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Abstract

We informally discuss some recent results on the incompleteness of for-
mal systems. These theorems, which are of great importance to contempo-
rary mathematical epistemology, are proved using a variety of conceptual
tools provably stronger than those of finitary axiomatisations. Those tools
require no mathematical ontology, but rather constitute particularly con-
crete human constructions and acts of comprehending infinity and space
rooted in different forms of knowledge. We shall also discuss, albeit very
briefly, the mathematical intelligence both of Our Good Almighty Lord
and of Computers. We hope in this manner to help the reader overcome
formalist reductionism, while avoiding naive Platonist ontologies, typical
symptoms of the Gaédelitis which affected many in the last 70 years.

0 Introduction

When one thinks of the foundations of the mathematical form of “intelligence”,
of the ways in which it comprehends and describes the world, it is “the rule”
which comes to mind, or in fact the “regulae ad directionem ingenii”, the fun-
damental constitutive norms of mathematics and of thought itself. It is in par-
ticular during this century that the foundational analysis of mathematics has
focussed on the analysis of mathematical deduction. This in its turn has been

based on the play of logical and formal rules as described perfectly well by one of

*Invited paper, Journal of Consciousness Studies, special issue on Cognition, vol. 6, 11-
12, 1999. A preliminary french version of this paper appeared in Revue de Synthése, n. 1,
January 1999.



the best and most rigorous scientific programmes of our times, namely the for-
malist programme of the foundations of mathematics (and of knowledge). The
influence of this programme in the analysis of human cognition has been enor-
mous: in the ’30s formal computations and machines were rigorously defined,
for the purposes of the investigation of formal deduction. And there began the
modern adventure of the “computational mind” or the the various functionalist
approaches to cognition. Reflections on the notions of mathematical proof and
certainty, which started the project, may help in its revision.

Now, if there is no doubt that the notion of “proof” does indeed lie at the
heart of mathematics and that this proof must follow (or must be able to be re-
constructed by) “rules”, yet mathematics is not just about proofs, and moreover
it should be noted that these exhibit a wide variety of methods of construction,
of reference and meaning... . Proofs and constructions are carried on with the
greatest of rigour, however there is no reason to think that in mathematics rigour
should be understood only as the application of rules without meaning. That,
as we shall see, is the central hypothesis of the formalist programme: certainty
is obtainable only in the absence of meaning in the course of a deduction which,
for that very reason, must be “finitary” and “potentially mechanisable”; any
reference to meaning may lead to semantic ambiguities, may involve “intuition”
... . Moreover, there is no doubt that mathematics is “normative”, as far as it
follows (or it may be reconstructed by) “rules”, and that it is “abstract” and
“symbolic”. Yet, these complex notions do not need to be identified or reduced
to “formal”, in the restricted sense given in this century. A fortiori, then, this
reduction does not need to apply to general human reasoning and intelligence.

It is not a question of denying the logical component of mathematical deduc-
tion, namely the “if...then” constructions which are always present, any more
than the role of deduction conceived of as a pure calculation: many proofs in al-
gebra or in logical systems based on “rewriting” techniques (or purely syntactic
rules of “deductions-as-calculations”) are simply non-self-evident sequences of
applications of rules of formal manipulation. As such, these rules may appear
to be “without meaning”- their application in the proof must at no stage make
reference to possible meanings (for example, one can develop an equation and
reach a surprising result without ever “interpreting” the equation in possible

analytic spaces, but rather using only rules of algebraic computation)?.

1 This is welknown in Algebra. Relevant examples, related to the theories analysed here may



These two components of mathematical thought, namely logic, a system
of rules of thought with meaning (Boole, Frege, Russell...), and formalism, a
system of rules of calculation without meaning (Hilbert, Bernays, Post, Curry...),
therefore make up an essential part of the proof. The problem is that they are
not sufficient for the foundational analysis of mathematics. The search for
foundations and “certainty” exclusively within these systems has been a kind
of unilateral diet of most foundational reflections; for the logicists, who are
fundamentally opposed to the formalists, often look for the foundation only in
“signifying” logical rules, while the formalists want only to use calculation free
of the ambiguities of signification, even logical signification. Both approaches
then basically exclude each other as well as other forms of foundation (and
rigor), such as reference to “meaning” broadly construed, geometric meaning, for
example. This diet, a knid of philosophical obsession which has tried to reduce
the mathematical project to a single conceptual level, has led in particular to
the lack of analyses of the role of meaning in the construction and foundation
of mathematical concepts (and proofs): the role played for example by the
concept of mathematical infinity (and its “constructed meaning”, see later), the
phenomenal reference to space and time, or to those “actual experiences” which
not only root mathematics in a plurality of forms of knowledge about the world
(T will refer for this to Poincaré, Husserl, H. Weyl, Enriques ...), but which also
enter into the proof itself, as I shall try to demonstrate. These constitutive
elements of mathematical thought and practice must now become the object of
genuine scientific analysis and no longer be consigned to the shadowy realm of
“Intuition”, that black hole of the ontological mystery (a typical symptom of the
godelitis?), last recourse of the “working mathematician” who, fed up with the
rules constraining his thinking, all too often resorts to a naive Platonism which
allows him /her to dispense with these logico-formal systems which restrict the
scope of his/her practices and are incapable of justifying them.

In short, T will try here to point out how (provably) non-formalizable argu-
ments, yet based on robust, abstract, symbolic and ... human conceptual con-

structions, step in proofs even in Arithmetic, the core theory of the formalist

be found in the introductory textbooks: Hindley J.R., Seldin J.P. Introduction to Combinators
and Lambda-Calculus, Cambridge University Press, 1986, and Baader F., Nipkow T. Term
Rewriting and all that. Cambridge University Press. 1998.

2The virus of the gddelitis was first isolated, by naming it, by one of the leading authors
mentioned below, whose friendship, I hope, will not be affected by the use of the word in this
paper.



program. By this, one may avoid the dilemma between the Scilla of mechanicist
formalism and the Cariddi of the naif platonist answer, largely prevailing in
mathematical and philosophical circles of this century.

The presentation is meant for the general reader, in particular for the non-
mathematician who is tired or puzzled of hearing that some incompleteness
results “prove” either that all mathematics can be actually computerized, since
man, in the act of proving, is not better than a Turing Machine, or, alternatively,
that mathematics is “God-given”. The purpose then is “reclaiming cognition”
to our human being, as we developed one of our most fantastic conceptual con-
structions, mathematics, in the full rigor of a living process throughout history,

yet rooted in deep cognitive process.

1 Incompleteness of formal systems: from Godel
to Girard

One of the major successes of mathematical formalism has been its ability to
show its own limits—using its own methods of proof! Such a result is both
remarkable and rare among the sciences, where ‘crises’ usually arise ‘from the
outside’, by a change of paradigm and/or method.

Later on, we shall present various theorems of the last thirty years (often
called of “concrete incompleteness” for Arithmetic or Formal Number Theory),
proved by methods which do exit the given formal system, and for which it is
proven that one must leave that system, in which the proposition is stated, in
order to prove it. Note that this also applies to logical systems (Frege, Russell),
since their principles are inscribed into the formal systems in question.

The truth is that a single level of expression, a fixed formal language, does
not allow a complete representation of the mathematical structures in question,
such as the natural numbers, for example. In other words, one shows that the
mere manipulation of arithmetic symbols cannot be ‘complete’, cannot capture
all the properties of a conceptual construction of great mathematical importance
and product of innumerable experiences, even in the apparently simple case
of (natural or integer) numbers. Or again, that the ‘definitive certainty’ of
reasoning, sought by the original foundationalists, can not reside in a single
conceptual level, that of linguistic formal systems, which should have allowed

the codification of the ‘multidimensional space’ of mathematical construction,



independently of meaning as reference to the underlying mathematical structure
(e.g. the integer number line or the finite ordinals). Or, also, that some methods
or ‘conceptual tools’, borrowed from other mahematical experiences or grounded
on the intended meaning, cannot be ‘removed’.

We take ‘number theory’, or Arithmetic, as an example in order to show
the way in which even forms of intelligence as apparently ‘isolated’ as this one,
actually make use of also non-formal tools of understanding the world. This,
in my opinion, is the true meaning of the various ‘incompleteness theorems’ in
mathematics. In particular, the interaction between the plurality of linguistic
levels and the concept of infinity in mathematics will be at the centre of our
analysis.

But what do we mean by logical /formal calculus, and the axiomatic method
of Hilbert? First we must create a language of well-formed formulae using a pre-
cise syntactical structure, which is defined independently of meaning, or, more
exactly, by juxtaposing letters and symbols in a specified manner (“A and B”
is well-formed; “A and ” is not). Then we must identify certain well-formed
formulae as axioms, and fix some rules of deduction, where the passage effected
by the rule from hypotheses to consequences, is based exclusively on their syn-
tactic structure. If, for example, we posit the formulae A and A= B, then B
follows mechanically—without reference to the possible meanings of A, =, and
B. (Of course, if one interprets = as implies, then we recover the classical
Modus Ponens; though this ‘meaning’, which is human and historical, is unnec-
essary for the formal deduction.) This, then, is the level of formal language, or
object of study, at which one may analyse proofs.

