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Abstract

This  paper  proposes  a  systemic  perspective  for  some  aspects  of  both  phylogenesis  and
ontogenesis by expressing biological organization in terms of “anti-entropy”, a notion to be
defined below and which conceptually differs from the common use of “negative entropy”.
To this purpose, we introduce two principles, in addition to the thermodynamic ones, which
are (mathematically) compatible with traditional principles but which have no meaning with
regard  to  inert  matter.  A traditional  balance  equation  for  the  metabolism  will  then  be
extended to the new notion as specified by these principles. We examine far from equilibrium
systems and we focus in particular on the production of global entropy associated to the
irreversible character of the processes. A close analysis of anti-entropy will be performed
from  the  perspective  of  a  diffusion  equation  of  biomass  over  “complexity”  and,  as  a
complementary  approach  and  as  a  tool  for  specifying  a  source  term,  in  connection  to
Schrödinger’s method regarding his equation in the field of Quantum Mechanics. We borrow
only the operatorial approach from this equation and do so using a classical framework, since
we use real coefficients instead of complex ones, thus outside of the mathematical framework
of  quantum  theories.  The  first  application  of  our  proposal  is  a  simple  mathematical
reconstruction  of  Gould’s  complexity  curve  of  biomass  over  complexity  as  it  applies  to
evolution.  We then present, based on the existence of different time scales, a partition of
ontogenetic time, in reference to entropy and anti-entropy variation. On the grounds of this
approach,  we analyze  the  metabolism and scaling  laws.  This  allows  to  compare  various
relevant  coefficients  appearing  in  these  scaling  laws,  which  fit  empirical  data.  Finally,  a
tentative  and quantitative  evaluation  of  complexity  is  proposed,  also in  relation  to  some
empirical data (caenorhabditis elegans).

1. Introduction

The issue of biological organization, of its emergence, its evolution and of its sustainability
has been approached from widely varying perspectives:  molecular  biology, genetics,  open
dynamical  systems far  from equilibrium,  etc.  One  of  the  aspects  which  remain  the  most
controversial is the thermodynamic one: biological organization, beyond the molecular level,
will  be  interpreted  here  in  terms  of  “anti-entropy”,  a  concept  which  is  not  proper  to
(thermo-)dynamics, where entropy is defined, statistically speaking, using a distribution of
probabilities  and, macroscopically  speaking,  according to the direction of heat  exchanges.
Note that the notion of “negative entropy” is the object of debates between several authors
among whom we find Schrödinger, Pauling, Brillouin, Atlan, Nicolis and Prigogine. We will
basically  depart  from  this  type  of  discussion,  by  attempting  to  introduce  a  different

1 In Journal Biological Systems, Vol. 17, No. 1, pp. 63-96, 2009 (revised: new images).
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perspective partly inspired by Quantum Mechanics (but not reduced to its terms, see §. 4 and
8), and a method of approach that are, in our view, closer to the phenomenology of life and its
proper observables.

1.1 Schrödinger and negative entropy as organization

We will use as starting point Schrödinger’s informal and original remarks concerning entropy
[Schrödinger, 1944]. Schrödinger’s short text is often quoted for its first part, which was quite
innovative at the time but is now obsolete. In that part of the text, he proposed to apply the
notion of “code-script”, even that of program, to chromosomes. Such computational views of
the genome have now been made obsolete by many analyses: a synthesis of recent overviews
and critiques may be found namely in [Fox Keller, 2003] and many others (see also [Longo,
Tendero, 2007] for a discussion and references). It must be noted, however, that the notion of
program was new at the time, just as was cryptography, the theory of “coding”. Moreover, a
Laplacian deterministic viewpoint dominated the period’s genomics, and continued to do so
for  a  long  time,  yet,  it  had  never  been  explained  with  such  clarity  as  it  had  been  with
Schrödinger. This great physicist, had at least understood the consequences of this application
of the discrete symbolism of formal calculus to nature: “It is these chromosomes that contain
in some kind of code-script the entire pattern of the individual’s future development and of its
functioning in the mature state. Every complete set of chromosomes contains the full code. In
calling the structure of the chromosome fibers a code-script we mean that the all-penetrating
mind, once conceived by Laplace… could tell from their structure whether the egg would
develop, under suitable conditions, into a black cock or into a speckled hen… They are the
law-code and executive power… they are architect’s plan and builder’s craft in one” (pp 22-
23). 

Since the success of the genome project and the decoding of the DNA of several animal
species,  we  have  at  last  arrived  to  the  position  of  Laplace’s  God  but,  unfortunately  (?),
without the associated predictive power; the least we can say is that we lack the “compiler”
and the operating system, even the knowledge of the “executive power”. Or maybe is it a case
of insufficient knowledge of the global structure within which this discrete sequence operates,
a sequence apparently so symbolic and computational,  yet embedded in the very complex
organization, the cell or even the organism, (re-)acting on it?

This brings us back to chapter IV of Schrödinger’s book where he will “… try to sketch
the  bearing  of  the  entropy  principle  on  the  large-scale  behavior  of  a  living  organism  -
forgetting at the moment all that is known about chromosomes, inheritance,  and so on…”
From this premise, Schrödinger develops considerations that are as preliminary as audacious
and that are based on a view of the organism as a whole. His idea is that what counts for a
living organism is its organization and that the problem which poses itself  is not only its
establishment (the formation of “order based on disorder”), but also its maintenance (“order
based on order”). He emphasizes the importance,  still  unclear today, of the acquisition of
organization as negative entropy, including by means of food. This acquisition will participate
to  the  ongoing  tension  between  the  increase  of  entropy,  specific  to  any  irreversible
thermodynamic process and generating disorder, and the maintenance of order. 
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It is both the formation and the maintenance of order, its continuous regeneration, that
interest us and that we propose to frame ‘in abstracto’ by means of a mathematical concept of
anti-entropy, as “organization” or “biological complexity”, specified by two new theoretical
principles and used in a balance equation. Anti-entropy differs from what is usually meant by
negative entropy in view of its characterization by proper formal principles, which extend (but
are compatible with) the thermodynamic ones. This will be done independently of any causal
analysis which would quite probably require unification with molecular approaches; but if we
do not have (at least) two theories, with their own conceptual autonomy, there is nothing to
unify.

Notions of negative entropy have been introduced on several occasions, both in physics
and in biology. In general, they have been understood as a decrease of entropy, compensating
the entropy increase, either within thermodynamic approaches or in reference to information
theory  and  Shannon’s  entropy  principle.  In  a  final  section,  sect.  8,  we  will  discuss  the
relations of our approach to existing ones.

Following  Schrödinger’s  focus on the “large-scale  behavior  of a living organism”, we
propose a global view point, by an important change of observables and of parameters with
respect to current physical theories. To briefly mention one of these changes, maybe our main
contribution, we will examine the relationship between the evolution of the biomass and that
of organization or complexity of organisms, as anti-entropy, by taking into account both the
phylogenetic and the ontogenetic levels (we will see that this relationship corresponds to an
analysis in terms of diffusion, but within a phase space which is uncommon for physics). This
requires a (perhaps arbitrary, yet) rather precise quantification of phenotypic (or epistemic)
complexity for a living organism and its use in balance and diffusion equations.

1.2 The theoretical autonomy of life phenomena and the methodological perspective

As a matter of fact, as for  negative entropy, Schrödinger does not propose any specific and
mathematically formalized principle, yet he shortly suggests that it should be understood in
terms of Gibbs free energy, an idea that we will further develop (sect. 3). He also insists on
the necessity of investigating statistical phenomena, these already being extremely important
in  physics  for  understanding thermodynamic  entropy.  These analyses  could help  establish
correlations with physical theories, among which the bio-chemistry of macromolecules. In
particular,  he believes  that  it  would be necessary to  strive towards the unification of two
“different  mechanisms,  which  would  enable  orderly  processes,  a  statistical  mechanism
producing order based on disorder and the new method, producing order based on order”.
And here lies, in our view, the complexity of biological phenomena: order as an  organized
unity,  differentiated and interacting,  which creates and maintains itself. From the seminal
works of Prigogine and of several others on thermodynamics far from equilibrium and on
self-organization (see [Nicolis, Prigogine, 1977], [Kauffman, 1993]) to the recent attempt in
[Bailly, Longo, 2008]), which analyses structural stability as a coherence structure specific to
an “extended critical situation”, many tried to grasp these aspects of the complexity of living
organisms  (see  sect.  8  for  more  references  and  comparisons).  Concerning  the  second
organizing mechanism (‘order from order’), Schrödinger outlines the idea,  which we have
mentioned,  according to  which  it  would  use  the absorption  of  negative  entropy from the
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environment, particularly by food. We will not make any assertions concerning the relevance
of this idea. 

We will instead take a path which, without exploring the ‘causes’ – possibly molecular –
will attempt to postulate and develop some new principles. These, as we already mentioned,
could help to establish a, partly mathematical, conceptual framework for the analysis of the
role of anti-entropy in the play between order and disorder within the living organism, starting
at the level of the cell (which is, obviously, made up of molecules, in the same way as the
classical or relativistic falling bodies are made up of quanta, in their own field: unification is
indeed progressing today, but it is far from being accomplished2). 

We will  begin by a “principle  of establishment/maintenance” of anti-entropy (sect.  2),
which has no analogy (nor meaning, we believe) in current physical theories. We will consider
this anti-entropy as a measurement of the organizational complexity of life phenomena; on
such bases, we will outline a few mathematical consequences of this identification, which will
be compared to empirical data. The relation of biological complexity or organization to a
notion of anti-entropy, modulo a dimensional coefficient,  will allow us to consider it as a
component  of  a  Gibbs free energy,  which  depends on entropy,  in  particular  in  a  balance
equation (sect. 3); we will thus decompose entropy in a positive and a negative part, our anti-
entropy, of the same physical dimension.

