
HAL Id: hal-04172251
https://ens.hal.science/hal-04172251v2

Preprint submitted on 28 Nov 2023 (v2), last revised 22 Apr 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Functorial approach to minimizing and learning
deterministic transducers with outputs in arbitrary

monoids
Quentin Aristote

To cite this version:
Quentin Aristote. Functorial approach to minimizing and learning deterministic transducers with
outputs in arbitrary monoids. 2023. �hal-04172251v2�

https://ens.hal.science/hal-04172251v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Functorial approach to minimizing and
learning deterministic transducers with

outputs in arbitrary monoids
Quentin Aristote

We study monoidal transducers, transition systems arising as determinis-
tic automata whose transitions also produce outputs in an arbitrary monoid,
for instance allowing outputs to commute or to cancel out. We use the cate-
gorical framework for minimization and learning of Colcombet, Petrişan and
Stabile to recover the notion of minimal transducer recognizing a language,
and give necessary and sufficient conditions on the output monoid for this
minimal transducer to exist and be unique (up to isomorphism). The cate-
gorical framework then provides an abstract algorithm for learning it using
membership and equivalence queries, and we discuss practical aspects of this
algorithm’s implementation. We also extend the framework with a categori-
cal algorithm for minimizing transition systems, whose instantiation retrieves
the algorithm for minimizing monoidal transducers but also extends the class
of output monoids for which this algorithm is valid.

1. Introduction
Transducers are (possibly infinite) transition systems that take input words over an input
alphabet and translate them to some output words over an output alphabet. They are
numerous ways to implement them, but here we focus on subsequential transducers, i.e
deterministic automata whose transitions also produce an output (see Figure 1 for an
example). They are used in diverse fields such as compilers [16], linguistics [19], or
natural language processing [20].

Two subsequential transducers are considered equivalent when they recognize the
same subsequential function, that is if, given the same input, they always produce the
same output. A natural question is thus whether there is a (unique) minimal trans-
ducer recognizing a given function (a transducer with a minimal number of states and
which produces its ouput as early as possible), and whether this minimal transducer is
computable. The answer to both these questions is positive when there exists a finite
subsequential transducer recognizing the function: the minimal transducer can then for
example be computed through minimization [9].
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Active learning of transducers. Another method for computing a minimal transducer
is to learn it through Vilar’s algorithm [29], a generalization to transducers of Angluin’s
L*-algorithm, which learns the minimal deterministic automaton recognizing a language
[1]. Vilar’s algorithm thus relies on the existence of an oracle which may answer two
types of queries, namely:

• membership queries: when queried with an input word, the oracle answers with
the corresponding expected output word;

• equivalence queries: when queried with a hypothesis transducer, the oracle answers
whether this transducer recognizes the target function, and, if not, provides a
counter-example input word for which this transducer is wrong.

The basic idea of the algorithm is to use the membership queries to infer partial
knowledge of the target function on a finite subset of input words, and, when some
closure and consistency conditions are fulfilled, use this partial knowledge to build a
hypothesis transducer to submit to the oracle through an equivalence query: the oracle
then either confirms this transducer is the right one, or provides a counter-example input
word on which more knowledge of the target function should be inferred.

Figure 1: Two transducers: unlike automata, the transitions are also labelled with out-
put words.
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Consider for instance the partial function recognized by the minimal transducer A
of Figure 1a over the input alphabet A = {a, b} and output alphabet Σ = {α, β, γ}. We
write this function L(. − /) : A∗ → Σ∗ t {⊥} and let e ∈ A∗ and ε ∈ Σ∗ stand for the
respective empty words over these two alphabets. To learn A, the algorithm maintains
two subsets Q,T ⊂ A∗ of prefixes and suffixes of input words, and keeps track of the
restriction of L(.−/) to words in QT ∪QAT . The prefixes in Q will be made into states
of the hypothesis transducer, and they will be distinguished according to the output
words that should be produced when starting from these states and reading a suffix in
T . Informally, closure then holds when for any state q ∈ Q and input letter a ∈ A there
is a candidate state q′ ∈ A that we can choose to build an a-transition from q to q′;
consistency holds when for any q ∈ Q and a ∈ A all the states that can be chosen in
such a way can be merged, and when the newly-built a-transition can be equipped with
an output word. The execution of the learning algorithm for the function recognized by
A would thus look like the following.
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The algorithm starts with Q = T = {e} only consisting of the empty input word.
In a hypothesis transducer, we would want e ∈ Q to correspond to the initial state, and
the output value produced by the initial transition to be the longest common prefix Λ(e)
of each L(.et/) for t ∈ T , here Λ(e) = α. But the longest common prefix Λ(a) of each
L(.at/) for t ∈ T is γαβα, of which Λ(e) is not a prefix: it is not possible to make
the output of the first a-transition so that following the initial transition and then the
a-transition produces a prefix of Λ(a)! This is a first kind of consistency issue, which we
solve by adding a to T , turning Λ(e) into the empty output word ε and Λ(a) into γαβ.

Now Q = {e} and T = {e, a}. The initial transition should go into the state
corresponding to e and output Λ(e) = ε, the final transition from this state should
output Λ(e)−1L(.e/) = α, the a-transition from this state should output Λ(e)−1Λ(a) =
γαβ, and this a-transition followed by a final transition should output Λ(e)−1L(.a/) =
γαβα. This a-transition should moreover lead to a state from which another a-transition
followed by a final transition outputs Λ(a)−1L(.aa/) = γβα2: in particular, it cannot
lead back to the state corresponding to e, because γβα2 6= γαβα. But this state is
the only state accounted for by Q, so now we have no candidate for its successor when
following the a-transition! This is a closure issue, which we solve by adding a to Q, the
corresponding new state then being the candidate successor we were looking for.

Once Q = T = {e, a}, there are no closure nor consistency issues and we may thus
build the hypothesis transducer given by Figure 1b: it coincides with A on QT ∪QAT .
Submitting it to the oracle we learn that this transducer is not the one we were looking
for, and we get as counter-example the input word bb, which indeed satisfies L(.bb/) = ⊥
and yet for which our hypothesis transducer produced the output word α3.

With Q = {e, a, b, bb} and T = {e, a} there is another kind of consistency issue,
because the states corresponding to e and b are not distinguished by T (Λ(e)−1L(.et/) =
Λ(b)−1L(.bt/) for all t ∈ T ) and should thus be merged in the hypothesis transducer, yet
this is not the case of their candidate successors when following an additional b-transition
(L(.ebe/) = α yet L(.bbe/) = ⊥ is undefined)! This issue is solved by adding b to T ,
after which there are again no closure nor consistency issues and we may thus build A as
our new hypothesis transducer. The algorithm finally stops as the oracle confirms that
we found the right transducer.

Transducers with outputs in arbitrary monoids. In the example above we assumed
that the output of the transducer consisted of words over the output alphabet Σ =
{α, β, γ}, that is of elements of the free monoid Σ∗. But in some contexts it may be
relevant to assume that certain output words can be swapped or can cancel out. In
other words, transducers may be considered to be monoidal and have output not in a
free monoid, but in a quotient of a free monoid. An example of a non-trivial family of
monoids that should be interesting to use as the output of a transducer is the family
of trace monoids, that are used in concurrency theory to model sequences of executions
where some jobs are independant of one another and may thus be run asynchronously:
transducers with outputs in trace monoids could be used to programatically schedule
some jobs. Algebraically , trace monoids are just free monoids where some pairs of letters
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are allowed to commute. For instance, the transducers of Figure 1 could be considered
under the assumption that αβ = βα, in which case the states 1 and 2 would have the
same behavior.

This raises the question of the existence and computability of a minimal monoidal
transducer recognizing a function with output in an arbitrary monoid. In [17], Gerdjikov
gave some conditions on the output monoid for minimal monoidal transducers to exist
and be unique up to isomorphism, along with a minimization algorithm that generalizes
the one for (non-monoidal) transducers. This question had also been addressed in [15],
although in a less satisfying way as the minimization algorithm relied on the existence of
stronger oracles. Yet, to the best of the author’s knowledge, no work has addressed the
problem of learning minimal monoidal transducers through membership and equivalence
queries.

As all monoids are quotients of free monoids, a first solution would of course be to
consider the target function to have output in a free monoid, learn the minimal (non-
monoidal) transducer recognizing this function using Vilar’s algorithm, and only then
consider the resulting transducer to have output in a non-free monoid and minimize it
using Gerdjikov’s minimization algorithm. But this solution is unsatisfactory as, during
the learning phase, it may introduce states that will be optimized away during the
minimization phase. For instance, learning the function recognized by the transducer
A of Figure 1a with the assumption that αβ = βα would first produce A itself before
having its states 1 and 2 merged during the minimization phase. Worse still, it is possible
to find a partial function with output in a finitely generated quotient monoid Σ∗/ ∼
and recognized by a finite monoidal transducer, and yet so that, when this function
is considered to have output in Σ∗, Vilar’s algorithm may not even terminate if, when
answering membership queries, the oracle does not carefully choose the representatives in
Σ∗ of each equivalence class in Σ∗/ ∼ (the idea of finding such an example was suggested
by an anonymous reviewer whom the author thanks):

Lemma 1.1. Let A = {a}, Σ = {α, β, γ}, let Σ/∼ be the monoid Σ∗ with the additional
assumption that αβ = βα and let π : Σ∗ → Σ/∼ be the corresponding quotient. Consider
the function f : A∗ → Σ/∼ that maps an to αnβnγ = (αβ)nγ.

f is recognized by a finite transducer with outputs in Σ/∼, yet learning a transducer
that recognizes any function f ′ : A∗ → Σ∗ such that f = f ′ ◦π with Vilar’s algorithm will
never terminate if the oracle replies to the membership query for an with αnβnγ ∈ Σ∗

(which differs from (αβ)nγ in Σ∗ but not in Σ/∼).

A more satisfactory solution would hence do away with the minimization phase and
instead use the assumptions on the output monoid during the learning phase to directly
produce the minimal monoidal transducer.

Structure, related work and contributions. In this work we thus study the problem
of generalizing Vilar’s algorithm to monoidal transducers.

To this aim, we first recall in Section 2 the categorical framework of Colcombet,
Petrişan and Stabile for learning minimal transition systems [10]. This framework en-
compasses both Angluin’s and Vilar’s algorithms, as well as a similar algorithm for
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weighted automata [5, 6]. We use this specific framework because, while others exist,
they either do not encompass transducers or require stronger assumptions [3, 27, 28].

In Section 3 we extend this framework with an abstract minimization algorithm.
This is not the first categorical account of minimization nor the one that instantiates to
the most efficient algorithms [14, 30], but it is the only one that matches the functorial
framework of Colcombet, Petrişan and Stabile.

In Section 4 we then instantiate this framework to retrieve monoidal transducers as
transition systems whose state-spaces live in a certain category (Section 4.2). Studying
the existence of specific structures in this category — namely, powers of the terminal
object (Section 4.3) and factorization systems (Section 4.4) — we then give conditions
for the framework to apply and hence for the minimal monoidal transducers to exist and
be computable.

This paper’s contributions are thus the following:

• the framework of Colcombet, Petrişan and Stabile is extended with a categorical
minimization algorithm;

• necessary and sufficient conditions on the output monoid for the this framework
to apply to monoidal transducers are given;

• these conditions mostly overlap those of Gerdjikov, but are nonetheless not equiva-
lent: in particular, they extend the class of output monoids for which minimization
is known to be possible, although without ensuring a similar complexity;

• practical details on the implementation of the abstract monoidal transducer-learning
algorithm that results from the categorical framework are given;

• additional structure on the category in which the framework is instantiated pro-
vides a neat categorical explanation to both the different kinds of consistency
issues that arise in the learning algorithm and the main steps that are taken in
every transducer minimization algorithm.

2. Categorical approach to automata minimization and learning
In this section we recall (and extend) the definitions and results of Colcombet, Petrişan
and Stabile [11, 23]. We assume basic knowledge of category theory [21], but we also
focus on the example of deterministic complete automata, on the counter-example of non-
deterministic automata, and mention the examples of weighted automata and (classical)
transducers, the latter being detailed and generalized in Section 4.

2.1. Automata and languages as functors
Definition 2.1 ((C, X, Y )-automaton). An automaton is seen as a functor from the
input category I to an output category C. The input category is the one freely generated
by the diagram below, where a ranges in the input alphabet A: its objects are the vertices
of the diagram and its morphisms are the paths between two vertices.
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in st out
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a

We then say that a functor A : I → C is a (C, X, Y )-automaton when A(in) = X
and A(out) = Y .

The input category represents the basic structure of automata as transition systems:
st represents the state-space, . the initial configuration, a the transitions along the
corresponding letters, and / the output values associated to each state.

Example 2.2 (automata and transducers). If 1 = {∗} and 2 = {⊥,>}, a (Set, 1, 2)-
automaton A is a (possibly infinite) deterministic complete automaton: it is given by a
state-set S = A(st), transition functions A(a) : S → S for each a ∈ A, an initial state
s0 = A(.)(∗) ∈ S and a set of accepting states F = {s ∈ S | A(/)(s) = >} ⊆ S.

Similarly, a (Rel, 1, 1)-automaton (where Rel is the category of sets and relations
between them) is a (possibly infinite) non-deterministic automaton: it is given by a state-
set S = A(st), transition relations A(a) ⊆ S×S, a set of initial states A(.) ⊆ 1×S ∼= S
and a set of accepting states A(/) ⊆ S × 1 ∼= S.

If K is a field we may see K-weighted automata as functors A from I to the category
of K-vector-spaces, KVec, such that A(in) = A(out) = K, and if B is an output
alphabet, we may see deterministic transducers as functors from I to the Kleisli category
of free algebras for the monad TB∗X = B∗×X+1, Kl(TB∗), such that A(in) = A(out) =
1. This last example will be detailed and generalized in Definition 4.9.

Definition 2.3 ((C, X, Y )-language). In the same way, we define a language to be a
functor L : O → C, where O, the category of observable inputs, is the full subcategory
of I on in and out. In other words, a language is the data of two objects X = L(in)
and Y = L(out) in C (in which case we speak of a (C, X, Y )-language), and, for each
word w ∈ A∗, of a morphism L(.w/) : X → Y . In particular, composing an automaton
A : I → C with the embedding ι : O ↪→ I, we get the language LA = A◦ ι recognized by
A.

Example 2.4 (languages for classical automata). The language recognized by a (Set, 1, 2)-
automaton A is the language recognized by the corresponding complete deterministic
automaton: for a given w ∈ A∗, LA(.w/)(∗) = > if and only if w belongs to the lan-
guage, and the equality LA(.w/) = A(.w/) = A(.)A(w)A(/) means that we can decide
whether w is in the language by checking whether the state we get in by following w
from the initial state is accepting.

Such a language could also be seen as a set of relations L(.w/) ⊆ 1× 1, where ∗ is
related to itself if and only if w belongs to L. The language recognized by a (Rel, 1, 1)-
automaton is thus the language recognized by the corresponding non-deterministic au-
tomaton.

Similarly, when C is KVec or Kl(B∗×−+1) the corresponding notions of languages
are those respectively recognized by weighted automata and transducers.
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Definition 2.5 (category of automata recognizing a language). Given a category C and a
language L : O → C, we define the categoryAuto(L) whose objects are (C,L(in),L(out))-
automata A recognizing L, and whose morphisms A → A′ are natural transformations
whose components on L(in) and L(out) are the identity. In other words, a morphism
of automata is given by a morphism f : A(st)→ A′(st) in C such that A′(.) = f ◦A(.)
(it preserves the initial configuration), A′(a) ◦ f = f ◦ A(a) (it commutes with the
transitions), and A′(/) ◦ f = A(/) (it preserves the output values).

2.2. Factorization systems and the minimal automaton recognizing a
language

Definition 2.6 (factorization system). In a category C, a factorization system (E ,M)
is the data of a class of E-morphisms (represented with �) and a class ofM-morphisms
(represented with �) M such that every arrow f in C may be factored as f = m ◦ e
with m ∈ M and e ∈ E , E ∩M is exactly the class Iso of isomorphisms of C, E andM
are both stable under composition, and for every commuting diagram

X Y1

Y2 Z

e

u v
d

m

where m ∈M and e ∈ E there is a unique d : Y1 → Y2 such that u = d◦ e and v = m◦d.