In particular, Hilbert’s program relies on a distinction between the math-
ematical (or theoretical) level, called ‘object level’, expressed in a language of
formulae, and a metamathematical (or metatheoretical) level, i.e. the ‘mathe-
matics’ thanks to which one is able to talk about the object level. On top of this,
a ‘third level’ (or new conceptual dimension) was added by Tarski in the 1930’s:
the semantic structures which allow the interpretation of formulae and formal
operations. (Although the mathematicians of the previous century had already
laid the foundations for such a distinction, for example, Argand/Gauss re the
complex numbers, and Beltrami/Klein re non-Euclidean geometries). Thus, to
take an example which deals with the geometric significance of algebraic formu-

lae:



o (z =+/—1) is a formulain the formal language of algebra, i.e. at the object

or mathematical level of study;

e ‘z = 2 and z = 5 are contradictory’ is a metalinguistic phrase — it affirms

a property of formulae, the fact they are contradictory; and lastly,

o the interpretation of the z in (z = v/—1) by a point in the cartesian plane
furnishes a geometrical semantics for that algebraic formula, and, more

generally that of all complex numbers (the Argand-Gauss interpretation).

In the case of Arithmetic, according to Hilbert, it was necessary to prove,
working at the metamathematical level, that the object-level language, entirely
formalised by axioms and rules of deduction, allows all the formilazable proper-
ties of the integers to be proven (that is the hypothesis of the ‘completeness’ of
the formal system). In other words, that axioms and finitary rules can wholly ac-
count for mathematical deduction; that, in a certain sense, they wholly account
for mathematical intelligence and certainty, or more precisely, that they are able
to reconstruct these a posteriori, and give them a rigorous logical/mechanical
foundation by providing them with a formal framework.

But why is Arithmetic granted such importance? For several reasons: firstly,
the natural numbers constitute an ‘elementary’ starting point; at the same time,
their theory is at the very heart of mathematics. (Remember that Cantor and
Dedekind gave definitions of the real numbers in terms of integers.) Moreover,
Frege had remarkably set the logical foundations of mathematics in terms of the
natural numbers in the 1880°s, in the texts Ideography, and the Foundations of
Arithmetic.

It is worth recalling the enormous clarification this program brought about,
as much by its methodological rigour as by the fact that it subsequently made
possible the reification of the logical /arithmetic intelligence thus defined, in the
form of prodigious electronic machines. For, once the logic has been translated
into a formal system and the meaning forgotten, the machine simply needs to
be taught to compare sequences of letters; when A and A= B are given, just
check mechanically if the two occurences of A are “identical” and then write B.
‘Pattern matching’ (letter-by-letter comparison), or the search for a common
syntactic structure of formulae which are not trivially correlated (a process
called ‘unification’ or identification modulo certain syntactic transformations)

is indeed at the very heart of mechanical reasoning and, in our own times,



proof by computers. With the appearance of machines, the idea that the formal
level (calculation using signs without meaning) could express human intelligence
in its entirety took on its modern form, going far beyond the pretensions of
most of the original foundationalists, who aimed more modestly at the rigorous
but a posterior: reconstruction of mathematics, constituting its only formal
foundation. Certain thinkers even went so far as to affirm that “intelligence is
to be defined as that which can be manifested by means of the communication
of discrete symbols”3, by means of meaningless manipulations of these discrete
symbols.

Nevertheless, this program which aimed at the codification of mathemat-
ics and its formal foundation, did not take long to fail, precisely because of
Arithmetic itself, and Gddel’s (justifiably) notorious Incompleteness Theorem.
It should be said, however, that the relevance of this theorem is limited by the
absence of ‘explanation’ it furnishes of the incompleteness phoenomena. The
subsequent discoveries, to which I would like to introduce the reader, can help
us to understand better this game of intelligence which interests us, at the level
of mathematical proof. So before proceeding to other, newer, and more infor-
mative results, I will try to add a few words da propos this classic, which has
become the object of innumerable presentations and reflections, some of which
have become quite popular, like those of Hofstadter and Penrose. Who knows if
by trying—insofar as possible—to be concise, and by working in a level of infor-
mal rigour, we will be able to avoid those transcendant and ontological elements
which (mis)lead many to believe that ‘in Mathematics, there are propositions
which are true, but not provable’, while at the same time leaving this notion of
truth vague and mysterious. All we ask is that the reader pay careful attention
to each word in the next few dozen lines for if we affirm that ‘one proves that
the proposition G is unprovable’, for example, this phrase must be understood
with particular care: what is said here is simply that, once a certain system of
axioms and rules of deduction are fixed, one may prove that, inside this system,
G can not be proven, i.e. deduced using its axioms and rules. Some close atten-
tion is required, since in these contexts, one often uses words and phrases which
refer to themselves (‘proving unprovability’, or ‘this phrase is unprovable’); yet,
what I am saying is absolutely informal and literal: the mathematical proof

itself being long and extremely technical.

3J. Hodges, in R. Herken (ed.) The Universal Turing Machine, Springer-Verlag, 1995



Recall in the first place that the First Incompleteness Theorem of Godel
(1931) states solely (I repeat, solely) that there exists a proposition or formal
Arithmetic phrase which is undecidable in the framework of Arithmetic, under
the assumption that the latter is consistent (i.e. not self-contradictory). It is an
‘undecidability’ theorem, in the sense that it gives us a proposition, call it G,
which can not be proven by the formal theory, and moreover, whose negation can
also not be proven by the formal theory. In the statement of the theorem and in
its proof, absolutely nothing is said about the truth of G or its negation (which
of them is true?). The Second Incompleteness Theorem then proves that, within
Arithmetic, one can demonstrate the logical equivalence of the proposition G and
the formalised statement of consistency. As a consequence, since G is unprovable
if Arithmetic is consistent, also the consistency of Arithmetic itself cannot be
proven, by “arithmetic tools”. More precisely, no finitary metamathematics,
which is as such numerically ‘codifiable’ (see below), can prove the consistency
of Arithmetic*. This unprovability property (of its own consistency) moreover,
can be extended to any mathematical theory, which is sufficiently expressive to
allow the codification of its own meta-theory (note the interaction between the
theoretic and metatheoretic levels here.)

The above is one of the keys of Godel’s proof: the remarkable idea of numer-
weally codifying Arithmetic formulae, by means of a laborious but conceptually
simple technique (later called “gédel-numbering”). Once this has been achieved,
formulae which describe properties of numbers, for example (z+4 = 1+ z 4 3),
can ‘speak’ about formulae, in the sense that they can be applied to the numeric
codes of formulae. If, for example, (z +4 = 1 + 2z + 3) has numeric code 76,
then it implies in particular that (76 +4 = 14 76 4 3), which is a fact about an
instance of ‘itself’, where ‘it’ is understood as ‘formula #76°. In fact the codifi-
cation of a (well-formed) formula does not depend in any way on its ‘meaning’,
but only on its syntactic structure: the finite sequence of symbols of which it

is composed. But, recall, syntactic structure is sufficient for the formal analysis

4A formal theory is consistent if, in its language, one may write an unprovable sentence.
Thus, by the Second Theorem for Arithmetic, consistency is unprovable exactly when it is
assumed to be true. Or, consistency is unprovable (in Arithmetic) if and only if Arithmetic
is consistent. In Gddel’s theorems one has to make a subtle distinction between consistency
and “omega-consistency”: a technical nuance which is outside the scope of a discussion like
the present one. A detailed presentation of Godel’s theorems may be found in Smorinsky
C. “The incompleteness theorems”, in Barwise J. (ed.) Handbook of Mathematical Logic,
North-Holland, 1978.



of deduction.

By this, and in a very specific sense, Arithmetic formulae can “speak” about
themselves, or even about their own properties. Consistency, for example, is a
property of formulae, and therefore a property of numbers, once given that num-
bers, as codes, can be put in one-to-one correspondance with formulae. From
then on metamathematics, which studies the properties of formulae, becomes a
sub-field of Arithmetic. Briefly, as a mathematical theory, Arithmetic describes
its own metatheory. This is a mathematically difficult observation, which has
opened the door to so much beautiful mathematics—and to so much extrava-
gant speculation: Arithmetic speaks or refer to itself or, even, it is ‘conscious’ of
itself, or about the infinite regressions of self-references, as if looking in facing
mirrors, etc.. Some of the most severe patologies related to the godelitis, for
which, of course, the immense Godel has no responsibility whatsoever.

Now, Arithmetic is consistent, in the sense that one cannot derive a con-
tradiction from its axioms and rules (and thus the proposition G holds, as it is
provably equivalent to consistency). The proof of consistency, however, must
be made outside of Arithmetic, as a consequence of the two theorems of Godel;
in other words, one can not do it with ‘purely formal reasoning’, which is mech-
anisable and hence codifiable within Arithmetic. Again, one can not do it in
a formal theory, i.e. a theory within which one avoids the meaning of axioms
and rules, or, as we will try to explain later on, within which an ordinary axiom
can not ‘speak of infinity’ nor of the standard order structure of numbers, or
where the rules do not mix the theoretic, metatheoretic, and semantic levels.
As already mentioned, if one assumes consistency or proves it, then it becomes
banal to observe that G is true: the Second Incompleteness Theorem actually
proves the equivalence between the two, inside Arithmetic. Indeed, there is no
method to affirm the truth of G, other than specifying a notion of truth for
formulae and proving it to be true. Thus, in order to know that G is true one

must assume or prove consistency, to which it is provably equivalent®.

