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Mathematical modeling in the study of organisms 
and their parts

Maël Montévil1

Abstract: Mathematical modeling is a very powerful tool to understand natural 

phenomena. Such a tool carries its own assumptions and should always be used critically. 

In this chapter we highlight the key ingredients and steps of modeling and focus on their 

biological interpretation. In particular, we discuss the role of theoretical principles in 

writing models. We also highlight the meaning and interpretation of equations. The main 

aim of this chapter is to facilitate the interaction between biologists and mathematical 

modelers. We focus on the case of cell proliferation and motility in the context of 

multicellular organisms.
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1.Introduction
Mathematical  modeling  may  serve  many  purposes  such  as  performing  quantitative 

predictions  or  making  sense  of  a  situation  where  reciprocal  interactions  are  beyond 

informal analyses. For example, describing the properties of the different ionic channels of 

a  neuron individually  is  not  sufficient  to  understand how their  combination entails  the 

formation of action potentials. We need a mathematical analysis such as the one performed 

by  the  Hodgkin-Huxley  model  to  gain  such  an  understanding  [1].  In  this  sense, 

mathematical modeling is required at some point in order to understand many biological 

phenomena. Let us emphasize that the perspective of modelers is usually different than the 

one of many experimentalists,  especially in molecular biology. The latter field tends to 

emphasize the contribution of individual parts,  but traditional reductionism [2] involves 

both the analysis of parts and the theoretical composition of parts to understand the whole, 
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usually  by  means  of  mathematical  analysis.  Without  the  latter  move,  it  is  never  clear 

whether  the  parts  analyzed  individually  are  sufficient  to  explain  how the  phenomenon 

under study comes to be or whether key processes are missing.

We want to emphasize the difference between mathematical models on the one side and 

theories  on  the  other  side.  Of  course  modelization  belongs  to  the  broad  category  of 

theoretical work by contrast with empirical work. However, in this text, we will refer to 

theory in the precise sense of a broad conceptual framework such as classical mechanics or 

the theory of  evolution.  Evolution theory has been initially formulated without  explicit  

mathematics. Evolutionary theory has actually led to different categories of mathematical 

analyses such as population genetics or  phyllogenetic  analysis  which are very different 

mathematically.  Theoretical  frameworks typically guide modelization and contributes to 

justify mathematical models. 

Mathematical modeling raises several difficulties in the study of organisms. 

The first one is that most biologists do not have a background in mathematics or physics to 

assess  the meaning and the validity  of  models  with acurracy.  The division of  labor  in 

interdisciplinary projects is an efficient way to work but it should at least be completed by 

an understanding of the principles at play in every part of the work by all participants.  

Otherwise, the coherence of the knowledge that result from this work is not ensured.

The second difficulty is intrinsic. Living objects have theoretical specificities that make 

mathematical modeling difficult or at least limit its meaning. These specificities are at least  

of two kinds. 

 Current  organisms  are  the  result  of  an  evolutionary  and  developmental  history 

which means that many contingent events are deeply inscribed in the organization 

of living being. By contrast the aim of mathematical modeling is usually to make 

explicit the necessity of an outcome. For more on this issue, see [3].

 The study of a part X of an organism is not completely meaningful by itself. Instead, 



the inscription of this part inside the organism and in particular the role that this part  

plays  is  a  mandatory  object  of  study  to  assess  the  biological  relevance  of  the 

properties  of  X  that  are  under study.  As  such,  the  modelization  of  X per  se is 

insufficient and requires a supplementary discussion [4]. There is no mathematical 

method to do so, but schematization starts to be available.

The third difficulty  is  that  there  are  no well  established theoretical  principles  to  frame 

model  writing  in  physiology  or  developmental  biology  [5].  In  particular,  cells  are 

elementary objects since the cell theory states that there is no living things without cells.  

However, cells have complex organizations themselves. Modeling their behavior (note 1) is 

therefore challenging and requires appropriate theoretical assumptions to ensure that this 

modeling has a robust biological meaning. 

