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On church's formal theory of functions and functionals:

The Lambda-Calculus:
connections to higher type Recursion Theory,
Proof-Theory, Category Theory!

Giuseppe Longo
Dipartimento di Informatica, Universita di Pisa

Introduction

Church proposed hisalculusof A-conversionas"A setof postulatedor the Foundationof Logic"
(Church[1932-3]). Church'sideasand programwere part of the leadingHilbert's school, at the
time, whoseaim was still a unified formalist approachto the foundationof Mathematics. In the
following years,though, the growth of RecursionTheory, which soon becamean independent
mathematical discipline, led many authors to consider mostlgaimputationapower ofA-calculus,
I.e. its expresiveness in terms of the definalidssof number-theoreti¢unctions. Churchhimself,
in view of the results of Kleene afdiring, proposed his welknowlrhesis", which is intendedto
characterizethe computationalpower of finitistic systems(see Odifreddi[1986] for an updated
discussion). This lecture is not concerned withissee of'computability” asfocusedby Church's
Thesis;however,the relevanceof this claim on the expressivenessf formal systemsmust be
acknowledged. On one side it sets a limit to feasible computations by fimtisticods,on the other
it suggeststhat thereis no other reasonableunderstandingof computability, besidesthe one
establishedwithin the Hilbert - Brouwer lively debatein the twentiesand early thirties. Almost
everybodyagreesnowadays that, akng as we donot have a counterexampleywe may rely on
Church's Thesis, provided that use isnot mathematicallymisleading. Namely, the philosophical
point raised by the Thesis surelycrucial, but do wereally needit when workingout results? In
case a new system for general computations is proposed, it is then better to check wdwetiodit
still computes exactly the classically computable functions (what a discovery if inatese ! ). If,
instead, one is using a well established formal system, suchasulus or Turing Machineshand
waving" or "short cuts" should not be confused with referen€htarch'sThesis. Hartley Rogers'
book onRecursionTheory, for example,makesvery little use of Church's Thesis,evenif it is
mentioned very frequently. Most of the time,amgumentis only basedon anincompletesketchof

1 A short course in Jcalculus, University of Rome |, SprintP98 ; thesenotesare basedon an invited
lecture delivered at the Conference,"Church's Thesis after 50 years" Zeiss (NL), June 1986 ©n
Church's Formal Theory of Functions and Functionalshlished in Annals Pure Appl. Logic40: 93-
133, 1988).



an algorithm, within the intendedformalism,whose completeimplementationis left to the reader.
This avery commonandwell establishediseof informal reasoningn Mathematicsby a frequent,
but sound, reference to it, that book can summarize hundreds of resutllifficult area. Probably,
from a "non human"point of view, from the point of view of a computer,say, ninety per cent of

Mathematics is just "hand wavingThis hasnothingto do, though,with Church'smethodological
stand on the maximality of the expressiveness of hilbertian formalisms for computations.

This lecturewill beginwith classicalcomputability and soon go further towards more general
structures. Indeed, the point | want to raise hi@tlwing the original programof Church, is that
lambda calculus is not just one of the many formalismsdanputationsput shouldbe looked at as
the core Formal Theorgf (computableFunctionsand Functionalssimilarly as PeanoArithmetic is
the core Formal Theory of Numbers. And numbers are as relevantin Mathematicsand its
foundation as much as functions are relevant in constructive proofs, categories, computations.

The foundationalrole of A-calculuswill be stressedby giving a brief survey of the main
connectionshetweenA-calculusand three major areasin Logic: higher type RecursionTheory,
Category Theory, Proof Theory. Theserelationswill be understoodin a unified framework
designed by the underlying mathematical structures, which give mathematical meaning to tbé te
typed and type-frek-calculi.

Churchoriginally proposeda calculusof type-freeterms: the "fregeanparadise”of a type-free
universe always fascinated logicians. But, when flying too mgirderto comprehendas muchas
possible, one may have the wings burned: thedysteminventedby Churchled to contradictions.
Inconsistencies, though, frequently occur in early versions of interéstmgl systemsfrege'sset
theory, Church'sset of postulates”Martin-L6f's type theorywere all inconsistent. This was due
on the breadthof the mathematicaintuition requiredto handlethe structuresthey had in mind, on
their importanceand on the interconnectionsvhith the restof Mathematicsthe moretheseare, the
more it may happen that the first formalization is excessively powerful.

The inconsistentersionof A-calculuswas later "repaired”in two differentways, which started
separetedranchesof the topic. Firstly, by reducing the logical expressivenessf the untyped
calculus (see Curry&al[1958,1972] or 8.3). Secondlyintyoducingtypes,accordingto Russell's
answer to inconsistencies (Church[1940], Curry&Feys[1958]).