 By the addition of a new entropic principle in sect. 2, which is specific to life phenomena,
and of its consequences on a metabolic balance equation, we will by no means change “the
laws” of any physical theory, but “just” extend them by new principles. The limit case (the
value 0 of the components  of the “biological  type”)  of the equations  and the inequalities
below brings us back to classical physical frameworks, of which these formulae are, therefore,
nothing  but  a  mathematically  compatible  extension.  Yet,  this  will  deeply  modify  the
conceptual space (or the phase spaces) of the considered phenomena and their evolutions. The
focus on some observables, which happen to be unusual from the point of view of current
physical theories, and the compatible mathematical extensions are the core methodological
issues in our approach.

As for the mathematics, Schrödinger’s ideas will play an even more important role in the
application we will make of his “wave equation”. This will be used as a diffusion equation
with real numbers coefficients, in contrast to Schrödinger’s definition over the complex field,
and  it  will  be  applied  to  a  mathematical  investigation  of  the  diffusion  of  biomass  over
complexity, following Gould’s analysis of evolution (sect. 4 and 5). Some applications of our
approach to ontogenetic processes will be given in sect. 6 and 7. Comparisons with existing
approaches to “negative entropy” and various analogies and differences w.r. to physics are
presented in sect. 8.

2. Organization as anti-entropy: a few principles 

From here onwards we will equally use the terms of anti-entropy -S- (a negative magnitude)
and of complexity K, opposite to S- (so K = -S-);  complexity  K  will  thus be a positive

2 Let’s note, passingly, that even the most elegant  theoretical reduction, that of thermodynamics to statistical
physics, was accomplished when thermodynamics and its principles were already quite solid.
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magnitude, a different observable from negative entropy, yet still with the dimension of an
entropy. We will  also be led to distinguish processes of complexification in the course of
ontogenetic  development  (internal  to  the  organism  and  strongly  dependent  on  genetic
determinations)  from  phylogenetic  processes  of  complexification  (apparently  much  more
dependent on random phenomena and external conditions).

The initial  situation (cell-egg in the first case,  isolated bacterium in the other) will  be
characterized  by  a  very  small  K  (epistemic)  complexity  (an  anti-entropy  approaching  0,
therefore,  from a  global  standpoint,  a  negligible  one).  So  we  then  propose  as  structural
principle  for life phenomena during its organization and the maintenance of its organization
the two following inequalities:

- K = S- ≤ 0      and     -dK/dt = dS-/dt  ≤ 0          (1)
S- < 0  would correspond to “anti-entropy” associated to the system’s internal organization
processes (existence  and establishment of order, respectively). For purposes of comparison
with the physical situation and in order to include life phenomena, we will write the physical
entropy corresponding to disorder as  S+ > 0.  The relevance of this distinction will be clear
later on, but let’s mention for now that each component is associated to time constants that are
sufficiently different to be separated according to the time scale considered (typically,  the
frequency of metabolic cycles vs. that of cellular reproductions). 

The inequations in (1) thus express, in our view, the principles of the maintenance and
tendency towards organization, respectively, within life phenomena, the only context, in our
approach, where non null  K = -S-  would make sense. We will see that the canceling out to 0
of the second equation,  dS-/dt = 0,  in presence of  S- < 0,  can only concern the accomplished
organism resulting  from ontogenesis.  This  is  never  achieved in  the case of  phylogenesis,
because, in principle and on average, following Gould (see sect. 4), we consider organisms as
becoming increasingly complex, along evolution.

To remain closer to empirical reality, in the last part of this text we propose to consider the
complexity  K as  composed of  three  main  components  which  can  either  be  of  equivalent
importance  or  which  can,  to  the  contrary,  be  clearly  dominated  by  the  one  or  the  other
according to the situation and we will write:

K = αKc + βKm + γKf

α, β, and γ  are the respective “weights” of the different types of complexity within the total
complexity  (we  will  have  α  +  β  +  γ  =1).  These  weights  are  likely  to  present  temporal
variations over the course of an ontogenetic development or of phylogenetic evolution.

   Kc (“combinatorial”  complexity)  corresponds  to  the  possible  cellular  combinatoric
without  any  other  consideration  than  the  differentiations  between  cellular  lineages  as
structuring element; indeed, inasmuch as cells from a same lineage are interchangeable, it is
less their number which is important than the differentiations associated to the apparition of
these lineages (although, we will see, their number does intervene).  For example,  we will
consider the analysis of the embryogenesis of  Caenarhobditis Elegans from this angle (see
Appendix 2). 

    Km (“morphological” complexity) is associated to the topological forms and structures
which arise; it can in principle be mathematically evaluated from the way in which organic
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structures of a same level of organization present themselves and combine. We will evoke in
particular the properties of connexity and more or less fractal structures.

   Kf  (“functional” complexity) is, for its part, associated to the relationships established
and to the fulfilled biological functions; metabolic relations,  neuronal relations,  interaction
networks. In this regard, we will examine in particular the examples from the nervous system
on the one hand, and from metabolic networks on the other. In [Edelmann, Tononi, 2000], a
measure of biological complexity is proposed, as differentiation of the neural system, by an
information theoretic approach, based on Shannon’s entropy. This also gives a pure number
and it may be seen as a component of our  Kf.

This tripartition of  K  is more closely developped in sect. 7. It is greatly qualitative for the
moment, but it should help to understand why an increase of K cannot be treated as a decrease
of S+, which is physical entropy :  K is to be associated to biological organization, particularly
to the alternation of levels of organization, and to the structuring specific to life phenomena
(organites,  cells,  organs,  multicellular  biological  organism),  which  is  foreign  to  physical
theorizations. As for the instauration of order, critical transitions, studied in physics and acting
as starting point for our reflections on “extended criticality” in  [Bailly, Longo, 2008], the
establishment of coherent structures (percolation, the formation of a crystal, of a snowflake…
[Binney et al., 1992; Kauffman, 1993; Jensen, 1998]), corresponds to a decrease of S+, but
there is nothing there to allow to speak as such of “different organization levels”, nor of the
Kc, Km, Kf  partition  introduced above. Once more, the point of this paper is to propose a
distinction between the decrease of a specific part of the entropy, due, for example, to a pre-
existing  physico-chemical  potential  (molecular  interactions,  typically,  that  become  actual
links because of a decrease of Brownian motion – crystals, snowflakes formation…) and the
establishment of biological organization.

As  we  have  already  evoked  earlier,  it  is  necessary  to  distinguish  the  processes  of
ontogenesis from those of phylogenesis, which, although they may present formal similitudes,
are not reducible to ones to the others. Recapitulation theory (ontogenesis would recapitulate
phylogenesis) has not really been verified, even if embryos do present, at a given stage of
their development, indubitable resemblances in their form and functioning (the morphological
“bottleneck”).  It  indeed  appears  that  the  framing  of  random processes  by  strong internal
(DNA) or external (cell, organism, ecosystem) determinations is very different in each of the
two cases. 

3 – Metabolism and anti-entropy

Living matter, beyond its reproductive, generative and plastic capacities, among many others,
distinguishes itself by the existence of a metabolism which, on account of various exchanges
with  its  environment  and  of  its  internal  biochemical  reactions,  enables  it  to  remain
dynamically far from equilibrium and to structurally stabilize the “extended critical situation”
which  characterizes  it.  In  this  paragraph,  we  attempt  to  analyze,  from a  thermodynamic
standpoint, the dynamics of this metabolism.

Although the approach proposed here takes on a character which heavily borrows from the
concepts  of  physics,  a  biological  specificity  will  appear  from the  moment  we  take  into
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account  the  evolutive  autonomy  of  its  organization  and  of  the  resulting  “order”,  in  the
schematic and highly abstract form of anti-entropy. 

So let’s consider a system far from equilibrium and note as G its Gibbs free energy. In
general, we have G = H –TS, where T is temperature, S is entropy and H = U + PV is the
system’s enthalpy (U is the internal energy, P and V are respectively pressure and volume). By
definition, the R metabolism, when it exists (in living organisms for instance), corresponds to
the difference between the fluxes of generalized free energy entering and exiting through the
surface Σ: 

R = Σ[JG(x) – JG(x+dx)]
So we have:

R = - Σdx(divJG)
 (in  what  follows,  we  will  forget  the  element  of  volume Σdx,  which  we consider  to  be
unitary).

 Besides, the conservation equation (or the balance equation) is expressed in the general
form:

-divJG = dG/dt + Tσ
where G is an extended expression of  Gibbs free energy and where σ represents the speed of
production of entropy associated to irreversible processes. 

So let’s return to our distinction which, once more, has no reason to appear in current
physical theories, proposing to decompose3 the S entropy in the two different parts which are
S-  and  S+.  With these notations in mind, we then obtain from  G = H –TS  (see note4):

R = dH/dt –T(dS-/dt + dS+/dt) + Tσ
Moreover, given the relationship between mass and energy, we have H = aM where M is the
mass (and  a  is a coefficient which has the magnitude of a speed squared).  So R can be
rewritten, by highlighting four contributions to the metabolism: first, the variation of mass,
the increase of organization, as a decrease of S-, plus the tendency towards disorder resulting
in the increase of  S+;  then, and crucially, we add the production of entropy σ (its speed) due
to the irreversibility of the global process. We thus have:

R = adM/dt –T(dS-/dt + dS+/dt) + Tσ                 (2)
Equation (2) is the  fundamental equation which will be the basis of the development of a
great  part  of  later  discussions.  Let’s  note  that  the  inequalities  in  (1)  are  to  be  read  as  a
“principle” which we propose for a theoretization of life phenomena that is to be  added to
physical (thermodynamic) principles, whereas (2) is a balance equation, based upon classical
principles  of  conservation,  yet  extended  to   S-.   Note  that  the  possibility  to  derive  this
equation, from the expression of  G,  is what forces us to consider biological organization,  K,
as given in terms of anti-entropy  S-,  a notion with the same dimension as entropy.
Before examining the consequences of this, we will focus on a particularly important term of
equation (2), Tσ, the inevitable production of global entropy associated to the irreversible
character of the processes. More specifically, it is the speed of production multiplied by the
temperature (σ obviously has the magnitude of an entropy applied to time, so Tσ is a power).

