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In [START_REF] Donaldson | Symplectic submanifolds and almost-complex geometry[END_REF], S. Donaldson proved the following:

Theorem 0 (Donaldson). Let V be a closed manifold and ω a symplectic form on V with integral periods. Then, for every sufficiently large positive integer k, there exists a symplectic submanifold W of codimension 2 in (V, ω) whose homology class is Poincaré dual to k[ω] and whose inclusion into V is an (n -1)-connected map, where n := 1 2 dim R V . This result highlights analogies between symplectic geometry and Kähler geometry which were quite unexpected at the time, and actually the ideas and the methods introduced by Donaldson in [START_REF] Donaldson | Symplectic submanifolds and almost-complex geometry[END_REF][START_REF] Donaldson | Lefschetz pencils on symplectic manifolds[END_REF] provide a new insight into both fields. When V is a complex projective manifold and ω a Kähler form with integral periods, the above theorem is a classical result that follows from the works of Bertini, Kodaira and Lefschetz. In this case, W ⊂ V is a complex hypersurface obtained as a transversal hyperplane section V ∩ H of V , where V is holomorphically embedded into a projective space CP m and H ⊂ CP m is a hyperplane. As a consequence, V -W ⊂ CP m -H ≃ C m is a smooth affine variety and, in particular, a Stein manifold of finite type. Moreover, ω↾ V -W = d d C φ for some exhausting function φ : V -W → R having no critical points near W . Explicitly, φ := -1 2kπ log |s| where s is the restriction to V ⊂ CP m of the complex linear function (a holomorphic section of O(1)) defining H. (Note that the operator d C here is given by d C φ(v) := -dφ(iv) for any tangent vector v.)

Our main purpose in this paper is to show that any closed integral symplectic manifold has a very similar structure:

Theorem 1 (Stein Complements). Let V be a closed manifold and ω a symplectic form on V with integral periods. Then, for every sufficiently large positive integer k, there exist:

• a symplectic submanifold W of codimension 2 in (V, ω) whose homology class is Poincaré dual to k[ω], and

• a complex structure J on V -W such that ω↾ V -W = d d J φ for some exhausting function φ : V -W → R having no critical points near W ; in particular, (V -W, J) is a Stein manifold of finite type.

Of course, the difference with the Kähler case is that, in general, the complex structure J (which depends on k) does not extend over the submanifold W . To make the above statement less mysterious, we need to recall a few pieces of terminology.

A Liouville domain is a domain1 F endowed with a Liouville form, namely, a 1-form λ with the following properties:

• dλ is a symplectic form on F , and

• λ induces a contact form on K := ∂W orienting K as the boundary of (F, dλ); equivalently, the Liouville vector field λ -→ given by λ -→ dλ = λ points transversely outwards along K.

A Liouville domain (F, λ) is a Weinstein domain if the Liouville field λ -→ is gradientlike for some Morse function φ : F → R, meaning that

λ -→ • φ ≥ c | λ -→ | 2
, where the norm is computed with respect to any auxiliary metric and c is a positive number depending on that metric. (Obviously, the function φ can be further adjusted to be constant on ∂F .)

Not every Liouville domain is a Weinstein domain. In fact, no restriction is known for the topology of a Liouville domain while the topology of a Weinstein domain is strongly constrained. More explicitly, the topology of a Liouville domain (F, λ) is largely concentrated in its skeleton (also called core, or spine), namely the union Sk(F, λ) of all the orbits of λ -→ which do not exit through ∂F . Indeed, the whole domain retracts onto an arbitrary small neighborhood of Sk(F, λ). Due to the dilation properties of λ -→ (its flow expands λ exponentially), the closed subset Sk(F, λ) ⊂ F has measure zero (for the volume form (dλ) n , where n := 1 2 dim F ), but for instance there are Liouville domains (F, λ) for which Sk(F, λ) is a stratified subset of codimension 1 [Mc, Ge, MNW]. In contrast, if (F, λ) is a Weinstein domain, Sk(F, λ) consists of the stable submanifolds of the critical points of the Lyapunov function φ. Then the same dilation properties as above force these submanifolds to be isotropic for dλ, and so the critical indices of φ cannot exceed n. In particular, the inclusion ∂F → F is an (n -1)-connected map. Actually, the main examples of Weinstein domains are Stein domains, i.e., sublevel sets of exhausting C-convex2 functions, and the work of Cieliebak-Eliashberg [CE] shows that Weinstein and Stein domains are essentially the same objects. As for the relationships between Weinstein and Liouville domains, they remain quite mysterious.