5There is a simple ‘classical’ argument which proves the truth of G, under the assumption
that Arithmetic is consistent and once the First Incompleteness Theorem has been shown.
It is just a naive paraphrasis of one implication in Gddel’s Second theorem, which derives
formally G from consistency, i.e. within Arithmetic. In summary, by the previous note, G is
unprovable if and only if (consistency is unprovable if and only if Arithmetic is consistent if
and only if) G is true. Note then that a biconditional, “G is unprovableif and only if § is true”
(remarkable, isn’t 1t?), is not equivalent to an “and”; it implies an “and” if one “assumes” or
proves consistency (or §). In truth, though, one should also say what “truth” means for a
formula of Arithmetic, exactly.



Now whither the famous ontological mystery, as claimed by Platonists who
reject the formalist program? ‘G is true, but not provable’ means nothing but ‘G
is not provable in the framework of Arithmetic, if one assumes consistency’ and,
under this necessary assumption, one can prove its truth; or, more precisely, ‘G
cannot be proven except by techniques stronger than Arithmetic—those which
allow one to prove consistency’ (and we shall see what these may be). In math-
ematics, when one affirms that something is true, in one way or another, one
must (explicitly define “truth” and) prove that it is true, and that is all. This
is what one should analyse, i.e.how one may prove things outside a specific for-
malism, before stooping to theological arguments. One should research what
non-mechanisable, non-arithmetical forms of reasoning (dare we say ‘forms of
intelligence’?) allow the necessary kind of proof.

As a matter of fact, the statements and the proofs of Godel’s theorem do not
ever mention any notion whatsoever of “truth”, either magical or mathematical.
They are an absolutely remarkable game of codes for formulae, formal fixpoints
equations, explicit computations (Godel invented “programmingin Arithmetic”,
an amazingly difficult and original challenge) ... . At most, one may understand
the statements by observing that they prove a “gap” between formal proofs
and various possible notions of truth (Tarski’s, Kripke’s ... there are many)
over the (standard) model of Arithmetic (the natural numbers). That is, that
formal provability differs from any reasonable definition of truth for arithmetic
formulae, in particular if this definition assumes that any proposition is either
true or false (the so called “tertium non datur”). The further shift, from this
gap between a notion of truth and formal provability, to the God given “set of
true, but unprovable sentences”, is just some sort of medieval confusion between
mathematical provability and ontological arguments. As a matter of fact, in
mathematics, it is not the existence of entities or objects that matters, but the
objectivity of mathematical/conceptual constructions.

The results discussed below will better explain that this gap is actually
between formal (arithmetical) provability and other forms of conceptual con-
structions, proper to mathematics.

Consistency of Arithmetic was soon proven by Gentzen, in 1934. However,
his proof presupposes an extremely strong form of induction (that of ‘transfinite’

order), which made it unconvincing to many: the very essence of Arithmetic
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being ordinary induction (that of finite order)®. This is the reason it went largely
unnoticed, even though its technique of ‘cut-elimination’ went on to become a
pillar of Proof Theory. This proof can be given in a set theory which includes
an axiom affirming that ‘there exists an infinite set’. This axiom does not have
any sense unless one ‘understands’ the meaning of ‘infinity’: its codification by
an Arithmetical predicate is impossible since Arithmetic cannot ‘say anything’

about infinite sets (nor even

‘ single out” the finite sets or the standard integer
numbers). Godel also gave a proof of the consistency of Arithmetic in 1958, in
an interesting logical calculus (an extension of Church’s A—calculus of the ’30s,
a “Theory of Types and Proofs” called system T), which also uses transfinite
induction.

We owe a more enlightening proof of the consistency of Arithmetic to (Tait
and) Girard, in 1970. It is given in a framework, called system F, similar to,

but much more expressive than, Godel’s system T; system F is still an extension
7

IS

of A—calculus, but with second-order impredicative types‘. Girard proves, ‘a
la Tait’, a ‘normalisation’ theorem, which implies consistency, using, among
others, a principle called ‘second-order comprehension’ which combines, in an
unavoidable way, theory, metatheory and semantics. I will try to explain this
very informally, by abusing of easy and short ways to render difficult concepts
and techniques. At a certain point in the proof, one takes an infinite set of
terms (this is a metatheoretical operation: one collects terms of the object level,
which one perceives ‘from on high’, i.e. metatheoretically, an “easy” operation
for us human beings, along the proof, as we do it in our ordinary language).
Then, one puts them in the place of a set-valued variable inside a term—which
amounts to saying, one works at the theoretical level here. Thus in the course of
the proof itself, one mixes metalanguage, and even semantics, with the language
of terms, since the operation can be done only if one agrees to interpret formal,

set-valued variables as actual sets (the so called “semantic convention” of the

6 Arithmetical Induction is nothing other than the assertion that if one can show (or if one
assumes) A(0) and, writing “V” for “for all”, one shows (or assumes) that Vy(A(y)=A(y+1)),
then one can conclude YyA(y). In an equivalent fashion, if Vz((Vz < zA(z))=A(z)), then one
can again deduce VzA(z). Transfinite induction allows an infinite number of hypotheses, i.e.
it may be informally understood as interpreting z (and z) above as ‘infinite numbers’ (called
transfinite ordinals). Gentzen used transfinite induction over a restricted set of formulae, not
all formulae of Arithmetic - a key point.

7 A mathematical notion is impredicatively given (is tmpredicative), when one uses a totality
in order to define, by this notion, an element of that very totality.
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axiom of second-order comprehension)®.

This passage of proof (it is not the only one) is not codifiable within Arith-
metic, and Girard proves it, by showing that his theorem implies the consis-
tency of Arithmetic and hence cannot be proven inside Arithmetic. The rea-
soning is impeccable, comprehensible, and human: one needs to understand
the blend of meta/theory/semantics to carry on the proof and no purely for-
mal/mechanical /finitary account of it can be given. In a certain sense it cor-
roborates what Wittgenstein already claimed in the 1930s: that the distinction
between mathematics and metamathematics is fictitious. More accurately, it is
a fine and technically convenient conceptual distinction, for the pruposes of the
proof-theoretic analysis of mathematics, but as humans, we may move freely,
by means of the interaction of language and meaning, between one level and
another, just as we do every day in real mathematics (or in ordinary language:
e.g., “I never say true sentences with more then 34 words” ... a typical mixture
of the levels above). Treatment by a single linguistic level does not allow this
type of interplay, no more than the reasonings which concern it: the Tait-Girard
and Godel Theorems (and an observation of Tarski) prove it. Now, digital ma-
chines do not function above the formal linguistic level, the level which can be
codified by sequences of zeroes and ones. Our human language is, on the other
hand, a dynamic construction, built in a permanent resonance with meaning,
and so is mathematics and its proofs. By this, they are in a position to cap-
ture at once language, metalanguage, and meaning, which is demonstratably
undoable by formal/mechanical means, i.e. by giving a finite coding technique
by a discrete set of meaningless signs. If one wants to keep them purely formal,
i.e. mechanically manipulable, this immediately gives the distinct levels of met-

alanguage and semantics. If you try to encode these levels, by further formal

8For a unifying approach to both Gédel’s and Girard’s normalisation theorems, see Girard
J.-Y., Lafont Y., Taylor P. Proofs and Types, Cambridge U.P., 1989. Type Theory, the frame
of Godel’s '58 work as well as Girard’s, is elegantly and deeply related to Category The-
ory, the theory of mathematical structures (see Lambek J., Scott P.J. Introduction to higher
order Categorical Logic, Cambridge U. Press, 1986, and Asperti A., Longo G. Categories,
Types and Structures, M.I.T.- Press, 1991). A very interesting categorical understanding of
normalisation may also be found in Cubric D., Dybjer P., Scott P. “Normalization and the
Yoneda embedding” Mathematical Structures in Computer Science, vol. 8, 2, 1998. Among
the uncountably many applications and developments of the normalisation theorems, a tech-
nically intriguing one may be found in Castagna G., Ghelli G. and Longo G. “A calculus for
overloaded functions with subtyping”, Information and Computation, 117(1):115-135, 1995,
which has had some fall-out in the mathematics of programming, as the work of many in Type
Theories (the author’s papers are downloadable from http://www.dmi.ens.fr/users/longo).
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signs ... the game starts over again, by further metalanguage and semantics.
In truth, this is the central point: by definition, a digital calculator must
codify (everything) in symbols, roughly 0 and 1, and the encoding can depend
neither on meaning nor implementation. Hodges’ definition, mentioned above,
applies very accurately to mechanic deduction: ‘(mechanical) intelligence ... is
effectively defined as that which can be expressed by the communication of
discrete symbols’; and this codification following the requirements of the func-
tionalist hypothesis must not depend on the specific hardware which realises
it. The goal of high-level programming languages is precisely to be transfer-
able from one computer to another, from one programming environment to
another, without problems. That is only possible because their level is exclu-
sively formal/theoretic, codifiable with finite sequences of symbols, and neither
depends nor should depend on any (ordinary) meaning any more than on con-
texts. Human intelligence, on the other hand, depends on the structure of our
brain, the fact that it is housed in our cranial cavity, and the complexities of
its biological and cultural history: it is a rich blend of invariant, general laws
and contextual meanings. It bears no rigid distinction between “language” and
“metalanguage”; moreover, the meaning of the processing which occurs at any
point in the brain depends also on where the elaboration takes place, on its
geometry, on the type of the preceding neurons. And so on, up to ... the ac-
tual position of one’s hands—as much because of the role the hands played in
the evolving complexity of our cerebral cortices, as for the more historical fact
that one understands body language (in particular, hand-waving), no matter
who is the Ttalian speaking! For some, this contextual dependence, rooted in
evolutionary, social and cultural history, can represent a limit, when in fact it is
about a richness: the “gesture” of the mathematician, who tries to explain the
“construction of a limit”, refers to a deep and shared conceptual construction
(e.g. the notion of actual infinity used) and it is inscribed irreducibely into the
proof. This gesture does not make reference to an “ontology”, but to a constitu-
tive route through the history of mathematical knowledge, it is a essential part
of the metaphors that yield the conceptual invariant. The actual challenge is
to understand how do we get to a (relatively) stable invariant, yet grounded in

our material, contextual lifes®. In some cases, the conceptual invariant results

9Some more references and discussion may be found in Longo G. ” Géométrie, Mouvement,
Espace: Cognition et Mathématiques” Intellectica, 2, n. 25, 1997. and in Longo G. ”Mémoire
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from a stability gained through intersubjective exchange, rich in meaning: its
formal representation is a remarkable ‘attempt’ of capturing its expressiveness,

but it is essentially incomplete.