Example 2.7. (some factorization systems) In Set and KVec, surjective and injective
functions and linear transformations form factorization systems (Surj, Inj) such that a
map f : X → Y factors through its image f(X) ⊆ Y . In the Kleisli category for the
monad X 7→ B∗ × X + 1, we may define similarly a notion of surjection and injection
that gives a meaningful factorization system. Again, this last example will be detailed
and generalized in Section 4.4.

Finally, in Rel a factorization system is given by E-morphisms those relations r :
X → Y such that every y ∈ Y is related to some x ∈ X by r, and M-morphisms the
graphs of injective functions (i.e. m ∈ M if and only if there is an injective function
f such that (x, y) ∈ m ⇐⇒ y = f(x)). A relation r : X → Y then factors through
the subset {y ∈ Y | ∃x ∈ X, (x, y) ∈ R} ⊆ Y . We write this factorization system
(Surj,Det ∩ Inj) (for surjections and deterministic injections).

Lemma 2.8 (factorization system on Auto(L) [23, Lemma 2.8]). Given L : I → C and
(E ,M) a factorization system on C, Auto(L) has a factorization given by those natural
transformations whose components are respectively E- and M-morphisms.

Because of this last result, we use (E ,M) to refer both to a factorization on C and
to its extensions to categories of automata.

Definition 2.9 (minimal object). When a category C, equipped with a factorization
system (E ,M), has both an initial object I and a final object F (for every object X
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there is exactly one morphism I → X and one morphism X → F ), we define its (E ,M)-
minimal object Min to be the one that (E ,M)-factors the unique arrow I → F as
I � Min � F . For every object X we also define ReachX and ObsX by the (E ,M)-
factorizations I � ReachX � X and X � ObsX � F : when the morphism I → X is
in E we say X is reachable and when the morphism X → F we say it is observable.

Proposition 2.10 ((E ,M)-minimality [23, Lemma 2.3]). The minimal object of a cate-
gory C is unique up to isomorphism, and is (E ,M)-minimal in the sense that it (E ,M)-
divides every other object X, meaning we have commuting diagrams

X

I ReachX ObsX F

Min

In particular, Min ∼= Obs(ReachX) ∼= Reach(ObsX).

Example 2.11 (initial, final and minimal automata and transducers [23, Example 3.1]).
Since Set is complete and cocomplete, the category of (Set, 1, 2)-automata recognizing
a language L : IA∗ → Set has an initial, a final and a minimal object. The initial
automaton has state-set A∗, initial state ε ∈ A∗, transition functions δa(w) = wa and
accepting states the w ∈ A∗ such that w is in L. Similarly, the final automaton has
state-set 2A∗ , initial state L, transition functions δa(L) = a−1L and accepting states the
L ∈ 2A

∗ such that ε is in L. The minimal automaton for the factorization system of
Example 2.7 thus has the Myhill-Nerode equivalence classes for its states. It is unique up
to isomorphism and its (E ,M)-minimality ensures that it is the complete deterministic
automaton with the smallest state-set that recognizes L : it is in particular finite as soon
as L is recognized by a finite automaton.

For the same reason, the category of (KVec,K,K)-automata recognizing a language
L : I → KVec also has a minimal object that corresponds to the minimal K-weighted
automaton recognizing L [25]. The example of transducers seen as automata over the
Kleisli category for the monad X 7→ B∗ ×X + 1 is more involved: this category has all
coproducts, but not necessarily products. Yet, it happens that 1 does have countable
powers, and hence minimization is still possible for (Kl(T ), 1, 1)-automata : with the
right factorization system, we retrieve Choffrut’s minimal transducer [9].

On the contrary, there is no good notion of a unique minimal non-deterministic au-
tomaton recognizing a regular ((Rel, 1, 1)-)language L. Auto(L) does have an initial
and a final object: the initial automaton is the initial deterministic automaton recog-
nizing L, and the final automaton is the (non-deterministic) transpose of this initial
automaton. But there is no factorization system that gives rise to a meaningful min-
imal object: for instance, the minimal object for the factorization system described in
Example 2.7 has for state-set the set of suffixes of words in L.
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Notice how in Example 2.11 the initial and final (Set, 1, 2)-automata have for respec-
tive state-sets A∗, the disjoint union of |A∗| copies of 1, and 2A

∗ , the cartesian product
of |A∗| copies of 2. A similar result holds for weighted automata and transducers, and
generalizes as Theorem 2.12.

Theorem 2.12 ([23, Lemma 3.2]). Given a language L : I → C with A countable,

• if C has all countable copowers of L(in) then Auto(L) has an initial object Ainit(L)
with Ainit(L)(st) =

∐
A∗ L(in);

• dually if C has all countable powers of L(out) then Auto(L) has a final object
Afinal(L) with Afinal(L)(st) =

∏
A∗ L(out);

• hence when both of the previous items hold and C is equipped with a factorization
system (E ,M), Auto(L) has an (E ,M)-minimal object MinL.

This is summarized by the diagram below, where κ and π are the canonical inclusion and
projections.

∐
A∗ L(in)

L(in) Min(L)(st) L(out)

∏
A∗ L(out)

[L(.w/)]w∈A∗

∐
w∈A∗ κwa

κε

〈L(.w/)〉w∈A∗ πε

∏
w∈A∗ πaw

We now have all the ingredients to define algorithms for computing the minimal
automaton recognizing a language. But since we will also want to prove the termination
of these algorithms, we need an additional notion of finiteness.

Definition 2.13 (E-artinian and M-noetherian objects [10, Definition 24]). In a cat-
egory C equipped with a factorization system (E ,M), an object X is said to be M-
noetherian if every strict chain of M-subobjects is finite: if (xn : Xn � X)n∈N and
(mn : Xn � Xn+1) form the commutative diagram

X

X0 X1 · · ·

x0

m0

x1

m1

then only finitely many of the mn’s may not be isomorphisms. Dually, X is E-artinian if
Xop is Eop-noetherian in Cop, that is if every strict cochain of E-quotients of X is finite.
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While Colcombet, Petrişan and Stabile do not give complexity results for their al-
gorithm, it is straightforward to do so, hence we extend their definition so that it also
measures the size of an object in C.

Definition 2.14 (co-E- andM-length). For a fixed x0 : X0 � X, we callM-length of
x0, written lengthM x0, the (possibly infinite) supremum of the length (the number of
pairs of consecutive subobjects) of strict chains of M-subobjects of X that start with
x0. Dually, we call co-E-length of an E-quotient x0 : X � X0 the (possibly infinite)
quantity colengthE x0 = lengthEop x

op
0 .

Example 2.15. In Set, X is finite if and only if it is Inj-noetherian iff it is Surj-artinian,
and in that case for Y ⊆ X we have colengthSurj(X � Y ) = lengthInj(Y � X) =
|X − Y |. Similarly, in KVec X has finite dimension if and only if it is Inj-noetherian
iff it is Surj-artinian, and in that case for Y ⊆ X we have colengthSurj(X � Y ) =
lengthInj(Y � X) = dimX − dimY .

Note that the co-E- andM-lengths need not be equal: see for instance the factor-
ization system we define for monoidal transducers in Section 4.4, for which the co-E-
and -M-length are computed in Lemmas 5.1 and 5.2.

2.3. Learning
In this section, we fix a language L : O → C and a factorization system (E ,M) of C
that extends to Auto(L), and we assume that C has countable copowers of L(in) and
countable powers of L(out) so that Theorem 2.12 applies.

Our goal is to computeMinL with the help of two oracles: EvalL, when queried with
a word w ∈ A∗, outputs L(.w/); while EquivL, when queried with a (C,L(in),L(out))-
automaton A, decides whether A recognizes L, and, if not, outputs a counter-example
w ∈ A∗ such that L(.w/) 6= (A ◦ ι)(.w/).

For (Set, 1, 2)-automata, if the language is regular this problem is solved using An-
gluin’s L* algorithm [1]. It works by maintaining a set of prefixes Q and of suffixes
T and, using EvalL, incrementally building a table L : Q × (A ∪ {ε}) × T → 2 that
represents partial knowledge of L until it can be made into a (minimal) automaton. This
automaton is then submitted to EquivL: if it is accepted it must be MinL, otherwise
the counter-example is added to Q and the algorithm loops over. The FunL* algo-
rithm (Algorithm 1) generalizes this to arbitrary (C,L(in),L(out)), and in particular
also encompasses Vilar’s algorithm for learning (non-monoidal) transducers which was
described in Section 1 [10].

Instead of maintaining a table, it maintains a biautomaton: if Q ⊆ A∗ is prefix-
closed (wa ∈ Q ⇒ w ∈ Q) and T ⊆ A∗ is suffix-closed (aw ∈ T ⇒ w ∈ T ), a
(Q,T )-biautomaton is, similarly to an automaton, a functor A : IQ,T → C, where IQ,T

is now the category freely generated by the diagram

in st1 st2 out
.q

ε

a t/
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where a, q and t respectively range in A, Q and T , and where we also require the
diagrams below to commute, the left one whenever qa ∈ QA and the right one whenever
at ∈ AT .

st1 st2 st2 out

in st1 st1 st2

ε t/

.q

.(qa) a

ε

a

(at)/

A (Q,T )-biautomaton may thus process a prefix in Q and get in a state in A(st1),
follow a transition along A ∪ {ε} to go in A(st2), and output a value for each suffix in
T . The category of biautomata recognizing LQ,T (L restricted to words in QT ∪QAT )
is written AutoQ,T (L). A result similar to Theorem 2.12 also holds for biautomata [10,
Lemma 18], and the initial and final biautomata are then made of finite copowers of
L(in) and finite powers of L(out) (when these exist). Writing Q/T for the (E ,M)-
factorization of the canonical morphism 〈[L(.qt/)]q∈Q〉t∈T :

∐
Q L(in) →

∏
T L(out),

the minimal biautomaton recognizing LQ,T then has state-spaces (MinLQ,T )(st1) =
Q/(T ∪AT ) and (MinLQ,T )(st2) = (Q ∪QA)/T . The table, represented by the mor-
phism 〈[L(.qt/)]q∈Q〉t∈T , may be fully computed using EvalL, and hence so can be the
minimal (Q,T )-biautomaton.

A biautomaton B can then be merged into a hypothesis (C,L(in),L(out))-automaton
precisely when B(ε) is an isomorphism, i.e. both an E- and an M-morphism: this en-
compasses respectively the closure and consistency conditions that need to hold in the
L*-algorithm and its variants for the table that is maitained to be merged into a hy-
pothesis automaton.

Theorem 2.16 ([10, Theorem 26]). Algorithm 1 is correct. If (MinL)(st) is M-
noetherian and E-artinian, the algorithm also terminates.

While Colcombet, Petrişan and Stabile do not give a bound on the actual running
time of their algorithm, it would be straightforward to extend their proof to show that
the number of updates to Q and T (hence in particular of calls to EquivL) is linear in
the size of (MinL)(st) (itself defined through Definition 2.14).

3. An algorithm for minimizing (C, X, Y )-automata
We now fix a (C, X, Y )-language L and a factorization system (E ,M) of C, and assume
that C has all the countable copowers of L(in) and all the countable powers of L(out) so
that Theorem 2.12 applies and Auto(L) has initial and final objects Ainit and Afinal.

While Colcombet, Petrişan and Stabile’s framework provide a generic algorithm
for learning MinL (which we recalled in Section 2.3), it does not give a minimization
algorithm, that is a way to compute MinL given another automaton A recognizing L:
Proposition 2.10 only hints that MinL can be computed in two steps, by first computing
Reach and then Obs (or conversely).
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Algorithm 1 The FunL*-algorithm
Input: EvalL and EquivL
Output: Min(L)

1: Q = T = {ε}
2: loop
3: while εmin

Q,T is not an isomorphism do
4: if εmin

Q,T is not an E-morphism then
5: find qa ∈ QA such that Q/T � (Q ∪ {qa})/T is not an E-morphism
6: add qa to Q
7: else if εmin

Q,T is not anM-morphism then
8: find at ∈ AT such that Q/(T ∪ {at}) � Q/T is not anM-morphism
9: add at to T

10: end if
11: end while
12: merge MinLQ,T into HQ,TL
13: if EquivL(HQ,TL) outputs some counter-example w then
14: add w and its prefixes to Q
15: else
16: return HQ,TL
17: end if
18: end loop

In this section we thus describe such an algorithm, and reuse the notations and
arguments they used for their learning algorithm, making some of their key lemmas
more explicit in our proofs. In Section 3.1 we give a basic version of the algorithm that
does not require any more assumptions than those of the framework of Section 2. In
Section 3.2 we show how it can be further detailed given some additional assumptions
on the output category and the factorization system. Finally, in Section 3.3 we show
how our algorithm precisely encompasses several well-known algorithms for minimizing
different kinds of automata.

3.1. The basic algorithm
Let thus A be a (C, X, Y )-automaton recognizing L. Since I is self-dual, this automa-
ton is entirely described by the dual (Cop, Xop, Y op)-automaton Aop : I → Cop. But
(Mop, Eop) is a factorization system in Cop and the dual of the initial object in C is the
final object in Cop, hence

Lemma 3.1 ([23, Remark 2.5]). The dual of the (E ,M)-factorization ObsA in Auto(L)
is the (Mop, Eop)-factorization ReachAop in Auto(Lop).

Remark 3.2. Note that Lemma 3.1 does not mean that, for a fixed category C along
with a factorization system (E ,M) and the two objects X and Y , having an algorithm
that computes the (E ,M)-factorization Reach for (C, X, Y )-automata is equivalent to
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having one that computes the (E ,M)-factorization Obs for (C, X, Y )-automata as well.
Indeed, Cop and C itself may differ greatly, and even if C were self-dual (hence C = Cop),
E and Mop or X and Y op could still differ, meaning that computing the (E ,M)- and
(Mop, Eop)-factorizations would not necessarily be equivalent. For instance, Rel is self-
dual but, as Example 3.13 shows, ReachA may be computed for automata A : I → Rel
while ObsA may not.

What this result says however is that getting a generic algorithm that computes
Obs (one that is parametric in C) is thus equivalent to getting one that computes Reach:
we focus on the latter.

Definition 3.3. Given a set Q ⊆ A∗, write eQ :
∐

Q L(in) � Q/A(st) and mQ :
Q/A(st) � A(st) for the factorization of the arrow [A(.q)]q∈Q :

∐
Q L(in) → A(st)

in C.

Notice how for Q = A∗ we get by Theorem 2.12 that A∗/A(st) = (ReachA)(st),
which is exactly the object we want to compute (along with its embedding into A(st),
given by mA∗). But we also want to compute the transition arrows on this object:

Lemma 3.4. (similar to [10, Lemma 31]) For any w ∈ A∗ and Q′ ⊆ A∗ such that
Qw = {qw | q ∈ Q} ⊆ Q′, there is a unique morphism κQ

′

Q·w

/
A(w) : Q/A(st) →

Q′/A(st) making the two squares in the diagram below commute. Moreover, if uv = w

and Qw ⊆ Q′v ⊆ Q′′, then κQ
′′

Q′·v

/
A(v) ◦ κQ

′

Q·u

/
A(u) = κQ

′′

Q·w

/
A(w) .

∐
Q′ L(in) Q′/A(st) A(st)

∐
Q L(in) Q/A(st) A(st)

eQ′ mQ′

κQ′
Q·w=

∐
q∈Q κqw

eQ mQ

κQ′
Q·w

/
A(w) A(w)

We fix the notation κQ
′

Q·w

/
A(w) for the canonical morphisms of Lemma 3.4, and

simply write κQ
′

Q

/
A(st) = κQ

′

Q·ε

/
A(ε) when w is the empty word. In particular, we

have that (ReachA)(a) = κA
∗

A∗·a
/
A(a) .

Of course, we can’t just compute A∗/A(st) and its associated morphisms as a
factorization of the morphism from

∐
A∗ A(in), as this coproduct is infinite: in Set with

A(in) = 1, it corresponds to the set A∗ itself. Instead our strategy will be to find some
finite subset Q that describes ReachA entirely, i.e. such that we have an isomorphism
κA

∗
Q

/
A(st) : Q/A(st) ∼= A∗/A(st) : for classical automata this isomorphism means

exactly that the Q-reachable states — those that are reachable from the initial state by
following transitions corresponding to words in Q — are precisely the reachable states.