Returning to our closed integral symplectic manifold (V, ω), we will call hyperplane section of degree k in (V, ω) any submanifold W of codimension 2 in V whose homology class is Poincaré dual to k[ω]. A preliminary remark is that the complement of a symplectic hyperplane section W of arbitrary degree in (V, ω) is isomorphic to the interior of a Liouville domain (cf. Proposition 5). There is no general evidence that the Liouville domains obtained in this way have peculiar topological properties, but this may happen under additional assumptions on (V, ω). Revisiting a construction due to Auroux [START_REF]AUROUX -Théorèmes de structure pour les variétés symplectiques compactes via des techniques presque complexes[END_REF], we will illustrate this by discussing the case of symplectic hyperplane sections in tori (see Propositions 9 and 10). As for the symplectic hyperplane sections provided by Donaldson's construction, we have (see [START_REF] Giroux | Géométrie de contact : de la dimension trois vers les dimensions supérieures[END_REF]Proposition 8]):

Theorem 2 (Weinstein Complements). Let V be a closed manifold and ω a symplectic form on V with integral periods. Then, for every sufficiently large positive integer k, there exist a Weinstein domain (F, λ) and a map q : F → V with the following properties:

• q(∂F ) is a symplectic hyperplane section W of degree k in (V, ω) and ∂F is the normal circle bundle of W projecting to W by q;

• q↾ F -∂F : F -∂F → V -W is a diffeomorphism, with q * ω = dλ.
Theorem 1 is then a corollary of Theorem 2 and the results of [CE].

Remark 3 (About Tiles). The proofs of Theorems 1 and 2 are variants of Donaldson's proof of Theorem 0. In particular, with the terminology used by Auroux in [START_REF]AUROUX -Asymptotically holomorphic families of symplectic submanifolds[END_REF], the symplectic hyperplane sections they produce are the zero sets of "asymptotically holomorphic and uniformly transverse sections" of certain prequantization line bundles. It then follows from Auroux's uniqueness theorem [Au2, Theorem 2] that, for every sufficiently large integer k, these various symplectic hyperplane sections lie in the same Hamiltonian isotopy class. Thus, Theorems 1 and 2 can essentially be rephrased by saying that the symplectic hyperplane sections given by Donaldson's construction have Stein, resp. Weinstein, complements.

In [Bi], Biran adopted a very fruitful new viewpoint on the decomposition of a complex projective manifold V described at the beginning of this paper. Instead of regarding V as decomposed into a complex hyperplane section W and the affine variety V -W , he considered V as consisting of the skeleton of V -W (this Stein manifold can be compactified to a Weinstein domain) and its complement. His key observation is that the latter is a simple symplectic object that he calls a "standard symplectic disk bundle" over W (see the discussion preceding Corollary 8 for a precise definition). As a byproduct of Theorem 2, we can extend Theorem 1.A of [Bi] as follows:

Corollary 4 (Generalization of Biran's Decomposition). Let V be a closed manifold and ω a symplectic form on V with integral periods. Then, for every sufficiently large positive integer k, there exists an isotropic skeleton ∆ ⊂ V whose complement V -∆ has the structure of a standard symplectic disk bundle of area 1/k over a symplectic manifold W .

Actually, one can take for ∆ the skeleton of any Weinstein domain as in Theorem 2. We refer the reader to [Bi] for applications of Corollary 4 to intersection problems.

Acknowledgments. I wish to thank Jean-Paul Mohsen for the multiple exchanges we had over the years about Donaldson's work on complex and symplectic geometry; his approach to the theory (see for instance [START_REF]MOHSEN -Infinitesimal holomorphic sections and Donaldson's construction of symplectic submanifolds[END_REF]) was strongly influential. I also thank Hélène Eynard-Bontemps for fixing many misprints in the manuscript.

A Symplectic hyperplane sections and Liouville domains

We begin with a simple observation:

Proposition 5 (Liouville Complements). Let V be a closed manifold, ω a symplectic form on V with integral periods and W ⊂ V a symplectic hyperplane sec-tion of degree k. Then there exists a Liouville domain (F, λ) and a map q : F → V with the following properties:

• q(∂F ) = W is the symplectic hyperplane section, ∂F is the normal circle bundle of W projecting to W by q, and -2kπiλ defines a unitary connection on ∂F with curvature form -2kπiω↾ W ;

• q↾ F -∂F : F -∂F → V -W is a diffeomorphism, and q * ω = dλ.

A Liouville domain as above will be called a Liouville compactification of V -W .

Remark 6 (Liouville Domains and Symplectic Hyperplane Sections). Conversely, take a Liouville domain (F, λ) whose boundary ∂F has the structure of a principal circle bundle over a manifold W , and assume that -2kπiλ, for some positive integer k, induces a (unitary) connection form on ∂F . Then the quotient V of F by the equivalence relation which collapses every fiber of ∂F → W to a point is an integral symplectic manifold in which W sits as a symplectic hyperplane section of degree k.

Proof. Let L → V be a Hermitian line bundle whose Chern class is a lift of k[ω], and denote by P ⊂ L the unit circle bundle with projection p : P → V . By standard obstruction theory, L has a section s whose zero set equals W and is cut out transversely. Then u = s/|s| is a section of P over V -W , and the set

F = u(V -W ) ∪ p -1 (W ) = Clos u(V -W ) ⊂ P
is a smooth compact submanifold of P with boundary K := p -1 (W ), which can be viewed as the result of a "real oriented blowup" of V along W .