A theoretical way to organize the mathematical modeling of cell behaviors is to propose a  

default state, that is to say to make explicit a state of reference that takes place without the  

need of particular constraints, input or signal. We assume that proliferation with variation 

and  motility  should  be  used  as  a  default  state  [6,7].  Under  this  assumption,  cells 

spontaneously  proliferate  and  quiescence  has  to  be  explained  by  constraints  explicitly 

limiting or even preventing cell proliferation. The same reasoning applies mutadis mutandis 

to motility. This assumption has been used to model mammary gland morphogenesis and 

helps to systematize the mathematical analysis of cellular populations [8].

In this chapter we will focus on model writing. Our aim is not to emphasize the technical 

aspects of mathematical analysis. Instead, this text aims to help biologists to understand 

modelization in order to better interact with modelers, or in other words to raise questions 

to better modelization. Reciprocally, we also highlight theoretical specificities of biology 

which may be of help to modelers. Of course, the usual way to divide chapters in this book 

series, with materials and methods, is not entirely appropriate for the topic of our chapter. 

We still  kept  this  structure and follow it  in a  metaphorical  sense.  In materials,  we are 



describing key conceptual and mathematical ingredients of models. In methods, we will 

focus on the writing and analysis of models per se.

2.Materials
2.1.Parameters and states
2.1.1. Parameters
Parameters are quantities that  play a role in the system but which are not significantly 

impacted by the system’s behavior at the time scale of the phenomenon under study. From 

an experimentalist’s point of view, there are two kinds of parameters. Some parameters 

correspond to a quantity that is explicitly set by the experimenter such as the temperature, 

the  size  of  a  plate  or  the  concentration  of  a  relevant  compound  in  the  media.  Other  

parameters, constraints, correspond to properties of parts under study, such as the speed of a 

chemical  reaction,  the  elasticity  of  collagen  or  the  division  rate  τ  of  a  cell  without 

constraints. Changing the value of these parameters require to change the part in question, 

see also note 2.

Identifying relevant parameters has actually two different meaning:

 Parameters that will be used explicitly in the model are parameters whose value is 

required to deduce the behavior of the system. The dynamics of the system depends 

explicitly on the value of these parameters. A fortiori, parameters that correspond to 

different treatments leading to a response will fall under this category. Note that the 

significance of  some parameters  usually  appear  in  other  steps  of  modeling.  For 

example, we may think that gravitation is not relevant to a morphogenetic process, 

and find it is not the case, or the other way around.

 Theoretical  parameters  correspond to parameters  that  we know are  relevant  and 

even mandatory for the process to take place but that we can keep implicit in our 

model. For example, the concentration of oxygen in the media is usually not made 

explicit in a model of an in vitro experiment even though it is relevant for the very 

survival of the cells studied. Of course, there is usually a cornucopia of this sort of 



parameters, for example the many components of the serum many of them being 

unknown.

2.1.2. State space
The state of an object describes its situation at a given time. The state is composed of one or 

several quantities, see note 3. By contrast with parameters, the notion of state is restricted to 

those aspects of the system which will change as a result of explicit causes or randomness 

intrinsic to the system described. The usual approach, inherited from physics, is to propose 

a set of possible states that does not change during the dynamics. Then the changes of the  

system will be changes of states while staying among these possible states. For example, 

we can describe a cell population in a very simple manner by the number of cells as a  

function of time n(t). Then, the state space is all the possible values for n, that is to say the 

positive integers. 

Usually, the changes of state depend on the state of the system which means that the state  

has a causal role, which can be either direct or indirect. A direct causal power is illustrated  

by n which is the number of cells that are actively proliferating in the example above and 

thus  trigger  the  changes  in  n,  that  is  to  say  n represent  cells  and cells  are  that  which 

proliferates. An indirect causal power corresponds, for example, to the position of a cell 

provided that some positions are too crowded for cells to proliferate. It is not the position of 

cells per se that limits proliferation, it is the constraints on cells. 