Informally, to find such a subset we start with Q = ∅ and add words to it until the
κ
Q∪{qa}
Q

/
A(st) are isomorphisms for all q ∈ Q and a ∈ A: in Set this means following

the transitions until we cannot reach an unvisited state from a state we have previously
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visited. We show that if these morphisms are all isomorphisms then so is κQ∪QA
Q

/
A(st)

and then that so is κA
∗

Q

/
A(st) .

Finally, notice that if Q ⊆ Q′ then κQ
′

Q

/
A(st) is already an M-morphism (by [8,

Proposition 14.9(1)], because A(ε) = id is an M-morphism): in Set, the Q-reachable
states are in particular Q′-reachable. Hence to check that κ

Q∪{qa}
Q

/
A(st) is an isomor-

phism we only really need to check that it is an E-morphism (since E ∩M is exactly the
class of isomorphisms): in Set, that the set of Q-reachable states surjects onto the set of
(Q∪{qa})-reachable states, i.e. that the state reached when following qa is Q-reachable
and has already been visited.

In practice, this procedure leads to Algorithm 2 where the partition of A on line 6
is always chosen to be the partition into singletons.

Algorithm 2 A categorical algorithm for computing Reach

Input: an automaton A : I → C
Output: ReachA

1: set todo← {{ε}}
2: set Qdone ← ∅
3: while there is a Q ∈ todo do
4: remove Q from todo

5: if κQdonetQ
Qdone

/
A(st) : Qdone/A(st) � Qdone tQ/A(st) is not an E-morphism

then
6: choose a partition P of A and set todo← todo t {QÃ | Ã ∈ P}
7: set Qdone ← Qdone tQ
8: end if
9: end while

10: return the automaton

A(in) Qdone/A(st) A(out)eQdone
◦κε A(/)◦mQdone

(
κ
Qdone∪Qdonea

Qdone

/
A(st)

)−1
◦κQdone∪Qdonea

Qdone·a

/
A(a)

Remark 3.5. Note that the order in which the elements of the to-do list are treated
in Algorithm 2 does not have any impact on the correctness and complexity results.
In practice, for some arbitrary Q ⊆ A∗ it may also be more efficient to compute
(Qdone ∪Qa)/A(st) in a batch instead of computing each (Qdone ∪ {qa})/A(st) for
q ∈ Q separately: this happens for instance in Example 3.14. Hence why we allow
choosing a partition of A on line 6: splitting A into anything coarser than singletons
means filling the to-do list with sets of words that contain more than just one word.
Theorem 3.6. If A(st) is M-noetherian, Algorithm 2 is correct, terminates, and the
condition on line 5 is satisfied at most lengthM (m∅ : ∅/A(st) � A(st)) times.
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3.2. Computing the factorizations incrementally
A shortcoming of Algorithm 2 is that it does not give us a generic way to compute
the intermediate factorizations Q/A(st) incrementally: in Set, it does not tell us that
the set of (Q ∪ {qa})-reachable states can be computed by finding the state reached by
following q, following an additional a-transition, and adding the resulting state to the
set of Q-reachable states. Fortunately, this can also be expressed categorically, although
with an additional assumption on the output category C.

Lemma 3.7. For every Q,Q′ ⊆ A∗, if the coproduct Q/A(st) + Q′/A(st) exists,
[mQ,mQ′ ] : Q/A(st) + Q′/A(st) → A(st) (E ,M)-factors into

mQtQ′◦
[
κQtQ′

Q

/
A(st) , κQtQ′

Q′

/
A(st)

]
: Q/A(st)+Q′/A(st) � (Q tQ′)

/
A(st) � A(st)

Lemma 3.8. For every Q ⊆ A∗, A(a) ◦mQ (E ,M)-factors into mQa ◦ κQa
Q·a

/
A(st) :

Q/A(st) � Qa/A(st) � A(st).

When the binary coproducts of the Q/A(st) exist, Algorithm 2 may thus be de-
tailed into Algorithm 3. Notice how instead a keeping track of a set of words we have
already considered and a set of words that we have to consider next (Qdone and Qtodo in
Algorithm 2), we now only directly keep track of the subobjects corresponding to these
words: mQdone

: Qdone/A(st) → A(st) is the already-visited subobject of A(st), while
each (mQ, Ã) in the to-do list corresponds to a subobject mQ of A(st) along with a sub-
set of transitions from this subobject that we have to consider next. We also keep track
of eQdone

◦ κε, which represents the initial transition into the already-visited subobject
mQdone

.

Corollary 3.9. Assume that for every finite Q,Q′ ⊆ A∗, the coproduct Q/A(st) +
Q′/A(st) exists.

Then, if A(st) is M-noetherian, Algorithm 3 is correct, terminates, and the condi-
tion on line 12 is satisfied at most lengthM(mε : {ε}/A(st) � A(st)) times.

Algorithm 3 is already much closer than Algorithm 2 to the algorithm that computes
the reachable states of a classical automata, but there is still a procedure that could be
further detailed: on line 12, Algorithm 3 only asks us to check whether κQdonetQÃ

Qdone

/
A(st)

is an E-morphism, that is whether the set of Qdone-reachable states surjects onto that of
(Qdone tQÃ)-reachable states, but it does not tell us that to check this it is enough to
just check whether the QÃ-reachable states had already been visited. Again, this can
be expressed categorically with an additional assumption on the factorization system
(E ,M).

Lemma 3.10. If κQtQ′

Q

/
A(st) : Q/A(st) � (Q tQ′)/A(st) is an isomorphism then

mQ′ = mQ ◦
(
κQtQ′

Q

/
A(st)

)−1
◦ κQtQ′

Q′

/
A(st)
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Algorithm 3 A detailed version of Algorithm 2
Input: an automaton A : I → C
Output: ReachA

1: compute e{ε} : A(in) � {ε}/A(st) and m{ε} : {ε}/A(st) � A(st)
2: choose a partition P of A and set todo← {(mε, Ã) | Ã ∈ P}
3: set mQdone

← m{ε}
4: set eQdone

◦ κε ← e{ε}
5: while there is a pair (mQ, Ã) ∈ todo do
6: remove (mQ, Ã) from todo
7: for a ∈ Ã do
8: compute mQa : Qa/A(st) � A(st) by factoring A(a) ◦mQ as in Lemma 3.8
9: end for

10: compute mQÃ : QÃ
/
A(st) � A(st) by factoring [mQa]a∈Ã as in Lemma 3.7

11: compute κQdonetQÃ
Qdone

/
A(st) : Qdone/A(st) �

(
Qdone tQÃ

)/
A(st) and

mQdonetQÃ :
(
Qdone tQÃ

)/
A(st) � A(st) by factoring [mQdone

,mQÃ] as
in Lemma 3.7

12: if κQdonetQÃ
Qdone

/
A(st) is not an E-morphism then

13: choose a partition P of A and set todo← todo t {(mQÃ, Ã
′) | Ã′ ∈ P}

14: set mQdone
← mQtQÃ

15: set eQdone
◦ κε ← κQdonetQÃ

Qdone

/
A(st) ◦ eQdone

◦ κε : A(in)→
(
Q tQÃ

)/
A(st)

16: end if
17: end while
18: return the automaton

A(in) Qdone/A(st) A(out)eQdone
◦κε A(/)◦mQdone

(
κ
Qdone∪Qdonea

Qdone

/
A(st)

)−1
◦κQdone∪Qdonea

Qdonea

/
A(st)◦κQdonea

Qdone·a

/
A(a)

with κQdonea
Qdone·a

/
A(a) : Qdone/A(st) � Qdonea/A(st) computed by factoring

A(a) ◦mQdone
as in Lemma 3.8
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Conversely, in the context of Lemma 3.7, assume also that all split epimorphisms
are in E (if e ◦ s = id for some e, s then e ∈ E). If mQ′ factors as mQ ◦ f for some
f : Q/A(st) → (Q tQ′)/A(st) then κQtQ′

Q

/
A(st) is an isomorphism.

Corollary 3.11. When E contains all split epimorphisms, it is enough to check on
line 12 of Algorithm 3 that mQÃ : QÃ

/
A(st) � A(st) doesn’t factor through mQdone

:

Qdone/A(st) � A(st). In particular, line 11 can be moved inside the if statement on
line 12.

3.3. Examples
Example 3.12 (Graph traversal). Fix a (Set, 1, 2)-automaton A with finite state-set.
Since Set is cocomplete and E = Surj is exactly the class of split epimorphisms (sur-
jections are exactly those functions that have a right-inverse), we may use Algorithm 3
(by Corollary 3.9) with the partitions of A chosen to be the partition into singletons,
along with the optimization of Corollary 3.11: the condition on line 12 is then satisfied
at most as many times as there are states in A.

The resulting algorithm is exactly the standard graph traversal algorithm for com-
puting the reachable states of an automaton, as described for instance in in [24, Exer-
cise 1.18]: an M-subobject mQ : Q/A(st) � A(st) is indeed a subset of the states
of the automaton. The algorithm thus keeps track of a subset of already visited states,
mQdone

, and a to-do list of states and transitions to consider next (the factorization of
a morphism 1→ A(st) yields a singleton). The algorithm then goes through the to-do
list: for a given pair of a state and a transition (m{q}, a) that needs to be considered,
it computes the successor of the state along the transition (yielding m{qa}). It then
checks whether this new state already belongs to the subset of already visited states
by checking whether m{qa} factors through mQdone

: when this is not the case, m{qa} is
added to the subset of already visited states as well as to the to-do list, once for every
transition. κ

Qdonet{qa}
Qdone

/
A(st) is the inclusion of the old subset of already visited states

into the new one, and helps us keep track of which state was the initial state. Once the
to-do list is empty, the algorithm returns the automaton with set of states the subset of
states that were visited, and inherits its initial and final states as well as its transition
functions from those of A.

Example 3.13 (Graph traversal for non-deterministic automata). As explained in Ex-
ample 2.11, the factorization system (Surj,Det ∩ Inj) on Rel described in Example 2.7
does not produce an interesting notion of minimal automata. But while there is indeed
no unique way to merge the non-distinguishable states of a non-deterministic automaton,
it is still possible to compute its set of reachable states.

This is encompassed by this factorization system: given a (Rel, 1, 1)-automaton A,
Reach(Surj,Det∩Inj)A is the restriction of A to its reachable states. SinceRel has arbitrary
coproducts, ReachA may be computed using Algorithm 3 (by Corollary 3.9) with the
partitions of A chosen to be the partition into singletons, along with the optimization
of Corollary 3.11 (as the split epimorphisms in Rel are exactly the graphs of the partial
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surjective functions, i.e. relations r ⊆ X × Y for which there is a surjective function
f : X ′ → Y with codomain some subset X ′ ⊆ X such that (x, y) ∈ r ⇐⇒ y = f(x)):
the condition on line 12 would then be satisfied at most as many times as there are states
in A.

The resulting algorithm is very similar to the one of Example 3.12 for complete de-
terministic automata, which is also the standard algorithm for computing the reachable
states of a non-deterministic automaton. The only difference is that the successors of
a state along the transitions labeled by a specific letter are not added as separate sub-
objects in the to-do list, but only as part of the same subobject. Hence if one of these
successors has not been visited yet, the whole subobject of these successors is considered
not yet visited: this may bring a lot of redundancy if all the other successors had already
been visited.

Example 3.14 (Moore’s algorithm). Fix a (Set, 1, 2)-automaton A with finite state-
set. Since Set is complete and M = Inj is exactly the class of split monomorphisms
(injections are exactly those functions that have a right-inverse), we may use the dual
of Algorithm 3 (by the dual of Corollary 3.9) with the partitions of A chosen to be the
trivial partition P = {A}, along with the optimization of Corollary 3.11: the dual of the
condition on line 12 is then satisfied at most as many times as there are states in A.

The resulting algorithm is similar to Moore’s algorithm [22], a standard algorithm for
merging the equivalent states of an automaton: an E-quotient of eT : A(st) � T/A(st)
is indeed exactly a partition of the states of the automaton into equivalence classes, two
states being equivalent if they accept the same subset of words of T . The algorithm
thus keeps track of two such a partitions eA≤n and eAn , starting with n = 0 which just
means that the states are split depending on whether they are final or not. eA≤n is the
tentative partition that gets refined as n grows and more words are taken into account to
distinguish the states, while eAn is used to compute the next refinement of this tentative
partition: computing eaAn by factoring eAn ◦ A(a) really means distinguish states when
their transitions along the letter a do not fall into the same partition of eAn . Merging
the refinements in the tentative partition is then done by computing eA≤n+1 through
the factorization of 〈eA≤n , eAn+1〉, which means computing the intersection of every two
equivalence class of eA≤n and eAn+1 and only keeping those that are not empty. In
particular, if eAn+1 factors through eA≤n then eA≤n is already a refinement of eAn+1 and
the algorithm can stop, outputting the automaton with state-set the equivalence classes
of eA≤n and initial and final states as well as transition functions inherited from those
of A.

Note that the usual presentation of Moore’s algorithm would have the next re-
finement of the tentative partition be computed by pulling eA≤n instead of eAn along
transitions, but the resulting refinement would be the same. Still, this point of view
could be probably be accomodated in our framework with a result similar to Lemma 3.7
but with pushouts instead of coproducts.

Hopcroft’s algorithm [18], the other standard partition refinement algorithm for
merging non-distinguishable states, could on the contrary probably not be accomodated
in a very generic way, because it relies heavily on specificities of Set, namely that
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A(out) = 2 and the possibility to compute cardinals of objects.

Example 3.15 (Minimization of weighted automata). Given a fieldK, fix a (KVec,K,K)-
automaton A with finite-dimensional state-space. Since KVec is cocomplete and E =
Surj is exactly the class of split epimorphisms (linear surjections are exactly those func-
tions that have a right-inverse), we may use Algorithm 3 (by Corollary 3.9) along with
the optimization of Corollary 3.11: the condition on line 12 is then satisfied at most
dimA(st) times.

The resulting algorithm computes ReachA, i.e. an automaton whose configurations
are exactly those that are reachable in A: v ∈ (ReachA)(st) if and only if there are
λ1, . . . , λk ∈ K and w1, . . . , wk ∈ A∗ such that v =

∑k
i=1 λiA(.w). An M-subobject

of A(st) is a subvector space of A(st) or equivalently a set of independant vectors of
A(st). The algorithm thus maintains mQdone

: Q/A(st) → A(st), a set of independant
vectors of A(st) that form a basis of the vector space of configurations that have already
been visited, as well as a to-do list of pairs of a vector m{q} : {q}/A(st) → A(st)
(the factorization of a morphism K → A(st) has dimension lesser or equal to 1) and
a letter a that are to be considered next. When considering (m{q}, a), the algorithm
first computes the successor vector m{qa} along a by applying the matrix A(a) and
then checks whether m{qa} factors through mQdone

hence solves a linear system to check
whether the vector m{qa} is a linear combination of those generating mQdone

. If this
is not the case, (m{qa}, a

′) is added to the to-do list for each a′ ∈ A and m{qa} is
added to the basis of mQdone

to form the basis of mQdonet{qa}. Once the to-do list is
empty, the algorithm returns the automaton with state-space Qdone/A(st) whose initial
configuration, transition functions and final values are inherited from those of A through
a change of basis.

Since the algorithm terminates, it only considers finite subsets Q of A∗ and thus only
manipulates finite-dimensional vector spaces. We may therefore as well consider that all
of its computations take place in the category of finite-dimensional vector spaces. But
the functor that sends a vector space to its dual and a linear map to its transpose is
an isomorphism between this category and its dual which sends K on itself and swaps
Surj and Inj. We are thus in the very special case mentioned in Remark 3.2 where the
algorithm that computes the transpose of ObsA is exactly the one that computes Reach
as described above, but applied to the transpose of A.

4. The category of monoidal transducers
We now study a specific family of transition systems, monoidal transducers, through the
lens of category theory, so as to be able to apply the framework of Section 2 as well as
the generic minimization algorithm we extended it with in Section 3. In Section 4.1,
we first rapidly recall the notion of monoid. We then define the category of monoidal
transducers recognizing a function in Section 4.2, and study how it fits into the framework
of Sections 2 and 3: the initial transducer is given in Corollary 4.11, conditions for the
existence of the final transducer are described in Section 4.3, and factorization systems
are tackled in Section 4.4.

19



4.1. Monoids
Let us first recall definitions relating to monoids, and fix some notations. Most of these
are standard in the monoid literature, only coprime-cancellativity (Definition 4.4) and
noetherianity (Definition 4.5) are uncommon.