Fix a unitary connection ∇ on L with curvature form -2kπiω. On the principal U 1 -bundle P , the connection ∇ is given by a 1-form -2kπiα where α is a real contact form such that dα = p * ω. Thus, the 1-form λ induced by α on F restricts to a contact form on K, and satisfies

u * dλ = u * dα = u * (p * ω) = (p • u) * ω = ω.
Therefore, (F, λ) is essentially the required Liouville domain, except that dλ degenerates along K = ∂F (the kernel of dα is spanned by the vector field generating the U 1 -action, and hence is tangent to K). Lemma 7 below explains how to solve this problem by attaching the boundary differently. Now recall that the symplectization of a contact manifold (K, ξ) is the symplectic submanifold SK of T * K consisting of the non-zero covectors β x ∈ T *

x K, x ∈ K, whose cooriented kernel is ξ x (all contact structures are cooriented in this paper). This is an R >0 -principal bundle over K whose sections are the global Pfaff equations of ξ. Thus, any such 1-form α determines a splitting

SK = sα x ∈ T * K : (s, x) ∈ R >0 × K ≃ R >0 × K.
We denote by K α ⊂ SK the graph of α, and by SK <α (resp. SK ≤α ) the subset of SK given by the condition s < 1 (resp. s ≤ 1).

Lemma 7 (Boundary Degenerations of Liouville Domains). Let F be a domain and λ a 1-form on F which is a positive contact form on K := ∂F and whose differential dλ is a symplectic form on F -K but may degenerate along K. Then the singular foliation spanned by λ -→ in F -K extends to a foliation of F transverse to K and, denoting by U the open collar consisting of all orbits which exit through K, there exists a unique smooth homeomorphism

h = h λ : U → SK ≤α such that:
• h is the identity on K ∼ = K α and induces a diffeomorphism between U -K and SK <α ;

• λ↾ U = h * λ ξ where λ ξ is the canonical 1-form on SK.

Furthermore, the singularities of h are exactly the points of K where dλ degenerates and, in particular, the points where the 2n-form (dλ) n vanishes transversely (with n := 1 2 dim F ) correspond to folds. As a result, one can change (F, λ) to a genuine Liouville domain just by gluing

F -K with SK ≤α along U -K ∼ = SK <α .
Proof. Let µ be an arbitrary positive volume form on F and consider the function v := (dλ) n /µ. We shall show that the vector field ν given by ν µ = nλ∧(dλ) n-1 has the following properties:

• ν is non-singular along K and points transversely outwards;

• ν = v λ
-→ at every point where dλ is non-degenerate;

• the flow f t of ν is defined for all t ≤ 0 and the diffeomorphism

f : R -× K → U, (t, x) → f t (x),
satisfies f * λ = e w α where w(t, x) = t 0 v(f s (x)) ds. The first two properties show that ν generates a foliation transverse to K which extends the foliation spanned by λ -→ . The third property implies that the map h : U → SK ≤α defined by

h • f (t, x) = e w(t,x) α x
is a smooth homeomorphism with the desired behavior. Moreover, h is unique since the identity is the only homeomorphism of SK ≤α which fixes K α pointwise and induces a diffeomorphism of SK <α preserving λ ξ .

The contact property of λ means that λ ∧ (dλ) n-1 induces a positive volume form on K, so ν is non-singular along K and points transversely outwards. Next, at any point where dλ is symplectic,

λ -→ dλ n = v λ -→ µ = nλ ∧ (dλ) n-1 = ν µ, so ν = v λ -→ .
In particular, ν dλ = vλ and this equality holds everywhere on F by continuity.

To compute the form f * λ, note that it vanishes on ∂ t , t ∈ R -, because Df (∂ t ) = ν and ν λ = 0. Thus f * λ at a point (t, x) is just (the pullback of) f * t λ at point x. Furthermore, f * t λ satisfies the linear differential equation

d dt f * t λ = f * t (ν • λ) = f * t (ν dλ) = f * t (vλ) = (v • f t ) f * t λ.
Since f * 0 λ = α, we obtain

f * t λ = exp t 0 (v • f s ) ds α,
as claimed.

We now briefly describe the notion of standard symplectic disk bundle, referring to [Bi, Subsection 2.1] for a more detailed discussion. The most relevant approach here is as follows. Consider a closed integral symplectic manifold (W, ω W ) and denote by p : K → W a principal U 1 -bundle whose Chern/Euler class is an integral lift of [ω]. Fix any connection 1-form -2πiα on K such that dα = p * ω W .

Then α is a contact form on K and the quotient of the manifold SK ≤α that we obtain by collapsing each circle fiber in K = K α to a point has the structure of an open disk bundle U over W and inherits a symplectic form ω U from SK whose restriction to the zero section W is ω W . Moreover, each fiber of U → W is a symplectic disk of area 1 (by Stokes' theorem). The symplectic manifold (U, ω U ) is what Biran calls a standard symplectic disk bundle of area 1 over W (see [START_REF]BIRAN -Lagrangian barriers and symplectic embeddings[END_REF]Remarks 2.1]). If the form 1 k ω W also has integral periods for some integer k ≥ 1 then (U, 1 k ω U ) is named a standard symplectic disk bundle of area 1/k. Given a Liouville domain (F, λ) with boundary K := ∂F , the manifold F -Sk(F, λ), equipped with the 1-form λ, is isomorphic to SK ≤λ↾ K with its canonical 1-form. Thus, as a consequence of Proposition 5, we have:

Corollary 8 (Standard Disk Bundles in Symplectic Manifolds). Let V be a closed manifold, ω a symplectic form on V with integral periods, W a symplectic hyperplane section of degree k and (F, λ) a Liouville compactification of V -W . Then the complement of Sk(F, λ) in (V, ω) has full measure and is a standard symplectic disk bundle of area 1/k.