2.1.3. Parameter versus state
Deciding whether a given quantity should be described as a parameter or as an element of 

the state space is a theoretical decision that is sometimes difficult, see also note 4. The heart 

of the matter is to analyze the role of this quantity but it also depends on the modeling aims. 

Let us provide some criteria which pertain to two distinct concept: significant changes and 

causality.

 Does this quantity change, or could change, in a quantitatively significant way at the 

time scale of the phenomenon of interest? If no it should be a parameter. If yes:



 Are the changes of this quantity required to observe the phenomenon one wants to 

explain? If yes, it depends on whether the changes are impacted by the system: if  

they are, it should be a part of the state space, otherwise it should be a parameter 

with a time dependence. If no:

 Do we want to perform precise quantitative predictions? If yes, then the quantity 

should be a part of the state space and a parameter otherwise. 

In the following, we will call “description space” the combination of the state space and 

parameters.

2.2.Equations
Equations are often seen as intimidating by experimental biologists. Our aim here and in the 

following subsection is to help demystify them. In the modeling process, equations are the 

final  explicitation  of  how  changes  occur  and  causes  act  in  a  model.  As  a  result 

understanding them is of paramount importance to understand the assumptions of a model.

The basic rule of modeling is extremely simple. Parameters do not require equations since 

they are set externally. However, the value of states are unspecified. As a result, equations 

are required to describe how states change. More precisely, modelers require an equation 

for each quantity describing the state. Quantities of the state space are degrees of freedom, 

and these degrees of freedom have to be “removed” by equations for the model to perform 

predictions. These equations need to be independent in the sense that they need to capture 

different  aspects  of  the  system:  copying  twice  the  same  equation  obviously  does  not 

constrain the states. Equations typically come in two kinds:

 Equations that relate different quantities of the state space. For example, if we have 

n the total number of cells and two possible cell types with cell counts  n1 and  n2, 

then we will always have . As a result, it is sufficient to describe how two 

of these three variables change in order obtain the third one. 

 Equations that describe a change of state as a function of the state. These equations 



typically take two different forms, depending on the representation of time which 

may be either continuous or discrete, see note 5. In continuous time, modelers use 

differential equations, for example . This equation means that the change 

of  n (dn) during a short time (dt) is equal to  ndt/τ. This change follows from cell 

proliferation and we will expand on this equation in the next section. In discrete 

time,   is  the  change  of  state  which  relates  to  the  current  state  by 

. Alternatively and equivalently, the future state can 

be  written  as  a  function  of  the  current  state: .  Defining  a 

dynamics requires at  least  one such equation to bind together the different time 

points, that is to say to bind causes and their effects. 

2.3.Invariants and symmetries
We have discussed the role of equations, now let us expand on their structure. Let us start  

with  the  equation  mentioned  above,  now in  continuous  time:  .  What  is  the 

meaning  of  such  an  equation?  This  equation  states  that  the  change  of  n,  dn/dt, is 

proportional to n. 1) In conformity, with the cell theory, there is no spontaneous generation. 

There is no migration from outside the system described, which is an assumption proper to 

a given situation. The only source of cells is then cell proliferation. 2) Every cell divides at 

a given rate, independently. As a conclusion, the appearance of new cells is proportional to 

the number of  cells  which are dividing unconstrained,  that  is  to say  n.  A cell  needs a 

duration of τ to generate two cells (that is to say increase the cell count by one) which is 

exemplified by the fact that for n=1, dn/dt=1/ τ. 

Alternatively, this equation is equivalent to , and the latter relation shows 

that the equation is equivalent to the existence of an invariant quantity: which is 

equal to 1/τ for all values of n. Doubling dn/dt thus requires to double n. In this sense, the 

joint transformation and is a symmetry, that is to say a transformation 

that leaves invariant a key aspect of the system.  This transformation leads from one time 

point to another. Discussing symmetries of equations is a method to show their meaning. 