2 Infinity and Proofs

In proving the consistency theorems mentioned above, the use of the notion of
infinity turns out to be inevitable, and this fact is made even more explicit in
other, more recent “incompleteness theorems”. If I continue to speak of the
use of actual infinity in the theory of integers (Arithmetic) it is deliberately
to “play into the enemy’s hand”: it would seem too easy to maintain that the
proof of theorems about infinite-dimensional differentiable manifolds (which are
very abstract spaces), require mathematics to be able to speak of infinity; but
what proof theory has taught us is that even our good old positive integers
sometimes require the concept of (actual) infinity, if one takes as a frame the
usual set-theoretic approach!®.

There are other properties stemming from Arithmetic, which are not cod-
ifications of metatheoretic properties like consistency, but actual properties of
numbers (like, for all z there exists a y such that (6 + 2 = y + 2) —just a little
more complicated), which can be shown to be unprovable by finitary techniques,
i.e. by deductions that can be codified inside Arithmetic. But one can prove that
these formulae are true for the natural numbers, by proofs which use “infinity”
in an essential way, in a set-theoretic perspective. Our goal here is to reflect on
the manner in which these theorems place the mathematical proof in a plurality
of forms of intelligence, not just “formal”, in particular the concept of infinity
is applied.

The Paris-Harrington theorem (PH) and the “Friedman Finite Form (of
Kruskal’s theorem)” (FFF) are two arithmetic statements of the type “for all
x there exists a y such that blah, blah, blah...”. Here “blah, blah, blah...” is a
property of numbers which may be complicated, but not overly so'!. Both (PH)

et Objectivité en Mathématiques”, Colloque Le réel en Mathematiques, Cérisy, Septembre
1999 (actes & paraitre).

10¥et, other approaches may be followed, see the forthcoming footnotes: we hint, in the
text, to the mainstream set-theoretic approach, but different proofs of the same unprovable
statements, may be non-arithmetizable for different reasons.

118ee Paris J., Harrington L., ” A mathematical incompleteness in Peano Arithmetic”, in

Barwise J. (ed.) Handbook of Mathematical Logic, North-Holland, 1978. As for (FFF), see

14



and (FFF) imply the consistency of Arithmetic, by a proof within Arithmetic;
but, given that consistency, when formalised as a proposition of Arithmetic, can
not be proven in Arithmetic, neither can either of the two statements. More-
over, both statemetns describe more or less “concrete” properties of numbers
(partitions or “coloring”, as for (PH), inclusions of finite trees, as for (FFF)!?)

Even though unprovable in Arithmetic, (PH) and (FFF) are true. For a
mathematician who is speaking of interesting propositions (FFF, in particular,
is very interesting—it is a variant of a well-known theorem by Kruskal which is
rich in applications), that means that (s)he can prove them and can mean noth-
ing else; alternatively, that (s)he possesses convincing techniques for deducing
the truth of these propositions, relative to the structure in question: the natural
numbers. These techniques, and T am now thinking particularly of (FFF), base
themselves essentially on the order-structure of the natural numbers, a geomet-
ric or an infinitary property, and on sequences of finite and infinite “trees”: they
involve making “instruments of proof” out of our mathematical experience of
reasoning about the well-ordered sequence of natural numbers, and confronting
simple planar (infinite) structures, trees, by inclusion, and describing the differ-

ence between finite and infinite!3.

Harrington, L. et al. (eds.) H. Friedman’s Research on the Foundation of Mathematics,
North-Holland, 1985.

12 A partly informal and simplified statement of (FFF) may be given as follows. In mathe-
matics, trees have a "root”, "branches” and "nodes” and may be included one into the other,
in a roughly ordinary sense. Then (FFF) says: "For any n, there exists an m such that for
any sequence of finite trees T, 75, ..., T, such that each T; has at most n(i+1) nodes, there
exist j and k such that j < £ < m 41 and Tj is included in T}.” Finite trees may be coded by
numbers, thus the statement is a formal statement of (first-order) Arithmetic, a Hg statement
of the arithmetical hierarchy, to be precise.

13In a comparison, observe that the proposition ¢ of G&del, in section 1, affirms
that there “does not exist a proof of G” (nor of its negation) or that § (more
accurately: its numeric code) is a solution in z of the following equation (z =
the code of “there does not exist a proof of the proposition coded by z"). This is a very fine
game between metatheory (the notion of proof), theory (the formal proposition G) and se-
mantics (the integer numbers, where z must be found). Yet, it is “artificial” or ad hoc (it
is the arthmetic coding of a metatheoretic statement), it is not an “interesting” property of
numbers per se or of finite codable structures, such as trees, say. Finally, the statement and
its informal meaning suggest why G must be unprovable, if Arithmetic is consistent: this is
exactly what G says! The difficulty of the theorem entirely lies in the construction of G and
not in the proof of its unprovability nor in its truth, if consistency is assumed. Indeed, the
”apparent evidence” of G has had a major misleading role in many philosophical reflections.
This is not so for statements such as (FFF): its truth is far from "evident” and, yet, it is
a “ordinary” theoretical expression about numbers as codes of finite trees (no self-reference,
no metatheory involved). Its formal unprovability is extremely hard to be proved; it uses an
ordering of trees by inclusion and transfers its properties, by isomorphic immersion, into the
order of (very large) transfinite ordinals. This, following Gentzen, implies the consistency of
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This is no miracle in the truth of (FFF): it is quite simply the “laborious
conquest” of a proof handling (countable) infinities, organised in particular as
the totally (well-)ordered set of the natural numbers, or as a partially ordered
set of “nodes” and “branches” of trees'*. As indicated in the footnote, that is a
relatively easy proof, but formally underivable: but ...why must foundation be
solely formal /mechanical? Do we not have other things to say about mathemat-
ical proof? What is the constitutive process of the “certitude” of mathematical
proof, even outside formalisations? The formalist program is only a component,
necessary and important, but provably incomplete, of the analysis of proof.
Moreover, on the analysis of the formal consistency, it achieves nothing without
appealing to larger and larger infinities (see section 3): a conceptual abyss which
must in turn be “founded”.

So I speak here of the “laborious conquest” of the notion of infinity, since
clarity about the infinite is a conceptual conquest which has been needed in
mathematics for centuries; the analysis of this constitutive process is, for me,
an essential subsequent component of foundational analysis.

We know in effect how the Greeks hesitated when faced with infinite se-
quences of converging points (\/5, Zeno’s paradox) and how they laboriously,
even anguishedly, distinguished between potential infinity, and a more indefinite
infinity, negatively defined by Euclid and Aristotle (apeiron), though the latter
provided some degree of clarity on the difference between the two. Not until
Thomas Aquinas, Duns Scotus, and the late Middle Ages did a real change of
scientific paradigm take shape. Infinity became a positive attribute, characteris-
tic of God and possibly created by God (infinity in actu, as opposed to infinity in
fieri). As for the mathematics of the sixteenth to eighteenth centuries, we recall
that it developed in a milieu of uncertainty, but with a forever increasing audac-

ity with regard to the use of the notions of actual infinity, and of limit, which no

Arithmetic.

14The truth of (FFF) is not so obvious, as it requires a “simple”, yet smart proof, under
classical, but strong assumptions. Briefly, the set-theoretic proof of (the truth of) (FFF), via
Kruskal’s theorem, uses an “oracle” on a E% set, an impredicative and extremely non-effective
infinitary construction. This proof is relatively easy: one or two pages which any mathe-
matician today could reconstruct without much pain (indeed, some fun). The analysis of this
“easyness” has been one of our motivations. On the other hand, as we already said, the proof
of its unprovability (and its essential impredicativity) is very difficult; it is a major technical
breakthrough obtained by Friedman. (The complete statment, the proofs and other technical
remarks about (FFF) may be found in the reference above, edited by Harrington - in partic-
ular, two papers by Smorinsky in that volume brilliantly explain the role of impredicatively
given sets, the place where syntax and semantics are entangled.)
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longer represented a negative concept, but on the contrary, a manner of calcu-
lation (cf. Pascal, Galileo, Cavalieri, Newton, or the metaphysics of Leibniz)!®.
This culminated in the great casualness yet conceptual clarity of Cantor’s treat-
ment of infinity. His “paradise of infinities” constitutes another turning-point,
one which has truly marked our mathematical era. Cantor introduced infinity
in the context of operations: addition, multiplication, and iteration of limits
on infinities of infinities. Such juggling with infinities of excessive scale, even
led to paradoxes. A century of mathematical work accompanied by an increas-
ing refinement of techniques and also an increasing solidity of definitions was
needed. Today a mathematician really knows what it means to “give a proper
definition”, above all in the difficult cases which imply infinitude, thanks mostly
to the stubborn effort of logicists and formalists! This allows us in the present
to promote infinite trees, the well-order of the natural numbers, and ordinals
beyond them, to the title of daily instruments of proof; and this, without falling
into the same errors and paradoxes, to which the audacious “founding fathers”
stepped in. This mathematical praxis, finally, allows a rigorous definition, in
different contexts, of infinity, i.e. exactly that which was undefined, according to
Euclid and Aristotle. (Cantor really was a mathematician who dared to conjec-
ture and prove the most surprising observations about infinity; truly, he dared
to “think beyond infinity”!6.)