Corollary 4 follows readily from Theorem 2 and Corollary 8.

In the remainder of this section, we make a couple of remarks on the topology of symplectic hyperplane sections in tori. We begin with an observation of Auroux [START_REF]AUROUX -Théorèmes de structure pour les variétés symplectiques compactes via des techniques presque complexes[END_REF][START_REF] Auroux | Private communication by e-mail[END_REF] which shows that the Liouville domains given by Proposition 5 need not be Weinstein domains:

Proposition 9 (Auroux). In the standard symplectic torus of dimension 4, there exist disconnected symplectic hyperplane sections of arbitrarily large even degrees.

In particular, the complements of these symplectic hyperplane sections have Liouville compactifications which are not Weinstein domains.

Interestingly enough, Auroux's argument can be "reversed" in higher dimensions to prove the following:

Proposition 10 (Connectedness in Higher Dimensional Tori). In the standard symplectic torus of dimension 2n ≥ 6, every symplectic hyperplane section is connected.

Proofs of Propositions 10 and 9. The main underlying remark is that, if a closed integral symplectic manifold (V, ω) of dimension 2n contains a disconnected symplectic hyperplane section W = W 1 ⊔ W 2 , then the cohomology class w Poincaré dual to [W ] = [W 1 ] + [W 2 ] splits as the sum w 1 + w 2 of two non-zero integral classes which satisfy w 1 w 2 = 0 and w i w n-1 > 0, i ∈ {1, 2}. It follows that w n = w n 1 + w n 2 , so either w n 1 or w n 2 is non-zero (and positive). We assume below that w n 1 > 0. If V = T 2n = R 2n /Z 2n , its cohomology algebra can be identified with the exterior algebra of R 2n . In this identification, w 1 and w 2 become exterior 2-forms ω 1 and ω 2 , and the hypothesis that w n 1 > 0 means that ω 1 is a linear symplectic form. But then, by a classical result of Lefschetz, multiplication by ω 1 defines a map 2 R 2n → 4 R 2n which is injective for n ≥ 3. Since ω 1 ∧ ω 2 = 0, we get to the conclusion that ω 2 = 0, which contradicts our assumption that w 1 and w 2 are non-zero. This proves Proposition 10.

To prove Proposition 9 (following Auroux [Au1, Au4]), we first notice that the symplectic form ω := dx 1 ∧ dx 2 + dx 3 ∧ dx 4 on T 4 = R 4 /Z 4 can be written as ω = 1 2 (ω 1 + ω 2 ) where ω 1 , ω 2 are positive linear symplectic forms with integral periods whose product ω 1 ∧ ω 2 is zero. For instance, one can take

ω 1 := dx 1 ∧ (dx 2 -dx 3 ) + (dx 3 + dx 2 ) ∧ dx 4 , ω 2 := dx 1 ∧ (dx 2 + dx 3 ) + (dx 3 -dx 2 ) ∧ dx 4 .
Next, we observe that the homology classes Poincaré dual to [ω 1 ] and [ω 2 ] are represented by the following immersed oriented submanifolds W 1 (a) and W 2 (b), respectively, for any a, b ∈ T 4 :

W 1 (a) := {x ∈ T 4 : x 1 -a 1 = x 2 -x 3 -a 2 = 0} ∪ {x ∈ T 4 : x 3 + x 2 -a 3 = x 4 -a 4 = 0}, W 2 (b) := {x ∈ T 4 : x 1 -b 1 = x 2 + x 3 -b 3 = 0} ∪ {x ∈ T 4 : x 3 -x 2 + b 2 = x 4 -b 4 = 0}.
(The ordered set of equations given for each piece determines the orientation.) Each cycle W 1 (a) consists of two linear tori which are both symplectic for ω 1 and Lagrangian for ω 2 , and which intersect positively (in exactly two points). Thus, W 1 (a) is an immersed symplectic submanifold in (T 4 , ω) with positive transverse double points. By a standard procedure (an embedded connected sum localized near each double point), W 1 (a) can be desingularized to an embedded and homologous symplectic submanifold W 1 (a) in (T 4 , ω). Similarly, W 2 (b) can be desingularized to an embedded symplectic submanifold W 2 (b) in (T 4 , ω). Moreover, since W 1 (a) and W 2 (b) are disjoint for a = b, so are W 1 (a) and W 2 (b). Therefore, if a = b, the union W := W 1 (a) ∪ W 2 (b) is a disconnected symplectic submanifold of (T 4 , ω) whose homology class is Poincaré dual to 2[ω]; in other words, W is a symplectic hyperplane section of degree 2. To obtain a symplectic hyperplane section of degree 2k, just replace each linear torus involved in the definition of W 1 (a) and W 2 (b) by k parallel copies.