Here, in a sense, the size of the population does not matter. Symmetries can also be multi-

scale, for example fractal analysis is based on a symmetry between the different scales that  

is very fruitful in biology [9,10].

Probabilities may also be analyzed on the basis of symmetries. To define probabilities, two 

steps have to be performed. The modeler needs to define a space of possibilities and then to 

define the probabilities of these possibilities. The most meaningful way to do the latter is to 

figure out  possibilities  that  are equivalent,  that  is  to say symmetric.  For example,  in a 

homogeneous environment, all directions are equivalent and thus would be assigned the 

same probabilities. A cell, in this situation, would have the same chance to choose any of 

these directions assuming that the cell’s organization is not already oriented in space, see 

also note 6. In physics, a common assumption is to consider that states which have the same 

energy have the same probabilities.

Now there  are  several  ways to  write  equations,  independently  of  their  deterministic  or 

stochastic nature:

 Symmetry based writing is exemplified by the model of exponential growth above. 

In this case,  the equation has a genuine meaning. Of course the model conveys 

approximations  which  are  not  always  valid,  but  the  terms  of  the  equation  are 

biologically meaningful and explicit. This also ensure that all mathematical outputs 

of the model may be interpreted biologically.

 Equations  may  also  be  based  on  a  mathematical  reasoning  which  provides  a 

legitimacy to their form but restricts their biological interpretations. For example, 

many  mathematical  functions  may  be  approximated  around  0  by  the  sum 

. As a result, a usual way to model a population which constrains itself  

is the following 



where k is the maximum of the population. Le us remark that we have written the 

equation in two different forms, we come back on this in note 7. The solution of this 

equation is the classical logistic function. 

Note  however  that  this  equation  has  symmetries  which  are  dubious  from  a 

biological  viewpoint:  the way the population takes off  is  identical  to the way it 

saturates because the logistic equation has a center of symmetry,  A in figure, see 

also [11]. 

Figure  1:  The  logistic  function. This  function  is  often  used  to  model  a  growth  with 

constraints leading to a saturation. However, this function possess a center of symmetry, A,  

which implies that the initial exponential growth is exactly equivalent to the way the growth 

saturates. This is biologically problematic: there is an initial lag phase and the saturation 

trigger causes that are not significant in the initial growth leading for example to cell death 

[12].

 The last way to write equations is called heuristic. The idea is to use functions that  

mimic quantitatively and to some extent qualitatively the phenomenon under study. 

Of course this method is less meaningful that the others but it is often required when 

the knowledge of the underlying phenomenon is not sufficient. Heuristic equations 

means that the modeler make no claim on its meaning and interpretation, it is just 



aimed at mimicking the phenomenon. 

2.4.Theoretical principles
Theoretical principles are powerful tools to write equations that convey biological meaning. 

Let us provide a few examples.

 Cell theory implies that cells come from the proliferation of other cells and excludes 

spontaneous generation. It was used above to state that the change in cell number is 

caused by cells.

 Classical mechanics aims to understand movements in space. The acceleration of an 

object  requires  that  a  mechanical  force  is  exerted  on  this  object.  Note  that  the 

principle of reaction states that if A exerts a force on B, then B exerts the same force 

with opposite direction on A. Therefore, there is an equivalence between “A exerts a 

force” and “a force is exerted on A” from the point of view of classical mechanics. 

In biology, the difficulty lies in the forces exerted by cells as cells can consume free 

energy to exert different kinds of forces, that depend notably on their history. Cells 

are neither an elastic nor a bag of water, they possess agency which leads us to the 

next point.

 As explained in introduction, the reference to a default state helps to write equations 

that pertain to cellular behaviors. There are many aspects that contribute to cellular 

proliferation and motility. The writing of an equation such as the logistic model is 

not about all these factors and should not be interpreted as such. Instead, it assumes 

proliferation on the one side and one or several factors that constrain proliferation 

on the other side. 