For awhile, the challengesandthe still strongexpressivenessf the type-freecalculusattracted
more researchers than its typed counterpart. Sowttiel of A-calculuswhich started"denotational
semantics" in Computer Science was a model of the type-free cakbideasitire book of Barendregt
(Barendregt[1984]) is devotdd resultsin the type-freetheory. Only in the lastfew years,mostly
because of the practical success of typed functional language$ treccomputer-sciencenterestin



the ideasin Logic of Girard and Martin-L6f, havetypesbecomean evenmore successfubrea. In
this paper we will restrict our attention to the "theory of type-cdlculus, as the relevant kerrél
Type Theory.

Type Theory on one handprovidedthe mathematicatonnectiongo Proof Theory, on the other
hand it suggestedtype disciplines in programming (Reynolds[1974], Milner[1978]). More
precisely, types help avoiding paradoxes in Logic as agghrotectingfrom errorsin programming.
Type-checkings one of the very few actually implementedpartial correctnessalgorithmssince it
gives effective and significant partial correctness probfsrograms(Gordon&al[1979],Nordstrom
[1981], Burstall&Lampson[1984]). It may be soundto comparetype-checkingto "dimension
analysis" in Physics, both because typesvery muchlike "dimensions",and becausdhe analysis
of dimensionsis a commonly usedtool for partial correctenes®f mathematicalcomputationsin
Phisics, similarlyasin Programming. Besidesthis specific but relevantpoint, A-calculusprovided
the core of functionallanguagesndtheir type disciplines,whose practical successs due to their
suitability for solving or focusing many of the concerns of actual computing. Aedtarof fact, the
practical relevance df-calculusand Type Theoryfor computinggoestogetherwith the variety and
depth of the Mathematics involved. In particular, it largely depends on those veschigelatethis
topic to other areas, since thehnessof the theorydirectly embedsnto the expressivenesandthe
facilities of actualprogrammingpy suggestingextensionsor modificationsor eventhe designof
new programming languages (further references will be given in the Conclusion).

As Mathematics is relevant when it is both beautiful and applicable, | thinth&nfatundersof A-
calculus and related systems should be happy with all of this.

As it should be clear by now, the focus of this lecture balimore on the interfaceof A-calculus
with other theories than on itpure theory". By this one usually meansthe technicalresultsinside
the field, suchasthe Church-Rosser'theoremor Bohm's theoremor othersbasedon the specific
syntaxof the system. This is clearly an extremelyrelevantarea,as A-calculus,amongthe various
formalismsfor computability suggestedn the thirties, is the only one with plenty of interesting
"machinedependent'tesults:one shouldconsultBarendregt[1984in orderto appreciatethe varity
and depth of the work carried within this specific formal systédso in this case,the pointis that,
more than a formalization of a "computing device" or a toy programlamguageA-calculusis and
hasto be viewed asthe formalizationof the abstracinotion of function, including higher type and
higher order functions; thus, the results of the formal theory often turn out to be relevant in
applications or in the general understanding of functional behavigyuthis and by the connections
discussedbelow, there should be no doubt that looking at A-calculus just as one of the many
formalisms for computing thpartial recursivefunctionsis like beinginterestedn PeanocArithmetic
only becausene canrepresenthat classof functionsin it andforgetits foundationalrelevanceas
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Formal Theory of Numbers.

This presentatiorwill begin with very elementarytools and litte mathematicalstructure:the
naturalnumbersandthe partial recursivefunctionson them, asthe least class containingthe usual
base functions andosedunder composition,primitive recursionand minimalization. A recursion
theoretic and constructive perspective(in the senseof Intuitionistic Logic) will be stressedas
structuresnventedfor the semanticsof typed and type-freeA-calculuswill be looked at within a
constructive frame. In particular, an inductive construction of higher type computations gwlehe
andthenstudiedwithin the very simple categoryof countable(and numbered)sets,in the senseof
Malcev, 81; then"subcountable'andstill effective setswill be investigatedthe quotientsubsetsof
numbers, 82. The formalization of these structures as categ8jesill leadus to A—calculusand
higherordertype theories,84, and, finally, to their (constructive)models,85. In particular, 85
presents and discusses modelsaxfondorderA-calculusover "retractions"and quotientsetsin the
same framework; by this some connections are pointed out.

An "organized"bibliography concludesthe paper:the referencesare classifiedinto four parts,
according to the three interconnecting areas they roughly baldpéus onefor generalreferences).
Thus, Scott[lI-1980], say, may be found in Partll, while Church[1932]is in the final group. A
preliminary version of partsof this lecture was presentedat the "Logic and Computer Science"
Conference (Torino, October, 1986; Rendic. Sem. Matem. Torino, in print).

1. From gd6del-numberings to higher types.

As promised, we begin with very simple notions and structures: natural numbers, pgideis,
numberings. With these elementary tools we will define higher type computations.

Let w be the natural numbers ard, > : w2 — — @ any bijective (primitive) recursivecoding
of pairs;denoteby Axylg(x,y) themap <x)y>|- g(x,y). Asusual,(P)R arethe (partial)
recursive functions A simple observatiormay help to understandhe intuition on which definition
1.1 below is based.