B Symplectic hyperplane sections and Weinstein domains

This section is devoted to the proof of Theorem 2, and we will assume that the reader is familiar with the techniques introduced by Donaldson in [START_REF] Donaldson | Symplectic submanifolds and almost-complex geometry[END_REF][START_REF] Donaldson | Lefschetz pencils on symplectic manifolds[END_REF] and further developed by Auroux, notably in [START_REF]AUROUX -Asymptotically holomorphic families of symplectic submanifolds[END_REF][START_REF]AUROUX -A remark on Donaldson's construction of symplectic submanifolds[END_REF]. Actually, the proof of Theorem 2 is a variation on Donaldson's proof of Theorem 0 and we will only explain the extra arguments we need (a sketch of proof can already be found in [Gi]). We recall the setting:

• V is a closed manifold, ω a symplectic form on V with integral periods, J an ω-compatible almost complex structure and g the metric given by g(., .) := ω(., J.);

• L → V is a Hermitian line bundle whose Chern class is a lift of [ω] and ∇ is a unitary connection on L with curvature form -2πiω;

• ∇ ′ , ∇ ′′ are the J-linear and J-antilinear components of ∇, respectively;

• L k , for any integer k, is the k-th tensor power of L endowed with the connection induced by ∇, which we still write ∇ = ∇ ′ + ∇ ′′ and whose curvature form is -2kπiω;

• g k , for k ≥ 1, is the rescaled metric g k := kg.

In [START_REF] Donaldson | Symplectic submanifolds and almost-complex geometry[END_REF], each symplectic hyperplane section of Theorem 0 is obtained as the zero set W := {s k = 0} of a section s k : V → L k , where the sections s k , k ≫ 0, satisfy the following properties (that we formulate using Auroux's terminology [START_REF]AUROUX -Asymptotically holomorphic families of symplectic submanifolds[END_REF]):

• The sections s k : V → L k are asymptotically holomorphic. This means that there is a positive constant R such that, for every k, for 0 ≤ j ≤ 2 and at every point of V ,

|s k | ≤ R, |∇ j+1 s k | g k ≤ R and |∇ j ∇ ′′ s k | g k ≤ Rk -1/2
Note that the derivatives ∇ j+1 s k and ∇ j ∇ ′′ s k with j > 0 involve both the connection ∇ on L k and the Levi-Civita connection of the metric g k (or g).

• The sections s k : V → L k are uniformly transverse (to 0). This means that there is a positive constant η such that, for every sufficiently large integer k,

|∇s k (x)| g k ≥ η at every point x where |s k (x)| ≤ η.
A key point here is that any section s k : V → L k satisfying the above estimates with k > 4R 2 /η 2 automatically also satisfies

|∇ ′′ s k | < |∇ ′ s k | at every point of W = {s k = 0}
, and this inequality guarantees that W is a symplectic submanifold. To prove Theorem 2, we will a similar inequality all over V :

Definition 11 (Quasiholomorphic Sections). Let κ ∈ [0, 1). We will say that a section

s k : V → L k is κ-quasiholomorphic if |∇ ′′ s k | ≤ κ |∇ ′ s k | at every point of V .
The geometric significance of this notion is the following:

Lemma 12 (Quasiholomorphic Sections and Symplectic Convexity). Let W be the zero set of a κ-quasiholomorphic section s : V → L k , κ ∈ [0, 1). Then the function φ := -log |s| : V -W → R admits a Liouville pseudogradient, namely the vector field λ -→ where -2kπiλ is the potential 1-form of ∇ in the trivialization s/|s| on V -W .

As a consequence, if s vanishes transversely and if φ := -log |s| is a Morse function, then W is a symplectic hyperplane section and the Liouville compactification of V -W (see Proposition 5) is a Weinstein domain.

Proof. Setting ρ := |s|, we have

2∇ ′ s = dρ -J * λρ -i J * (dρ -J * λρ), 2∇ ′′ s = dρ + J * λρ + i J * (dρ + J * λρ), so |∇ ′ s| = 1 2 |dρ -J * λρ|, |∇ ′′ s| = 1 2 |dρ + J * λρ|.
Since s is κ-quasiholomorphic, we have |∇ ′′ s| ≤ κ |∇ ′ s| and we obtain (after dividing by ρ): |λ + J * dφ| ≤ κ |λ -J * dφ|. Now the derivative of φ along the Liouville field λ -→ is equal to the inner product g k (λ, d J φ). Thus, for κ ∈ [0, 1), the above inequality implies that

λ -→ • φ ≥ 1 2 1 -κ 2 1 + κ 2 |λ| 2 g k + |dφ| 2 g k .
This shows that λ -→ is a pseudogradient of φ. With this lemma in mind, it suffices to show:

Proposition 13 (Construction of Quasiholomorphic Let s 0 k be asymptotically holomorphic and uniformly transverse sections V → L k , and let κ be any number in (0, 1). Then there exist κ-quasiholomorphic sections s k : V → L k such that, for every sufficiently large integer k:

• the section s k vanishes transversely and the symplectic hyperplane section

W := {s k = 0} is Hamiltonian isotopic to W 0 := {s 0 k = 0}; • the function -log |ss k | : V -W → R is a Morse function.
The main step in the proof is the next Lemma which provides asymptotically holomorphic sections of L k satisfying more uniform transversality conditions. We recall that, given a positive number η, a Riemannian manifold M and a Hermitian vector bundle E → M endowed with a unitary connection ∇, a section σ : M → E is η-transverse (to 0) if, at every point x ∈ M with |σ(x)| ≤ η, the linear map ∇σ(x) : T x M → E x is surjective and has a right inverse whose operator norm does not exceed 1/η. If the real rank of E equals the dimension of M, it is equivalent to require that |∇σ(x) • v| ≥ η |v| for all vectors v ∈ T x M.

