theta \geq 0} G(\eta, z, \gamma, \theta) = G(\eta, z, \beta) = G(\xi)$ where $G(\cdot)$ is smooth with respect to η, z but non smooth with respect to $\beta = (\gamma, \theta)^\top$. We perform AR-BCD with probabilities p_1 for η (respectively $p_2 = 1 - p_1$ for z). Let us rewrite $(\eta, z, \beta) = (\eta_1, \eta_2, \eta_3)$, and let $S_i(\xi)$ be the set of points that differs from ξ only over block
i. AR-BCD is given at iteration k by:

Pick $i_k \in \{1, 2\}$ with probability p_{i_k},

\[
\hat{\xi}_{k+1} = \arg\min_{\xi \in S_{i_k}(\xi_k)} G(\xi),
\]

\[
\xi_{k+1} = \arg\min_{\xi \in S_3(\xi_{k+1})} G(\xi).
\]

F.2 Alternating minimization

\[
\min_{\eta \in \mathbb{R}^d, z \in \mathbb{R}^{dQ}} \min_{\gamma \in \Delta_d} \langle P^\top \nabla f(P\alpha), \eta - \alpha \rangle + \frac{L_f}{2} (\eta + Qz - \alpha)^\top \text{Diag}(\gamma)^{-1}(\eta + Qz - \alpha) + \lambda \|\eta\|_1.
\]

The objective function $F(\eta, z, \gamma)$ is jointly convex in (η, z, γ) (for $\gamma > 0$). This problem can be solved using alternating minimization (which is stronger than coordinate descent). Starting from $\eta_0 \in \mathbb{R}^d$, $z_0 \in \mathbb{R}^r (r = d - \text{rg}(P) = r)$, $\gamma_0 \in \Delta_d$,

\[
\begin{align*}
\eta_{k+1} &= \arg\min_{\eta} F(\eta_{k}, z_{k}, \gamma_{k}), \\
\gamma_{k+1} &= \arg\min_{\gamma} F(\eta_{k}, z_{k+1}, \gamma), \\
z_{k+1} &= \arg\min_{z} F(\eta_{k}, z, \gamma_{k}).
\end{align*}
\]

In this context, it corresponds to computing

\[
\begin{align*}
z_{k+1} &= \left(Q^\top \text{Diag}(\gamma_k)^{-1} Q \right)^{-1} Q^\top \text{Diag}(\gamma_k)^{-1}(\alpha - \eta_k), \\
\eta_{k+1} &= S_{\lambda/L_f \gamma_k} \left(\alpha - \frac{1}{L_f} \text{Diag}(\gamma_k) P^\top \nabla f(P\alpha) - Qz_k \right), \\
\gamma_{k+1} &= \frac{\|\eta_{k+1} + (Qz_{k+1}) - \alpha\|}{\|\eta_{k+1} + (Qz_{k+1}) - \alpha\|_1}.
\end{align*}
\]

F.3 Experimental results

In Figure 9, we apply an alternating randomized block coordinate descent (AR-BCD) technique to solve a well-chosen inner-loop optimization problem, which was developed by Diakonikolas and Orecchia (2018). The inner loop strategy is developed in F.1, as well as its convergence guarantee. We also derive an alternating minimization method on three blocks, as detailed in F.2, simpler than AR-BCD, for which there is no convergence guarantee.
Figure 9: Convergence in function value for the ultimate method computed with an alternating minimization technique, AR-BCD, and with the solver MOSEK, compared to the regularized matching pursuit. Parameters are given by $d = 50$, $n = 20$, $s = 8$ and $\lambda = 0.001$, with an inner loop with exponential precision.