 In physics, invariants are such by principle; they are laws of nature. In biology, 

invariants  are  only constraints  in  our  view.  The way they play a  role  is  set  by 

principles. For example, they can be constraints on the default state of proliferation, 

they also can change over time due to their historical nature, last they can also be 



part of an organization that sustain them and that they contribute to sustain. 

3.Methods
3.1.Model writing
Model writing may have different levels of precision and ambition. Models can be a proof 

of concept, that is to say the genuine proof that some hypotheses explain a given behavior  

or even proofs of the theoretical possibility of a behavior. Proof of concept do not include a 

complete  proof  that  the  natural  phenomenon genuinely  behave  like  the  model.  On the 

opposite end of the spectrum, models may aim at quantitative predictions. Let us note that  

quantitative precision is not the same notion than theoretical accuracy. Precision can be 

achieved, to an extent, by statistical machines while theoretical accuracy is about the cause 

structure that is spelled out. Usually, it is good practice to start from a crude model and 

after that to go for more detailed and quantitative analyses depending on the experimental 

possibilities. 

We will now provide a short walkthrough for writing an initial model:

1. Specify the aims of the model. Models cannot answer all questions at once, and it is 

crucial to be clear on the aim of a model before attempting to write it. Of course,  

these aims may be adjusted afterwards. The scope of the model should also depend 

on the experimental methods that link it to reality.

2. Analyze the levels of description that are mandatory for the model to explain the 

target phenomenon. Usually, the simplest the description is the better. When cells 

do  not  constrain  each  other,  describing  cells  by  their  count  n is  sufficient.  By 

contrast,  if  cells  constrain  each  other,  for  example  if  they  are  in  organized  3d 

structures it can be necessary to take into account the position of each individual 

cell which leads to a list of positions  . Note that in this case the state 

space is far larger than before, see note  8. A fortiori, it is necessary to represent 

space to understand morphogenesis.  Note that  the notion of  level  of  description 



differs from the notion of scale. A level of description pertains to qualitative aspects 

such as the individual cell, the tissue, the organ, the organism, etc. By contrast, a 

scale is defined by a quantity.

3. List the theoretical principles that are relevant to the phenomenon. These principles 

can be properly biological and pertain to cell theory, the notion of default state, 

biological  organization  or  evolution.  Physico-chemical  principles  may  also  be 

useful such as mechanics or the balance and speed of chemical reactions.

4. List  the  relevant  states  and  parameters.  These  quantities  are  the  ones  that  are 

expected to play a causal role that pertains to the aim of the model. This list will  

probably not be definitive, and will be adjusted in further steps. In all cases, we 

cannot  emphasize  enough  that  aiming  for  exhaustivity  is  the  modeler’s  worst 

enemy.  Biologists  need  to  take  many  factors  into  account  when  designing  an 

experimental protocol, it is a mistake to try to model all of these factors.

5. The  crucial  step  is  to  propose  mathematical  relations  between  states  and  their 

changes. We have described in sections 2.2 and 2.3 what kinds of relation can be 

used. Often, these relations will involve supplementary parameters whose relevance 

was not obvious initially. Let us emphasize here that the key to robust models is to  

base it on sufficiently solid grounds. A model where all relations are heuristic will 

probably not be robust. As such, figuring out the robust and meaningful relations 

that can be used is crucial. 

6. The last step is to analyze the consequences of the model. We describe this step 

with  more  details  below.  What  matters  here  is  that  the  models  may  work  as 

intended, in which case it may be refined by adding further details. The model may 

also lead to unrealistic consequences and not lead to the expected results. In these 

latter cases, the issue may lie in the formulation of the relations above, in the choice 

of the variables or in oversimplifications. In all cases the model requires a revision. 