In what follows, we consider sections σ k : V → E ⊗ L k , where E → V is a fixed Hermitian bundle and k runs over all sufficiently large integers, and we say that these sections are uniformly transverse if they are η-transverse for some positive η independent of k, where the amount of transversality is measured with the metric g k .

Lemma 14 (Extra Uniform Transversality Condition). Let s 0 k be asymptotically holomorphic and uniformly transverse sections V → L k . For large integers k, the sections s 0 k are homotopic, through asymptotically holomorphic and uniformly transverse sections, to sections s 1 k : V → L k whose partial covariant derivatives ∇ ′ s k are uniformly transverse.

Proof of the lemma. The proof follows step by step the path opened by Donaldson in [START_REF] Donaldson | Symplectic submanifolds and almost-complex geometry[END_REF]. We just explain here how to obtain uniform local transversality for sections of the form ∇ ′ s k . The globalization process elaborated by Donaldson in [START_REF] Donaldson | Symplectic submanifolds and almost-complex geometry[END_REF] then applies readily to provide the desired sections s 1 k . The sections s 1 k will be asymptotically holomorphic by construction. Moreover, Given any δ > 0, we can arrange that all the differences s 1 k -s 0 k are bounded by δ in C 1 -norm. For δ smaller than the uniform transversality modulus of the sections s 0 k , it follows that, for every t ∈ [0, 1], the sections (1-t)s 0 k +ts 1 k are still asymptotically holomorphic and uniformly transverse.

To achieve uniform local transversality, we essentially need to show that the derivatives ∇ ′ s 0 k are represented (in Darboux coordinates independent of k and in balls of fixed g k -radius) by maps which (on smaller balls) are approximated within ε in C 1 -norm by polynomial maps of degree bounded by C log(1/ε), where C is a positive constant (independent of k).

We work in complex Darboux coordinates (z 1 , . . . , z n ) centered on a point a, with the trivialization of L k given by parallel translation along rays. We denote by J 0 the standard complex structure in these coordinates and by ∇ ′ 0 , ∇ ′′ 0 (resp. d ′ , d ′′ ) the J 0 -linear and J 0 -antilinear components of ∇ (resp. of the usual differential d). Thus we have

∇ ′ s 0 k -∇ ′ 0 s 0 k = -i 2 ∇s 0 k • (J -J 0 )
where the right-hand side, measured with the metric g k on a ball of fixed radius, is bounded by O(k -1/2 ) in C 1 -norm. Hence it suffices to make the partial covariant derivatives ∇ ′ 0 s k uniformly transverse to 0, and for this we can use the connection of the flat metric rather than that of g k . Note that there is a little subtlety here: we want ∇ ′ s k to be transverse to 0 as a section of T ′ V ⊗ L k (T ′ V denoting the space of J-linear covectors in T * V ⊗C), but ∇ ′ s k and ∇ ′ 0 s k are not sections of the same bundle. To derive the transversality of ∇ ′ s k from that of ∇ ′ 0 s k , we observe that transversality between spaces of equal dimensions is a dilation property for all non-zero vectors (under the differential) and this property is stable under C 1 -small perturbations.

Let s a,k be the Gaussian section of L k at a. Since we work in a ball of given radius, for k sufficiently large,

s a,k (z) = exp(-π|z| 2 /2).
There are two obvious bases in the space of J 0 -linear forms, one consisting of the forms dz j s a,k and one consisting of the forms ∇ ′ 0 (z j s a,k ). They are related by

∇ ′ 0 (z i s a,k ) = dz i s a,k + z i ∇ ′ 0 s a,k = dz i -πz i j z j dz j s a,k = j Φ ij (z) dz j s a,k
where the entries of the matrix

Φ(z) = Φ ij (z) = δ ij -πz i z j are (real) polynomials independent of k. We now represent ∇ ′ 0 s 0 k by the map h = (h 1 , . . . , h n ) (with values in C n ) defined by ∇ ′ 0 s 0 k = j h j ∇ ′ 0 (z j s a,k ).
If w = (w 1 , . . . , w n ) is a δ-transverse value of h (meaning that h -w is ηtransverse to 0) then the section

∇ ′ 0 s 0 k - j w j z j s a,k = j (h j -w j )∇ ′ 0 (z j s a,k )
is η ′ -transverse to 0 for some η ′ which is a definite fraction of η. On the other hand, considering the function f = s 0 k /s a,k , we have

∇ ′ 0 s 0 k = d ′ f s a,k + f ∇ ′ 0 s a,k = d ′ f -πf i z i dz i s a,k = i (∂ z i f -πf z i )dz i s a,k .
In other words, if we denote by u = (u 1 , . . . , u n ) the map given by

u i := ∂ z i f -πz i f, 1 ≤ i ≤ n, we get h(z) = Φ(z) -1 u(z).
Since the function f is approximately holomorphic and the entries of the matrix Φ -1 are analytic functions independent of k, the map h admits the required polynomial approximations (see [START_REF] Donaldson | Symplectic submanifolds and almost-complex geometry[END_REF] for more details).