3 This decomposition, S = S- + S+, is not relevant for purely physical phenomena, as, in theories of inert, S- = 0,
and remains thus specific to biological ones.
4 In a footnote to [Schrödinger, 1944], Schrödinger proposes to analyze the negative entropy of which he speaks
of as a form of Gibbs free energy G. In view of our decomposition of  S =  S- + S+, we consider G here as a
“generalized” free energy. Of course, the metabolism R has the physical dimension of a power.
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We will take into account the fact that, account taken of all irreversibilities, Tσ is associated to
all processes at hand presenting such a trait, including the variation of anti-entropy, dS-/dt.  In
a spirit that is close to those found in Prigogine’s works, whose theorems we will not need to
use however, the production of entropy, often considered as a “side effect”, in particular near
equilibrium, becomes for us one of the main analytical tools. The idea is that in very complex
far from equilibrium dynamics,  Tσ  in provides a “synthetic view” of the global dissipative
process : as we said, it is a correlated to all ongoing irreversible processes and it is one of the
few observables with this characteristic of “globality”.

In the sequel, another relevant observable for our analysis will be the mass (global, M, the
biomass, or the individual mass, W, the “weight”, see 6.1). Let’s then analyse  Tσ  in its
relation to the mass. Now,  Tσ  is a power and corresponds, thus, to the product of forces by
fluxes (of matter, of energy – chemical, for instance – etc.; a flux is proportional to a force,
thus to a mass), and is hence proportional to a mass squared. It can therefore be written, up to
a coefficient ζb and a term Tσ0 as:

Tσ ≈ ζbM2 + Tσ0                               (3)
ζb  is therefore a constant which depends only on the global nature of the living entity under
study and it is 0 in absence of living matter. We will discuss, for example, the different issues
of the biomass and of the mass of an organism.  Tσ0  corresponds to the limit of a purely
physical irreversible functioning, that is, one where the living  mass, as part of M, would be
null (thus  ζb = 0). This limit situation does not apply in biological world where such mass is at
least equal to that of the elementary biological entity, the isolated bacterium, but it may be
relevant for a dead organism, with a decomposing chemical structure.

To use this  equation,  we will  inspire ourselves again from Schrödinger but,  this  time,
regarding his physical methodology and his famous equation from an operational viewpoint.

We will focus on equations (2) and (3), because we will consider them to be specific to
life phenomena, as they contain terms that cancel out when we pass from the description of
life to physical phenomena. In (2), it is obviously with regard to S- and to its variation in
relation to time; in (3) the main term belongs to our approach to life phenomena and we will
give an important role to this equation, a sort of balance between global entropy and biomass.
Once more, the inert would be a limit case, the null value of the observables relative to life
(S-,  dS-/dt  and  ζb). In short, we are “just” proposing a (mathematically compatible) extension
of current physical theories, as our approach is not incompatible with them, just not reducible.
To our physicalist friends in biology, we recall that the quantum field is not only irreducible,
but also incompatible with the relativistic field – and conversely, so far.

Intermezzo: Schrödinger’s equation and operators (recall)

One of Schrödinger’s great ideas was the introduction of the “wave function” in quantum
mechanics. Many aspects characterize the originality of this equation, which has changed the
course of microphysics. In our approach, we will highlight here its  operational aspect  that
later played a determinant role in quantum physics.

Schrödinger’s view, at the time of his equation, centered around the wave function as a
description of the quantum state. He came to substitute transformation operators to measured
quantities, specific to the mechanics of classical particles.
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To understand, a posteriori, this very audacious passage, we consider the following wave
function, where p is the moment and E is the energy:

(x,t) = exp(i(px – Et)/h)

(it is a solution of Schrödinger’s equation for an isolated quantum particle but... this does not 
matter here).

Since p and E appear as coefficients of space x and time t, respectively, it is very easy to
see that multiplying a spatio-temporal evolution function (this function in particular) by p or
by E is equivalent to differentiating it with respect to x or t, that is ∂/∂x  and  ∂/∂t, respectively
(up to a coefficient: i/h).

Thus, to these physical  quantities,  p and E, can be associated  differential operators: the
derivative  with  respect  to  space  and  time,  respectively,  the  two  parameters  of  physical
evolution. Let’s then consider the (classical) law of conservation (Hamilton’s equation: total
energy is the sum of kinetic energy and of potential energy):

E = KE + PE

More specifically, E = p2/2m + V(x),  where  V(x) is the pertinent potential5.
Now, if we associate

p      -iħ∂/∂x ≡ -iħgrad

E      iħ∂/∂t

and  to  space   x  the  multiplication  by  x or  by  its  functions,  such  as  V(x),  we  obtain

Schrödinger’s equation (ħ is Plank’s h divided by 2 and ∂2/∂x2 is the usual laplacian operator

∆) :

iħ∂/∂t = -(ħ2/2m)∂2/∂x2 + V(x)
(V(x) is the potential in x, but its expression is not important for the moment, we will return to
this).

The  operational  association  performed  may  be  synthesized,  very  abstractly,  as  the
application of Schrödinger’s operator:

ÔSch ≡ {iħ∂/∂t = -(ħ2/2m)∂2/∂x2 + V(x) }.
We propose to follow,  mutatis mutandis,  a similar approach for the very different case we
have at  hand,  relatively  to  temporal  operationality  in  life  phenomena.  Let’s  also observe,
following many others, that we can also understand Schrödinger’s equation as a  diffusion
equation: it  has  its  “parabolic”  form (a  quantity  diffuses,  over  time,  proportionally  to  a
variation  of  its  gradient  in  space,  plus,  if  applicable,  a  source  or  sink  term).  It  presents
however  two  traits  which  are  essentially  different  from  classical  diffusion  equations:  it
operates on the field of complex numbers and not only on the field of real numbers, and the
“diffusion  coefficient”  is  itself  complex.  Let’s  note  that  by  this  approach,  Schrödinger
invented a phase space which was appropriate to the phenomenal domain which interested
him. We will indeed take a similar approach, but basing ourselves however on diffusion laws
and  then  justifying  the  result  by  a  “Schrödinger-styled”  method  of  operational
transformations.

4 – The “diffusion” of biomass with respect to complexity

5 In the case of the one-dimensional harmonic oscillator, we would have: E = p2/2m + kx2/2.
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Let’s attempt here to explain our strategy, even if it means anticipating certain results and
making a few repetitions. Empirical data, to which we will return below, seem to indicate that
the qualitatively representative graph of the evolutions of biomass in function of complexity
takes on a half-Gaussian form. Now, we know that there is a relationship between this form
and random processes as well as with solutions for diffusion equations. We will therefore
write the corresponding equation which we also expect to be interpretable in all its terms from
the  biological  standpoint.  Once  this  stage  has  been  reached,  in  view  of  introducing  an
operational representation, in accordance with what we consider to be an essential property of
the temporality of life phenomena, we will look for the metabolism’s relevant quantities to
serve as foundation for such operators. To this end, we will follow a method which is similar
to that which we have encountered to define ÔSch. Our purpose is of using them much more
generally later on, by showing that their use may, indeed, characterize a diffusion process in
the adequate space, based on the great generality of metabolic processes. 

Let’s now be more specific; we will first attempt to fulfill this program in the case of the
evolution of biomass. Why give precedence to the case of biomass? Firstly, it deals with life
phenomena as a whole without us needing at this stage to take into account the whole variety
of its manifestations;  then, and to return to the empirical bases which we mentioned earlier, it
so happens that the works by S.J. Gould provide us, as we will see, with a starting point and
with  a  very  interesting  work  direction.  We  will  see  that  the  adequate  spaces  neither
correspond with normal physical space, such as in classical physics, nor with the abstract
Hilbert spaces of quantum mechanics, but are rather related to this new basic variable which
is complexity K, associated to organization. We may call this complexity phenotypic or, more
generally,  epistemic,  in  contrapposition  to the “objective” complexity  of physico-chemical
processses (see [Bailly, Longo, 2003] for more on this distinction). 

The analytical results will then enable us to return to a “diffusional” character for the basic
equation in this new space which is specific to life phenomena. In order to establish these
results, we will take inspiration from the aforementioned approach and from works by S.J.
Gould, such as presented in [Gould, 1991]. In particular, it will be an issue of modeling two of
the main aspects of such work: on the one hand, the idea of random processes of evolution in
function of the complexity of life phenomena – and of the quasi-Gaussian aspect taken by the
occurrence graph of biomass in function of this complexity (figures 1 and 1’) – and on the
other hand, that of the existence of what Gould calls a “left wall” which imposes itself upon
these processes. This left wall expresses the impossibility of characterizing life phenomena
below  the  elementary  level  of  the  bacterium.  Random  evolution  then  only  takes  place
“towards the right”, meaning in the direction of a higher epistemic complexity than that of the
bacterium: in fact, 

any random walk, bounded on one side, statistically progresses (“diffuses”) in the
direction opposite to the wall.

In other words, the global structure of diffusion is the average result of the local interactions,
which transitively “inherit” the orientation due to the original symmetry breaking. In our case,
where this breaking corresponds to the formation of the first bacteria, there can then be local

10



inversions  of  complexity,  but,  on  average,  it  can  only  increase6.  We are  thus  applying  a
general mathematical principle, largely applied in physics, over a non physical phase space.

FIGURES 1 AND 1’ ([Gould,  1991the “frequency of occurrences” corresponds to our
“biomass”):

 

Gould’s drawing is based on a remarkable idea: the space of observable and parameters is
given by the biomass and the “complexity”.  More precisely,  it  hints  on how the biomass
“diffuse over complexity, a rather original phase-space. Yet, it is a confusing hint because of
its  unclear reference to time.  “Present” should be the instantaneous picture of the current
situation: what are the dinosaurs doing there? An advantage of our mathematical approach
will be to provide a consistent treatment of time as well (see figure 1b).

The idea is to define operators derived from equation (3) according to a real-numbers
variant of Schrödinger’s operatorial approach (over real numbers, in our case).