Definition 4.1 (monoid). A monoid (M, εM ,⊗M ) is a set M equipped with a binary
operation ⊗M (often called the product) that is associative (∀u, v, w ∈ M,u ⊗M (v ⊗M

w) = (u⊗M v)⊗M w) and has εM as unit element (∀u ∈M,u⊗M εM = εM ⊗M u = u).
When non-ambiguous, it is simply written (M, ε,⊗) or even M , and the symbol for the
binary operation may be omitted.

The dual of (M, ε,⊗), written (Mop, εop,⊗op), has underlying set Mop = M and
identity εop = ε, but symmetric binary operation : ∀u, v ∈M,u⊗op v = v ⊗ u.

The dual of a monoid is mainly used here for the sake of conciseness : whenever
we define some “left-property”, the corresponding “right-property” is defined as the left-
property but in the dual monoid. Note that when M is commutative it is its own dual
and the left- and right-properties coincide.

Definition 4.2 (invertibility). An element x of a monoid M is right-invertible when
there is a y ∈ M such that xy = ε, and y is then called the right-inverse of x. It is
left-invertible when it is right-invertible in Mop, and the corresponding right-inverse is
called its left-inverse. When x is both right- and left-invertible, we say it is invertible.
In that case its right- and left-inverse are equal: this defines its inverse, written x−1.
The set of invertible elements of M is written M×.

Two families (ui)i∈I and (vi)i∈I indexed by some non-empty set I are equal up to
invertibles on the left when there is some invertible x ∈M such that ∀i ∈ I, ui = xvi.

Definition 4.3 (divisibility). An element u of a monoid M left-divides a family w =
(wi)i∈I of M indexed by some set I when there is a family (vi)i∈I such that ∀i ∈ I, uvi =
wi, and we say that u is a left-divisor of w. It right-divides it when it left-divides it in
Mop, and in that case u is called a right-divisor of w.

A greatest common left-divisor (or left-gcd) of the family w is a left-divisor of w that
is left-divided by all others left-divisors of w.

A family w is said to be left-coprime when it has ε as a left-gcd, i.e. when all its
left-divisors (or equivalently one of its left-gcds, if there is one) are right-invertible.

We speak of greatest common left-divisors because, while there may be many such
elements for a fixed family ω, they all left-divide one another and are thus equivalent in
some sense.

Definition 4.4 (cancellativity). A monoid M is said to be left-cancellative when for
any families (ui)i∈I and (vi)i∈I of M indexed by some set I and for any w ∈ M , u = v
as soon as wui = wvi for all i ∈ I. If this only implies ui = xvi for some x ∈ M×, we
instead say that M is left-cancellative up to invertibles on the left.

Similarly, M is said to be right-coprime-cancellative when for any u, v ∈M and any
left-coprime family (wi)i∈I indexed by some set I, u = v as soon as uwi = vwi for all
i ∈ I.
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Definition 4.5 (noetherianity). A monoidM is right-noetherian when for any sequences
(un)n∈N and (vn)n∈N of M such that vn = vn+1un for all n ∈ N, there is some n ∈ N
such that un is invertible.

In this case, we write rk v for the rank of v, the (possibly infinite) supremum of
the numbers of non-invertibles in a sequence (un)n∈N that satisfies vn = vn+1un for a
sequence (vn)n∈N with v0 = v.

In other words, a monoid is right-noetherian when it has no strict infinite chains
of right-divisors (in the definition above, each un · · ·u0 right-divides v0). Note that
rk(uv) ≤ rku+ rk v, and rk : M → N, and if this is an equality M is said to be graded.

Noetherianity will be used to ensure that fixed-point algorithms terminate, hence we
will often assume that the monoids we work with satisfy some noetherianity properties.
We therefore state two additional lemmas making it easier to work with noetherian
monoids. They both assume M to be right-noetherian but the dual results also stand.

Lemma 4.6. M is right-noetherian if and only if for any sequences (un)n∈N and (vn)n∈N
of M such that vn = vn+1un for all n ∈ N, there is some n ∈ N such that for all i ≥ n,
ui is invertible.

Lemma 4.7. If M is right-noetherian then all its right- and left-invertibles are invertible.

Example 4.8. The canonical example of a monoid is the free monoid A∗ over an alpha-
bet A, whose elements are words with letters in A, whose product is the concatenation
of words and whose unit is the empty word. Notice that the alphabet A may be infinite.
The left-divisibility relation is the prefix one, and the left-gcd is the longest common
prefix.

The free commutative monoid A~ over A has elements the functions A → N with
finite support, product (f ⊗ g)(a) = f(a) + g(a) and unit the zero function a 7→ 0.
It is commutative (f ⊗ g = g ⊗ f) hence is its own dual : the divisibility relation is
the pointwise order inherited from N and the greatest common divisor is the pointwise
infimum.

These two monoids are examples of trace monoids over some A, defined as quotients
of A∗ by commutativity relations on letters (for A~, all the pairs of letters are required to
commute, and forA∗ none are). Trace monoids have no non-trivial right- or left-invertible
elements, are all left-cancellative, right-coprime-cancellative and right-noetherian, and
the rank of a word is simply its number of letters.

Another family of examples is that of groups, monoids where all elements are in-
vertible. Again, all groups are left-cancellative, right-coprime-cancellative and right-
noetherian.

A final monoid of interest is (E,∨,⊥) for E any join-semilattice with a bottom
element ⊥. In this commutative monoid, the divisibility relation is the partial order on
E, and the gcd, when it exists, is the infimum. This example shows that a monoid can
be coprime-cancellative without being cancellative nor noetherian: this is for instance
the case when E = R+.
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4.2. Monoidal transducers as functors
In the rest of this paper we fix a countable input alphabet A and an output monoid
(M, ε,⊗). To differentiate between elements of A∗ and elements of M , we write the for-
mer with Latin letters (a, b, c, . . . for letters and u, v, w, . . . for words) and the latter with
Greek letters (α, β, γ, . . . for generating elements and υ, ν, ω, . . . for general elements).
In particular the empty word over A is denoted e while the unit of M is still written ε.

We write TM for the monad on Set given by TMX = M ×X + 1 = (M ×X)t {⊥}
(in Haskell, this monad is the composite of the Maybe monad and a Writer monad). Its
unit η : Id⇒ TM is given by ηX(x) = (ε, x) and its multiplication µ : T 2

M ⇒ TM is given
by µX((υ, (ν, x))) = (νυ, x), µX((υ,⊥)) = ⊥ and µX(⊥) = ⊥. Recall that the Kleisli
category Kl(TM ) for the monad TM has objects the sets and arrows X Y (notice
the different symbol) those functions f † : TMX → TMY such that f †(⊥) = ⊥, f †(υ, x) =
(υν, y) when f †(ε, x) = (ν, y) and f †(υ, x) = ⊥ when f(ε, x) = ⊥: in particular, such an
arrow is entirely determined by its restriction f : X → TMY , and we will freely switch
between these two points of view for the sake of conciseness. The identity on X is then
given by the identity function idTMX = η†X : TMX → TMX, and the composition of
two arrows X Y Z is given by the composition of the underlying functions
TMX → TMY → TMZ.

We now have all the ingredients to define our main object of study, monoidal trans-
ducers.

Definition 4.9 (monoidal transducer). The category TransM of M -transducers is the
category of (Kl(TM ), 1, 1)-automata from Definition 2.1. An M -transducer (or monoidal
transducer over M , or simply transducer) is thus a functor A : I → Kl(TM ) with
A(in) = A(out) = 1, and a morphism of transducers is a natural transformation be-
tween the corresponding functors whose restriction to O is the identity. Similarly given
a (Kl(TM ), 1, 1)-language L, TransM (L) is the category of monoidal transducers recog-
nizing L.

In practice, a monoidal transducer A is thus a tuple (S, (υ0, s0), t, (−�a)a∈A) where:

• S is the state-set;

• (υ0, s0) = A(.) ∈ M × S + 1 is the (possibly undefined) pair of the initialization
value and initial state;

• t = A(/) : S →M + 1 is the partial termination function;

• s � a = A(a)(s) ∈ M × S + 1 may be undefined, and we write − · a : S → S + 1
for the second component of − � a, the partial transition function along a, and
−# a : S →M +1 for its first component, the partial production function along a

Similarly, the language L = A ◦ ι recognized by this monoidal transducer is thus
a function L : A∗ → M + 1 given by L(a1 · · · an) = t†((υ0, s0) �† a1 �† · · · �† an), and
a morphism between two transducers (S1, (υ1, s1), t1,�1) and (S2, (υ2, s2), t2,�2) is a
function f : S1 → M × S2 + 1 such that f †(υ1, s1) = (υ2, s2), t1(s) = t†2(f(s)) and
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f †(s� a) = f †(s)�† a. We say that this function is subsequential when it is recognized
by a transducer with finite state-space.

Example 4.10. Figure 2 is a graphical representation of a monoidal transducer that
takes its input in the alphabet A = {a, b} and has output in any monoid that is a quotient
of Σ∗, with Σ = {α, β}. Formally, it is given by S = {1, 2, 3, 4}; (υ0, s0) = (ε, 1); t(1) = α,
t(2) = ⊥, t(3) = α and t(4) = ε; and finally 1� a = (ε, 2), 1� b = (β, 3), 3� b = (β, 3)
as well as s � c = ⊥ for any other s ∈ S and c ∈ A. This transducer recognizes
the function given by L(bn) = βnα (seen in the corresponding quotient monoid, so for
instance L(bn) = αβn when M = Σ~) for all n ∈ N and L(w) = ⊥ otherwise.

1 2

3

4

ϵ a : ϵ

α
b : β

ϵ

α

b : β

Figure 2: A monoidal transducer A

When M = B∗ for some alphabet B, M -transducers coincide with the classical
notion of transducers and the minimal transducer is given by Definition 2.9 [9, 23]. To
study the notion of minimal monoidal transducer, it is thus natural to try to follow this
framework as well.

4.3. The initial and final monoidal transducers recognizing a function
To apply the framework of Sections 2 and 3 to (Kl(TM ), 1, 1)-automata, we need three
ingredients in Kl(TM ) : countable copowers of 1, countable powers of 1, and a factor-
ization system.

We start with the first ingredient, countable copowers of 1. Since Set has arbitrary
coproducts, Kl(TM ) has arbitrary coproducts as well as any Kleisli category for a monad
over a category with coproducts does [26]. Hence Theorem 2.12 applies:

Corollary 4.11 (initial transducer). For any (Kl(TM ), 1, 1)-language L, TransM (L)
has an initial object Ainit(L) with state-set Sinit = A∗, initial state sinit0 = e, initialization
value υinit0 = ε, termination function tinit(w) = L(.w/)(∗) and transition function w�init

a = (ε, wa). Given any other transducer A = (S, (υ0, s0), t,�) recognizing L, the unique
transducer morphism f : Ainit(L) =⇒ A is given by the function f : A∗ → M × S + 1
such that f(w) = A(.w)(∗) = (υ0, s0)�† w.

Similarly, to get a final transducer in TransM (L) for some L, Theorem 2.12 tells
us that it is enough for Kl(TM ) to have all countable powers of 1. This is in particular
what happens for classical transducers, when M is a free monoid [23]. Hence we study
the properties of a monoid M such that Kl(TM ) has these powers.
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To this means, given a countable set I we consider partial functions Λ : I →M +1.
We write ⊥I for the nowhere defined function i 7→ ⊥ and (M + 1)I∗ = (M + 1)I − {⊥I}
for the set of partial functions that are defined somewhere. If I ⊆ J , (M +1)I∗ may thus
be identified with the subset of partial functions of (M+1)J∗ that are undefined on J−I.
We extend the product ⊗ : M2 → M of M to a function M × (M + 1)I∗ → (M + 1)I∗
by setting (υ ⊗ Λ)(i) = υ ⊗ Λ(i) for i ∈ I such that Λ(i) 6= ⊥ and (υ ⊗ Λ)(i) = ⊥
otherwise.The universal property of the product then translates as:

Proposition 4.12. The following are equivalent:

(1) Kl(TM ) has all countable powers of 1;

(2) there are two functions lgcd : (M +1)N∗ →M and red : (M +1)N∗ → (M +1)N∗ such
that

a) for all Λ ∈ (M + 1)N∗ , Λ = lgcd(Λ) red(Λ);
b) for all Γ,Λ ∈ (M + 1)N∗ and υ, ν ∈M , if υ red(Γ) = ν red(Λ) then υ = ν and

redΓ = redΛ;

(3) Kl(TM ) has all countable products.

Moreover when these hold, since any countable set I embeds into N, lgcd and red
can be extended to (M + 1)I∗. lgcdΛ is then a left-gcd of (Λ(i))i|Λ(i)6=⊥ and the product
of (Xi)i∈I for some I ⊆ N is the set of pairs (Λ, (xi)i∈I) such that Λ ∈ red((M + 1)I∗)
and, for all i ∈ I, xi ∈ Xi if Λ(i) 6= ⊥ and xi = ⊥ otherwise. In particular, the I-th
power of 1 is the set of irreducible partial functions I →M + 1:∏

I

1 = Irr(I,M) = {redΛ ∈ (M + 1)I∗ | Λ ∈ (M + 1)I∗}

We also write lgcd(⊥N) = ⊥, red(⊥N) = ⊥N = ⊥ and do not distinguish between
(⊥,⊥) and ⊥. Also note that:

Lemma 4.13. Conditions (2)a and (2)b are equivalent to saying that

(4) a) 〈lgcd, red〉 is injective;
b) for all Λ ∈ (M + 1)N∗ , lgcd(redΛ) = ε and red(redΛ) = redΛ;
c) for all Λ ∈ (M+1)N∗ and υ ∈M , lgcd(υΛ) = υ lgcd(Λ) and red(υΛ) = red(Λ).

Corollary 4.14. When the functions lgcd and red exist, the final transducer Afinal(L)
recognizing a (Kl(TM ), 1, 1)-language L exists and has state-set Sfinal = Irr(A∗,M),
initial state sfinal0 = redL, initialization value υfinal0 = lgcdL, termination function
tfinal(Λ) = Λ(e) and transition function Λ�final a = (lgcd(a−1Λ), red(a−1Λ)) where we
write (a−1Λ)(w) = Λ(aw) for a ∈ A. Given any other transducer A = (S, (υ0, s0), t,�)
recognizing L, the unique transducer morphism f : A =⇒ Afinal(L) is given by the func-
tion f : S →M × Irr(A∗,M) + 1 such that f(s) = (lgcdLs, redLs) where Ls(.w/)(∗) =
A(w/)(s) is the function recognized by A from the state s.
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In practice we will assume thatM is right-noetherian to ensure algorithms terminate.
It is thus interesting to see what the existence of the powers of 1 implies in this specific
case (and in particular, by Lemma 4.7, when M is such that all right- and left-invertibles
are invertibles).

Lemma 4.15. If right- and left-invertibles of M are all invertibles and if Kl(TM ) has
all countable powers of 1 then M is both left-cancellative up to invertibles on the left
and right-coprime-cancellative, and all non-empty countable families of M have a unique
left-gcd up to invertibles on the right.

And conversely, these conditions on M are enough for Kl(TM ) to have all countable
powers of 1 (even when M is not noetherian), while being easier to show than properly
defining the two functions lgcd and red.

Lemma 4.16. If M is both left-cancellative up to invertibles on the left and right-
coprime-cancellative, and all non-empty countable subsets of M have a unique left-gcd
up to invertibles on the right, then Kl(TM ) has all countable powers of 1.

Example 4.17. WhenM is a group it is cancellative (because all elements are invertible)
and all countable families have a unique left-gcd up to invertibles on the right (ε itself)
hence Lemma 4.16 applies and TransM (L) always has a final object.

The same is true when M is a trace monoid (the left-gcd then being the longest
common prefix, whose existence is guaranteed by [13, Proposition 1.3]).

Conversely, the monoids given by join semi-lattices are not left-cancellative up to
invertibles in general. In R+ for instance, there are ways to define the functions lgcd and
red but they may not satisfy condition (4)c, more precisely that red(υΛ) = redΛ. This
is expected, as there may be several non-isomorphic ways to minimize automata with
outputs in these monoids, which is incompatible with the framework of Definition 2.9.