Remark (Cheaper Approach). The above argument appeals (implicitly) to the quantitative version of Sard's theorem given in [Do2, Section 5] or, more accurately, to its real version proved in [START_REF] Mohsen | Transversalité quantitative en géométrie symplectique : sous-variétés et hypersurfaces[END_REF]Section 6]. This is a great result but its proof is difficult and quite technical. One could modify our argument to appeal, instead, to the trick proposed by Auroux in [START_REF]AUROUX -A remark on Donaldson's construction of symplectic submanifolds[END_REF]. This would definitely make the complete proof of Theorem 2 technically much simpler, but it would make our exposition here more intricate.

Proof of Proposition 13. First observe that, since the sections s 0 k and s 1 k are homotopic through asymptotically holomorphic and uniformly transverse sections, their zero sets W 0 := {s 0 k = 0} and W 1 := {s 1 k = 0} are Hamiltonian isotopic. We will now construct κ-quasiholomorphic sections s k by modifying the sections s 1 k away from their zero sets. Hence, the symplectic hyperplane sections W := {s k = 0} = W 1 and W 0 will remain Hamiltonian isotopic for every large integer k.

Consider the sets Γ k ⊃ ∆ k defined by

Γ k = {x ∈ V : |∇ ′′ s 1 k (x)| ≥ κ|∇ ′ s 1 k (x)|}, ∆ k = {x ∈ V : ∇ ′ s 1 k (x) = 0},
where the sections s 1 k : V → L k are those given by the lemma. Since s 1 k vanishes η-transversely, Γ k avoids a tube of fixed g k -radius (independent of k) about W 1 := {s 1 k = 0}. Moreover, since ∇ ′ s 1 k vanishes δ-transversally, ∆ k is a discrete (hence finite) set and:

Lemma 15 (Location of Bad Points). For every sufficiently small positive number ρ and every sufficiently large integer k ≥ k(ρ), the balls B k (a, ρ), a ∈ ∆ k , are disjoint and cover Γ k .

As in [Do2, Lemma 8 and Proposition 9], this lemma is a consequence of the following simple fact: If |φ(0)| ≤ δρ/2 for some ρ ≤ δ/c, the equation φ(x) = 0 has a unique solution x in the ball of radius ρ about 0.

To prove Lemma 15, we apply Lemma 16 to the map representing ∇ ′ s 1 k in the complex Darboux coordinates centered on a point a of Γ k . At this point,

|∇ ′ s 1 k (a)| ≤ κ -1 |∇ ′′ s 1 k (a)| ≤ Rκ -1 k -1/
2 so the hypotheses of Lemma 16 are fulfilled once k is sufficiently large.

To complete the proof of the proposition, we will modify s 1 k near each point a ∈ ∆ k (see [Do2, Lemma 10 and the subsequent discussion]). Again, we work in the complex Darboux coordinates centered on a. For any ρ > 0, fix a cutoff function β = β ρ such that β(z) = 1 for |z| ≤ ρ/2, β(z) = 0 for |z| ≥ ρ, and |dβ(z)| ≤ 3/ρ for all z. Write s 1 k = f s a,k and denote by f 0 the complex polynomial of degree 2 given by

f 0 (z) = f (0) + 1 2 ij ∂ 2 z i z j f (0)z i z j .
We then consider the sections s k defined in the coordinates (z 1 , . . . , z n ) by

s k := βf 0 + (1 -β)f s a,k .
Before comparing the derivatives ∇ ′ s k and ∇ ′′ s k , let us compare the derivatives ∇ ′ 0 s k and ∇ ′′ 0 s k . As we already noticed, the closeness of ∇ ′ s 1 k and ∇ ′ 0 s 1 k guarantees that the latter derivative is η/2-transverse to 0 on the ball of radius ρ for k sufficiently large. On the other hand, the identities

d ′′ f (0) = ∇ ′′ 0 s 1 k (0), dd ′′ f (0) = ∇ 0 ∇ ′′ 0 s 1 k ( 
0) (where ∇ 0 denotes the connection associated to the flat metric) show that |d ′′ f (0)| and |dd ′′ f (0)| are bounded by Ck -1/2 . Therefore, if k is sufficiently large, the partial derivative ∇ ′ 0 (f 0 s a,k ) is so close to ∇ ′ 0 s 1 k that it is η/4-transverse to 0. Furthermore, f 0 s a,k is a holomorphic section. Thus, on the ball of radius ρ/2 (where β = 1), we have

∇ ′′ 0 s k (z) = 0 and |∇ ′ 0 s k (z)| ≥ η 4 |z|.
Hence, on that same ball,

|∇ ′′ s k (z)| ≤ Ck -1/2 |z| and |∇ ′ 0 s k (z)| ≥ η 4 -Ck -1/2 |z|.
In the annular region ρ/2 ≤ |z| ≤ ρ, the calculations above imply that

|f (z) -f 0 (z)| ≤ C(ρ 3 + ρk -1/2 )
and, since the gradient of β is bounded by 3/ρ, the same arguments as in [START_REF] Donaldson | Lefschetz pencils on symplectic manifolds[END_REF] give the desired inequalities when ρ is sufficiently small. It remains to show that the function φ := -log |s k | : V -W → R (where W := {s k = 0}) is a Morse function. Since s k is κ-quasiholomorphic with κ < 1, the critical points of φ are the zeros of ∇ ′ s k , namely the points of ∆ k . It then follows form the porperties of s k in B k (a, ρ/2), a ∈ ∆ k , that ∇s k vanishes transversele at a, so the critical points of φ are non-degenerate.