Note: for any (acceptable) goedel-numbering: w - PR,
(P.1.5) Axy.@(x)(y) PR .

(P.1.5) is satisfied by any godel-numbering, but does not characterize them: it simpiy tiedisthe
universal function forPR is still in PR. Setnow C(0) =, C(1) = PR Theideais to use
property (P.1.5) as a definition for a clasél-€) of total functions in €9) - C(1) andinherit this
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at higher types (see 1.12 on partiality vs. totality). More precisely, we will define, forreaehset
of functions C(N+1) 0 c(n) . c(n) | the HereditaryPartial Effective Functionals by inductively
using a setc(n-5) 0 c(n-1) _, c(n),

1.1 Definition (HPEF; Longo[l-1982]). (i) Let ¢:c(n-1)_ c(n). Then
e1c(n3)  ~ Axyi@x)(y) ocn).
(i) Let 7:c(N) _ c(M). Then
roc(ntl) o geocnd) 1 epoc(n.s),

In orderto understandiefinition 1.1, the readershouldfirst checkthe typesof the functionsin
c(n.5). However, thereis a crucial hiddenpoint in the two lines definition of the HPEF: they are
well definedprovidedthat at eachhighertype one cangive a "coding of pairs". More exactly, for
each n,in analogy toxw Ow via <, >, an "acceptable” isomorphism

2 cxc) och)
mustbe foundin orderto set(i) in the definition (actually, a retraction,in the senseof 3.5, may
suffice). Our elementarytools are sufficient to understand,quite in general,what "acceptable”
means.

1.2 Definition. Let U be asetand HU-U. Then
<,>:UxU - U is anacceptable pairing w.r.t. F if:
1) Op1,p20F  [X1.x2LU  pj(<x1.x2>) = Xj (p;j total).
2) [F,gF Ax.<f(x), g(x)>LF.

Thuswe needto defineat eachtype n anacceptablgairingw.r.t. type n+1; this is what we
assumed at type 0, the numbers, w.r.t. typethe partial recursivefunctions. Before gettinginto
this, there is another well known property at type 0 and 1, which one may hobperiiat higher
types as well.

Remark (s-m-n theorem): for any godel-numbering; : w -~ C(1) | one has
(3) Op1c(d-5) Focl) g= gof.

This generalizes at higher types as follows.
(4) On>0 Op,0c(d) peochd) F,o0ch)  @= grofp.

Observe that, if (4) holds, then eackN)Cis countable, ag, must besurjective. Thus, in order



to prove (2)and (4) onemaytry to work within a categoryof countableobjectsand "effective”
morphisms. A good candidatefor this could be Malcev's category EN of numbered sets
(enumerations), the simplest generalization of Recursion Theory to an abstract setting.

1.3 Definition. The CategorfEN has asobjects pairs A =(A,ea), where A is a set and
ep ‘w - A is a surjective mapMorphisms are defined by
fJOEN[A,B] iff [F[R fep= egef'.

Clearly, EN is a categoryandit hasseveralinteresting(closure)properties. For example,one
can look at the product of two numbered seta asmberedsetitself: just enumerateahe productby
using the given bijective pairing of numbers. However, since we are interestedin higher type
computationsas given by the HPEF, we needalso other kinds of higher type objects, such as
exponentiationsin the category. Unfortunately,thereis no generalway to enumeratethe set of
morphismsof two arbitrary objectsin EN, if one wantsthat productsand the representatiorof
mophisms spaces commute in the sengeasfesianClosedCategoriesi.e. EN[AxB, C] OEN[A,
CB]. Consider,say, w = (w,id) asa (trivially) numberedset. Then, EN[w, w] = R. Thisis
surely a countable set, but for no enumeratigha@d R =(R,gr), onehas EN[wxw , w] O EN[w,
R], as eg would be an effective enumerationof R, which is impossible;or, if preferred,the
"uncurrying” u of &, u(n,m)=g(n)(m), would be a computable universal function for R.

One may think of two main ways to preserve éfffective flavour of the categoryEN and obtain
the requiredclosurepropertieswhich guarantythe existenceof highertype objectsin the category:
the first is to look insid&N, the other igo extendEN in orderto to get CartesianClosurewithout
loosing the simplicity of this category.

Scott and Ershov suggested a way to staide EN. As we wantthe HPEF to satisfy property
(4) , this is also what we aleoking for. Observethat Scott'smotivationwas the constructionof
mathematical structures where one could interpret languages for computer programpriograass
compute (possibly highdype) functions,the ideawas relatedto generalizeccomputabilityaswell.
Ershov, partly following earlier work of Scott, wantedrétatein a unified mathematicaframework
the ideas of Kleene and Kreisel fdigher Type RecursionTheory, a topic in turn motivatedby the
semanticsof Intuitionistic Logic (seeScott[lI-1970,1976,1982]Ershov[l-1976]; surveys may be
found in Smyth[I-1977], Giannini&Longo[l-1984] and many others).