Proposition 4.12 is reminiscent of a very similar sufficient condition on a semi-ring
for deterministic weighted automata to be minimizable in a unique way [15], namely
that only an analogue of the red function should exist. The minimal transducer could
then again be obtained as the factorization of the unique arrow Ainit(L) → Afinal(L),
except Afinal(L) would not be final anymore but only weakly final (for any transducer
A recognizing L there would be an arrow A → Afinal(L) but it would not need to be
unique), hence our framework would not entail its unicity. However, as further discussed
in Section 5.2, these weaker conditions do not really lead to a proper minimization
algorithm.

Lemma 4.16 provides sufficient conditions that are reminiscent of those developed
in [17] for the minimization of monoidal transducers. These conditions are stronger
than ours but still similar: the output monoid is assumed to be both left- and right-
cancellative, which in particular implies the unicity up to invertibles on the right of the
left-gcd whose existence is also assumed. They do only require the existence of left-gcds
for finite families (whereas we ask for left-gcds of countable families), which would not
be enough for our sake since the categorical framework also encompasses the existence
of minimal (infinite) automata for non-regular languages, but in practice our algorithms
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will only use binary left-gcds as well. We conjecture that, when only those binary
left-gcds exist, the existence of a unique minimal transducer is explained categorically
by the existence of a final transducer in the category of transducers whose states all
recognize functions that are themselves recognized by finite transducers. Where the two
sets of conditions really differ is in the conditions required for the termination of the
algorithms: where we will require right-noetherianity of M , they require that if some
b left-divides both some c and some ac, then b should also left-divide ab. This last
condition leads to better complexity bounds than right-noetherianity, but misses some
otherwise simple monoids that satisfy right-noetherianity, e.g. {α, β}∗ but where we also
let α and β2 commute. Conversely, Gerdjikov’s main non-trivial example, the tropical
monoid (R+, 0,+), is not right-noetherian. It can still be dealt with in our context by
considering submonoids (finitely) generated by the output values of a finite transducer’s
transitions, these submonoids themselves being right-noetherian.

4.4. Factorization systems
The last ingredient we need in order to be able to apply the framework of Sections 2
and 3 is a factorization system on TransM (L). By Lemma 2.8, it is enough to find a
factorization system on Kl(TM ).

When M is a free monoid, define E = Surj to be the class of those functions f :
X → M × Y + 1 that are surjective on Y and M = Inj ∩ Eps ∩ Tot to be the class of
those functions f : X →M × Y +1 that are total (f ∈ Tot), injective when corestricted
to Y (f ∈ Inj), and only produce the empty word (f ∈ Eps). Then the (E ,M)-minimal
transducer recognizing a function is the one defined by Choffrut [9, 23]: in particular,
the fact that the minimal transducer (E ,M)-divides all other transducers means (thanks
to the surjectivity of E-morphisms and the injectivity ofM-morphisms) that it has the
smallest possible state-set and produces its outputs as early as possible.

It is thus natural to try and extend this factorization system to Kl(TM ) for arbitrary
M . It is not enough by itself because isomorphisms may produce invertible elements that
may be different from ε: Iso ( Surj∩ Inj∩Eps∩Tot, yet we need the intersection E ∩M
to be Iso. M-morphisms must thus be able to produce invertible elements as well.
Formally, define therefore Surj, Inj, Tot and Inv as follows. For f : X → M × Y + 1,
write f1 : X →M + 1 for its projection on M and f2 : X → Y + 1 for its projection on
Y : we let f ∈ Surj whenever f2 is surjective on Y , f ∈ Inj whenever f2 is injective when
corestricted to Y , f ∈ Tot whenever f(x) 6= ⊥ for all x ∈ X and f ∈ Inv whenever f1(x)
is either ⊥ or in M×. The point is that when replacing Eps with Inv, we get back that

Lemma 4.18. In Kl(TM ), Iso = Surj ∩ Inj ∩ Inv ∩ Tot, and these four classes are all
closed under composition (within themselves).

The different ways in which we may distribute these four classes into the two classes
E andM leads to not just one but three interesting factorization systems:

Proposition 4.19. (E1,M1) = (Surj∩ Inj∩ Inv,Tot), (E2,M2) = (Surj∩ Inj, Inv∩Tot)
and (E3,M3) = (Surj, Inj ∩ Inv ∩ Tot) are all factorization systems in Kl(TM ).
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The factorization system we choose to define the minimalM -transducer is (E3,M3) =
(Surj, Inj ∩ Inv ∩ Tot), because it generalizes the factorization system that defines the
minimal transducer (with output in a free monoid). It will be our main factorization
system, and as such from now on we reserve the notation (E ,M) for it.

Theorem 2.12 and Proposition 2.10 show that (E ,M) indeed gives rise to a useful
notion of minimal transducer.

Corollary 4.20. When Kl(TM ) has all countable powers of 1, the (E ,M)-minimal
transducer recognizing a (Kl(TM ), 1, 1)-language L is well-defined and has state-set
Smin = {red(w−1L) | w ∈ A∗} ∩ (M + 1)A

∗
∗ , initial state smin

0 = redL, initializa-
tion value υmin

0 = lgcdL, termination function tmin(Λ) = Λ(e) and transition functions
red(w−1L)�min a = (lgcd((wa)−1L), red((wa)−1L)). It is characterized by the property
that all its states are reachable from the initial state and recognize distinct left-coprime
functions.

Why are (E1,M1) and (E2,M2) also interesting then ? They do not give rise to
useful notions of minimality, but they show that the computation of Obs can be split into
substeps. Indeed, since E1 ⊂ E2 ⊂ E3 (and equivalentlyM1 ⊃M2 ⊃M3), (Ei,Mi)1≤i≤3

is a quaternary factorization system:

Corollary 4.21. For every Kl(TM )-arrow f : X Y , there is a unique (up to
isomorphisms) factorization of f into

X Z1 Z2 Z3 Y
1

f1

1 2

f2

2

f3 f4

such that f1 ∈ E1, f2 ∈ E2 ∩M1, f3 ∈ E3 ∩M2 and f4 ∈M3.

Note how we respectively write
1
,

2
,

1
and

2
for arrows in E1, E2,

M1 andM2 (but stick with and for arrows in E = E3 andM =M3).
Intuitively, this results means that the computation of any f can be factored into four

parts: first forgetting some inputs (f1 belongs to Surj ∩ Inj ∩ Inv but need not belong
to Tot), then producing non-invertible elements of the output monoid (f2 belongs to
Surj ∩ Inj ∩ Tot but need not belong to Inv), then merging some inputs together (f3
belongs to Surj∩ Inv∩Tot but need not belong to Inj) and finally embedding the result
into a bigger set (f4 belongs to Inv ∩ Inj ∩ Tot but need not belong to Surj).

In particular, the E-quotient ReachA Obs(ReachA) factors as follows.

Definition 4.22. Given an M -transducer A recognizing the (Kl(TM ), 1, 1)-language L,
define TotalA and PrefixA to be the (E1,M1)- and (E2,M2)-factorizations of the final
arrow ReachA Afinal(L):

ReachA TotalA PrefixA MinL Afinal(L)
1 21 2

In practice, if A = (S, (u0, s0), t,�),

• ReachA has state-set the set of states in S that are reachable from s0;
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• TotalA has state-set S′ the set of states in S that recognize a function defined for
at least one word (in particular if A recognizes ⊥A∗ then (u0, s0) is set to ⊥);

• PrefixA = (S′, (u0 lgcd(Ls0), s0), t′,�′), where Ls is the function recognized from
a state s ∈ S in A, is obtained from TotalA by setting t′(s) = lgcd(Ls)−1t(s) and
s�′ a = (lgcd(Ls)−1(s# a) lgcd(Ls·a), s · a);

• MinL ∼= Obs(ReachA) is obtained from PrefixA by merging two states s1 and s2
whenever they recognize functions that are equal up to invertibles on the left in
PrefixA, that is when red(Ls1) = red(Ls2) in A.

In particular, these four steps (computing ReachA, TotalA, PrefixA and finally
ObsA) match exactly the four steps into which all the algorithms for minimizing (pos-
sibly monoidal) transducers are decomposed [4, 7, 9, 15, 17].

Example 4.23. For the transducer A of Figure 2 seen as a transducer with output
in the free commutative monoid Σ~, the corresponding minimal transducer MinL is
computed step-by-step in Figure 3.

Notice in particular how in Figure 3b both the functions recognized by the states 1
and 3 are left-divisible by α hence α is pulled back to the initialization value in Figure 3c.
This would not have happened had M been the free monoid Σ∗, and the corresponding
minimal transducer would have been different.

1 2

3

ϵ a : ϵ

α
b : β α

b : β

(a) ReachA

1 3
ϵ

α
b : β

α

b : β

(b) TotalA

1 3
α

ϵ
b : β

ϵ

b : β

(c) PrefixA

1
α ϵ

b : β

(d) Obs(ReachA)

Figure 3: Increasingly small transducers recognizing the same function as the trans-
ducer of Figure 2 when M = Σ~

5. Algorithms on monoidal transducers
Assume now that M is right-noetherian, left-cancellative up to invertibles on the left
and right-coprime-cancellative, and that non-empty countable families of elements of M
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all have a left-gcd that is unique up to invertibles on the right. Thanks to Lemma 4.16,
Theorem 2.12 then tells us that the minimal M -transducer recognizing a (Kl(TM ), 1, 1)-
language L always exists (and it is given by Corollary 4.20), but it does not tell us how
to compute it (in finite time). This section thus discusses two algorithms for computing
the minimal transducer, respectively instantiating Algorithms 1 and 2: the first one
takes as input two oracles EvalL and EquivL and learns MinL (Section 5.1), while
the second one takes as input any finite transducer recognizing L and transforms it into
MinL (Section 5.2). The right-noetherianity of M guarantees that these algorithms will
terminate when the minimal transducer has finite state-set:

Lemma 5.1. An object X of Kl(TM ) is M-noetherian if and only if it is a finite set,
in which case lengthM(m : Y � X) = |X| − |Y |.

Lemma 5.2. An object X of Kl(TM ) is E-artinian if and only if it is a finite set and
either M is right-noetherian or X = ∅, in which case colengthE(e : X Y ) =
|X| − |Y |+ rk e where rk e =

∑
e(x)=(υ,y) rk υ.

Given a function Λ ∈ (M + 1)I∗, we write rkΛ = rk(lgcdΛ) and, finally, given a
transducer A, we then write rkA =

∑
s∈(TotalA)(st) rkLs, |A|st for the cardinal of the

state-set of A, and |A|→ for the number of transitions s�a 6= ⊥ in A. We will use these
notions to express the complexity of our algorithms.

These two algorithms are modular in M : they only require to be given functions
computing basic operations and may then be implemented the same no matter the
structure of M . Hence we also assume that we are given access to the following oracles:
one that checks for equality in M ; ⊗ : M + 1 → M + 1 → M + 1 that computes the
product in M + 1 (with υ⊥ = ⊥υ = ⊥); ∧ : M + 1→M + 1→M + 1 that computes a
left-gcd of two elements of M +1 (with υ ∧⊥ = ⊥∧ υ = ⊥); LeftDivide that takes as
input δ, υ ∈M and computes a ν ∈M such that υ = δν (or outputs ν = ⊥ when υ = ⊥)
or fails when there is no such ν; and UpToInvLeft that takes as input two families
υ, ν ∈M I indexed by a finite set I and outputs a χ ∈M× such that υ = χν if such a χ
exists, and ⊥ otherwise. Note that when M is right-cancellative this last oracle may be
derived from another oracle that only tests for equality up to invertibles of two elements
of M (and not two families), and when M has no non-trivial invertible elements these
two oracles just test for equality.

5.1. Learning
In this section, we thus first describe an algorithm that, given a subsequential function
L, learns MinL using two oracles: EvalL takes as input a word w ∈ A∗ and computes
L(.w/); and EquivL takes as input a transducer A, decides whether it recognizes L,
and if not outputs a counter-example word w ∈ A∗ such that (A ◦ ι)(.w/) 6= L(.w/).

When M is a free monoid, Vilar gives a very natural generalization of Angluin’s
L* algorithm for learning automata that does exactly this [1, 29]. Here we generalize
Vilar’s algorithm to arbitrary M by instantiating Algorithm 1 within Kl(TM ): we get
Algorithm 4. This instantiation is possible because the conditions on M also guarantee
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the existence of the minimal biautomata described in Section 2.3. To the best of the
author’s knowledge, no other algorithm in the literature solves the problem of learning
transducers whose output monoid is not free.

Algorithm 4 is very similar to Vilar’s algorithm, the main difference being that the
longest common prefix is now the left-gcd and that, in some places, testing for equality
is now testing for equality up to invertibles on the left. It thus maintains two sets Q and
T that are respectively prefix-closed and suffix-closed, and tables Λ : Q × (A ∪ {e}) →
M + 1 and R : Q × (A ∪ {e}) × T → M + 1. They satisfy that, for all a ∈ A ∪ {e},
Λ(q, a)R(q, a, t) = L(.qat/) and R(q, a, ·) is left-coprime (hence Λ(q, a) is a left-gcd of
(L(.qat/))t∈T ).

The algorithm then extends Q and T until some closure and consistency conditions
are satisfied, and then build a hypothesis transducerH(Q,T ) using Λ and R: its state-set
S can be constructed by, starting with e ∈ Q, picking as many q ∈ Q so that R(q, e, ·) is
never ⊥T and so that, for any two distinct q, q′ ∈ S, R(q, e, ·) and R(q′, e, ·) are not equal
up to invertibles on the left; it then has initial state e ∈ Q, initialization value Λ(e, e),
termination function t = q ∈ S 7→ R(q, e, e) and transition function given by q � a =
(LeftDivide(Λ(q, e),Λ(q, a))χ, q′) for q, q′ ∈ S such that R(q, a, ·) = χR(q′, e, ·). The
algorithm then adds the counter-example given by EquivL(H(Q,T )) to Q and builds a
new hypothesis automaton until no counter-example is returned and H(Q,T ) = MinL.
The three kinds of consistency issues that arise are again explained by the quaternary
factorization system of Section 4.4, as the three conditions on line 10 hold when some
morphism respectively does not belong to Tot, belongs to Tot but not Inv or belongs to
Tot ∩ Inv but not Inj.

Theorem 5.3. Algorithm 4 is correct and terminates as soon as MinL has finite state-
set and M is right-noetherian. It makes at most 3 |MinL|st + rk(MinL) updates to Q
(lines 8 and 14) and at most rk(MinL) + |MinL|st updates to T (line 10).

Algorithm 4 also differs from Vilar’s original learning algorithm in a small additional
way: the latter also keeps track of the left-gcds of every Λ(q, ã) where ã ranges over
A∪{e} and q ∈ Q is fixed, and checks for consistency issues accordingly. This is a small
optimization of the algorithm that does not follow immediately from the categorical
framework. In Section 1 we thus actually provided an example run of our version of the
algorithm when the output monoid is a free monoid. It also provides example runs of
our algorithm for non-free output monoids, as quotienting the output monoid will only
remove closure and consistency issues and make the run simpler. For instance letting α
commute with β for the transducer of Figure 1a would have removed the closure issue
and the need to add a to Q while learning the corresponding monoidal transducer, and
letting α also commute with γ would have removed the first consistency issue to arise
and the need to add a to T .

5.2. Minimization
To transform a transducer A = (S, (u0, s0), t,�) recognizing L into MinL, a first method
is of course to use Algorithm 4, implementing EvalL using A and EquivL by trying
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Algorithm 4 The FunL*-algorithm for monoidal transducers
Input: EvalL and EquivL
Output: MinM (L)

1: Q = T = {e}
2: for a ∈ A ∪ {e} do
3: Λ(e, a) = EvalL(a)
4: R(e, a, e) = ε
5: end for
6: loop
7: if there is a qa ∈ QA such that ∀q′ ∈ Q,χ ∈M×, R(q, a, ·) 6= χR(q′, e, ·) then
8: add qa to Q
9: else if there is an at ∈ AT such that

• either there is a q ∈ Q such that R(q, a, t) 6= ⊥ but R(q, e, T ) = ⊥T ;

• or there is a q ∈ Q such that Λ(q, e) does not left-divide Λ(q, a)R(q, a, t);

• or there are q, q′ ∈ Q and χ ∈ M× such that R(q, e, T ) =
χR(q′, e, T ) but LeftDivide(Λ(q, e),Λ(q, a)R(q, a, t)) 6=
χLeftDivide(Λ(q′, e),Λ(q′, a))R(q′, a, t))

then
10: add at to T
11: else
12: build H(Q,T ) using Λ and R
13: if EquivL(HQ,T (L)) outputs some counter-example w then
14: add w and its prefixes to Q
15: else
16: return H(Q,T )
17: end if
18: end if
19: update Λ and R using EvalL
20: end loop
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to compute a morphism of transducers ReachA � H(Q,T ). But in practice when M
is a free monoid this is not the method that is used: there are algorithms designed
specifically for minimizing a transducer, surveyed by Choffrut [9]. These algorithms all
decompose the problem into four steps that match exactly those of Definition 4.22.