Writing a model is similar to the chess game in that the anticipation of all these steps from 

the beginning helps. The steps that we have described are all required but a central aspect of 

modeling is to gain a precise intuition of what determines the system’s behavior. Once this 

intuition is gained, it guides the specification of the model at all step. Reciprocally, these  

steps help to gain such an intuition.

3.2.Model analysis
In this section, we will not cover all the main ways to analyze model since this subject is far  

too vast and depends on the mathematical structures used in the models. Instead, we will 

focus on the outcome of model analyses.

3.2.1.Analytic methods
Analytic methods consist in the mathematical analysis of a model. They should always be 

preferred to simulations when the model is tractable, even at the cost of using simplifying 

hypotheses. 

1. Asymptotic  reasoning.  To  simplify  models,  we  can  look  at  the  dynamics  after 

enough time which simplifies the outcome. For example, the outcome of the logistic 

function discussed above will always be an equilibrium point, where the population 

is at a maximum. Mathematically, “enough” time means infinite time, hence the 

term  asymptotic.  In  practice  “infinite”  means  “large  in  comparison  with  the 

characteristic times of the dynamics”, which may not be long from a human point of 

view. For example, a typical culture of bacteria reaches a maximum after less than 

day. Asymptotic behaviors may be more complicated such as oscillations or strange 

attractors. Asymptotic reasoning is also relevant for other quantities than time.

2. Steady states analysis. In fairly complex situations, for example when both space 

and time are involved, a usual approach is to analyze states that are sustained over 

time  because  it  is  a  method  to  singularize  specific  states.  For  example,  in  the 

analysis of epithelial morphogenesis, it is possible to consider how the shape of a 

duct is sustained over time. 



3. Stability analysis. A further step is to find equibria, that is to say situations where 

the changes stop (dx/dt=0 for all state variable x). For example,  

has two equilibria for n=k and n=0. Stability analysis look at the consequences of 

equation near an equilibrium point. Near the equilibrium value ne,  where 

is  considered to be small.  small  means that  dominates and all  other 

powers of , see also note 9. The reason for that is simple: if , 

…

Near 0, and . The small variation leads to a positive

therefore this variation is amplified and this equilibrium is not stable. We should not 

forget the biology here. For a population of cells or animals of a given large size, a 

small variation is possible. However, a small variation from a population of size 0 is 

only possible through migration because spontaneous generation does not happen. 

Nevertheless this analysis shows that a small population, close to n=0, should not 

collapse but instead will expand. 

Near k, let us write

In  this  case,  the  small  variation  leads  to  a  negative  feedback,  therefore  the 

equilibrium is stable.

4. Special  cases.  In  some situations,  qualitatively  remarkable  behaviors  appear  for 

specific values of the parameters. Studying these cases is interesting  per se, even 

though the odds for parameters to have specific value are slim without an explicit 

reason for this parameter to be set at this value. However, in biology the value of 

some  parameters  are  the  result  of  biological  evolution  and  specific  value  can 

become relevant when the associated qualitative behavior is biologically meaningful 



[13,14].

5. Parameter rewriting. One of the major practical advantages of analytical methods is 

to prove the relevance of parameters that are key to understand the behavior of a 

system. These “new” parameters are usually combinations of the initial parameters. 

We have implicitly done this operation in section 2.3. Instead of writing we 

have written . The point here is to introduce τ the characteristic time for 

a cell division and k which is the maximum size of the population. By contrast,  a 

and especially b are less meaningful. These key parameters and their meaning are an 

outcome of models and at the same time should be the target of precise experiments 

to explore the validity of models.

3.2.2.Numerical methods – simulations
Simulations have a major strength and a major weakness. Their strength lies in their ability 

to handle complicated situations that are not tractable analytically. Their weakness is that 

each simulation run provides a particular trajectory which cannot a priori be assumed to be 

representative of the dynamical possibilities of the model.

In this sense, the outcome of simulations may be compared to empirical results, except that 

simulation are transparent:  it  is  possible to track all  variables of interest  over time. Of 

course, the outcome of simulations is artificial and only as good as the initial model.