4.1 Dynamics and modeling 

To  propose  an  equation  which  interpolates,  on  the  basis  of  general  principles,
paleontological  data,  we will  use,  as  observables  and reference  parameters,  the  epistemic
“density” of the biomass m, physical time t and relative epistemic complexity K: here lies our
change of reference space where we will express m in function of t and of K. The isolated

bacterium then corresponds to the origin (K   0) and the existence of the left wall always

imposes K > 0, which is consistent with our principle (1). The studied state function will
therefore be chosen as the “density” of the biomass relatively to K and will be written m(t, K)

6 To put it into biological terms, “the spreading of the curve can only be explained by the existence of the left
wall and by the multiplication of species; the right part of the distribution is a consequence and not a cause of
this  spreading”…   “the  notorious  progression  of  life  throughout  history  is  therefore  a  random  movement
introducing distance between organisms and their tiny ancestors,  and not a unidirectional  impulse towards a
fundamentally advantageous complexity” [Gould, 1991].  Of course,  we are only thinking here of biological
evolution, while  neglecting the last  few thousands of years,  the short  history of  humanity’s  invasion of the
planet.
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of which the integral over all accessible K’s will give the temporal evolution of the overall
biomass  M(t).  Time,  of  course,  is  an orthogonal  dimension relatively  to  the  plane  of  the
figures above: its increase induces a deformation of the curve on this plane, just as in the
passage, described by Gould, between the Precambrian time and today. 

The  dynamics  involved  and  the  aspect  of  the  effects  which  it  provokes  (Gould’s
qualitative curve) lead us to propose to determine  m(t, K),  as a first attempt, by a diffusive
equation with a source (a second approach to equation (4) below, inspired by Schrödinger’s
operator,  will  further  justify  and  specify  it).  Indeed,  one  must  take  into  account  an
irreversibility with regard to time, an expression stemming from a “random walk” as well as
the fact that, by means of growth and genesis, the biomass tends to increase with time. The
corresponding “diffusion” equation (which may be interpreted as a balance equation) will thus
be written as: 

                                       ∂m/∂t = D∂2m/∂K2 + Q(t,K)                                        (4)
D represents the “diffusion coefficient”, associated to the random evolution process of this
biomass density in terms of epistemic complexity K, and Q is the biomass’s source term. The
total biomass M(t) at time t will therefore be the integral in dK of m(t, K).  

But… how may we justify  this  equation  more  specifically  and give  an  expression  to
Q(t,K)?  A Schrödinger  type  operational  approach  will  enable  us  to  derive  this  diffusion
equation from general considerations made regarding the issue of the production of entropy in
metabolic processes and will also enable to propose an expression for the Q(t,K) function. 

So let’s return to the metabolism equation (2). As we have already recalled, equation (2) in
our  far  from  equilibrium  frameworks  has  enabled  us  to  introduce  the  speed  of  entropy
production σ, which we have then correlated, by means of equation (3), to the system’s energy
variation. The latter, let’s recall, being proportional to the mass squared, takes the following
form in the case of biomass, where M is now the total biomass (as we were saying, Tσ  is a
power and the coefficients must, of course, take it into account) :

                                                         Tσ = ζbM2 + Tσ0

By analogy with what is done in quantum physics regarding energy, that is the association

E    iħ∂/∂t,   it  then  does  not  seem artificial  to  put  into  relationship  the  speed  of  the

production of entropy, which is related to the irreversible character of all processes, with the
variation  in  relationship  to  time,  which  is  also  unidirectional,  by  means  of  the  partial
derivation operator ∂/∂t. Once more, the analysis of the speed of entropy production, far from
equilibrium, plays a very important role, from our point of view, one which is quite similar to
that of the variations of energy close to equilibrium (see Sect. 3).

So let’s set the correspondence - in the manner of Schrödinger, if we may allow ourselves
such an abuse of language and… of dimension:

Tσ → ρb ∂/∂t ,  
where  ρb  is a dimensional coefficient (see appendix 1 for the dimensional analysis). Similarly
as for ζb, also ρb is different from 0 only in presence of biological activity.

In the same order of ideas, now in analogy to  (p  -iħ∂/∂x)  in quantum physics, let’s

then  correlate  the  growing  biomass  with  what  may  be  considered  to  be  its  dual  or  its
necessary complement, that is the organization of which it is the locus. Thus, we propose, for
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K  epistemic  complexity,  and  by  means  of  the  ∂/∂K  differential  operator,  the  following
association:

M → ∂/∂K   (see Appendix 1)
Of course,  our  parameters  and observables  as  well  as  the  constants  (see below)  have

totally changed: entropy variation, multiplied by temperature, Tσ, instead of physical energy;
mass M instead of momentum (which is proportional to a mass, though) and, most of all,
complexity K instead of space. From the formal point of view, and with regard to the physical
Hamiltonian,  Tσ  then plays the role of energy (it is actually a power) and M plays the role of
momentum p  (M squared  indeed  intervenes  in  Tσ,  just  as  p  does  in  E).   Likewise,  for
Schrödinger, p is associated to the space x, as explained in the Intermezzo, under the form of
∂/∂x, also in relationship to the duality, characteristic of quantum physics, which correlates
momentum and position. In our approach, mass is associated to complexity, as the structural
organization within which it develops, under the form of ∂/∂K.  As we will see below, this
component disappears in the equation, exactly when there is only a growth of mass, without
any change of organization – in the case of the free proliferation of bacteria, for instance.

In  accordance  with  Schrödinger’s  approach  then,  the  source  term  Q(t,K)  may  be
considered as a “potential” and in our case expresses itself, up to a dimensional constant, by
the simple multiplication by Tσ0, the source term, which is constant in relation to t and K.
This gives us for Q(t,K) a linear expression in m, which we will write as αbm.. Intuitively, Q,
representing a source term, must be compatible with the tendency towards free proliferation
(reproduction)  of  organisms,  which  is  roughly  proportional  to  the  number  of  existing
organisms, therefore, to m (that is, linear in m, see also the following note).

By  concluding  with  the  introduction  of  the  “diffusion  coefficient”,  Db,  in  epistemic
complexity, and by posing αb = Tσ0/ρb for the source term, we get an operator which takes the
form of :

                                                    Ô ≡ { ∂/∂t = Db∂2/∂K2 + αb }                                   
By using as state function, or “biological evolution function”, the density  m(t,K)  over  K,

this operator corresponds to the equation:
                                              ∂m/∂t = Db∂2m/∂K2 + αbm                                  (5)
Of course, αb  makes sense (is non zero) only in presence of non null biological activities

(ρb  0). In the case of the inert,  one also has  m(t,K) = 0.  Observe finally that,  w.r. to

Schrödinger’s operator, a crucial difference is given by the coefficients. These happen to be
real  numbers,  not  complex ones,  as  the latter  contribute  to  produce the typical  effects  of
Quantum Mechanics (superposition, among others).

To summarize, in the case of biomass, it was thus possible to associate operators to the
relevant magnitudes and to thus obtain a dynamic equation. The recourse to Schrödinger’s
approach  on  the  one  hand  justifies,  by  means  of  a  different  method,  the  same  equation
obtained as a diffusion,  (4); on the other hand, it has enabled us to give an expression to
Q(t,K), the source function of the dynamics. One of our concerns will now be to examine if,
how, and with which results this approach may be applied and generalized to the other cases
considered.
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5. Phylogenetic aspect
  

We have thus  proposed,  for  the  density  m of  biomass,  the evolution  equation  (5)  on the
epistemic complexity K, or, more explicitly:

                                              ∂m/∂t = D∂2m/∂K2 + am(t,K) (5)
Let’s recall that D represents the “diffusion coefficient” associated to the random evolution
process of this biomass density over the epistemic complexity and that am(t,K) is the source
term of the biomass (D will then have the magnitude of a squared complexity divided by a
time value; am(t,K) is that of the mass density divided by a time value, so  a  is the reciprocal
value of a time value). As intuitively considered above, this would amount to supposing that
the proliferation speed (∂m/∂t) is proportional to the mass7. So a solution8 to (5) would be
written as (A is still a dimensional constant, a mass density multiplied by the square root of a
time value):

m(t,K) = (A/√t) exp(at)exp(-K2/4Dt)          (6)
To a constant biomass density m = mc, we can thus solve in K to get K(mc,t), that is :

K2│mc = 4aDt2 – 2DtLogt + 4Dt(LogA – Logmc)     (7)
and for high values for time, the epistemic complexity would increase linearly in function

of such time:
K(t→∞) ~ 2t√(aD)         (8)

So, for a given biomass density, the epistemic complexity would not stop to increase (and

anti-entropy would not stop to decrease:  dS-/dt     ).   We could comment this  by
saying that evolutive processes tend towards a regular increase of the epistemic complexity of
a given biomass. 

It should be clear that our approach mathematically justifies Gould’s approach, gives a
source term and a consistent dependence on time, including the exponential free proliferation
of bacteria in early times of life:

FIGURE 1b (courtesy of Maël Montevil):

7 This hypothesis,  to reiterate once again,  is perfectly  compatible with the analysis of the processes  of free
proliferation undergone by living matter. That is, with no constraints and without regard to complexity and its
variations (so,  for  D = 0),  it  leads to an exponential  increase in time (for  example,  in the case  of the free
reproduction of bacteria).
8 Other solutions exist, but they do not answer to the constraints that are a priori implicit for the object we are
examining here.
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Let’s recall in this respect that the “left wall” proposed by Gould for the evolution of the
biomass with regard to complexity involves an asymmetry in the whole evolutive process,
which is given by the form, asymptomatically exponential  in t and Gaussian in K, of our
m(t,K) function. As a mater of fact, for purely mathematical reasons, a random walk with a
boundary produces an oriented  diffusion. In our case, this introduces a bias in the variation
that is available to selection. So, we obtain an increase, on average, in complexity and in mass
with the progression of time as well as a (half) bell curve, in what concerns the ratio between
the two. This seems to correspond well enough to the empirical evidence and it is contrast to
the working hypothesis  of the modern synthesis  in theory of evolution.  According to this
hypothesis, the supply of variation, as purely and locally random, is not biased. That is, it was
supposed that the variation in a trait is disributed uniformely, in all directions, and without
bias around the current mean. As a matter of fact, a simple analysis of the “phylogenetic drift”
in terms of random mutations, without principles such as those which we postulate, does not
enable to deduce the asymmetry stressed here, following Gould. In fact, the random mutations
could induce,  at  each moment of the evolution and on average,  as great an increase as a
decrease in epistemic complexity as well as an initially uniform distribution of complexity in
relation to mass. Darwinian selection of the incompatible alone would not suffice to explain
the  overall  increase  of  complexity,  because  “simpler”  may  also  be  compatible  with  the
ecosystem  (bacteria  are  still  happily  there),  nor  to  explain  the  empirically  observed
distribution of biomass over complexity. On the other hand, the mathematical justification of
asymmetry  highlighted  by  Gould,  and  that  we  develop  here,  accounts  for  natural
complexification: an asymmetry at the origin in the diffusion propagates by local interactions
in the phase space. To conclude, it  appears to us that these remarks are not necessarily in
opposition  to  (neo-)Darwinian theories.  In  short,  the  a posteriori judgment  that  evolution
complexifies  organisms  because  more  complexity  provides  a  “selective  advantage”,  is
transformed (or, at least, enriched) by a mathematical a priori principle on the propagation of
a symmetry breaking.  Thus, our approach inserts (neo-)darwinian views within a framework
where the structure of evolution is made (more) intelligible by being derived from general
principles, among which the (in)equalities in (1) and (2), and by very solid methods (diffusion
and  operator-based  approach).  In  particular,  they  give  a  mathematical  foundation  to  the
remarks, revisited by Gould and quoted in Sect. 4, remarks which, for many biologists, are at
the center of the modern vision of evolution.