Computing Reach and Total is straightforward and may be done in linear time using
depth-first searches on the underlying graph of A, and this stays true for arbitrary M .
The problem of computing Prefix and Obs was first tackled in [15], but the solution
relied on the existence of an oracle that computes non-trivial left-divisors of countable
(but rational) families, and also leaves redΛ over when repeatedly applied to some Λ. In
comparison, our instantiation of Algorithm 2 and its dual requires much weaker tools:
only UpToInvLeft and the binary ∧.

The resulting algorithm itself is not new, as it is exactly the one described in [17].
Our main result relative to minimization is instead that this algorithm can be made
to work with not just left- and right-cancellative output monoids: left-cancellativity up
to invertibles on the left and right-coprime-cancellativity is enough. Similarly, right-
noetherianity is enough to ensure termination, although the resulting complexity now
also depends on the rank of elements of M . We thus do not describe the implementation
in detail, but instead only discuss the insights we get through the big picture of the cat-
egorical framework, as well as how easy it is to actually retrieve the concrete algorithms
for computing Reach, Total, Prefix and Obs.

Computing Reach. Since Kl(TM ) has all coproducts, Corollary 3.9 holds and to com-
pute Reach we may directly use Algorithm 3. Moreover all split epimorphisms inKl(TM )
are in Surj = E , hence we may also use the optimization of Corollary 3.11. The resulting
algorithm is the transducer version of Example 3.12, a depth- or breadth-first search
depending on the order in which the to-do list is gone through, and Lemma 5.1 tells us
that the complexity is linear in the number of states of A.

There is not much to say here: the instantiation goes smoothly.

Computing Total. The case of Total is more interesting, as instantiating the algorithm
from the categorical framework is more troublesome, yet the result is still trivial: to
remove the states that recognize the empty function, it is enough to do a depth- or
breadth- first search on the underlying graph of the transducer, starting from the states
where the termination function is defined and following transitions backwards. Kl(TM )
has all finite products by Proposition 4.12 hence by the dual of Corollary 3.9 we may
instantiate this algorithm through the dual of Algorithm 3. But this categorical algo-
rithm tells us to keep track of a (Surj ∩ Inj ∩ Inv)-quotient A(st)

1
A(st)/T , that

is a partial function that tells us for each state s ∈ A(St) whether there is a t ∈ T
such that A(t/)(s) 6= ⊥. To compute the factorizations incrementally we would then
need to factorize the cartesian products of such functions, which, while correct, is quite
unnatural.

A more intuitive way to instantiate the algorithm is to notice that (Surj∩ Inj∩ Inv)-
quotients are exactly the split epimorphisms ofKl(TM ), and, as such, have right inverses.
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Keeping track of the right inverse of the quotient A(st)
1
A(st)/T would then mean

keeping track of its codomain as a subset of A(st). This is more natural, only now we
cannot compute the factorizations incrementally anymore, as we would want to do so
by factorizing the coproduct of such embeddings but this is not encompassed by the
dual of Lemma 3.7. This obstacle can be overcome by considering the transducer as
the transpose of a non-deterministic transducer, i.e. seeing Kl(TM )op as a subcategory
of Kl(P(Mop × −)), where P is the powerset monad. With this point of view, the
states that recognize a non-empty function are exactly those that are reachable in the
non-deterministic reverse transducer: computing Total can be done by reversing the
transducer, computing Reach in the category of non-deterministic Mop-transducers and
reversing the result back. This categorical algorithm yields precisely the graph traversal
we were looking for, with the same catch as that of Example 3.13: it does not tell us that
transitions along the same letter and to the same state can be considered separately.

However we choose to view this instantiation, the (Surj∩ Inj∩ Inv)-codimension of a
set is its cardinal, hence we know the main loop will be run at most once for each state
of A.

Computing Prefix. The core of the problem is to compute PrefixA knowing TotalA,
that is to compute the left-gcds of the functions recognized from each state that is
reachable and recognizes a non-empty function. Béal and Carton do it by pulling back
letters along the transitions of A [4], but this relies crucially on M being a free monoid
as the letters to pull back must be produced by every transition going out of a given
state. This would for instance not be enough to see that the left-gcd of state 3 in
Figure 3b is α (whenM is the free commutative monoid). Breslauer does it by computing
over-approximations and the length of the left-gcds, and then taking the corresponding
prefixes [7], but again this algorithm does not generalize to arbitrary M because it relies
crucially on the free monoid being graded.

In the general case, PrefixAmay be computed using a fixed-point algorithm, keeping
track of a tentative left-gcd l(s) for each state s ∈ A(st) and replacing l(s) with l(s) ∧∧

a∈A(s#a)l(s ·a) as long as needed [17, Section 4], and this is exactly what we get when
we instantiate the dual of Algorithm 3 and the optimization dual to that of Corollary 3.11
for the factorization system (E2,M2).

An interesting thing to notice here is that since we start from TotalA, we may
consider that we are computing the (Surj∩ Inj, Inv ∩Tot)-factorization of TotalA

1

Afinal(L) in the category of total transducers (those whose final morphism to Afinal is in
Tot) and total morphisms between them (the morphisms between them are also in Tot,
thanks to [8, Lemma 14.9(1)]). Hence we actually compute a (Surj∩Inj∩Tot, Inv∩Tot)-
factorization. This is particularly interesting when giving a complexity-bound for the
number of times the main loop is run. The (Surj∩Inj)-codimension of some e : X

2
Y

is indeed |X|−|Y |+rk e, whereas the (Surj∩Inj∩Tot)-codimension of some e : X
12
Y

is just rk e : the prior knowledge that the transducer was total got rid of the cardinality
term. Still, [17, Lemma 6] gets a much better complexity result than we do: where we
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get a complexity linear in rkA, they get one linear in |A(st)|. This is because they use
an assumption quite different from right-noetherianity (namely, that if υ left-divides ω
and νω then it left-divides νυ) that allows them to prove some kind of pumping lemma
for transducers.

Computing Obs. Computing Obs from PrefixA is also straightforward when M is
the free monoid as it amounts to minimizing a deterministic automaton, which can be
done using Hopcroft’s algorithm for instance [9]. This is still true when M has no non-
trivial invertibles, but for arbitrary M it is not as easy: checking whether two states are
equivalent amounts to checking for equality of (left-coprime) subsequential functions up
to invertibles.

A general algorithm for computing ObsA can be designed by extending Moore’s
partition refinement algorithm with equality up to invertibles. In a nutshell, this algo-
rithm should maintain a partition of the states into equivalence classes and for every
pair of equivalent states an invertible element that witnesses the equivalence, and refine
this equivalence as long as needed [17, Section 5]. This is, again, exactly the algorithm
we get when we instantiate the dual of Algorithm 3 along with the optimization dual to
that of Corollary 3.11 for the factorization system (E3,M3).

Just as for Prefix we restricted ourselves to the category of total transducers, we
can restrict ourselves to the category of onwards transducers (those for which the final
morphism to Afinal(L) is in Inv ∩ Tot) and (Inv ∩ Tot)-morphisms between them. In
particular, this means the complexity of computing ObsA from PrefixA only depends
on the number of states of TotalA, and we retrieve the same complexity as that of [17,
Lemma 13].

Worklist algorithms everywhere. A final insight we get from applying the minimization
algorithm of our categorical framework is that the algorithms for computing Reach,
Total, Prefix and Obs all share the same structure: they are worklist algorithms, that
is fixed-points of an operator on a graph defined by dataflow-style equations on each
vertex.

Since the technical details of the algorithm are quite heavy to lay out, we also provide
a modular OCaml implementation for right-cancellative output monoids [2] as a proof-
of-concept (it is in particular not fully optimized), that includes implementations of the
oracles for trace monoids, the group Z and products of monoids. It uses the OCamlGraph
library [12] to represent the underlying graph of a transducer, and its Fixpoint module
to implement each of Reach, Total, Prefix and Obs as worklist algorithms: this mod-
ule only requires the dataflow-style equations and computes the corresponding fixpoint
automatically.

6. Summary and future work
In this work, we extended Colcombet, Petrişan and Stabile’s active learning categorical
framework with a minimization algorithm, and instantiated it with monoidal transduc-

34



ers. We gave some simple sufficient conditions on the output monoid for the minimal
transducer to exist and be unique up to isomorphism, which in particular extend Gerd-
jikov’s conditions for minimization to be possible [17]. Finally, we described what the
active learning algorithm of the categorical framework instantiated to in practice un-
der these conditions, relying in particular on the quaternary factorization system in the
output category.

This work was mainly a theoretical excursion and was not motivated by practical
examples where monoidal transducers are used. Although we expect them to be useful
in concurrency theory and in natural language processing, such examples are thus still to
be found. In particular, can monoidal transducers with outputs in trace monoids (and
their learning) to programatically schedule jobs, as mentioned in the introduction. We
also leave the search for other interesting examples for future work.

Some intermediate results of this work go beyond what the categorical framework
currently provides and could be generalized. The use of a quaternary factorization system
(or any n-ary factorization system) would split the algorithms into several substeps that
should be easier to work with. Here our factorization systems seemed to arise as the
image of the factorization system on Set through the monad TM ; generalizing this to
other monads could provide meaningful examples of factorization systems in any Kleisli
category. Finally, we mentioned in Section 4.3 that a problem with the current framework
is that it may only account for the minimization of both finite and infinite transition
systems at the same time, and conjectured that we could restrict to only the finite case
by working in a subcategory of well-behaved transducers: this subcategory is perhaps
an instance of a general construction that has its own version of Theorem 2.12, so as to
still have a generic way to build the initial, final and minimal objects.
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A. Proofs for Section 1 (Introduction)
Lemma 1.1. Let A = {a}, Σ = {α, β, γ}, let Σ/∼ be the monoid Σ∗ with the additional
assumption that αβ = βα and let π : Σ∗ → Σ/∼ be the corresponding quotient. Consider
the function f : A∗ → Σ/∼ that maps an to αnβnγ = (αβ)nγ.

f is recognized by a finite transducer with outputs in Σ/∼, yet learning a transducer
that recognizes any function f ′ : A∗ → Σ∗ such that f = f ′ ◦π with Vilar’s algorithm will
never terminate if the oracle replies to the membership query for an with αnβnγ ∈ Σ∗

(which differs from (αβ)nγ in Σ∗ but not in Σ/∼).

Proof. f is recognized by the Σ/∼-transducer (Definition 4.9) with one state s that is
initial, initial value υ0 = ε, transition function a� s = (αβ, s) and termination function
t(s) = γ.

Consider now the run of Vilar’s algorithm (Algorithm 4 with M = Σ∗ and M× =
{ε}) with the oracle answering the membership query for an with f ′(an) = αnβnγ. We
start with Q = T = {e}, Λ(e) = γ, Λ(a) = αβγ and R(e, e) = R(a, e) = ε, where Λ(w)
for w ∈ Q ∪QA is the longest common prefix of the {f ′(wt) | t ∈ T} and R(w, t) is the
suffix such that f ′(wt) = Λ(w)R(w, t).

Since Λ(e) = γ is not a prefix of Λ(a) = αβγ, there is a consistency issue and we add a
to T . Taking n = 0, we are now in the configuration Cn given by Q = Qn = {ak | k ≤ n},
T = {e, a}, and Λ(ak) = αk, R(ak, e) = βkγ and R(ak, a) = αβk+1γ for every k ≤ n+ 1
(since the oracle replies to the membership query for ak with αkβkγ and to that for aka
with αk+1βk+1γ).

Suppose now we are in the configuration Cn for some n ∈ N. Then there is a closure
issue, since for all k ≤ n, R(ak, e) = βkγ 6= βn+1γ = R(an+1, e). We thus add an+1 to
Q. To compute Λ(an+2), R(an+2, e) and R(an+2, a), we make a membership query for
an+3: the oracle answers with f ′(an+3) = αn+3βn+3γ. The longest common prefix of
f ′(an+2) = Λ(an+1)R(an+1, a) = αn+2βn+2γ and f ′(an+2a) = αn+3βn+3γ is thus αn+2,
and the corresponding suffixes are R(an+2, e) = βn+2γ and R(an+2, a) = αβn+3γ: we
are now in the configuration Cn+1.

Hence the run of the algorithm never terminates and never even reaches an equiva-
lence query, as it must first go through all the configurations Cn for n ∈ N.

B. Proofs for Section 3 (An algorithm for minimizing
(C, X, Y )-automata)

Lemma 3.1 ([23, Remark 2.5]). The dual of the (E ,M)-factorization ObsA in Auto(L)
is the (Mop, Eop)-factorization ReachAop in Auto(Lop).

Proof. ObsA is given by the (E ,M)-factorization A � ObsA � Afinal in Auto(L).
Its dual is thus given by the (Mop, Eop)-factorization (Afinal)op � (ObsA)op � Aop

in Auto(L)op. But Afinal is final in Auto(L) hence its dual is initial in Auto(L)op.
Similarly, (Mop, Eop) is a factorization system in Auto(L)op [8, Proposition 14.3], hence
(ObsA)op is none other than ReachAop.
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Lemma 3.4. (similar to [10, Lemma 31]) For any w ∈ A∗ and Q′ ⊆ A∗ such that
Qw = {qw | q ∈ Q} ⊆ Q′, there is a unique morphism κQ

′

Q·w

/
A(w) : Q/A(st) →

Q′/A(st) making the two squares in the diagram below commute. Moreover, if uv = w

and Qw ⊆ Q′v ⊆ Q′′, then κQ
′′

Q′·v

/
A(v) ◦ κQ

′

Q·u

/
A(u) = κQ

′′

Q·w

/
A(w) .

Proof. κQ
′

Q·w

/
A(w) arises immediately by the diagonal fill-in property of (E ,M) applied

to mQ′ ◦
(
eQ′ ◦

∐
q∈Q κq

)
= (A(w) ◦mQ) ◦ eQ. Since this diagonal fill-in is unique, by

composing these diagrams we get the last equality.

Theorem 3.6. If A(st) is M-noetherian, Algorithm 2 is correct, terminates, and the
condition on line 5 is satisfied at most lengthM (m∅ : ∅/A(st) � A(st)) times.

Proof. We first focus on termination, then on correctness.

Termination. Every time line 7 is executed, the condition on line 5 must hold. Hence
if we write Qn for the value of Qdone after n executions of line 7, then Q0 = ∅ and
(Qn/A(st) � Qn+1/A(st))n forms a strict chain of M-subobjects of A(st) (it is
strict because the morphisms it contains are not E-morphisms hence not isomorphisms).
But A(st) is M-noetherian by assumption hence this chain must be finite and line 7
and thus line 6 must be executed a finite number of times, and in particular at most
lengthMmQ0 = lengthMm∅ times. But we only add at most |A| elements to the to-do
list on line 6, hence the while loop is run a finite number of times, in particular at most
1 + |A| lengthM(m∅) times.

Correctness. Let us first show some preliminary results.

Lemma B.1. Consider the following diagonal fill-in (where g is an M-morphism):

Y1 Y1/Y2 Y2

X1 X1/X2 X2

ey my

f

ex mx

f/g g

f/g is an M-morphism, and it is an isomorphism if and only if there is an h such that
the following diagram commutes:

Y1 Y1/Y2

X1 X1/X2

ey

h
f

ex

f/g

Proof. f/g is anM-morphism by [8, Proposition 14.9(1)]. If it is an isomorphism, then
h = (f/g )−1 ◦ ey immediately makes the diagram above commute.