Last, there is almost always a loss when going from a mathematical model to a computer 

simulation.  Computer  simulation  are  always  about  discrete  objects  and  deterministic 

functions.  Randomness  and  continua  are  always  approximated  in  simulations  and 

mathematical  care  is  required  to  ensure  that  the  qualitative  features  of  simulations  are  

feature of the mathematical model and not artifacts of the transposition of the model into a  

computer program. A subfield of mathematics, numerical analysis, is devoted to this issue. 

Even in mathematical models designed for simulations, such as agent based models, this 

issue remains relevant.



3.2.3.Results
We want to emphasize two points to conclude this section. 

First, it is not sufficient for a model to provide the qualitative or even quantitative behavior 

expected for this model to be correct. The validation of a model is based on the validation 

of a process and of the way this process takes place. As a result, it is necessary to explore 

the predictions of the model to verify them experimentally.  All outcomes that we have 

described in 3.2.1 may be used to do so on top of a direct verification of the assumptions of 

the model themselves. Of course, it is never possible to verify everything experimentally, 

therefore the focus should be on aspects that are unlikely except in the light of the model.

 Second, modeling focuses on a specific part and a specific process. However, this part and 

this  process  take  place  in  an  organism.  Their  physiological  meaning,  or  possible  lack 

thereof,  should  be  analyzed.  We  are  developing  a  framework  to  perform this  kind  of 

analysis [15,4] but it can also be performed informally by looking at the consequences of 

the part considered for the rest of the organism.

4.Notes
1. In biology, behavior usually has an ethological meaning and evolution refers to the 

theory evolution. In the mathematical context, these words have a broader meaning. 

They both typically refer to the properties of dynamics. For example, the behavior 

of a population without constrain is exponential growth. 

2. Parameters that play a role in an equation are defined in two different ways. They 

are defined by their role in the equation and by their biological interpretation. For 

example, the division rate τ corresponds to the division rate of the cells without the 

constraint that is represented by  k.  τ may also embed constant constraints on cell 

proliferation, for example chemical constraints from the serum or the temperature. 

Thus, τ is what physicists call an effective parameter it carries implicitly constraints 

beyond the explicit constraints of the model.



3. A state may be composed of several quantities, let’s say  k, n, m. It is possible to 

write the state by the three quantities independently or to join them in one vector 

X=(k,n,m). The two viewpoints are of course equivalent but they lead to different 

mathematical methods and ways to see the problem. The second viewpoint shows 

that it is always valid to consider that the state is a single mathematical object and 

not just a plurality of quantities.

4. The notion of organization in the sense of a specific interdependence between parts 

[4] implies that most parameters are a consequence of others parts, at other time 

scales. As a result, modeling a given quantity as a parameter is only valid for some 

time scales,  and is  acceptable when these time scales are the ones at  which the 

process modeled takes place. 

5. The choice between a model based on discrete or on continuous time is base on 

several criteria. For example, if the proliferation of cells is synchronized, there is a 

discrete nature of the phenomenon that strongly suggests to represent the dynamics 

in discrete time. In this case the discrete time corresponds to an objective aspect of 

the phenomenon. On the opposite, when cells divide at all times in the population, a  

representation in continuous time is more adequate. In order to perform simulations, 

time may still be discretized but the status of the discrete structure is then different  

than  in  the  first  case:  discretization  is  then  arbitrary  and serves  the  purpose  of 

approximating the continuum. To distinguish the two situations, a simple question 

should be asked. What is  the meaning of the time difference between two time 

points. In the first case, this time difference has a biological meaning, in the second 

it is arbitrary and just small enough for the approximation to be acceptable.

6. Probabilities over continuous possibilities are somewhat subtle. Let us show why: 

let us say that all directions are equivalent, thus all angles in the interval [0,360[ are 

equivalent.  They are  equivalent,  so  their  probabilities  are  all  the  same value  p. 