The interestingpoint is that both authorsused,in someessentialway, topological propertiesin
their work. That is, some numbered sets are picked up according to sonstragttaethey canbe

given, basedon atopologicalnotion of convergencgapproximation). The ideais, given a poset
(X,=) , to generalize first some key propertiedioite setsto a subset Xg of X anduse Xg in
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order to approximate arbitrary elements of X . More precisely,
(Compact) xOXq iff, for all directed subset D of X ,<gupD impliestdID x<d.

Clearly, (Compact)is a "compactnessproperty for the elementsin X, andit generalizesa

simple fact which characterizes the finite sets in any powerset, partially olmjesedinclusion. By
this, the elements of X aresometimesalled"finite". We preferto refer to themas"compact”or

"noetherian”, as pointed out in Remark 1.8 below.
Then (X,X%.<) isalgebraiciff, for all xUX, "x = {XgUXqg/ Xosx } is directedand x =
sup ~x . A directed complete poset, cpo<Xjs bounded complete iff eachboundedsubsetof

X has a least upper bound. A posetis a (Sdatthain iff it is a boundedcompletealgebraiccpo.
Define finally tx = {yOX/ x<y }.

1.4 Definition. Let X =(X,Xy <) be a domain. Th8cott topology 7g on X is givenby
the base {xqo/ Xo[Xg }{LJ}.

1.4 is a good definition, as pairs of elements of , oundedby x[IX , haveanupperboundin
Xo , smaller than x .

The next step, in order to get into effectiveness, is to assaamgabilityof X (w-algebraicity)
plus the decidability properties you would expkeotn "finite" sets(of numbers). Thatis, givenan
injective enumeration g w-Xqg 0f X5, adomain (X,Xq,6q,<) Iis effectively givenif it is
decidable whether two elements of, Xave an upper bound and their laggperboundwithin X
can be uniformely effectively found. By this,g(B)<eg(m) is decidable in n, m.

The point now is to obtain sufficiently rich, but countable and, possibly, enumerated posets.

1.5 Definition. X = (X¢,X0,€0.5) is aConstructive Domain iff there existsan effectively
given domainX = (X,Xqg,60,<) such that X[/X and, for any directed subset D of Yone has:
XX iff {n/ g(n)sx} is a recursively enumerable set

Clearly, the effectively given domainin 1.5, X = (X,Xq,€q,<), iS uniquely determined(up to
isomorphisms) byX., and conversely, since a domain is the complediger all directedsetsof its
base set ¥, while a constructive domaitX¢ = (X¢,Xg,60,<) is the completiononly overall r.e.
directedsubsetof Xq (usefor this the decidabilityof eg(n)<eg(m)). By the latter property, one
can easily and effectively enumerate the entire pogeti.& one may defineanonicallya surjective
map ew — X¢ by using the properties ofyeand an enumeration of tmee. sets(seeWeyrauch([l-

1981] and Giannini&Longo[l-1984], for details). Clearly, e doesn't nede injective. Takefor



example the constructive domain (PRg#R,<) of the partial recursivefunctions:in this casethe
compactelements, PRy, are given by the functions with a finite graph, enumeratedn some
canonical waydq, say. Thend:w- PR is just an (acceptable) gédel-numbering. Jdraeapplies
to the domain of r.e. sets. Observe then that any (constructive) dotndiasa leastelement Oy,

say, asl] is directed. By thisw = (w, id) , with the identicalenumerationis not a cconstructive

domain (see remark 2.3).
From now on, we consider each constructive dom&gnalso a numbered set Xe), where e

is derivedfrom e; asmentioned. However,any suchnumberedset X happenso have some
"structure”, the partial order and the topology, which nicely relate by

(Poset) OX,yXe (xsy < (UAOtg xOA O yOA)) .
Moreover,thesetopologicaltools definethe usualsetof continuousfunctions;they turn out to be
exactly the monotone functions which commute w.r.t. to sfigirectedsets,whenthey exist. As
usual,the continuousfunctionscan be partially orderedpontwise. Some continuousfunctions are
more basic than others: consider, say, fgilXgo and yOIYq,

stepXgyo(X) =if Xgsx then yg else Oy _

By taking the supsof finite collectionsof compatible"step" functions, one obtainsa countable
collection of continuous functions, Cont(Xy')say. An enumeratione' of Cont(X,Y)y canbe

easily (and canonically) given by using:®—-Xqg and g:w- Y. Define then
Cont(X,Y)c ={ fOCont(X,Y) / {n/ e'(n)<f} isr.e}.

It is not difficult then to check the following.