6. Ontogenetic aspect

6.1 Three characteristic times and four metabolic regimes

In the case of ontogenesis, the situation is different than that outlined for phylogenesis. Let’s
start by noting that  embryogenesis, with the setting of the various functions and a (strong)
increase of the complexity of the organism, is completed rather quickly, with a characteristic
time  which  we  will  call  τK,  to  produce  an  organism  which  continues  to  grow  without
necessarily diversifying further on.

There comes a moment, where the anti-entropy (S-  = -K) stops decreasing (or where the
complexity K stops increasing) and where it stabilizes at the value at which the organization
maintains itself (at the cost, of course, of the continuing energetic exchanges with the exterior
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and of a consumed power P for reaching the final and relatively stable mass)9. Of course, the
setting of the organization is practically over with (end of embryogenesis) a long time before
the final mass is attained. Let’s call W the individual mass10 and  τW the characteristic time
necessary to reach the adult’s mass (we will thus have τW >> τK).

In what concerns entropy S+ related to aging, we will propose an exponential increase,
with its own characteristic time:

dS+/dt = S+/τS+       

This increase corresponds, due to the nature of the exponential, to a cumulative effect, with no
antagonism (see 6.2.1). The characteristic time  τS+  therefore refers to aging and consequently
τS+ >> τW  because the adult mass is reached far before biologically detectable aging begins.

These three characteristic times (τS+ >> τW >> τK)  divide the evolution of the organism
into the  four distinct periods below, within which one or another of the relevant aspects is
dominant (without excluding the others) : (2.1) establishment of organization (embryogenesis,
with a τK characteristic time); (2.2) mass increase (τW) ; (2.3) adult life and, finally (2.4), aging
(τS+). 

We can therefore distinguish reduced and different forms for the metabolism’s equation
(2) in function of each of these periods: 

(2.1)  R1 ~ adW/dt - TdS- /dt +Tσ1     (the effect of  S+ remains negligible : embryogenesis)

(2.2)  R2 ~  adW/dt  +Tσ2   (organization  K  =  -S-  no  longer  changes,  the  mass  increase
continues and the effects of aging remain negligible : childhood/adolescence)

(2.3)  R3 ~  Tσ3   (now the  mass  remains  more  or  less  constant  and all  is  governed  by
exchanges with the environment which ensure structural stability: adulthood)

(2.4)  R4 ~ -TdS+/dt +Tσ4  (the effect of aging starts to be felt and becomes predominant: old
age ; it  is even possible to add a negative adW/dt term, accounting for a possible loss of
weight)

Let’s summarize by observing that: 
 (2.1) above is the (dS+/dt = 0)  case of equation (2) ; 
 we go from (2.1) to (2.2), when there is no more increase of organization (dK/dt = 0);
 from (2.2) to (2.3), when there is no more increase of mass (dw/dt = 0) ; 
 from (2.3)  to  (2.4),  when the  increase  of  internal  entropy is  no  longer  negligible

possibly accompanied by a loss of weight. 
It must also be noted that the (speed of the) production of entropy σi, for i = 1,...4, remains
present. It could be relevant to consider it as being minimal in σ3, at the adult stage – an age of
relative “stationarity”, but that would lead us to considerations regarding the applicability of
Prigogine’s  “theorem  of  minimum  entropy  production”  (see  [Nicolis,  Prigogine,  1977]),
which does not affect the work done here.

9 For accounting such a qualitative situation, the simplest is to propose that the evolution of K is also governed
by some logistic equation, such as dK/dt = 1/KK(1-K/Kf) (see paragraph 6.2.1.)
10 We called   m  the biomass density,  M  its integral (the overall biomass) and  W  the individual mass (or
weight).  The apparent inconsistency in names is due, in part, to the lack of more consistent letters, but also to
the very different  mathematical  dynamics of these three entities.  In particular,  only  W  admits a notion of
approximately “maximal” or adult mass to be associated to scaling laws; moreover, its growth is qualitatively
given  by  the  logistic  function.  None  of  these  properties  applies  to  the  dynamics  of  m  and  M,  which  we
previously described.
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6.1.1   Remarks on aging
Without neglecting the genetic aspects of aging, which molecular theories often associate to
the shortening of telomeres, we would like to emphasize the importance of this persistent
production of entropy during all the stages of life and, particularly, during the last stages. It is
a  matter,  we reiterate,  of  the  internal  entropy  S+  which  has  a  physical  nature  (related  to
thermodynamic processes and to the exchange of matter  and of energy) as well as of the
(speed  of)  entropy  production  i due  to  all  irreversible  processes,  including  the  dS+/dt
variation of entropy and that specific to life phenomena, the variation of complexity dK/dt =
-dS-/dt.  Now, in a monocellular organism, for which there are no stages 2.3 or 2.4, given that
maturity  normally  triggers  mitosis,  the  entropy  produced  is  released  in  the  exterior
environment and there is practically no reason to speak of aging. On the other hand, in a
metazoan, the entropy produced, under all of its forms, is also but inevitably transferred to the
environing cells, to the tissue, to the organism. In particular, during the adult stage (2.3) and
during  aging  (2.4)  the  3  and,  respectively,  the S+,  4  components,  eminently  entropic,

dominate.  The effect of the accumulation of entropy during life is that which contributes,

mathematically, to the exponential increase of S+, with a very large S+ (which corresponds to

its  very tardive  sensible  manifestation).  But entropy implies,  in  principle,  disorganization,
including the gradual disorganization of cells, of tissues, of the organism.

But of course, this very general analysis says nothing about how this disorganization takes
place, nor anything about its specific “timetable”.  Today, there are at least two competing
theories  regarding  aging  (see  [Olshansky  et  al.,  2005]  for  an  overview):  the  first,  more
classical, based on the cumulative ravages of “oxidative stress”, the second, based on the loss
of metabolic stability (essentially attributable to [Demetrius, 2004]). These specific analyses
account,  though differently,  for  the experimental  data  and for  the  observations  which are
sometimes  contradictory.  They  require,  from our  standpoint,  significant  adjustments  with
regard to our characteristic times, in function of the species and of their ecosystems, but it
seems to us that the framework of principles proposed here would be compatible a priori with
both points of view, yet enriching both, we believe, by their embedding into a more general
theoretical frame.

6.2 Temporal evolution of the metabolism and scaling laws 

In this section, we will compare theoretical observations and empirical data, and this will lead
us to a strong hypothesis concerning the correlation between the role of the individual mass,
W,  and  the  speed  of  entropy  production,   ,   in  the  evolution  of  the  metabolism.  This
hypothesis will be strengthened by a correlation between different magnitudes (coefficients)
corresponding to empirical observations. 

6.2.1 Mathematical forms of growth: complexity and mass

As a premise to Section 6.2.2, the main application of our approach to ontogenesis, we recall
that, in order to describe in a mathematically simple way the increase of the individual mass
W, in biology, we would represent it in the form of the logistic function, as commonly done:

dW/dt = (W/τW)(1 – W/Wf)
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This is the simplest among functions describing an “ago-antagonistic” process, since Lotka
and Volterra’s work and even more so since the seminal work in ecology by [May, 1976] (a
linear increase which multiplies a decay, the antagonistic factor which limits increases, as in
the diagram below, in W and t; see [Sprott, 2003] for a recent introduction and survey). This
factor  is  normalized  by  dividing  Wf,  the  final  mass  (asymptotic)  reached  by  the  adult
organism. In the preceding notation, τW  is its characteristic time.

Now, we may assume a maximal or final value to the complexity K of a multicellular
organism and we formally describe also the evolution of the complexity over the course of
ontogenesis,  as  an  ago-antagonistic  process,  by  the  logistic  function  where  τK is  its
characteristic time (low speed of complexification during early cell reproduction, followed by
a faster tissue differentiation and, finally, slow stabilization):

dK/dt = (K/τK)(1 – K/Kf)

Figure 2.

In other words, we could comment this qualitative diagram, common to dK/dt and to dW/dt,
by reminding that, in the case of K, complexity increases over the course of embryogenesis
because  the  structure  complexifies  and the  system becomes  increasingly  organized. More
specifically, after a first phase of simple cellular reproduction, we observe a great increase of
organization.  This increase slows down, after an inflection point which we have set here at 0,
until it then reaches a maximal level of organization, Kf, at the end of embryogenesis and of
development, here at an approximate “time” 4. We will understand the mathematical form of
the increase of mass in a similar way, but with a much longer characteristic time (the two
curves only differ by the constant values τK, τW, Kf, Wf ).