157ellini P. Breve storia dell’Infinito, Adelphi, 1980 (trad. francaise, Seuil, 1986); Gardies
G. Pascal entre Eudoze et Cantor, Vrin, 1884.

16For us today, Cantor’s transfinite Arithmetic is nothing particularly difficult. After
counting 0,1,2,3,..., we use w to denote the “limit” of this process, its “closure” on the
horizon. Then we continue counting w + 1,w + 2,w + 3,...w + w = w X 2. Similarly,
wX 2,wX3,...w X w = w?. By now, the rule of the game should be clear, and one con-
tinues to apply exponents: w?,w?,...,w*. The limit of w“’,w“’u ,... should simply be “w to
the w”, w times. This “ordinal” number is called q. It is the least solution of the equation
z = w®. If one succeeds in proving (or if one assumes) that these ordinals are “well-ordered”,
then one can prove that Arithmetic is consistent (this is Gentzen’s 1934 proof). The state-
ments (PH) and (FFF) which we have mentioned imply the well-ordering of &g, and much
more, for evidently one can also create £1,¢2,...,&, and so on so forth, up to “huge” or-
dinals (whose individual definition requires a reference to the entire collection of ordinals:
the “impredicatively defined” ordinals). In fact, this is a game children and mathematicians
often play: give me a number, and I give you a bigger one. But the game is not arbitrary
as is “takes meaning” in an interesting geometric structure, the well-ordering of the natural
numbers. The game only eztends this order, by extending the operations of sum, product,
exponentiation, and “limiting” beyond w. The deed of giving a name to infinity, in a coherent
manner, has been inscribed in the conceptual area we call Mathematics. The ordinal w is
not of this world, but neither is it a convention nor a mere symbol; rather, it synthesizes of
a construction principle, a “disciplined gesture” grounded in a historically rich mathematical
practice (cf. Longo, G., “The mathematical continuum, from intuition to logic” in Natu-
ralizing Phenomenology: issues in contemporary Phenomenology and Cognitive Sciences (J.
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In other words, the order of the numbers, in space or time, their succes-
sion and extension into a discrete and well-ordered structure, i.e. their ordered
extention beyond the infinity of the numbers themselves, the planar structure
of possibly infinite trees, are all infinitary or geometric properties which allow
the proof of these finitary arithmetic propositions, which require treatment be-
yond formal systems codifiable within Arithmetic. Evidently, one must speak
of these structures, and the proofs which rest on them, with human words of
finite length, but one can not do so in a “complete” manner with formal cal-
culi which can be manipulated without reference to meaning: this, no more no
less, is what all these results tell us; the historical praxis of infinity, the order
according to which we organise, mentally or in the plane, numbers and trees
(possibly infinite), are part of the foundations, are the extremely solid roots of
unmechanisable methods of proof. This amounts to saying that in these proofs,
in the feat of making hypotheses and passing from one line to the next, these
lines certainly consisting of finite words of our language, “meaning” steps in,
in a provably essential way. That is, along the proof, one must understand the
concept of actual infinity or the geometric structure of well-ordering; or that
one should be speaking of infinite sets of numbers or infinite trees in the plane,
by situating oneself in a mental geometry, where one may “pick up” the least
element of an arbitrary non-empty subset of the natural numbers (an absolutely
infinitary operation, in set-theoretic terms). Although at the end of the day,
these proofs should themselves be described by finite words, for passing from
one phrase to another, in at least one step along the proof, it is therefore neces-
sary to grasp that behind these words lie the significance of infinity or of orders,
provably uncodifiable in Arithmetic. Or, in other words, neither codifiable nor
manipulable by sequences of finite symbols without meaning, by a Turing Ma-
chine, say, as its computation could be equivalently expressed within Arithmetic
. Thus, these recent incompleteness results show that even “simple” properties
of the integers are provably true using tehniques which can not be represented at
the solely theoretic level, codifiable as such with zeroes and ones, or with other

mechanisable techniques'”. The difference w.r. to Godel’s theorems should be

Petitot et al., eds) Standford U.P., 1999, for subsequent considerations.)

17The firm, but naif, formalist may still say: yes, but then, this proof, still given by finite
sets of words, may be "formalized” in a "suitable” Set-Theory or in second-order Arithmetic!
Of course, one may add the independent statement as a new axiom, but this is cheating
and just moves forward the problem (by Godel’s technique one may give further independent
statements). The point is that sufficiently expressive, but not “ad hoc” theories, such as
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clear. As already mentioned, that classic is only an undecidability theorem: it
gives no hint on how to prove G or the consistency of Arithmetic, to which it
is provably equivalent. This helped to fall into the mysticism of an unproved
truths, that “the mathematician could see by looking over the shoulder of God”
(Barrow) - a very convenient position, indeed. In the latter, concrete, cases,
the authors had to prove the truth of the arithmetic statement in question,
actually on standard numbers; of course, this, jointly to unprovability, implies
undecidability, but it is stronger.

Thus, such proofs have no need of reference to ontological miracles evoking
“inaccessible mathematical truths”. We humans are absolutely not constrained
to reason with no reference to meaning and only with finite formal sequences
codifiable in zeroes and ones, which is exactly what computers do, or, equiva-
lently, to deduce only from “pattern matching” (if A is syntactically identical
to the A in A= B, or it may be made so, then write B). Our rigor is not simply
formal/linguistic: for example, we construct a praxis of “infinity” in different
conceptual frameworks, and we make it into a rigorous mathematical (or geo-
metrical) concept, admittedly a difficult acquisition which required centuries of

work!8.

proper Il order ones, are not "formal”, in the rigourous sense of the hilbertian tradition:
they are infinitary and use tools from infinitary logics or impredicative definitions. The set-
theoretic treatment mentioned above, by the use of a E% formula, or the derivation in second-
order Arithmetic (provably) require impredicative notions. By this, syntax and semantics
get mixed (first, by the so-called second order convention in the comprehension axiom) and,
as for Arithmetic, validity, as truth in all models, is no longer "effective”, i.e. the set of
valid propositions is not recursively enumerable (thus, they cannot be derived by any machine
whatsoever, by Church Thesis). For this, and for the related use of totalities in order to define
elements, the firm, but coherent and competent formalists reject proofs in these impredicative
frames (see, for example, the life-long work of S. Feferman - for a collection of papers see
Feferman S. In the light of logic, Oxford University Press, 1998 - or Simpson S. Subsystems
of Second Order Arithmetic, Springer-Verlag, 1998).

18 There is another way to understand how meaning steps in the proof of these recent
incompleteness results. The three statements mentioned above (normalisation, (PH), (FFF))
may be all formalized in Arithmetic in the form Vz3y.P(z,y), that is "for all x, there exists
y.P(x,y).”, where P is a decidable predicate. In each case, Vz3y.P(z,y) is unprovable in
Arithmetic. Yet, from (the proof of) its truth over the natural numbers, one may easily derive
that “for all n, Arithmetic proves 3y.P(n,y) 7. There is subtle but crucial distinction here,
which is a “semantical” one: in order to prove, in Arithmetic, the statement Vz3y.P(z,y),
the variable x has to range only on the natural numbers. That is, the proof of the universal
” may be given just if interpreting x as a generic natural number,
with no use of formal induction (similarly as one would prove a statement such as “for all
r, real number, ... such and such a function is continuous ...”, where induction on r is not
possible and the proof should be given for a “generic” real). In other words, the fact that
n in 3y.P(n,y) must be a generic natural number and not a formal variable (which could
be interpreted also in non-standard models) is crucial to the proof and forbids first order

statement “for all x ...
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It is difficult to speak of the above, for one of the goals of this century’s
mathematical logic, has been exactly to “avoid infinity” in foundational analysis,
even if one must consider it pertinent to the practice of mathematics: it is too
dangerous to be foundational. Yet, infinity is a central element which today
we can rest on, thanks to, in part, results obtained in mathematical logic. And
infinity constitutes precisely one of these mathematical concepts, which, in order
to have meaning, needs a plurality of references to other forms of “intelligence”,
considered even in their historical evolution, by the very fact that it has been
given in different forms of knowledge.