1.6 Lemma. If X¢= (X¢, Xg ,€0,<) and Y¢ = (Yo, Yg ,€1,5) are constructivedomains,then
(Cont(X,Yg, Cont(X,Y), €', s) is a Constructive Domain. Moreover, if/i€ont(X,Y} , then
OxOXe f(x)0Ye

By 1.6, Cont(,Yo)c are exacly the restrictions tog >of the functionsin Cont(X,Y) , when X¢
and Y; are given the induced topology.

1.7 Theorem. The categoryCD of ConstructiveDomains,where morphismsare definedby
CD[A,B] = Cont[A,B]; , is Cartesian Closed.

(Notation BA is the exponent object, which internally represents CD[A,B], in accordeitité¢he
categorical use.)

The lemma and the theorem essentially prove that the "compactness"and "effectiveness"
properties of ), in a fixed constructive domaiK , areinheritedat highertypes:this is obvious



for cartesiarproducts(and implicit in 1.7), hints were given for the constructionof the compact
elements in function spaces. As already mentioned, "compactness", as givenhargtterizethe
finite elementsin any powerset;however, anothercharacterizingproperty of finite sets (or of
functions with finite domain) is lost at higher types:

1.8 Remark. In any powerset(or subposewf it), exactlythe finite sets have finitely many
subsets.This is not thrue if one considersthe compactelementsof an arbitrary effective poset.
Indeed, take a (constructive)domain X1 with an infinite collection of pairwise incompatible
elements or with an infinite ascending chaind set XN*+1 = CD[XN X"]; then, for any n>1 and
Xo(XMq, ~xg isinfinite. This canbe easelyunderstoodpy observingthat any step function
ste@b is antimonotone in a .

Recently,Girard[l-1985], following Berry[lI-1979], suggestedo considera subcategoryof
Scott'sdomains,the qualitative domains,madeout of subsetf powersetsand where only some
continuous functionare morphismszthe "stable" functions,which preservealso finite intersections
of compatibleelements As an elegantconsequencepne then has that in any type each compact
elementx hasa finite ~x . Stablefunctionsoriginatedin Berry[ll-1979] and have somedeep
connectionswith Girard's ideasin Proof Theory, as his dilators similarly preservepullbacksand
direct limits (seeGirard[1986]); moreover,an insight is also given into sequentiality,as stable
functionsare tidily relatedto sequentiality(seeBerry&Curien[1982]). This seemsto suggestan
alternative approachto higher type recursion, still to be explored, since the crucial 1.10 below
doesn't hold any more (see Asperti[l-1987] for some preliminary work).

As pointed out, every object @D is a numbered set; th@D is a subcategorgf Malcev'sEN.
The point is to understand how the definition of morphisi@Ni whichis so tidely effectiveandis
only basedon the recursivefunctions,andthe morphismsin CD, which are particular continuous
functions, relate.

In should be clear by now that thale of continuity comesin quite smoothlyfrom consideringa
functional f to be computablehenit is continuous,.e. it computesvith compactapproximations
(which are finitely coded) of its (possibly infinite) input (i.e. f(xsep{f("x)} ) and f itself is the
r.e. limit of its compact approximants in its own type.

The next lemma clarifies how Geometry and Recursion Theory relate over constructive domi

Given anumberedset (X,e) , observefirst thattheset { AOX / e1(A) isr.e.} satisfiesthe
requiremennts for a topological base. Call the induced topologyldleev-Ershov topology.

1.9 Lemma (Generalized Rice-Shapiro Theorem). L&t = (X,Xg,€q9,<) bein CD . Thenthe
Scott topology on (X) coincides with the Malcev-Ershov topology on (X,e).

9



Note that the Malcev-Ershovtopology comesfrom RecursionTheory and haslittle to do with
approximation and ordergPoset)above,say, definesa nontrivial partial orderiff the topologyis
To , which doesnot needto hold outsideCD. Moreover,eachmorphismin EN turns out to be
continuous, w.r.t. this topology, just by abviousrecursiontheoreticargument(the inverseimage
of an r.e. set by eecursivefunctionis r.e.). A proof of 1.9 may be foundin Giannini& Longo][l-
1984] or in Rosolini[llI-1986]. In the latter, this discussionis carried on in a sound category-
theoretic setting, by considering categorical models of Intuitionistic Logic. elidenciateslsothe
connections to the constructive aspects of the metamathenfi@mat for example the proof of 1.9
is intuitionistically acceptableprovided that Markov principle is considered(see Beeson[1980],
Hyland[l1-1982], McCarty[l-1984]). The significanceof 1.9 is that the Scott topology, which is
apparentlyaddedas extrastructure,is indeedinherited by suitableenumerationf the objectsof
CD, as numbered sets.

From the lemma one may easilgrive a preciseconnectionbetweencontinuity and effectiveness
for functions. Namely,thatthe morphismsbetween (X,e) and (Y,e') as constructivedomains,
which are continuous maps, coincide with the morphisms betwW¥ex) and (Y,e') asnumbered
sets, which are recursive functions over indices:

1.10 Theorem (Generalized Myhill-Shepherdsoifhe CCCCD is a full subCategory dEN .
(Proofof the key point: LetX, YOObcpUObgn and fUEN[X,Y] ; then f is continuousby the

lemma and the subsequent observation).