Conversely, assume such an h exists and (E ,M)-factor it as h = m ◦ e : Y1 � Z �
X1/X2 . By unicity of the diagonal fill-in, there is an isomorphism χ : Y1/Y2 ∼= Z such
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that e = χ ◦ ey and f/g ◦m ◦ χ = id. We claim that m ◦ χ is the inverse of f/g : we
already have that f/g ◦m ◦ χ = id, but also

g ◦mx ◦m ◦ χ ◦ f/g = my ◦ f/g ◦m ◦ χ ◦ f/g
= my ◦ f/g
= g ◦mx

and

m ◦ χ ◦ f/g ◦ ex = m ◦ χ ◦ ey ◦ f
= h ◦ f
= ex

hence by unicity of the diagonal fill-in (within the square composed of two copies of ex
and g ◦mx), m ◦ χ ◦ f/g = id.

Definition B.2 (prefix-closedness). Q ⊆ A∗ is said to be prefix-closed if it contains the
empty word and if for every q ∈ A∗ and a ∈ A, if qa ∈ Q then q ∈ Q.

Proposition B.3. Let Q ⊆ A∗ be prefix-closed. If κQ∪QA
Q

/
A(st) is an isomorphism,

then so is κA
∗

Q

/
A(st) .

Proof. We apply Lemma B.1 and build a morphism h :
∐

A∗ A(in) → Q/A(st) that
makes the corresponding diagram commute. We thus let h◦κε = eQ ◦κε (this is possible
because Q is prefix-closed hence contains ε) and, by induction, for w ∈ A∗ and a ∈ A we
let h ◦ κwa =

(
κQ∪QA
Q

/
A(st)

)−1
◦ κQ∪QA

Q·a

/
A(a) ◦ h ◦ κw.

We then have that eQ = h ◦ [κq]q∈Q. The proof is by induction on Q, which is
possible because Q is prefix-closed. We already have h ◦ κε = eQ ◦ κε by definition, and
if h ◦ κw = eQ ◦ κw, then for a ∈ A we have

h ◦ κwa =
(
κQ∪QA
Q

/
A(st)

)−1
◦ κQ∪QA

Q·a

/
A(a) ◦ h ◦ κw

=
(
κQ∪QA
Q

/
A(st)

)−1
◦ κQ∪QA

Q·a

/
A(a) ◦ eQ ◦ κw

=
(
κQ∪QA
Q

/
A(st)

)−1
◦ eQ∪QA ◦ [κqa]q∈Q ◦ κw

=
(
κQ∪QA
Q

/
A(st)

)−1
◦ eQ∪QA ◦ [κq]q∈Q ◦ κwa

= eQ ◦ κwa

Moreover, for all w ∈ A∗, we have κA
∗

Q·w

/
A(w) = κA

∗
Q∪QA·w

/
A(w) ◦ κQ∪QA

Q

/
A(st)

hence κA
∗

Q·w

/
A(w) ◦

(
κQ∪QA
Q

/
A(st)

)−1
= κA

∗
Q∪QA·w

/
A(w) and it follows by induction
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(again, thanks to the prefix-closedness of Q) that

κA
∗

Q

/
A(st) ◦ h ◦ κw = κA

∗
Q·w

/
A(w) ◦ eQ ◦ κε

= eA∗ ◦ [κqw]q∈Q ◦ κε
= eA∗ ◦ κw

hence that κA
∗

Q

/
A(st) ◦ h = eA∗ .

Lemma B.4 (generalization of [10, Lemma 40]). For every k in some set K, let Pk ⊆
Qk ⊆ A∗ be such that κQk

Pk

/
A(st) is an isomorphism. Also assume that Qk ∩ Qk′ =

Pk ∩ Pk′ for all k 6= k′ ∈ K. Then, κ∪KQk
∪KPk

/
A(st) is also an isomorphism.

Proof. We apply Lemma B.1 and build h :
∐

∪KQk
A(in)→ ∪KPk/A(st) . If p ∈ Pl for

some l ∈ K, set h ◦ κp = e∪KPk
◦ κp. Otherwise, for q ∈ Ql for some (unique) l ∈ K,

set h ◦ κq = κ∪KPk
Pl

/
A(st) ◦ hl ◦ κq where hl :

∐
Ql
A(in) → Pl/A(st) witnesses that

κQl
Pl

/
A(st) is an isomorphism.

We then have by definition h◦[κw]w∈∪KPk
= e∪KPk

and in particular κ∪KQk
∪KPk

/
A(st)◦

h ◦ κp = e∪KQk
◦ κp when p ∈

⋃
k∈K Pk. Moreover, for some l ∈ K and q ∈ Ql such that

q /∈
⋃

k∈K Pk, we have

κ∪KQk
∪KPk

/
A(st) ◦ h ◦ κq = κ∪KQk

Pl

/
A(st) ◦ hl ◦ κq

= κ∪KQk
Ql

/
A(st) ◦ κQl

Pl

/
A(st) ◦ hl ◦ κq

= κ∪KQk
Ql

/
A(st) ◦ eQl

◦ κq

= e∪KQk
◦ κq

hence h has the relevant diagram commute.

We now have everything we need to show the algorithm is correct.
First note that it is easy to show by induction that all the subsets that go through

to-do list are pairwise disjoint, hence why we use disjoint unions in the algorithm. But
the fact that these unions are disjoint is not needed for the proof of correctness.

Consider some q ∈ Qdone after the algorithm has stopped, and some a ∈ A. The only
way to get added to Qdone is through line 7 of the algorithm, hence q must have belonged
to some Q. Hence there was an Ã such that a ∈ Ã for which QÃmust have been added to
the to-do list and thus have been considered in a run of the if statement on line 5. During
this run, either κQdone∪QÃ

Qdone

/
A(st) was already an isomorphism and nothing changed;

or it was not, in which case QÃ was added to Qdone so that Qdone = Qdone ∪QÃ right
after, and we would thus still get that κQdonetQÃ

Qdone

/
A(st) had become an E-morphism
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hence an isomorphism (by the dual of [8, Proposition 14.9(1)], because the morphism∐
Qdone

A(in)→
∐

Qdone∪QÃA(in) is an isomorphism).

By Lemma B.4, for any Q1 ⊆ Q2 ⊆ A∗, if κQ1∪Q
Q1

/
A(st) is an isomorphism then

so is κQ2∪Q
Q2

/
A(st) . Hence since Qdone may only grow and since we just showed that

at some point of the execution of the algorithm the morphism κQdone∪QÃ
Qdone

/
A(st) is an

isomorphism, it stays so until the algorithm stops.
Hence at the end of the algorithm, for every q ∈ Qdone and a ∈ A there is some QÃ

such that qa ∈ QÃ and κQdonetQÃ
Qdone

/
A(st) is an isomorphism. Using Lemma B.4 again,

we get that κQdone∪QdoneA
Qdone

/
A(st) is an isomorphism. But Qdone must be prefix-closed:

ε has gone through Qtodo and qa ∈ QÃ only gets added to Qtodo if q ∈ Q has been added
to Qdone already. Hence Proposition B.3 applies and κA

∗
Qdone

/
A(st) : Qdone/A(st) ∼=

(ReachA)(st) is an isomorphism at the end of the algorithm, and it is easy to check that
it forms a morphism of automata between the automaton produced by the algorithm
and ReachA.

Lemma 3.7. For every Q,Q′ ⊆ A∗, if the coproduct Q/A(st) + Q′/A(st) exists,
[mQ,mQ′ ] : Q/A(st) + Q′/A(st) → A(st) (E ,M)-factors into

mQtQ′◦
[
κQtQ′

Q

/
A(st) , κQtQ′

Q′

/
A(st)

]
: Q/A(st)+Q′/A(st) � (Q tQ′)

/
A(st) � A(st)

Proof. Factor [mQ,mQ′ ] : Q/A(st) + Q′/A(st) → A(st) as e = [zQ, zQ′ ] : Q/A(st) +
Q′/A(st) � Z and m : Z � A(st). Since eQ + eQ′ :

∐
QA(in) +

∐
Q′ A(in) �

Q/A(st) + Q′/A(st) is an E-morphism (as a coproduct of E-morphisms, by the dual
of [8, Proposition 14.15]), e ◦ (eQ + eQ′) :

∐
QtQ′ A(in) � Z and m : Z � A(st) form

a factorization of [mQ ◦ eQ,mQ′ ◦ eQ′ ] = [A(.q/)]q∈QtQ′ :
∐

QtQ′ A(in) → A(st) as
in Definition 3.3. By unicity of the diagonal fill-in, there is an isomorphism x : Z ∼=
(Q tQ′)/A(st) such that m = mQtQ′ ◦ x and x ◦ e ◦ (eQ + eQ′) = eQtQ′ .

In particular, x ◦ zQ ◦ eQ = eQtQ′ ◦ [κq]q∈Q and mQtQ′ ◦ x ◦ zQ = mQ, hence by
unicity of the diagonal fill-in x ◦ zQ = κQtQ′

Q

/
A(st) . The same results holds for Q′

hence [mQ,m
′
Q] = (m ◦ x−1) ◦ [x ◦ zQ, x ◦ zQ′ ] yields the expected factorization.

Lemma 3.8. For every Q ⊆ A∗, A(a) ◦mQ (E ,M)-factors into mQa ◦ κQa
Q·a

/
A(st) :

Q/A(st) � Qa/A(st) � A(st).

Proof. The equality holds by definition of κQa
Q·a

/
A(st) in Lemma 3.4. This morphism

is an E-morphism because [κqa]q∈Q is an isomorphism hence the dual of [8, Proposi-
tion 14.9(1)] applies.

Lemma 3.10. If κQtQ′

Q

/
A(st) : Q/A(st) � (Q tQ′)/A(st) is an isomorphism then

mQ′ = mQ ◦
(
κQtQ′

Q

/
A(st)

)−1
◦ κQtQ′

Q′

/
A(st)
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Conversely, in the context of Lemma 3.7, assume also that all split epimorphisms
are in E (if e ◦ s = id for some e, s then e ∈ E). If mQ′ factors as mQ ◦ f for some
f : Q/A(st) → (Q tQ′)/A(st) then κQtQ′

Q

/
A(st) is an isomorphism.

Proof. We immediately have that

mQ′ = mQtQ′ ◦ κQtQ′

Q′

/
A(st)

= mQ ◦
(
κQtQ′

Q

/
A(st)

)−1
κQtQ′

Q′

/
A(st)

since mQ = mQtQ′ ◦ κQtQ′

Q

/
A(st) .

Conversely, assume mQ′ = mQ ◦ f for some f . Then [mQ,mQ′ ] = mQ ◦ [id, f ]. But
[id, f ] is a split epimorphism ([id, f ] ◦ κ1 = id) hence it is also an E-morphism. We thus
get two (E ,M)-factorizations for [mQ,mQ′ ]:

mQ ◦ [id, f ] = mQtQ′ ◦
[
κQtQ′

Q

/
A(st) , κQtQ′

Q′

/
A(st)

]

C. Proofs for Section 4 (The category of monoidal transducers)
Lemma 4.6. M is right-noetherian if and only if for any sequences (un)n∈N and (vn)n∈N
of M such that vn = vn+1un for all n ∈ N, there is some n ∈ N such that for all i ≥ n,
ui is invertible.

Proof. The reverse implication is trivial. Now assume M right-noetherian, and consider
(un)n∈N and (vn)n∈N such that vn = vn+1un for all n ∈ N. Consider the set I = {i0 <
i1 < . . .} of all the indices i such that ui is not invertible and, letting i−1 = −1, define
u′n = uin · · ·uin−1+1 and v′n = vin+1 for all n ∈ N. Then u′n is never invertible because
uin is not but uin−1, . . . , uin−1+1 are (by definition), yet we still have by induction that
v′n = v′n+1u

′
n. Since M is left-noetherian, I must be finite hence there is some n ∈ N

such that for all i ≥ n, mi is invertible.

Lemma 4.7. If M is right-noetherian then all its right- and left-invertibles are invertible.

Proof. Assume M right-noetherian and consider some x that is right-invertible with xr
its right-inverse. For n ∈ N, set u2n = xr, v2n = ε and u2n+1 = v2n+1 = x. Then
vn = vn+1un for all n ∈ N hence by right-noetherianity x is invertible. If x is left-
invertible instead, its left-inverse is right-invertible hence invertible and therefore so is
x.

Proposition 4.12. The following are equivalent:

(1) Kl(TM ) has all countable powers of 1;
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(2) there are two functions lgcd : (M +1)N∗ →M and red : (M +1)N∗ → (M +1)N∗ such
that

a) for all Λ ∈ (M + 1)N∗ , Λ = lgcd(Λ) red(Λ);
b) for all Γ,Λ ∈ (M + 1)N∗ and υ, ν ∈M , if υ red(Γ) = ν red(Λ) then υ = ν and

redΓ = redΛ;

(3) Kl(TM ) has all countable products.

Moreover when these hold, since any countable set I embeds into N, lgcd and red
can be extended to (M + 1)I∗. lgcdΛ is then a left-gcd of (Λ(i))i|Λ(i)6=⊥ and the product
of (Xi)i∈I for some I ⊆ N is the set of pairs (Λ, (xi)i∈I) such that Λ ∈ red((M + 1)I∗)
and, for all i ∈ I, xi ∈ Xi if Λ(i) 6= ⊥ and xi = ⊥ otherwise. In particular, the I-th
power of 1 is the set of irreducible partial functions I →M + 1:∏

I

1 = Irr(I,M) = {redΛ ∈ (M + 1)I∗ | Λ ∈ (M + 1)I∗}

Proof. (3)⇒ (1) holds by definition.
Let us now show (1) ⇒ (2). If ΠN1 exists, then for any Λ ∈ (M + 1)N∗ the cone

(Λ(n) : 1→ M + 1)n∈N factors through some h : 1→ ΠN given by some h(∗) = (δ, xΛ),
as if h(∗) = ⊥ then Λ = ⊥N. We thus set lgcdΛ = δ and red(Λ)(n) = πn(xΛ) for all
n ∈ N, so that in particular red(Λ) 6= ⊥N. Since Λ(n) = πn ◦ h for all n ∈ N we get
that Λ = lgcd(Λ) red(Λ), and if Ξ = υ red(Γ) = ν red(Λ), then (∗ 7→ Ξ(n))n∈N factors
through both g(∗) = (υ, xΓ) and h(∗) = (ν, xΛ) : g = h hence u = v and redΓ = redΛ.
lgcd and red thus satisfy conditions (2)a and (2)b.

In particular when these conditions are satisfied lgcd(Λ) red(Λ) = Λ hence lgcdΛ
left-divides (Λ(i))i|Λ(i)6=⊥ and if δ left-divides this family then Λ = δΓ for some Γ 6= ⊥N

hence Λ = (δ lgcd(Γ)) red(Γ) and thus δ left-divides lgcd(Λ) = δ lgcd(Γ).
Finally, let us show (2)⇒ (3) along with the formula for the product of a countable

number of objects. Given (Xi)i∈I indexed by some I ⊆ N, define
∏

I Xi as in the
statement of the proposition and the projection πj :

∏
I Xi Xj by πj(Λ, (xi)i∈I) =

(Λ(j), xj) if Λ(j) 6= ⊥ and πj(Λ, (xi)i∈I) = ⊥ otherwise. Given a cone (fi : 1 Xi)
and some i ∈ I, write fi(∗) = (Λ(i), xi) when fi 6= ⊥ and Λ(i) = xi = ⊥ otherwise.
Define now h : 1

∏
I Xi by h(∗) = (lgcdΛ, (redΛ, (xi)i∈I)) if Λ 6= ⊥N and h(∗) = ⊥

otherwise. We immediately have that fi = πi ◦ h by condition (2)a, and that h is the
only such function by condition (2)b.

Lemma 4.13. Conditions (2)a and (2)b are equivalent to saying that

(4) a) 〈lgcd, red〉 is injective;
b) for all Λ ∈ (M + 1)N∗ , lgcd(redΛ) = ε and red(redΛ) = redΛ;
c) for all Λ ∈ (M+1)N∗ and υ ∈M , lgcd(υΛ) = υ lgcd(Λ) and red(υΛ) = red(Λ).

Proof. Assuming conditions (2)a and (2)b, we get that
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• (4)a: if lgcdΓ = lgcdΛ and redΓ = redΛ then

Γ = lgcd(Γ) red(Γ)

= lgcd(Λ) red(Λ)

= Λ

• (4)b: redΛ = lgcd(redΛ) red(redΛ) hence lgcd(redΛ) = ε and red(redΛ) = redΛ;

• (4)c: (υ lgcd(Λ)) red(Λ) = υΛ hence υ lgcd(Λ) = lgcd(υΛ) and red(uΛ) = redΛ.