In conclusion, with reference in particular to the incompleteness phenomena,
we would argue that in mathematics a concept is proposed, a method is chosen,
structures are built, theorems are proven, specifying where and by what means,
in a manner which is certainly not arbitrary, as “context of proofs and mean-
ings” are provided. In mathematics there exist no propositions which are “true
and unprovable” and, at the same time, mathematics s not simply mechanisable
calculations, since each time it is a question of proving, if necessary using infini-
tary methods or meaningful derivations, if and within what framework such and
such a proposition is unprovable, and if and in what framework it is provably
true. Those who claim, in a mystic tone, that there are propositions which are
“true but unprovable” must give an example of one, by singling it out: but, in
doing so, they will also have to prove it, that is to say, prove its truth within
a well-defined construction. That is just what had to be done, by Gentzen or
normalization, for Godel’s G (or consistency of Arithmetic, to which it is for-
mally equivalent), for (PH) and (FFF) with regard to the natural numbers, as
well as for the “Continuum Hypothesis” and the “Axiom of Choice”, each in a

different set theoretic construction, as hinted next!®.

induction over arithmetic formulae. As a matter of fact, this “meaningfull” property (n is a
natural number), easy for us, provably cannot be formalized in Arithmetic (a consequence of
the so called “overspill lemma” in the model theory of Arithmetic); in Set Theory, its proof
requires infinitary assumptions.

19 An alternative proof of (FFF) can be derived form the work in Rathjen M., Weierman
A. “Proof theoretic investigations on Kruskal's theorem” Annals of Pure and Applied Logic,
60:49-88, 1993. The authors give an infinitary, non arithmetizable proof, yet much more
“constructive” than the set-theoretic one, mentioned here (their proof is “intuitionistically”
acceptable, at least by “open minded” intuitionists ... .) The proof uses the constructive
theory of Inductive Definitions and avoids a (classically) crucial passage “per absurdum”
of the set-theoretic approach. Infinity also is used in a slightly different or finer way: the
infinitary ordinal structure mentioned above shows up, in the inductive proof, in a minimal
way, with no use of E% sets, but “just” of least impredicative ordinals.
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3 Infinity and Metaphors

The foundation of infinity has been largely advocated by (formal) Set Theory.
However, I believe that today there can be no a priori foundation or a posteriori
formal justification for mathematical infinity other than ‘metaphors”. Actual
infinity does not belong to our sensory experiences, be it direct or indirect; nor
even to the practice of counting or of classical geometry based on shapes: for
that, potential infinity will do, both with regard to adding “+1” and endless
motion. The historical praxis of actual infinity, which I have mentioned sev-
eral times, constitutes a further progress: the limit of this unending “41” must
be conceived, the horizon closed, while positing a point at the “limit”. This
practice is, as I have stated, established on the basis of innumerable reflections
situated between the mystical and the emotional: starting with the Greeks,
continuing with the controversies surrounding the infinite grace of Mary (Duns
Scotus’s actual infinity), the discussions of perspective in painting (the van-
ishing point at infinity of Renaissance painting, which is an entirely artificial
construct, one among many other possible kinds), the anchorage in monads
and the metaphysical infinity of Leibniz which aimed to give sense to the in-
finitesimal calculus. And it is precisely this “constitution” of the concept of
actual infinity, so rich in emotivity sedimented over the centuries and rendered
“objective’ by mathematical practice, which has become an essential part of its
mathematical specification, by the very fact of its entry into proofs. Neverthe-
less, mathematical infinity is not the same as the different mental experiences of
infinity mentioned above, since it is the invariant concept which we posit after

all of these various experiences. At the same time, however, its foundation is

This paper focuses on the notion of infinity, as a crucial tool of the existing analysis of
proofs. However, a further approach should be more closely explored, if possible. Instead
of forcing (formal) induction, by stretching it along the ordinals, we should just rely on the
order-structure of natural numbers and use generic elements (see the proof by generic n in
footnote 18). A different philosophical attitude, giving up the absolutely central role of formal
induction (since Peano and Frege), can lead to a more “finitary” approach, yet non formalis-
able, as referring to an essentially geometric argument (the order of natural numbers, which
is, formally, fully expressed only by second order impredicative principles: every non-empty
subset as a least element). But spelling this out may be a difficult, if ever possible, project,
which would allow to propose an alternative to the deep analyses given in the set-theoretic
frame and, perhaps, even to the more constructive approach by Inductive Definitions. These
approaches “explain” natural numbers by a (very interesting) detour via infinity. Infinity is
fine and good, a beautiful and very human conceptual construction, but perhaps, in Arith-
metic, it may be replaced by a geometric insight into numbers and an analysis of proofs also
by generic elements (which involve meaning along the deduction).
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to be found precisely in the (vectorial) sum of these experiences, each one be-
ing a metaphor, an opening onto other forms of knowledge and other forms of
intelligence?C.

In reality, it has been a vain effort to try to give a foundation to infinity
using methods within mathematics, let alone within some formal system or
another. As we have already recalled, it was Cantor who first defined and treated
infinity with a wholly mathematical rigour, objectifying it in notation and in
computation, and, furthermore, unifying it in a theory of (possibly infinite) sets.
Frege was to give this theory a rigorous logical form, which was corrected later
on and formulated into a formal Set Theory, under the influence of the Hilbert
school. But, ever since the start of this adventure, which was to change the face
of mathematics, the infinite had posed serious problems.

Cantor had developed his theory with the aim of analysing the continuum
of the real numbers: he proved that these are strictly more numerous than
the natural numbers; and his proof suggests how one can carry on building
ever larger infinities, indefinitely. He then spent many years trying to prove
the Continuum Hypothesis: that the infinite number of real numbers, their
cardinality as he termed it, is the “immediate successor” to that of the natural
numbers. He failed in his attempt, as did his successors, Zermelo, Bernays, von
Neuman and many others. All of these formalisers of Cantorian Set Theory
were also unable to prove the derivability of another key property of infinity:
the Aziom of Choice, which affirms that one can choose an element for each set
belonging to a (possibly infinite) collection of sets.

These properties of infinity, now well-defined as a mathematical concept,
seem to escape formal treatment by set theory: thanks to a result of Godel in
1938 and to a theorem of Cohen’s (1963), it would be proven that formal Set
Theory had not managed to say anything about the Continuum Hypothesis or

the Axiom of Choice. Or, in other words, these propositions are undecidable

20 The notion of metaphor used here is close to Lakoff and Nunez’s (see Lakoff, G. and Nunez,
R. Where Mathematics Comes From: How the Embodied Mathematics Creates Mathematics.
New York: Basic Books, 2000.): it is in fact the meaning of a certain concept, in our case the
concept of mathematical infinity, which, as I will try to explain, is constructed with reference
to a plurality of metaphors. Their notion of “conceptual blend”, at the core of the unity of
our forms of knowledge, as a the permanent “transfer of meaning and conceptual practices”
nicely underlies or allows the “vectorial sum” of different constructions I refer to here. Before
getting acquainted with the approach proposed by Lakoff and Nunez, I was influenced by the
use of metaphors in the conceptual constructions of mathematics, by a remarkable book on
the philosophy of mathematical physics: Chatelet G. Les enjeuz du mobile, Seuil, 1993.
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in the Formal Set Theory, as is Godel’s proposition G in Arithmetic. One
might then ask whether they are true. One must then prove if and within what
framework they are true, just as for Godel’s proposition: if one then proceeds to
a certain construction of a universe of sets, this construction being due to Godel,
one proves that the Continuum Hypothesis and the Axiom of Choice are true
in this universe; if one goes on to another construction, namely Cohen’s, both
of them are shown to be false in this other set-theoretic universe. Those who
believe in mathematical propositions which are true in God’s spirit, who believe
in absolute and undemonstratable mathematical truths, would then have to say
whether they believe that, for God, the Continuum Hypothesis and the Axiom
of Choice are true or false. All that we humans can say is that, for example,
Godel’s construction is “simpler”, in the sense which is suggested to us by
certain regularities in the world, such as the principles of “minimal” structures:
but to do this, it is necessary to specify what one understands by “minimal”
in this precise context, to propose an infinitary mathematical construction, and
to prove, within it, the truth of the Continuum Hypothesis and the Axiom
of Choice. Now, although it is not “minimal”, even Cohen’s construction is
not arbitrary: it uses a notion of “generic element” which is very relevant in
mathematics (and in Arithmetic, as we noticed in a footnote).

To summarize briefly the question of infinity in formal set theory, the inde-
pendence of the Continuum Hypothesis and the Axiom of Choice proves that,
if one remains at the level of the formal system, without it taking on or before
it even takes on a meaning in a mathematical construction, then this formal
theory, though created in order to be able to speak of these crucial properties
of mathematical infinity, remains once again completely silent. But the formal
theory would have to be at least formally consistent (in particular, if one adds
to it the Continuum Hypothesis and the Axiom of Choice as axioms). A conse-
quence of (certain extensions of) Gddel’s incompleteness theorems is that this
consistency cannot be proven—without assuming the ability to construct fur-
ther infinities, extremely large cardinal numbers, which go beyond the formal
theory whose consistency one aims to prove. That is, if one wants to prove
the consistency of a formal Theory of Sets which may express a given infinite
(cardinal) alpha, say, then one needs “to assume the existence” of a cardinal
number beta, strictly larger than alpha.

There is nothing metaphysical about this, nor is any ontology of mathemat-
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ical infinity involved: what one is stating is simply that, if we are capable of
making, or we assume that we are capable of making certain conceptual con-
structions of “very large” infinities (by iterating power-set operations, limits
and much more), then, using these same constructions, we can prove the consis-
tency (construct models) of such and such a set theory; and this is what certain
difficult results of Set Theory of recent decades have led to.