Again, the relevance of these facts is based on the naturalness of the partial (zdestouctive)
domains andthus, of the inducedtopology (see(Poset)above):theseare not defined"ad hoc" for
the purposes af.9 or 1.0, but comeout of obviousgeneralization®f setinclusion. 1.9 and1.10
are the mathematicalreasonfor the common motto in denotationalsemanticsof programming
languages: "the computable functions and functionals are continuous".

CD has further interesting properties, which do not hol&Nn for exampleCD is closedunder
inverse limits of projections and limits are also preserved by the produekpadentiatiorfunctors.
By this, say, one may construct countamledelsof the type-freeA-calculus,asthereare objectsin
CD which satisfy equationssuchas X OXX (see Smyth[I-1977], Kanda[l-1979], Smyth&
Plotkin[I1-1982], Giannini&Longo[l-1984]).

We finally are in the position to understand the properties of the HPEF and, in particalack
the crucial facts conjectured in (2) and (4) above (listader(2) and(4) alsoin 1.11 below). This
is done by using the full and faithful embedding>a# in EN.
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Let P(1) bethe (effectively given) domain of the partial numbertheoreticfunctions and set
P(n+1=cont(®n),Pp (M) ) . {P(N). / nOw } are exactly the Ershov-Scotthigher type partial

computable functionals, i.e. the (integer) type structu@Drgenerated by PR, the partiatursive
functions, as PR .

1.11 Theorem. For all n>1,

1) cM=p(n),

2) cmxc() gcn) incD.

3) c(n.5) = cont(P(), P(N+1)).

4) pn0cn5) gpoc(n.5) F,0c) ¢ = ¢p o fy.
(The proof goesby combinedinductionand by an "essential"useof 1.10 and may be found in
Longo&Moggi[l-1984] or, in a more categorical style, in Rosolini[ll-1986])

From 1.11(2) it immediatelyfollows that the isomorphism C(Mxc(n) gc(n) is acceptable
w.r.t dN+1) in the sense of 1.2.

Theorem 1.11 should convince the reader of two facts. Byshe HPEF one cangetat higher
typesby very elementanytools, with no apparenuse, in the definition, of categoriesgcontinuity or
whatsoever. However,topological and relatednotions seemto be essentiaffor proving eventhe
countability of the type structure so easily defined (poiabdve). In a sense onemay saythatthe
HPEF are defined in a purely combinatorial or algebraic way, while analyticcmmoisin the proofs
(seeLongo[1984]). Second,Scott and Ershov definition of higher type computablefunctionsis
indeed a very natural one as it may be recovered by 1.1, i.e. just startingRvignd an acceptable
godel-numberingof it. The way these partial functionals relate to the total "countable and
continuous"functionals of Kleene and Kreisel is establishedin Ershov[I-1976] and Longo&
Moggi[l-1984].

1.12 Remark (Why are the HPEF partial ?). Indeed, definition 1.1 begins with PR wvidhi@lset
of partial maps. Howeverthe functionsin C(1.5) are total, as defined,and thus the sameare the
maps in €2), c(2.5) etc. Why do weoundlycall thempartial ? Of course,the samecan be said
of themorphismsn the frame categoryCD: they are total morphismsaswell, thoughwe all agree
that they define partial higher type computations. At an informal level the answeris very simple:
beginning with the domain of type 1, i.e. PR, each higher type has a least elememiptyset (or
the function with the empty graph). This is usually considered as the interpretattvenfience"in
the corresponding type. More rigourously, this may be understocat@égorytheoreticterms. It is
not difficult to definecategoriesof partial morphisms,n the proper senseof "possibly not defined
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maps" (see Rosolini[ll-1986], Robinson&Rosolini[ll-1987] and Moggi[1987] for recent
approaches, surveys and references, but the reader should just trust his iricuiodefinition). In
one such aategory C, onemay easilydefinea "liting functor" _L by the natural isomorphism
CT[A,BU] LJC[A,B] , where G are the total morphisms. This simply says that"interpret” the

divergenceas the partial mapswith target B are the sameas the total oneswith target B . In
Longo& Moggi[ll-1984a] a new categorical notion is derived from this; namely, in a padggdgory,
an object B izompleteiff B<BL, i.e. B is aretractof its lifting (seealso Asperti&Longo[ll-
1986] for an updated presentation and some applicatiombk point is that the completeobjectsare
exactly those objects B such that each partial morphism with target B can be uniquely extand
total morphism. It is now easyto checkthat (constructive)domainsare completein the intended
partial categories,with the obvious definition of partial continuous morphism (the domain of
convergence must be Scott open). By this, the partial morphisms in those categobhesoumdly
identified with the total ones.