6.2.2  The metabolism and scaling laws11  

The following analysis firstly bases itself on the existence of scaling laws in biology, that is,
on the fact that certain magnitudes behave (give or take the coefficients) like powers of the
adult mass of organisms and sometimes in a very interspecific way [Peters, 1983; Schmidt-
Nielsen, 1984]. First, the existence of these scaling laws may have been thrown into doubt,
but it happened to be corroborated by a number of observations and reinforced in some ways
by  the  demonstration  of  allometric  laws  [Weibel  1991;  West  et  al.  1997;  Gayon  2000;

11  The calculations in this section were established with the collaboration of Boris Saulnier.
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Andresen et al. 2002]. Secondly, it is the value of the scaling exponents, generally fractional,
which has been the subject of controversies, but a relatively wide consensus, not only based
on experimental observations, but also on theoretical constraints, has finally arisen regarding
the acceptance of a set of values [Wieser 1984; Denne et al. 1987; Kurz et al. 1998; Gilloly et
al. 2001; Andresen et al. 2002; Brown et al. 2002]. It is these values which we will use later
on.  In  particular,  for  the  issue  at  hand,  most  of  the  important  characteristic  times  and
biologically  important  durations  (life  span,  gestation  period)  or  the  periods  (reciprocal
frequency values) that are associated to the biological rhythm scale as the  ¼ power of the
adult mass, Wf.  On the basis of this, and for the characteristic times which interest us here,
we can write, for  j = S+, W, K: 

τj ~ ujWf
1/4   (scaling of the times as a  ¼  power of the adult mass).

In particular, we have, for the characteristic time of growth:
τW  ~ uWWf

1/4 .
As  for  metabolism,  the  analyses  and  the  observations  show that,  over  the  course  of  the
increase of mass, it grows linearly with the mass, [Peters, 1983], that is
(R) R1  et  R2   (of equations (2.1) and (2.2) above) depend linearily on the mass W. 
On the other hand, the adult metabolism itself very generally obeys the scaling law:

R3 ~ vRWf
3/4 .

We will see that the linearity of the dependence of the metabolism over the course of
growth and this last equation are correlated: this will only be the limit case of the increase
(when the adult mass is reached). In particular, by using R3 ~ vRWf

3/4   and (2.3), that is,  R3 ~
Tσ3,  we will have:   

Tσ3 ~ vRWf
3/4 .

We will now focus on the presumed linearity of R2, in relationship to W, by comparing it
to the expression we get when developing equation (2) at stage (2.2), thanks to the logistic
expression which modelizes the increase of mass:  

dW/dt = (W/τW)(1 – W/Wf)
We then get:

(2.2b) R2 ~ adW/dt + Tσ2 = (a/τW)W(1 – W/Wf) + Tσ2 
Let’s firstly note that, for  W = Wf,   we go back, obviously, to the expression for R3.

However, we have a problem here: we have just said, see (R) above, that during period (2.2)
corresponding to the increase of mass, metabolism R2 linearly depends on the mass, whereas
(2.2b) gives a quadratic expression for this dependency. 

This apparent contradiction isn’t one if the quadratic terms reciprocally cancel each other
out, that is, if 

(9) (a/τW)W2/Wf  ~ Tσ2

From the physical  point  of  view,  equation  (9)  is  dimensionally  plausible,  because  the
speed of entropy production is proportional to the mass squared (see eq. (3)). From a logical
standpoint, the inference is correct: if the hypotheses are true and if (a/τW)W2/Wf ≠ Tσ2  leads
to  a  contradiction,  then  (a/τW)W2/Wf =  Tσ2.  What  appears  to  validate  the  hypotheses,  in
particular (2.2b) which stems from (2), taken together with the current observations regarding
the linearity of  R1    and of  R2,  in relationship to mass, is that our deduction (from the
hypothesis) implies a relation between empirically corroborated magnitudes, as we will see in
the following section.

Note, now, that (9) trivially implies the following simplified form of (2.2b):  
R2 ~ (a/τW)W.  
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This expression, at the threshold value, when the adult mass W = Wf  is reached, that is, when
R2 becomes R3, gives us, on the one hand :

R2 = R3 ~ (a/τW)Wf = (a/uW) Wf
3/4  since  τW  ~ uWWf

1/4 .
On the other hand, we know that R3 ~ vRWf

3/4,  therefore vRWf
3/4 ~ (a/uW) Wf

3/4,  and this 
implies

(10) uWvR ~ a.
We will see, in the following section, that uWvR ~ a  is empirically corroborated at least in the
case of the human organism where we have a sufficient amount of data, and this reinforces the
given hypothesis. 

For the moment, let’s use the expressions R2 ~ (a/τW)W,  τW  ~ uWWf
1/4  and relation (10) to

put R2  in the form of
(11) R2 ~ vR(W/Wf

1/4)
At the adult  stage, when W = Wf,   the scaling of R3  in  Wf

3/4  is widely recognized. As
promised, in our approach, this scaling becomes a particular case (a particular regime, the
adult threshold W = Wf) of our more general relation (11). In any event and moreover, we will
obtain, in the considered regimes and by using (9), (10) and τW  ~ uWWf

1/4 , the expression 
Tσ2 ~ vR(W2/Wf

5/4).
This result, at the limit of W = Wf, further reinforces our hypotheses and equality (9) which
results from it because it gives, by another path, the expression Tσ3 ~ vRWf

3/4  obtained above.
In  fact,  the  crucial  remark,  over  the  course  of  this  reasoning  which  is  logically  and

physically  plausible,  is  indeed that  the speed of entropy production  Tσ2 (quadratic  in  W)
intervenes in these regimes in such a way as its contribution to the metabolism compensates
for  the  “antagonistic”  component  specific  to  the  mass  increase,  that  is,  -(a/τW)W2/Wf

(equation (9) above). It appears that there is something interesting to understand here and
which arouses open questions concerning the role of the speed of the increase of entropy, due
to all the irreversible processes at play, in the computation of the metabolism in relation to
mass. At the  Tσ3  limit, we were saying, and therefore for W = Wf, all is in order; meaning,
once more, that our general equations, in limit cases, produce widely acknowledged scaling
laws. 

6.3 Comparisons with observations and with biological data

We are now at the stage of verifying that the relation (a = vRuW), which we have established
by using theoretical hypotheses and empirical references, is compatible with the biological
data which we may have at hand, the most complete ones seeming to be those relative to the
human being. We will proceed in several steps.
   Firstly,  let’s  give  an  explicit  expression  to  the  evolution  of  mass  over  the  course  of
development; we know that it satisfies the logistic equation and, after integration, we get:

(12) W(t) = (WiWf)/[Wi + (Wf - Wi) exp(-t/τW)]
where Wi  and  Wf  represent the initial and final masses, respectively.

The graph of the growth curve for mass, represented in figure 2, shows an inflection point.
We can easily calculate that it is reached at time tr  such that  W(tr) = Wf/2.

If the maximal mass of the average adult male is around 70 kg, the usual growth curves
show that a child reaches a mass of 35 kg around the age of 12 (= tr). Also, we evaluate the
fertilized ovule to have a mass of  Wi ~ 1,4.10-3 mg   (an ovule has on average a diameter of
140μm and a density of approximately 1Kg/dm3). Finally, we use the relationship between tr
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and Wf by applying it to equation (12) to get the approximate value of τW, that is, τW ~ 0.5(life
span)12. By then using the scaling formula for τW, we finally get uW ~ 63 days/kg1/4. 

Also, it is possible to evaluate vR. Indeed, the  R3  human metabolism is of the order of
100w (100J/sec or 2000 Kcal/day). With Wf ~ 70Kg  and knowing by the scaling law that vR =
R3/Wf

3/4 , we /compute  vR ~ 360KJ/(day.Kg3/4).
Now, if the sought relation (a ~ uWvR) is verified, we should get  a ~ 22.5KJ/g.  This result

is indeed in accordance with the evaluations conducted experimentally  which propose the
interval of variation  20KJ/g < a < 26KJ/g,  see [Mitchell, Seymour, 2000; Zelter, 2004].

Of course, the satisfying aspect of this result does not enable in itself to prove the full
generality of the model which we have just proposed, but gives it, besides its relatively simple
thermodynamic clarity, a biological plausibility that is not simply abstract. Of course, it would
be  necessary  to  complete  this  sort  of  result  by  means  of  more  numerous  and  general
observations and biological experiments. This would allow to be totally convinced that this
approach based on the role of entropy, far from equilibrium, without entering into details of
the underlying cycles  of chemical  reactions.  These are of course very important  and may
analytically account for the metabolic phenomena that we considered at the thermodynamic
level for the whole organism or set of organisms.  

7. The components of complexity

Let’s now return to the tripartition of the complexity K introduced in Sect. 2:

                         (13)                         K = αKc + βKm + γKf    

Our  main  aim  is  to  propose  a  “quantitative”  approach  to  “epistemic  complexity”  of
organisms, as we called it. This very arbitrary and sketchy attempt is only justified by that
aim, which should turn organization as complexity into a major observable in biology, and a
mathematizable one. Our starting point will lie in a parallelism with the classical treatment of
the thermodynamic entropy as considered from a statistical mechanic point of view, i.e. S =
kBLogZ, where kB is the Boltzmann constant and Z is the number of complexions (discernable
microstates). In our case, instead of just “one kind” Z of microstates, we will consider Z as a
global  “complexion  number”,  made  out  of  three  components,  Z=Zc

αZm
βZf

γ such  that  S- =
-kBLogZ,  thus  K = kBLogZ.  Thus, equation (13) may be derived by:

K = kBLogZ = kB(LogZc
α + LogZm

β+ LogZf
γ) = αKc + βKm + γKf

where each component is given by a logarithm, multiplied by the dimensional constant, kB, as
we  will  observe  and  justify  in  the  following  subsections.  We  will  further  motivate  this
definition of anti-entropy in sect. 8, by more comparisons to physics.

7.1  The combinatorial component Kc

The distinction between anti-entropy, related to growth as such, and differentiation, related to
morphogenesis, have a cellular equivalent. We propose to consider the processes of cellular
division and proliferation to be associated to the first aspect, growth, and the processes of

12 Life span of humans in the wildness (all these data refer to wild animals: our agriculture and civilization
largely changed data).
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cellular differentiation for their part to be associated to combinatorial complexity. We then
consider them to mainly intervene in the context of the establishment of organization under
the aspect of Kc. 