However,  there  is  an  infinite  number  of  possible  angles,  so  the  sum of  all  the 

probabilities of all possibilities would be infinite. Over the continuum, probabilities 

are  assigned  to  sets  and  in  particular  to  intervals,  not  individual  possibilities. 

Elements only have a density of probability. 

7. There are many equivalent ways to write a mathematical  term. The choice of a 

specific way to write a term conveys meaning and corresponds to an interpretation 

of this term. For example, in the text, we transformed because this 

expression  has  little  biological  meaning.  By  contrast,  implies 

that when n/k is very small by comparison with 1, cells are not constraining each 

other. On the opposite, when n=k there is no proliferation. The consequence of cells 

constraining each other can be interpreted as a proportion 1-n/k of cells proliferating 

and a proportion n/k of cells not proliferating. Now, there is another way to write the 

same  term  which  is:  .  Here,  the  division  time  becomes 

τ/(1-n/k) and the more cells there are, the longer the division time becomes. This 

division time becomes infinite  when  n=k which means that  cells  are  quiescent. 

These  two interpretations  are  biologically  different.  In  the  first  interpretation,  a 

proportion  of  cells  are  completely  constrained,  for  example  due  to  spatial 

constraints, while the other proliferate freely. In the second, all cells are impacted 

equally,  for  example  by  a  lack  of  nutrient.  Nevertheless,  the  initial  term  is 

compatible with both interpretations and they hhave the same consequences at this 

level of analysis.

8. The number of  quantities  that  form the state  space is  called its  dimension.  The 

dimension  of  the  phase  space  is  a  crucial  matter  for  its  mathematical  analysis. 

Basically,  low dimensions  such as  3  or  below are  more  tractable  and easier  to  

represent.  High  dimensions  may  also  be  tractable  if  many  dimensions  play 

equivalent  roles  (even in  infinite  dimension).  A large  number  of  heterogeneous 



quantities  (10 or  20)  is  complicated to  analyze even with computer  simulations 

because this situation is associated with many possibilities for the initial conditions 

and  for  the  parameters  making  it  difficult  to  “probe”  the  different  qualitative 

possibilities of the model.

9. It is very common in modeling to use the words “small” and “large”. A small (resp. 

large) quantity is a quantity that is assumed to be small (resp. large) enough so that a 

given approximation can be performed. For example, a large time in the context of 

the logistic equation means that the population is approximately at the maximum k. 

Similarly,  infinite  and large  are  very  close  notions  in  most  practical  cases.  For 

example,  a  very  large  capacity  k leads  to which  is  an 

exponential growth as long as n is far smaller than k.
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10. Longo,  G.  and  Montévil,  M.  (2014).  Perspectives  on  Organisms:  Biological  time, 

symmetries and singularities. Lecture Notes in Morphogenesis. Springer, Dordrecht. Doi: 

10.1007/978-3-642-35938-5

11. Tjørve,  E.  (2003).  Shapes  and  functions  of  species–area  curves:  a  review  of  possible 

models.  Journal  of  Biogeography,  30(6):  827  –  835.  Doi:  10.1046/j.1365-

2699.2003.00877.x

12. Hoehler, T. M. and Jorgensen, B. B. (2013). Microbial life under extreme energy limitation. 

Nat Rev Micro, 11(2): 83 – 94. Doi: 10.1038/nrmicro2939

13. Camalet, S., Duke, T., Julicher, F., and Prost, J. (2000). Auditory sensitivity provided by 

self-tuned  critical  oscillations  of  hair  cells.  Proceedings  of  the  National  Academy  of 

Sciences, pages 3183 – 3188. Doi: 10.1073/pnas.97.7.3183

14. Lesne,  A.  and  Victor,  J.-M.  (2006).  Chromatin  fiber  functional  organization:  Some 

plausible models. Eur Phys J E Soft Matter, 19(3): 279 – 290. Doi:  10.1140/epje/i2005-

10050-6
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