2. From countable to subcountable sets

The basic idea in the definition of the subCatedoBy of EN wasthe choiceof somestructured
objectsin EN which could form a categorywith enoughclosurepropertiesasfor the purposesof
higher type computations. The suggested structures were topological ones.

As pointedoutin 81, thereare many countablesetswhich cannotbe soundlyenumeratedhn the
categoryEN; asan examplewe mentionedthe set R of the total recursivefunctions. In a sense
though,onemay saythat R, evenif not (effectively) countablejs "subcountable"j.e. it can be
(effectively) enumerated by a subsetwf The second idea one may think of, then, isrlargethe
categoryEN as to include this sorts of exponents (function spaces), i.e. sets (effecivaty@rated
by subsets ofw .

Observe first that any numbered set defines an equivalence relatioiaoml, thus, a quotientof
w) and, conversely, any equivalenetationon w uniquely determinesa numberedset: just setto
be equivalent any two numbers which coldesameelementandviceversa. Indeed,from now on,
any numbered seA =(A,ea) will be equivalently referred to as a quotightof w, where

nAm iff ea(n) = ea(m).
Clearly, given numberedsets A and B, notany f'l0R inducesan fOEN[A.B] , as f' must
preserveA-equivalencesthat is one musthave nAm O f'(n)Bf'(m). This suggestsa way to

introduce higher type objects and thus to define a cartesian closed extef&on of
Let {$j}iTw be an acceptable goedel-numbering of PR. Define then
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(Quot)  BAq iff rAm O ¢p(nBog(m) .
AB is apartial equivalence relationon w, as it is defined on subsebf w. Indeed,for A, B
nontrivial, dom@A) = {p / pBAp} # w, and a partial numbering(i.e. a partial surjectivemap)
mag: domBA) - BA is given by mag(n) = {m/ nBAm}. Of course, dont(a) = dom@A).
In general, given a set achpartial surjective Tt w - C (or partial numbering) uniquely
definesa partial equivalencerelation (and conversely). It may be fair to call thesenew objects
"modest”, as suggested by Scott, as they are just and simply (quotient) sulaisets of

2.1 Definition. The category of partial equivalence relationsn w (the modest sets) hasas
objects the subsetdf w moduloan equivalenceelation. Givenobjects A = (A,7;a) and B =
(B,/3) , where mp , g are partial numberings, the morphisms are defined by

fOM[A.B] iff (PR f rp= mgef .

As fOM[A.B] is total, one has that dom(@jom@A).
Note that the representati®® of M[A,B] is partially enumeratedby the quotientsubsetof w
determined by the partial relatid®® (see (Quot.) above). That is,
mag(i) =f iff fo 1A= TIRC ¢j .
By this, oneobtains,for example,a partial, but effective,enumeratiorof R = w® by a surjective
map defined on a subset af .

2.2 Theorem. M is a CCC and includeBN as a full subCartesian Category.

Indeed,one may prove, by usingalso1.10, thatthe full andfaithful embeddingrom CD into
EN and, then, intd/ is such as to preserve products and exponentiationsdimto M.

M is anatural generalization of theereditaryExtensionalOperationgHEQO) in Troelstra[1973],
wherethey areintroducedfor the purposesof Intuitionistic Logic and its Proof Theory (seealso
Girard[l11-1972] and 8.5 below).

In Computer Sciencdy is also known as thquotientsetsemanticf typesover w, following
theideasin Scott[I-1976]on A-models(seealsoHindley[1983], Coppo[1984],Longo& Moggilll-

1986] for details and further work on arbitrary (partial) combinatory algebras).

2.3 Remark. Observethat PR and R are enumeratedn M in entirely differentways. As
mentioned in several places, R does not liv€Ih, while PR cannot be enumeraiasian object
of M by similar tricks as hinted above fdR : themapsin PR are partial, while we are looking at
categories with total maps as morphisms, as usual (see 2.1). The idea is tocextend” in CD
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by adding a least, undefined, elemémntand enumerate w- following the proceduresuggestedor
constructivedomains,basedon the enumeratiorof the compactelementqseeafter 1.5); [J , say,
turns out to be codedby the complemenbf an r.e. non recursive set (see Spreen[l-1984]and
Asperti&Longo[ll-1986] for details). By this the enumeratiorof PR satisfiesthe s-m-ntheorem,a
weakly universalproperties,whosegeneralizationwas relevantfor the definition of the HPEF (see
the discussiorbetweenl.2 and1.3). Notethatthis way of enumeratingobjectswhich givesthe
classical godel-numberings in casEPR, is also required, quite generally,for the sakeof 1.9 and
also gives the functorial embeddingof CD into M which preservesproducts and, hence,
exponentials.

3. The formal theory of functions

In 8.1 and 2 we have been looking at mathematical generalizations to higher tijyeasadion of
function on a groundtype of data. This was doneon countablesets, becauseof the foundational
motivationsfor constructiveaspectf Logic and for ComputerSciencewe assumed. Moreover,
that work has somemathematicarelevancein view of the new structuresand the generalframe
proposed. lmay be thenthe caseto formalizein atheoryof functionsthe key propertieswe dealt
with.