And conversely, assuming conditions (4)a, (4)b and (4)c, we get that

• (2)a: by injectivity, Λ = lgcd(Λ) red(Λ) since

lgcd(lgcd(Λ) red(Λ)) = lgcd(Λ) lgcd(redΛ) red(lgcd(Λ) red(Λ)) = red(redΛ)

= lgcdΛ = redΛ

• (2)b: if υ red(Γ) = ν red(Λ) then

υ = υ lgcd(redΓ) redΓ = red(redΓ)

= lgcd(υ red(Γ)) = red(υ red(Γ))

= lgcd(ν red(Λ)) = red(ν red(Λ))

= ν lgcd(redΛ) = red(redΛ)

= ν = redΛ

Lemma 4.15. If right- and left-invertibles of M are all invertibles and if Kl(TM ) has
all countable powers of 1 then M is both left-cancellative up to invertibles on the left
and right-coprime-cancellative, and all non-empty countable families of M have a unique
left-gcd up to invertibles on the right.

Proof. Let us first show left-cancellativity up to invertibles. If υγi = υλi for some υ ∈M
and two countable families (γi)i∈I , (λi)i∈I of elements of M with I ⊆ N>0, then defining
Γ(0) = Λ(0) = ε, Γ(i) = γi and Λ(i) = λi for all i ∈ I and Γ(j) = Λ(j) = ⊥ for all j /∈ I,
we have that υΓ = υΛ. Hence redΓ = redΛ and υ lgcd(Γ) = υ lgcd(Λ). But lgcdΓ and
lgcdΛ left-divide ε = Γ(0) = Λ(0) hence they are right-invertible and thus invertible: γi
and λi = lgcd(Λ)lgcd(Γ)−1γi are equal up to an invertible (that does not depend on i)
on the left.

Moreover, if υΛ = νΛ for some Λ such that (Λ(i))i|Λ(i)6=⊥ is left-coprime, then lgcdΛ
is right-invertible (by definition of left-coprimality) and thus since

υ lgcd(Λ) = lgcd(υΛ)

= lgcd(νΛ)

= ν lgcd(Λ)
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by left-invertibility of lgcdΛ, υ = ν.
Finally, consider δ a left-gcd of some non-empty countable family encoded as Λ ∈

(M + 1)N∗ . Then there is some υ such that δ = lgcd(Λ)υ (since lgcd(Λ) left-divides Λ)
and some Γ such that δΓ = Λ. Hence

lgcdΛ = lgcd(δΓ)

= δ lgcd(Γ)

= lgcd(Λ)υ lgcd(Γ)

By left-cancellativity up to invertibles, υ lgcd(Γ) ∈ M× so υ is right-invertible hence
invertible : δ = lgcdΛ up to invertibles on the right.

Lemma 4.16. If M is both left-cancellative up to invertibles on the left and right-
coprime-cancellative, and all non-empty countable subsets of M have a unique left-gcd
up to invertibles on the right, then Kl(TM ) has all countable powers of 1.

Proof. Split the set of those Λ ∈ (M+1)N∗ such that (Λ(i))i|Λ(i)6=⊥ is left-coprime into the
equivalence classes given by χΛ ∼ Λ for all χ ∈M×. Then, for each equivalence class C
pick a redC in C (using the axiom of choice) and for all υ ∈M define lgcd(υ red(C)) = υ
and red(υ red(C)) = redC so that in particular lgcd(redC) = ε and red(redC) = redC.

This is well-defined because if υ red(C) = ν red(D) for υ, ν ∈M and two equivalence
classes C,D, then if δ is a left-gcd of υ red(C) we have that δ = υυ′ for some υ′ (since
υ left-divides υ red(C)) and there is some Λ such that υ red(C) = υυ′Λ. But then by
left-cancellativity up to invertibles, there is some χ ∈ M× such that υ′Λ = χ red(C),
hence χ−1υ′ left-divides redC and as such is right-invertible (it left-divides ε, a left-
gcd of redC), making υ′ right-invertible as well. This shows that υ is a left-gcd of
υ red(C) = ν red(D) and we show similarly that this is also true of ν, hence by unicity
of the left-gcd there is a ξ ∈ M× such that υ = νξ. Therefore by left-cancellativity up
to invertibles there is another invertible ξ′ ∈ M× such that ξ red(C) = ξ′ red(D) hence
by definition C = D and, by right-coprime-cancellativity, υ = ν.

Moreover this defines lgcdΛ and redΛ for any Λ because if δ is a left-gcd of Λ,
then Λ = δΓ for some left-coprime Γ (if δ′ left-divides Γ then δδ′ left-divides Λ hence δ,
therefore δ′ is invertible by left-cancellativity up to invertibles) hence Λ = δχ red(C) if
Γ ∈ C and Γ = χ red(C).

We have thus defined two functions lgcd and red that immediately satisfy the con-
ditions (2)a and (2)b of Proposition 4.12.

Lemma 4.18. In Kl(TM ), Iso = Surj ∩ Inj ∩ Inv ∩ Tot, and these four classes are all
closed under composition (within themselves).

Proof. Closure under composition is immediate.
If f : X →M × Y + 1 is in Surj ∩ Inj ∩ Inv ∩ Tot, it can be restricted to a function

〈f1, f2〉 : X →M × Y (f ∈ Tot). f2 must be bijective (f ∈ Surj∩ Inj) and f1(X) ⊆M×

(f ∈ Inv). Hence f has an inverse, given by (f−1)(y) =
(
(f1(f2

−1(y))
−1

, f2
−1(y)

)
.
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Conversely, if f : X → M × Y + 1 is an isomorphism it has an inverse f−1 : Y →
M ×X + 1 such that f ◦ f−1 = idY and f−1 ◦ f = idX . For all x ∈ X, (f−1)†(f(x)) =
(ε, x) hence f(x) 6= ⊥: f ∈ Tot, and similarly for f−1. Writing f = 〈f1, f2〉 and
f−1 = 〈(f−1)1, (f

−1)2〉, we have that f2 is a bijection with inverse f2
−1 = (f−1)2, hence

f ∈ Surj∩Inj. Finally, for all x ∈ X we have that f1(x)(f−1)1(f2(x)) = ε and conversely,
hence f1(x) is invertible and f ∈ Inv.

Proposition 4.19. (E1,M1) = (Surj∩ Inj∩ Inv,Tot), (E2,M2) = (Surj∩ Inj, Inv∩Tot)
and (E3,M3) = (Surj, Inj ∩ Inv ∩ Tot) are all factorization systems in Kl(TM ).

Proof. By Lemma 4.18 we only need to show for each i ∈ {1, 2, 3} that every f : X Y
may be factored asm◦e with e ∈ Ei andm ∈Mi, and that Ei andMi satisfy the diagonal
fill-in property of Definition 2.6.

• (E1,M1). Any f : X → M × Y + 1 may be factored through e : X → M ×
f−1(M × Y ) + 1 (given by e(x) = (ε, x) if e(x) 6= ⊥ and e(x) = ⊥ otherwise) and
m : f−1(M × Y )→M × Y + 1 (given by m(x) = e(x) when e(x) 6= ⊥).
Moreover, given a commuting diagram

X Y1

Y2 Z

u

e

v

m

the only possible choice for a φ : Y1 → M × Y2 + 1 is given by φ(y1) = ⊥ if
v(y1) = ⊥ and φ(y1) = (υe

−1υu, y2) if e(x) = (υe, y1), u(x) = (υu, y2), v(y1) =
(υv, z), m(y2) = (υm, z) and υeυv = υuυm. This definition does not depend on the
choice of x because of the bijectiveness property of e, and we immediately have
the commuting diagram

X Y1

Y2 Z

u

e

v
φ

m

by definition.

• (E2,M2). Any f : X → M × Y + 1 may be factored through e : X → M ×
f−1(M × Y ) + 1 (given by e(x) = (υ, x) if e(x) = (υ,−) and e(x) = ⊥ otherwise)
and m : f−1(M × Y )→M × Y + 1 (given by m(x) = (ε, y) when e(x) = (−, y)).
Finally, given a commuting diagram

X Y1

Y2 Z

u

e

v

m

the only possible choice for a φ : Y1 → M × Y2 + 1 is given by φ(y1) = ⊥ if
v(y1) = ⊥ and φ(y1) = (υvυm

−1, y2) if e(x) = (υe, y1), u(x) = (υu, y2), v(y1) =
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(υv, z), m(y2) = (υm, z) and υeυv = υuυm. This definition does not depend on the
choice of x because of the bijectiveness property of e, and we immediately have
the commuting diagram

X Y1

Y2 Z

u

e

v
φ

m

by definition.

• (E3,M3). Any morphism f : X →M × Y + 1 factors through e : X →M ×Z + 1
and m : Z →M × Y + 1 with

Z = {y ∈ Y | ∃x ∈ X, f(x) = (−, y)}

e(x) = f(x) and m(y) = (ε, y).
Finally, given a commuting diagram

X Y1

Y2 Z

u

e

v

m

the only possible choice for a φ : Y1 →M×Y2+1 is given by φ(y1) = ⊥ if v(y1) = ⊥
and φ(y1) = (υvυm

−1, y2) if e(x) = (υe, y1), u(x) = (υu, y2), v(y1) = (υv, z),
m(y2) = (υm, z) and υeυv = υuυm. This definition does not depend on the choice
of x because m is injective on Y , and we immediately have the commuting diagram

X Y1

Y2 Z

u

e

v
φ

m

by definition.

D. Proofs for Section 5 (Algorithms on monoidal transducers)
Lemma 5.1. An object X of Kl(TM ) is M-noetherian if and only if it is a finite set,
in which case lengthM(m : Y � X) = |X| − |Y |.

Proof. Let (xi : 1 X)i∈N be an infinite sequence of distincts elements of an infinite
set X. Then the mn = [κi]

n
i=0 :

∐n
i=0 1

∐n+1
i=0 1 provide a counter-example to the

M-noetherianity of X as none of them are isomorphisms (they are not surjective) yet
[xi]

n+1
i=0 ◦ mn = [xi]

n
i=0 and [xi]

n
i=0 is always an M-morphism. Hence infinite sets are

never M-noetherian. If X and the sequence (xi)i∈N were finite instead, this example
would prove that lengthM(m : Y � X) ≥ |X| − |Y |.
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Conversely, a strict chain of M-subobjects of X is a strict chain of subsets X0 (
X1 ( · · · of X. In particular, the cardinality of these subsets is strictly increasing: if X
is finite, the chain must be finite as well, and its length at most |X| − |X0|.

Lemma 5.2. An object X of Kl(TM ) is E-artinian if and only if it is a finite set and
either M is right-noetherian or X = ∅, in which case colengthE(e : X Y ) =
|X| − |Y |+ rk e where rk e =

∑
e(x)=(υ,y) rk υ.

Proof. Let (xi)i∈N be an infinite sequence of distincts elements of an infinite set X, and
set Xn = {xi | 0 ≤ i ≤ n}. Let en : X Xn be defined by e(xi) = (ε, xi) for i ≤ n
and e(x) = ⊥ otherwise, and let en+1

n : Xn+1 Xn be the restriction of en to Xn+1.
None of the en+1

n are isomorphisms (they are not total) yet en+1
n ◦ en+1 = en: infinite

sets are never E-artinian.
Assume now X is not empty and M is not right-noetherian: there is an element

x∗ ∈ X and two sequences (υn)n∈N and (νn)n∈N of elements of M such that for all
n ∈ N, υn /∈M× and νn = νn+1υn. Let en : X 1 be defined by en(x∗) = (νn, ∗) and
en(x) = ⊥ for all other x ∈ X, and let en+1

n : 1 1 be defined by en+1
n (∗) = (υn, ∗).

None of the en+1
n are isomorphisms (they do not only produce invertible elements of

M) yet en+1
n ◦ en+1 = en: non-empty sets are never E-artinian when M is not right-

noetherian.
Conversely, if X is empty then it is immediately E-artinian: there is only one E-

morphism out of X, idX . Suppose now that X is finite and M right-noetherian, and
consider a cochain en+1

n : Xn+1 Xn of E-quotients en : X Xn. Since X is
finite, at most |X| − |X0| of the E-quotients Xn+1 Xn witness a decrease of the
cardinality from their domain to their codomain and are not in Inj ∩ Tot. Fix now an
x ∈ X such that e0(x) 6= ⊥ and write en(x) = (νn, xn) and en+1

n (xn+1) = (υn, xn) (this
is well-defined because en+1

n ◦ en+1 = en). Then νn = νn+1υn for all n ∈ N, hence since
M is right-noetherian only a finite number of the en+1

n , at most rk ν0, produce a non-
invertible element on xn+1. This is true for all x ∈ X, hence a finite number of the en+1

n ,
at most rk e0, are not in Inv, and a finite number of them, at most |X| − |X0| + rk e0,
are not in Iso: X is E-artinian and colengthE(e0 : X X0) ≤ |X| − |X0|+ rk e0.

Finally, if rk e is finite, in light of this proof it is now easy to build a strict cochain
of E-quotients of X starting with e : X Y that has length exactly |X| − |Y |+ rk e.
For each ν(x) ∈ M such that e(x) = (ν(x), y) for some x ∈ X and y ∈ Y , write
indeed υ1(x), . . . , υrk ν(x)(x) for a sequence of non-invertible divisors of ν of maximum
length. Each morphism between two consecutive E-quotients in the cochain should
either decrease the size of the quotient by 1, or produce exactly one of the υi(x) on x
for exactly one x ∈ X. Similarly, if rk e is infinite there sequences of divisors of some
ν(x) or arbitrary length and it is then easy to build strict cochains of E-quotients of X
of arbitrary lengths.

Theorem 5.3. Algorithm 4 is correct and terminates as soon as MinL has finite state-
set and M is right-noetherian. It makes at most 3 |MinL|st + rk(MinL) updates to Q
(lines 8 and 14) and at most rk(MinL) + |MinL|st updates to T (line 10).
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Proof. Notice first that Algorithm 4 is indeed the instance of Algorithm 1 in Kl(TM ):
for all q ∈ Q and a ∈ A ∪ {ε}, Λ(q, a) is a left-gcd of L(q, a, ·) = (L(.qat/))t∈T =
Λ(q, a)R(q, a, ·), henceR(q, a, ·) is left-coprime and there is a χ ∈M× such that Λ(q, a)χ−1 =
lgcd(L(q, a, ·)) and χR(q, a, ·) = red(L(q, a, ·)). Hence Q/T = {red(L(q, e, ·)) | q ∈
Q,L(q, e, ·) 6= ⊥T } is the quotient of the set {R(q, e, ·) | q ∈ Q,R(q, e, ·) 6= ⊥T } by equal-
ity up to invertibles on the left. It follows that Q/T � (Q ∪ {qa})/T is an E-morphism
if and only if it is surjective, that is if and only if the condition on line 7 is not satisfied,
and Q/(T ∪ {at}) � Q/T is an M-morphism if and only if it is total, produces only
invertibles elements and is injective, that is if and only if it respectively does not satisfy
any of the three conditions on line 9: it is easy to see that it is total if and only if the
first condition is not satisfied; it is total but does not only produce invertible elements
if and only if there is some q ∈ Q and at ∈ AT such that L(q, a, t) is not left-divisible
by Λ(q, e) which is equivalent to the second condition holding; and finally it is easy to
see that it is total and only produces invertible elements but is not injective if and only
if the third condition holds.

The correction and termination is then given by Theorem 2.16, thanks to Lemmas 5.1
and 5.2. These two lemmas also provide the complexity bound of the algorithm, as Theo-
rem 2.16 is proven in [10] by showing that each addition to T contributes to a morphism
in a strict chain of M-subobjects of (MinL)(st) starting with {ε}/A∗ � A∗/A∗ =
(MinL)(st) [10, Lemma 33], and each addition to Q contributes to a morphism in
a chain of E-quotients of (MinL)(st) ending with (MinL)(st) = A∗/A∗ � A∗/{ε}
[10, Lemma 33] and whose isomorphisms may only be contributed by the addition
of a counter-example outputted by EquivL and are immediately followed by a non-
isomorphism in the chain for T or the cochain for Q [10, Lemma 36].
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