Recall now that, conscious of the difficulties involved with infinity, a num-
ber of mathematicians/logicians from the beginning of the century, Hilbert and
Brouwer to name only two, had sought to exclude actual infinity from founda-
tional theories. Hilbert had recognised the centrality of infinity in mathematics;
more importantly, he had affirmed the indispensable character of this notion
for mathematical thought, and claimed that the mathematician should work in
Cantor’s “paradise of infinities”. However, Hilbert also claimed that, in order
to guarantee the certainty of reasoning, a finitistic foundational analysis must
be its basis, since “operations on the infinite can only be guaranteed using the
finite as a basis”. That is, the mathematics of infinite and ideal objects had
to be saved by a finitistic metamathematics, the frame for consistency proofs.
(Two writings of 1925, published as appendices to the French edition of The

t2! are fine elaborations of

Foundations of Geometry, as well as in van Heijnoor
such a programme.)

By contrast, as we have seen, infinity reappears, not only in consistency
proofs, but, in view of the recent incompleteness theorems, even in proofs of
“proper” statements of theories of the finite par excellence such as Arithmetic.
And this is so in an essential manner, at least within the well established frames
mentioned here, Set Theory and intuitionistically acceptable theory of Inductive
Definitions, see footnote 19. In other words, not only are we unable to guarantee
the consistency of theories which speak of infinity using the finite, as in the case
of different set theories (a key aim of the formalist program), but we can even
need infinity to prove, by induction and/or within Set Theory, consistency of
Arithmetic as well as certain finitary statements of Arithmetic, such as (PH) or
(FFF) mentioned above.

Nothing too bad so far, precisely because the certainty of our use of infinity is,
in my opinion, extremely “robust”, or as much as mathematics itself: it stems

from the interaction and mutual support of numerous mental and historical

21 From Frege to Gédel, Harvard University Press, Cambridge, 1967.
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experiences which can even come from outside mathematics. Its conceptual so-
lidity stems from its rootedness in a plurality of conceptual constructions which
have allowed us to conceive of, propose and define the mathematical invariant
gradually across history. I return to this plurality one last time, since it is the
nub of the whole issue: mathematical infinity is not a metaphor, but our very
proposal of an invariant (stable) concept constructed on the basis of (and as an
invariant w.r.t.) a plurality of mental experiences including religious metaphors,
the vanishing point in perspectival painting, distant points of convergence—to
name but a few conceptual practices which work with (and ground by a praxis)
infinite mathematical sets and structures.

Godel’s splendid 1931 theorem left us with a dramatic metaphysics of math-
ematics: because it concerns “only” a theorem of undecidability (it says nothing
about how one proves the undecidable proposition in Arithmetic, or the consis-
tency which is formally equivalent to it), for decades people have not stopped
talking about absolute “truths” of mathematics, of “looking over God’s shoul-
der”, instead of going and studying the many beautiful proofs of consistency
elaborated since 1934. Since undecidability does not help us to understand what
methods of proof might exist outside Arithmetic (by simply stating that certain
propositions cannot be proven in Arithmetic), the debate has become trapped in
a Manichean conflict: on the one side those who say that the limits of man (the
“human computor”, in the act of proof) are the same as those of the machine; on
the other, those who have hymned the praises of the manifold mysteries of math-
ematics, precisely because, in sticking uniquely to Godel’s theorems, which says
nothing on how to prove the unprovable statement (consistency), one passively
accepts the notion of demonstrability (and even mathematical rigour!) as being
exclusive to formal systems, indeed the mechanisable ones: the rest belongs to
the obscure realm of intuition. A closer analysis of more recent undemonstrable
statements of Arithmetic, but demonstrably true, to which I have just alluded,
may allow the “foundation” of a crucial practice, namely the rigorous use of
the mathematical concept of infinity. A use to which, for now, I can give no
other foundation than a practical, historical, and yet extremely solid one, which

makes reference to metaphorical meanings, in a blend of conceptual practices.



4 Metaphors and analogies, between intelligence,
emotions and affection

Before introducing a daring discourse on forms of mathematical intelligence
and their relation to “affectivity”, I would like to open a parenthesis. In the
act of disseminating the foundations of mathematics into a variety of forms of
knowledge and intelligence, in this attempt to analyse their evolutionary and
historical genesis, I, as logician/mathematician, am explicitly violating one of
the most established dogma of the philosophy of science of this century, the
dogma which forbids any confusion between “genesis” and “foundation”, “cre-
ativity” and “deduction”, “logic of discovery” and “internal rationality” of a
discipline. But it is precisely “this dogma of the principial fracture between
epistemological elucidation and historical explanation [...] between epistemo-
logical origin and genetic origin [...] [which must] be overturned completely”, as
Husserl stated in the so rarely read The Origin of Geometry (1933-36). This is
a crucial question concerning the whole of scientific knowledge, because in each
of these forms of knowledge there exists the difficult interplay between episte-
mological autonomy—on the level of logic and internal justification, and the
genesis of the knowledge—on the level, amongst other things, of its relationship
to other forms of knowledge and the course of its evolution and history.

There is no such a think as the set of “universal Laws of Thought”, with
no genesis and at top of which lie the perfectly formal rules of Mathematics.
The hierarchy which has developed in our cultures represents a distorting mirror
of human intelligence, whether this be in the idea of the logical formalism as
the only (or ultimate) form of rationality, of the only form of scientific method
(which are, in the last analysis, those of formalised mathematics) or in the idea
of unbreachable compartmental boundaries. Instead, we have to discern the
elements of continuity and the links between the different forms of intelligence,
the different human forms of relationship to the world, and some of the different
forms of scientific knowledge. For example, Damasio?? gives the point of view
of the neurophysiologists on the question. Indeed he sets out to explain the
neurophysiological discoveries on the basis of which affectivity and intentionality
are shown to be integral parts of rationality. For him, that is where Descartes’

error lies, namely in his separation of the rational soul from the emotional soul

22 Descartes’ Error, 1994.
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which, for the neurophysiologist, is completely impossible.

I think, thus, that we have to enrich this analysis of meaning and of human
intelligence as grounded in our active existence of living beings, from our biolog-
ical reality up to the dialogue between humans in history. Furthermore, I would
like to add that intentionality and affectivity are not only essential “stimuli”
for intelligence, a point on which everybody would agree, but that they affect
the very content of intelligence. Or rather, that intentionality, affectivity and
the emotions are not simply the possible bait for or the possible break of the
“rational” machine, but that they help to determine its direction, and therefore
its content. Personally, I see things as follows.

The understanding of a fact, up to and including the conjecture of the math-
ematician, are based on analogies, metaphors, and consequently on choices of
direction in the representation and the contents of the conceptual construction,
whose meaning is rich with affectivity: one proposes, chooses and understands
an analogy, a metaphor in view of or because they have an emotional or affective
content; one is therefore led by intentionality. In other words, one chooses to
“build a certain bridge” between different kinds of knowledge, between different
kinds of “intelligence” (and that is what constitutes analogy and metaphor),
on grounds which are both affective and emotional or intentional (they have
aims). That is why the very content of a “rational” practice, which is based on
metaphors and analogies, is rich in intentionality and emotions, because through
the direction given to the metaphor or the analogy-“bridge”, they contribute
to its determination. Now, this infinity, a key concept and unavoidable notion
of a mathematics which remains the stronghold of rationality, can only be un-
derstood as the invariant concept of a plurality of conceptual experiences, both
practical and emotional, running from religious metaphors to the metaphor of
depth in painting, via the convergence of parallel lines at the horizon, and the
limit of iterated movements. It is a kind of vector resulting from a set of vec-
tors, a construction which is therefore different from all the given vectors, but
nevertheless always dependant on them, be this in terms of direction or contents.

To conclude, Descartes provided us with an important intellectual clarifi-
cation by helping us to found the modern scientific method and by purging
“reasoning”, amongst other things, of the residues of magic, of the empty logic
and syllogisms of medieval times, and of pervasive religious mysticism. Now

that we have understood and, on the whole, know fairly well how to put all of
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that into practice in scientific frameworks, we are in a position to balance the
schism with which he endowed us with his bequest of a “method” and “rules ad
directionem ingenit” . This will allow us to go further, to understand better with
the aid of scientific analysis, and to put our finger on those particularly difficult
points where rationality and affectivity become confused and yet form the basis
of one another reciprocally, in other words where a plurality of forms of human
intelligence mix together, even in mathematics. This is particularly needed as
its formal foundation, beautifully developped in Mathematical Logic, is essen-
tially incomplete; in particular, it lacks the analysis of meaning as embedded in

human intentionality.