We will first simplify the problem by adopting the following combinatorial approach: if
N(t)  represents  the  number  of  cells  at  time  t  and if  we designate  by n(t)  the  number  of
differentiated cellular lineages, lineage j (j = 1, …, n) comprising nj(t) cells (∑jnj = N), we
define the combinatorial component of the complexity Kc, up to the dimensional constant kB,
by the logarithm of multinomial  M(t) = N !/∏j(nj !), that is: 

(14)             Kc  kB[Log(N !) - ∑jLog(nj !)]           
   
Now if we posit that nj = N/qj, where each qj is a bounded integer (∑j(1/qj) = 1) and, as N

is very large compared to 1, we may use Stirling’s approximation; (14) can then be simplified
and, per cell, we get:

(15)             Kc/N  kB∑j[Log(qj)/qj]
   
Why are we giving this relevant role to Boltzmann constant kB?  The point is that  kB

follows from the analysis of perfect gazes. Thus, it  provides, in full generality,  a possible
“least value of information” in terms of entropy, due to the assumed “perfect” independence
of particles (see also Brillouin’s or Shannon’s approach to information as negative entropy13).
In any case, we use it here both as a dimensional constant and in order to fix a scale, but other
scales are of course possible.

In the Appendix,  we illustrate  this  approach by studying the case of  the multicellular
organism Caenorhabditis elegans of which we precisely know the temporal development, in
both terms of number of cells as well as of distinct lineages.

7.2  The morphological component Km

In  what  concerns  the  morphological  complexity  Km,  we  will  simply  refer  to  current
mathematical  analyses  which  take  into  account  the  connexities  of  organs  as  well  as  the
existence  of  critical  geometric  points  (maxima  and  minima,  inflections  and curvatures...)
characterizing  their  forms and topologies.  For  example,  and very provisionally,  we could
evaluate Km as follows:

Km = kB [Log(1+n1) + Logn2 + Logn3 +Logn4]
where n1 represents the number of changes in the sign of the local curvature (for example in
the case of complicated geometrical shapes14), n2, the number of singular situations (corners,
bifurcations,  etc),  n3,  the number of non connate parts  of a same organ (for example,  the
number of separate muscles or bones taking into account the number of different such organs)
and n4, the number of group links (wreath) in the sense of [Leyton, 2004] which enable to
define, for biology, at least closely, the geometric construction of forms (for instance, for the
digestive system - very roughly – the group of the sphere (for stomach) and that of the curved
cylinder - for oesophage and intestine). This does not mean, of course, that biology is itself
constructed according to these procedures, but that the results of such biological constructions
may be described using the method proposed by Leyton… possibly a venue to explore further.

13 More  precisely,  Brillouin’s  evaluation  of  this  least  value  is  kBLn2  (one  needs  at  least  2  discernable
microstates).
14 Of course in the case of “fractal” structures (which are actually fractals only at the infinite limit), we have to
take into account only the final result at the relevant limiting scale (number of bifurcations for trees - like the
bronchial tree, for instance - size of minimal elements for interfaces - like the alveolar terminal structure of the
lung for instance -).
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7.3 The functional component Kf

Finally,  the  part  of  Kf complexity  which  we have  called  “functional”  corresponds  to  the
relations (metabolic, nervous, etc.) which are established between cells and organs in order to
ensure  the  organism’s  physiology,  the  integrations  and  regulations  between  levels  of
organization,  motor,  cognitive  and  behavioral  controls.  It  is  obviously  quite  difficult  to
evaluate  this  contribution but,  by proposing some specific  formalizations,  we nevertheless
present a few ideas which may contribute to mathematize the discussion, thus to clarify its
terms on rigorous conceptual grounds.

   To do so, we will consider that this set of relations and networks can be represented by
means of graphs where, for example in the case of the nervous system, the nodes correspond
to neurons and the edges to synapses. Kf will then correspond to the (logarithm of the) number
of such graphs. So if we designate the number of neurons (approximately 1011 for the human
brain) as m and designate the number of synapses as km (k being between 103 and 104), the
theory of Erdös-Renyi graphs shows that there are G graphs such as:

G =  = 

with the  symbols corresponding to the combination of a objects taken b to b; and we
will therefore postulate:

Kf  kBLogG

If m is very large in comparison to 1, Stirling’s successive approximations then give us:

Kf  kBkm(Logm)

And for each neuron, we get: Kf/m  kBkLogm
   One may notice that in this elementary model the complexity per neuron increases

(logarithmically) with the number of neurons once such a number is sufficiently high. This
situation may be distinguished from that encountered with the combinatorial complexity per
cell which remains – roughly – independent from the number of cells. This effect is of course
associated  to  the  global  effects  that  are  induced  by  the  functional  relations  between
elements15.

   A more general approach may also be proposed: let  <k>  be the average number of
edges per node and N the number of nodes; the total number of relations will therefore be
<k>N  and  the  number  of  associated  permutations  is   (<k>N)!.   For  a  large  N  the
corresponding  Kf  would  therefore  be  approximately   kB<k>NlogN  and,  per  node  (per
neuron, for example, or per support within a metabolic network) we get  Kf/N  kB<k>LogN,
with the same qualitative remarks as before regarding the dependency in terms of the average
number of edges per node and of the number of nodes. The advantage of this point of view
enables to integrate the case of networks which are independent of scale, of which, in general,
the probability of edges per node evolves in k-p.  By taking the normalization factors into
account, we get  <k> = ζ(p-1)/ζ(p)  where ζ represents the Riemann function. A number of
studies pertaining to variegated networks show that p is close to 2 (for metabolic networks for

15 This case is  the simplest  because  we have taken into account  only combinations of  the sets of  pairs  of
interacting neurons. If we had considered the totality (or even an asymptotic significant part of this totality) of

the possible sub-sets, we would have obtained  Kf  kBkm2Log2  and a complexity per neuron proportional to
m.
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example,  we have p   2.2). For the nervous system, the fact that  the average number of
synapses is of the order of the thousands, even of the tens of thousands, indicates that in this
case p is very close to 2 (up to 10-3 or even 10-4).

7.4  Conclusion
We have attempted to define, to analyze and to propose a way for measuring the quantity what
we can designate as the complexity K of a living organism. To do so, we have distinguished
between three possible components: a combinatorial component where the important factor is
the number of differentiated cellular lineages, a morphological component which takes into
account  the  more  or  less  elaborate  form of  structures  and  their  connexities  and,  third,  a
functional  component  relative  to  the relations  established by the  networks  formed by the
organism’s cells or parts. Depending on the given situation, the dominant terms may vary: for
example, in less evolved organisms, the combinatorial aspect, based on the number of cells
concerned, may play a major role. Likewise, relatively to the morphological component, the
existence  of  more  or  less  significant  symmetries,  of  more  or  less  numerous  connex
components, of more or less singular structures (fractal or not) plays an essential role which,
in  certain  cases  this  may  be  the  main  component  of  (may  mathematically  dominate)  the
complexity of the organism. Consider, for example, the variety of organisms involved in the
“explosion” of the Burgess fauna. Conversely, in highly evolved organisms, for example those
endowed  with  a  sizable  and  developed  nervous  system,  the  relational/functional  aspect,
logarithmically dependent on the number of concerned cells, seems to clearly dominate.

   These  different  ways  in  which  a  same  overall  complexity  K  can  occur  in  living
phenomena illustrates in our view the genericity of the biological trajectories in contrast with
the  singular  geodesics  of  physics,  inasmuch  as  this  same complexity  is,  in  our  view,  an
essential component of the conceptual space specific to any analysis of life phenomena.

8. More on negative entropy in physics and anti-entropy in biology. Concluding remark.

All irreversible physical processes produce entropy: positive, growing entropy. In some cases
though, in particular in the cases of phase transitions from disorder to order, one can witness a
decrease  of  this  quantity.  The point  is  that  entropy,  in  thermodynamics,  corresponds to  a
degradation of energy and a suitable energy input, in some cases, or a change of the system as
a  whole  (phase  transitions)  may  compensate  this  degradation.  It  is  then  possible,  within
thermodynamics,  to  develop  an  analytical  framework  for  both  increasing  and  decreasing
entropy without having recourse to anything else than its general principles (usually in the
number of three: the conservation of energy, the non decrease of entropy in isolated systems,
the absence of any movement and therefore of any form of energy16, at the absolute zero of
temperature).  Unification with classical dynamics was made possible by means of statistical
physics, by the analysis, at the infinite limit, of particle trajectories, hence of geodesics, as
optimal trajectories for action (energy × time). 

When  used  in  biology,  the  concept  of  negative  entropy  has  been  also  considered  as
contrasting, by a negative sign, the growth of (thermodynamic) entropy. So, viewed as a non-
isolated system, an organism may absorb solar radiation and decrease entropy (typically, in
photosynthesis, [Brittin, Gamow, 1961; Jennings et al., 2007]) or it may absorb energy from

16 At least from a non-quantum standpoint.
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high temperature  thermal  sources,  in  deep sea far  from solar  radiation  ([Lopez-Garcia  P.,
2003]) and contrasts by this entropy decrease, in particular by building organic molecules.
These  are  very  interesting  approaches,  but  we  find  them  mathematically  insufficient  for
describing living organization: they focus on the molecular level, a most relevant one, yet
exactly the one that Schrödinger (and us) propose to put temporarily aside, in order to develop
a systemic approach to live phenomena17. Reduction, as in thermodynamics, or unification as
in relativistic vs. quantum fields is a further, very relevant and difficult issue.

And now a crucial point: energy and its up- and down-grading are the key observables in
these molecular analyses. As a matter of fact, the prevailing perspective regarding the inert, in
thermodynamics just as in any physical theory, focuses on energy and derived or correlated
notions (“least action principles”, typically). Also entropy, as recalled above, can be expressed
in terms of the degradation of energy (and/or of the dispersion of trajectories), thus, in some
cases, it  may be compensated by a suitable absorption of energy. The many very relevant
analysis  on  entropy  decrease  in  building  processes  of  organic  molecules  belong  to  these
approaches, as we said, and focus on energy exchanges (see also [Kier, 1980],  [Roy et al.,
2003] for more on the role of decreasing entropy in molecular processes). 