C Symplectic hyperplane sections and Stein domains

Here we derive Theorem 1 from Theorem 2. The main ingredient we will use is a special case (a domain is a cobordism with empty bottom boundary) of [START_REF] Cieliebak | ELIASHBERG -From Stein to Weinstein and Back: Symplectic Geometry of Affine Complex Manifolds[END_REF]Theorem 13.5]:

Theorem 17 (Cieliebak-Eliashberg). Let (F, λ) be a Weinstein domain and φ 0 a function on F with pseudogradient λ -→ and regular level set ∂F = {φ 0 = 0}. Then there exist a complex structure J and a path of 1-forms λ t on F (t ∈ [0, 1]) with the following properties:

• all forms dλ t are symplectic on F , and λ 0 = λ;

• all Liouville vector fields λ t -→ are pseudogradients of φ 0 ;

• λ 1 = d J (u • φ 0 ) for some convex increasing function u : R ≤0 → R ≤0 with u(0) = 0.

In particular, (F, J) is a Stein domain and u • φ is a J-convex function.

To complete the proof of Theorem 1, we actually need a variant of the above result, namely:

Corollary 18 (Weinstein and Stein Domains). Let (F, λ) be a Weinstein domain. Then there exist a complex structure J on F and a J-convex Morse function φ : F → R ≤0 , with regular level set ∂F = {φ = 0}, such that dλ = d d J φ.

Proof. Pick an arbitrary function φ 0 on F with pseudogradient λ -→ and regular level set ∂F = {φ 0 = 0}. Consider the complex structure J and the path of 1forms λ t (along with the function u) given by Theorem 17. Since the Liouville vector fields λ t -→ are all pseudogradients of φ 0 , each form λ t induces a contact form α t on ∂F . Using Gray's stability theorem and a suitable isotopy extension, we can arrange that the forms λ t have the same kernel along ∂F , i.e. λ t = v t λ 0 on ∂F for some function v t : ∂F → R >0 . Assume temporarily that v t = 1 for all t. Then Moser's argument provides an isotopy h t of F relative to ∂F such that h 0 = id and h * t dλ t = dλ. Then the complex structure h * 1 J and the function h * 1 (u • φ 0 ) have the desired properties. Therefore it suffices to modify the forms λ t so that they coincide on (or along) ∂F and still satisfy the conditions of Theorem 17. It is easy to find positive functions w t on F such that w t = 1/v t on ∂F and λ t -→

• log w t > -1. Then the forms λ t := w t λ t agree along ∂F and satisfy the first two conditions of Theorem 17, but λ 1 and d J (u • φ 0 ) are not equal. Set φ 1 = u • φ 0 and note that

λ 1 = w 1 λ 1 = w 1 d J φ 1 .
Lemma 19 below provides a function φ such that λ 1 = d J φ, which completes the proof of the corollary.

Lemma 19 (Rescaling of J-Convex Functions). Let F be a domain, J a complex structure on F and φ 1 : F → R a J-convex Morse function on F with regular level set ∂F = {φ 1 = 0}. For every positive function w on ∂F , there exists a J-convex Morse function φ : F → R equivalent to φ 1 such that d J φ = w d J φ 1 along ∂F .

By "equivalent", we mean that φ = u•φ 1 •f , where u : R → R is an increasing function while h is a diffeomorphism of F .

Proof. First extend w to a positive function on F and define φ 2 := (w + cφ 1 )φ 1 , where c is a positive constant. Then ∂F is a regular component of the zero-level set of φ 2 , and d J φ 2 = w d J φ 1 at every point of ∂F . Moreover,

d d J φ 2 = (w + cφ 1 ) d d J φ 1 + φ 1 d d J (w + cφ 1 ) + dw ∧ d J φ 1 + dφ 1 ∧ d J w + 2c dφ 1 ∧ d J φ 1 ,
so φ 2 is J-convex near ∂F for any sufficiently large constant c. We henceforth fix such a c. Then there exists a number δ > 0 such that dφ 2 is positive on the Liouville field d J φ 1 --→ in the collar {-δ ≤ φ 1 ≤ 0} (indeed, dφ 2 = w dφ 1 at every point of ∂F ). Now set 

Lemma 16 (

 16 Inverse Function Theorem). Let φ : D n → R n be a map C 2 -bounded by c and such that |dφ(0) • v| ≥ δ |v| for all vectors v.

φ 3 =

 3 aφ 1 + b with b := 1 2 sup{φ 2 (x) : φ(x) = -δ}, a < b δ .

In this text, the word domain means "compact manifold with boundary."

We use the term C-convex -or J-convex, if we want to refer to a specific complex structure J -to mean "strictly plurisubharmonic."

Clearly, φ 3 is J-convex and we obtain the desired function φ by smoothing the function max(φ 1 , φ 2 ) (see [CE, Chapter 2] for details on the relevant smoothing technique).
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