5 Induction, machines, and the Lord Almighty

In this research programme, mathematics can lend valuable assistance, because
if we manage to break its permanent siege-status, in other words the absolute
and separate role ascribed to it, if we manage to destroy the ivory tower in
which Platonists and formalists want to shut it up, it will be able to provide us
with a good example of, among other things, a relevant cognitive practice. A
relatively simple example, since even when profound and difficult, mathematics
nevertheless remains conceptually simple: elegance and conceptual necessity
are its watchwords, and among its raisons d’étre. Elegance and necessity are
combined with constructions of a profoundly human nature. To such a degree
that (but don’t say this too loudly) the Lord Almighty and computers are largely
incapable of doing mathematics. The former is unable to keep the planets, which
are nevertheless His greatest creation, in orbits which are sections of cones, as
Kepler recommended. More precisely, the orbits of our own planets do not
integrate a system of differential equations. Occasional omnipotent flicks are
needed in order to sustain our orbits about the sun, as intuited by Newton?3.
This, if T dare say it, is more a pragmatic than a mathematical solution (surely
not a limitation of His omnipotence: He just decided to organise matters in a
different way from Kepler’s expectation). And let us hope that He continues

to make such large gestures, because there is no stability theorem for the solar

23Newton discovered that the orbits of the planets affect one another reciprocally by mutual
gravitational attraction, and in particular that effects of “gravitational resonance” could even
endanger the stability of the solar system—his profound religiosity provided him with that
solution, the only one which can garanty stability for good (see the next footnote).
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system?*. Yet, we soundly try in every possible manner to describe its movement
approximatively using the difficult instruments of the best language we possess
for speaking about the movement of the bodies, curves and geometries of space,
namely the mathematics of dynamical systems; but we only manage to obtain
qualitative descriptions of the behaviour of systems of chaotic determinism.
As for digital machines, as hinted above, they cannot demonstrate the con-
sistency of Arithmetic, via normalization say, or (FFF), because meaning (or
an “impredicative” blend of syntax and semantics) is provably essential to the
proof and, thus, formal-artithmetizable reasoning does not suffice; but much
more should be said, as they are incapable of even giving proofs by arithmeti-
cal induction which scarcely reach beyond the banal. I shall explain what this
means. By arithmetic induction, as we have already recalled, we mean the
following finitary rule: if one proves A(0) and if one proves that, “for all z,
A(z)=A(z 4+ 1)”, then one can deduce from this that “for all 2, A(2)”. What
could be more mechanisable? Well, there are proofs which, though hardly com-
plex, use this rule in an “a priori” non-mechanisable fashion, as it is relatively
rare for one to manage to make the inductive step or to proof that “for all z,
A(z)=A(z + 1)”, where A is exactly the proposition you want to prove. In a
number of significant cases, a proposition B has to be found, stronger than A
or such that B=A, and for which, by contrast, one manages to prove that “for
all x, B(z)=B(z + 1)”. Proposition B is called the “inductive load”. B can
be much more complex than A. There exists no a priori criterion for choosing
B, excepting a few vague heuristic indications according to which the inductive
load must “contain everything which is needed”, on the basis of the hypotheses,
the structure of the proof one is constructing, and the thesis aimed for. In ac-
tual fact, the choice of B among an infinite number of possibilities is based on
analogies or on setting bridges or embedding in broader mathematical frames.
An analogy, for example, with a proof already found, which can be algebraic
even when one is working in geometry, or, indeed, an analogy with an induction
on the number of dimensions inspired by another, very different proof based on

the length of the formulae etc.,etc... Analogies and bridges between different

24Gee the results in Laskar J., The chaotic behaviour of the solar system, Icarus, 88: 266-
291, 1990: the orbit of the Earth is provably impredictable beyond 100 milion years. Similarly
for the solar system, as a whole, beyond 1 milion years; just nothing when considering the
expected life of the Sun (5 or more bilion years?) - the point is that Pluto’s orbit is “very
chaotic”.
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forms of knowledge, normally within mathematics, I would say, but not always,
for the analogy, just like the metaphor, can easily take us outside this?®.

Of course, none of this affects the foundational programme of the formalist,
who in such cases can always reconstruct a posteriori the logical /formal frame-
work of the proof in which he will quite simply replace A with B where this
proves necessary. But, this nevertheless constitutes an insurmountable obstacle
for the logico-computational hypothesis, since there exists no machine which
is capable of choosing B in the context of a new proof, out of infinitely many
possble inductions loads, while an analogy or an intentional, meaningful choice
may suggest it.

The question of the “inductive load” now represents a crucial point of in-
teractivity for interesting programmes of proof by machines. There exist in
fact many fine systems of automated calculation and deduction which are emi-
nently interactive: the mathematician isolates enormous calculations and huge
database searches which he then has the computer execute quickly and perfectly;
he distils from these a number of terrifying lemmas, whose proof needs numerous
mechanisable passages, and then he transfers these into the system, intervening
finally in those crucial choices in the proof of a theorem, such as the choice of the
inductive load, of the hypothesis rich in meaning, etc. Other automated proof
assistants check, a posteriori, proofs or properties of programs, a major help
for some work in Algebra and in programming. Finally, freed from the myths
surrounding it, the computer, with its special powers of deductive/formal cal-
culation, in certain cases quite literally gives wings to human calculations and
proofs, thanks to an interaction between man and well-constructed machine. It
is an interaction which leaves to man the use of analogy, metaphor and meaning,
in other words to that ability to make connections within the network of inte-

grated knowledge and forms of intelligence which makes up the specific unity

25TInduction is particularly relevant also in view of “gédel-numbering” techniques. By these,
one may encode in Arithmetic many mathematical structures, which apparently do not need
to lie within numbers. For example, in Longo G., Moggi E. “The hereditary partial recursive
functionals and recursion theory in higher types” Journal of Symbolic Logic, 49(4):1319 —
1332, 1984, some sort of computable functionals (functions of functions of functions ...) are
hereditarely encoded into Arithmetic and can be easily defined by arithmetizable formulae
(with some further work). Yet, even the proof that they are well defined in higher types
requires a huge inductive load, calling for topological spaces and continuous functions. But this
is very common in Mathematics. Another amazingly heavy inductive load (by the “candidates
of reducibility” ) may be found in Tait-Girard’s normalisation proofs, even in the arithmetizable
fragment, i.e. the proof of “there exists y.P(n,y).” of footnote 18.
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and force of human thought.

6 Conclusions

To conclude, the formalist hypothesis argues that only calculations using signs
without meaning can allow the a posteriori reconstruction of any mathematic
reasoning and the elaboration of its logical /formal foundation; its proponents
nevertheless recognise the plurality of the forms of deduction (the famous “math-
ematical creativity”) which must be able to be reinscribed a posteriori exclu-
sively onto the formal level. The logico-computational hypothesis, which is much
stronger, assumes that logical /formal intelligence, based on the manipulation of
formulae conceived of as sequences of discrete symbols lacking meaning, them-
selves codified with, for example, zeroes and ones, allows the representation of
all forms of intelligence, thus not only the a posteriori reconstruction of the for-
mal skeleton of mathematics, but also the perfect simulation of the advances of
those reasoning in each of these fields. Now, if the various Incompleteness The-
orems mentioned here lead to the failure of the former of these two programmes,
they imply a fortiori the same result for the latter; what is more, this second
programme fails even when confronted with a question as “banal” as that of the
inductive load in Arithmetic.

How then do the many defenders of these two programmes face up to this
fact? The formalists, who are quite conscious of the metamathematical rele-
vance of the Incompleteness Theorems, argue that it is more or less a ques-
tion of metamathematical “tricks” (implying ad hoc metatheory), and that the
proofs of all “interesting” propositions can be reconstructed formally. Now, de-
ciding what is interesting is a matter of opinion, and I believe that Girard’s
Normalisation theorem is both interesting and rich in applications, particularly
for the mathematics of Computer Science, although the Tait-Girard style proof
requires metatheory. The same can be said of FFF (Kruskal’s theorem has lots
of applications), in which, and even more explicitly, the variety of our forms of
knowledge enters into its set-theoretic proof, in particular through the concept
of infinity.

As for the defenders of the logico-computational hypothesis, if I have under-
stood properly, they either just ignore these findings, or give to them interpreta-

tions borrowed from more learned formalist arguments—which are nevertheless
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restricted exclusively to mathematics; in other words, they continue to believe
that the machine’s limits are man’s limits, or that the “interesting” things that
man knows how to do, the machine also knows how to do, and they consign
everything else to the category of uninteresting or nonexistent things (some,
such as Searle?® call these theses “eliminationist” - an expressive, if somewhat
sombre term). Finally, others bravely argue that the digital computer will, one
day, go beyond working only on a formal/theoretical level. This is possible: T do
not bet on future, when living clones of jupitarians will be our next generation
computers .... Yet, so far, this possibility contradicts the two key hypotheses
of functionalism (which deal with both the design of digital computers and their
languages), namely the codifiability (on the theoretical level only) of any form
of intelligence into discrete symbols, themselves in turn codifiable into formal
Arithmetic or into similar theories, and the independence of this codifiability
(but not of the code itself, obviously) with regard to any specific implementa-
tion. As I have already noted, the formal codifiability (the uniqueness of the
conceptual level on which the zeroes and ones are found) and the independence
“of what one knows how to do” with regard to specific contexts and implemen-
tations (the fundamental idea of the programmability of computers, namely
“software portability”) exclude precisely the network of connections character-
istics of human thought which is based on the unity of its specific hardware
and its software: our “modularised” brain with its history. For any monist, this
network and this unity cannot be fragmented into metalanguage, language and
semantics, and then, in a machine, into “software” and “hardware” (the soul
and the body?), in order to carry on “meaning independent” computations,
represented at the linguistic/theoretical level only. Some theorems I mentioned
proved this for us, by showing the incompleteness of this artificial split of human
reasoning.

By contrast, it is just this unity, this indivisible ego, or divisible purely for
reasons of temporary mathematical commodity, or for the construction of ma-
chines, this contextual dependence, this specific hardware, living in the world
and in history, which allow us to make these “bridges”, metaphors or analo-
gies between different forms of intelligence. These analogies and metaphors
are essential elements of human reasoning, including mathematical reasoning;

what is more, they are governed by intentionalities and emotions. It is on pre-

26 The Rediscovery of Mind, M.I.T .-Press, Cambridge, 1982
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cisely these constitutive elements of “meaning” that cognitive and foundational
analysis should also be concentrating today, by focusing on the remarkable con-
ceptual invariance and symbolic abstraction, so typical of Mathematics, but

which (provably) cannot be defined as purely formal.
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