In  our  opinion,  autonomous  mathematical  investigations,  concerning  the  “multilevel
entangled structure” of living organisms, also deserve to be carried on, in the more complex
sense of different but interacting levels of organization, even in a cell, beyond the molecular
level.  In  particular,  cellular  differentiation  leads  to  an  organism  where  the  “structure  of
correlation”  (as  defined in  [Bailly,  Longo,  2008])  is  based on  integration  and regulation
between levels. This proposes a relatively new and crucial observable, from the perspective of
the “large-scale  behavior  of a  living  organism”.  Our aim has been to  propose a  tentative
quantification of this observable, which is compatible with, but adds up to the ones used in
physical theories. As we stressed several times, it is related to energy via a balance equation
derived from metabolism and an extension of the notion of Gibbs free energy G, but our focus
is on the  K = -S-  component in equation (2), and on entropy production,  Tσ,  equation (3).
As  we  mentioned  in  sect.  2,  the  possibility  of  writing  these  equations,  in  terms  of  G,
motivated our tentative correlation of biological organization (or complexity) to a  notion of
anti-entropy.

Of course, there exists at least an area of physics where the concept of “organization”
massively steps in. This is the theory of “critical phase transitions” ([Binney et al.,  1992],
[Kauffman, 1993], [Jensen, 1998] and many others). In sect 1.2 and 2, we already hinted to
the  relevance  of  and  the  correlations  to  these  analyses,  which  we “extended”  in  [Bailly,
Longo, 2008]. 

Many also tried to analyze biological organization in terms of (Shannon’s) information:
since entropy increase may characterize loss of information, its negation should provide (an
increase  of)  information.  Besides  its  relevance  in  transmission  theory,  this  approach  has
inspired new analyses also as for negative entropy in quantum systems (see, among others,
[Cerf, Adami, 1997]). Yet, both classical and quantum information basically refer to classical
or  quantum bits,  as  the  discrete  mathematical  frames  are  at  the  core  of  information  and
computation  theories.  In  contrast  to  this,  we  tried  to  deal  with  equations  (balance  and
17 As quoted in sect. 1.1: “…entropy principle on the large-scale behavior of a living organism - forgetting at the
moment all that is known about chromosomes…”.
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diffusion,  typically)  that  are  better  understood  in  (differentiable)  continua  and  where
Shannon’s theory and its quantum variants hardly apply. Moreover, our guiding reference to
anti-entropy as a component of a Gibbs free energy, following but beyond Schrödinger, also
departs from the understanding of our notion in terms of (Shannon’s) information.

The best, yet very informal, analogy we can propose within physics is not with the many
current uses of negative entropy, as far as we can see, but it  concerns the notion of  anti-
matter. Anti-matter has the same physical dimension of “matter”, but it is not mathematically
correlated to a decrease of energy in matter.  It  is one of the possible solutions of Dirac’s
equation  ([Schiff,  1955])  and  the  lowering  of  energy,  towards  equilibrium  or  far  from
equilibrium stationarity, for example, does not lead nor is related to “anti-matter”. Thus, anti-
matter has the same dimension and the opposite sign w.r. to energy in correspondence to the
opposite sign of  charge  of matter,  but it is a different  concept,  since  it  refers to different
observables: typically,  the positron (anti-electron) yields negative energy (positive charge),
the anti-proton yields negative energy (negative charge) but they are not just a different state
of the electron or the proton, but different quanta. When anti-matter encounters matter, the
annihilating result of quanta produces a large amount of energy, under the form of gamma-
rays, not zero nor least energy18. The prevailing of matter over anti-matter has been analyzed
as a breaking of the CP symmetry, in reference to the TCP symmetry, [Sakharov, 1982].

Similarly,  for  us,  anti-entropy has the same (physical)  dimension as entropy,  with the
opposite  sign,  yet  it  is  a  different  concept,  as  it  provides  a  different  observable:  in  our
approach, anti-entropy is correlated to the formation of  multilevel, integrated and regulated
organization, and not only to the appearing of order corresponding to a lowering of physical
entropy, a relevant and largely studied issue, which is already present at the molecular level
and in critical transitions in physics. Moreover, this conceptual analogy of our notion of anti-
entropy to physical anti-matter justifies our computations in sect. 7, sect. 7.1 in particular. As
for anti-matter, its values of energy and charge are computed in the “same” way as those for
matter, but they have opposite value and provide a different observable (the anti-particles).
Similarly we computed  S-  by  -kBLogZ  and thus,  K,  by the “same” computations as
physical S+. Yet, our Z and the objects are very different: the discernable states are the cells
and their differentiated lineages (whose ratio gives the measurable value, see eq. (14), sect.
7.1), the complexity of their shapes, their connexity, etc. and the functional structures of the
relevant networks (enzymatic, neuronal, etc.).

By these tools, we insist, with many other authors including Schrödinger, but along our
proper  lines,  on  the  necessity  to  develop,  in  parallel  to  the  richness  of  the  analyses  of
molecular biology, systemic frameworks specific to the global activity of organisms. These
could suggest, even for phenomena that occur within the cell, a structure of determination that
is more adequate for the physical singularity of life phenomena (see [Bailly, Longo, 2006] for
an analysis of the various forms of physical determination and an outline of their relationship
to life sciences). 

In conclusion, it has not been a question here of discussing the current stability of the cell
as such, or even that of the organism, as meaningful coherence structures within which to set

18 Let’s recall that Dirac’s equation also engenders Pauli-matrices representing the spin of the particles and, from
this point of view, it organizes some key properties of the matter.
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the causal analyses themselves, if possible, of proteins’ cascades. Our project is one of the
many theoretical efforts proposing the systemic perspective of which the notion of “extended
criticality” should also be part (see [Bailly, Longo, 2008]). In this paper, we focused on a
simple mathematical description of a new observable, as “determined by” and “applied in” a
few inequalities and equations. 

Observe  finally  that  anti-entropy  is  “just”  a  tool  for  our  approach,  as  we  aim  at
quantifying  K,  epistemic complexity, and mathematically work on it. We suggested that it
may defined as  K = -S-,  so that  we could work on it  as a component  of the equational
definition of metabolism, in terms of Gibbs free energy.

It  should  be  clear  that  the  method  is  largely  derived  from  the  practice  of  physical
theoretizing,  yet,  we  (strictly)  extended  current  physical  theories,  thermodynamics,  in
particular, by new principles which we consider proper (only) to the phenomenality of life.

Appendix 1:  Some dimensional analyses

Let’s recall that the application of the Ô operator leads to the equation of the generic g density
function’s general form:

                            ∂g/∂t = Dg∂2g/∂κ2 + (Tσ0g/ρg)g = Dg∂2g/∂κ2 + αgg

   The dimensional analysis of the various intervening coefficients may present some interest and
reveal itself  to be enlightening.  The dimensions will  be denoted in brackets [...],  and we will
denote, as usual, mass as [M], length as [L], time as [T] (not to be mistaken for temperature which
is usually written as [°K]), and, by convention, [C≡ML2T-2(°K-)-1]  for complexity. We will then
have:

[σ]   =  [ML2T-3(°K)-1]        (power per Kelvin – and per mole -)

[ρ]  =  [ML2T-2]       (energy)

[(°K)  σ0]  =  [ML2T-3]      (power)

[α]  =  [(°K)  σ0 / ρ ]  =  [T-1]       (reciprocal time value = frequency)

[D]  =  [M2L4T-5(°K)-2 ≡ C2T-1]      (square of a complexity divided by time).
Let’s  recall  that  in  the  case  of  thermal  or  matter  diffusion,  the  diffusion  coefficient  has  a
magnitude  which  is  the  square  of  a  length  divided  by time  ([L2T-1];  here,  it  is  therefore  the
epistemic complexity which serves as length, that is, of space. This is in accordance with or main
equation (5) and its derivation “a la Schrödinger”.
   Finally, we have introduced, over the course of these definitions, within the framework of the
evaluation  of  the  speed of  entropy  production,  the  coefficient  ζb ;  given the  way in  which  it
intervenes (see relation (7) for example), its dimensionality is less “classical”

[ζ]   =   [M-1L2T-3]
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   The other magnitudes which appear in the text are endowed with their usual dimensions (direct:
time, mass, numbers, or derived: entropies, energies, densities over the epistemic complexity).
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Appendix 2:  The case of Caenorhabditis elegans. 

   The interest of examining the case of  Caenorhabditis elegans  in terms of combinatorial
complexity  stems  from  the  fact  that,  as  we  have  already  evoked,  we  have  a  thorough
knowledge of this organism’s development, cell by cell and ensuing lineage by lineage (see
[Ehrenstein,  Schierenberg,  1980]).  The results  we have  obtained using the  empirical  data
present some interest and provoke a few questions which may prove to be relevant to other
cases.
   It is an issue of examining the behavior of Kc over time, which is defined by relation (14)
(in this case, there are not always enough cells in each lineage in order to apply approximation
(15)). Table 1 presents these results. It is striking to observe that Kc increases very quickly
from 0 (a  single  cell)  to  1 and that  it  stabilizes  around this  value  over  the  course of  its
development  from  the  moment  where  all  cellular  lineages  are  represented,  as  if  it  was
effectively  the  number  of  active  cellular  lineages  which  would  essentially  set  Kc,
independently of their number of cells and hence of the size of the organism. 

Time  t
(mn)

Total
number
N

AB
lineage 

MST
lineage 

C
lineage

E
lineage

D
lineage

P
lineage

Kc/kB

70 6 4 1 1 0.57
100 24 16 2 2 2 1 1 0.92
130 31 16 4 4 4 2 1 1.2
150 81 64 8 4 2 2 1 0.71
170 102 64 16 8 8 4 2 1.10
250 182 128 16 8 8 4 2 0.97
Pre-
lima
bean

434 256 64 64 32 16 2 1.19
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