Functionsmay be basedon threemain notions:application,abstractiorand tupling (in order to
handle several arguments functions). That is,
(App) - apply a function f to an argument a: f(a)
(Abs) - abstract a function from an expression f(x) , possibly depending on a variale.f)
(Pair) - construct a pair from elements a, b : (a,b) .

These notions need now to be formalized and typed. Le®thbaa setof atomictype symbols
and letType be the least set containiAg and such that:

o, tlUType U o-r1, oxtlType.

3.1 Definition (TypedA-terms). ¥  (variable of typed)
(MO —TNO)T
(AXOMT)T— T
(MO, NT)OXT
fst(MOXT)0
snd(MOXT)T
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3.2 Definition (TypedA-calculus with surjective pairing). The axioms ABnSPy:
B AXIMI)NO = [NO/IXOIM T
(n) AXO.MIx0=MT
(fst) fst(M,NT)=MO
(snd) snd(M, NT) = NT
(SP) (fst(MP*T), snd(MP*T)) = MOXT |

The inferencerules for ABnSK are exactly what is neededto turn "=" into a congruence

relation.
The next theorem sets some mathematical base to the claim concerning the relexn&Hofas a
theory of functions.

Category Theory is often considered #iernativefunctionalfoundationfor Mathematicsw.r.t.
Set Theory, as functions are fidgscribedand sets,if neededarea derivedconcept.In particular,
the theory of Cartesian Closed Categories, which cofaiction spacesseemsa soundsettingfor
functionality. Theorem 3.3 proves that we may view types as objects, in the sense of Categori

3.3 Theorem (Types-as-objects). The modelsAfnSR are exactly the (concrete) CCC's.

This result maybe found in Lambek][I1-1980],Scott[ll-1980] (seealso Lambek&Scott[l1-1986],
Curien[l1-1986], Breazu-Tannen&Meyer[lI-1985]).

Thus, we started with particular structuresfor higher type functions, then we formalized
functionality and got to a formal Theory @ifped) Functions, ABNSRK . Similarly, mathematicians
hadfirst in mind particularstructureqrotationsof a cube, relative numbers....)and then invented
Group Theory. Of course, Group Theory has many more models thanithtleesameway, there
are many more CCC's th&Db or M. However,thesespecific modelshavesomefurther relations
to the theory, as they are defined by using the dagsartial) recursivenumber-theoreti¢unctions,
which are exactly the formally definable functions intypee-free\-calculus ABn .

Indeed, when firstormalizing the intuitive notion of computationand suggestinga languagefor
the foundation of Mathematics, Church diot considertypes. Thatis, ABnSP is definedjust by
erasing type constraints in term formation rul&gr{ in Church[1941] doesnot have (SP) either).
The ambitionwasto live in atype-free Fregeanparadiseand preserveas much expressivenesef
Mathematics as possible.

Shoenfinkeland Curry had an otherideaon how to describefunctions (and Mathematics),n a
typeless way:
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3.4 Definition (Combinatory Logic, CL). Terms GL are variables x, y...
S, K

(MN) .
The axioms are:
(KM)N =M

((SP)Q)R = (PR)(QR) .

When adding

(ext) Mx=Nx O M=N
to the obvious inferencerules for "=", CL(ext) turns out to be equivalentto APn (see
Hindley&Seldin[1986]). For the key step write

[X]x = (SK)K

[X]y = Ky for y£x

[XIMN) = S(IXIM)(IXIN) .

Then [x]M translates\x.M and conversely (note that [x]M does not contain or, equivalently,
X is not free inAx.M). But now comes the rubn Logic (andin ComputerScience)ypeshelpto
avoid paradoxes anconsistenciesind Churchoriginal systemwas provedinconsistenby Rosser.
Rosser's remark was concerned with the handling of implicativrtaculus;we may understandt
in termsof Curry's paradoxicalcombinator Y , the fixed point operator,andformal negation. As
xX is well formed inABn and CL,sois Y, where

Y = AY.(AX.Y(XX))(AX.y(xX))
is such that YM = M(YM). Thus the original system of Church, windiudeda term representing
negation, led to a paradox.

Once this excess in expressiveness @&iasinated,the consistencyof ABn could be provedby
purely syntactic tool¢Church&Rosser[1936]).However, eventhoughthesecalculi were designed
in orderto formalize meaningfulnotionsfrom Mathematicsformalizationand syntax went beyond
Mathematics; that is, no mathematical model was known till Scott's construction (Scott[ll-1972]

Let's understand it in the following way.

Clearly, any model of CL, the weakest theory (see belsgn applicativestructure(A,-) , asit
must intepret formal applicatioof type-freeterms. Indeed,onemay useany model (A,-) of CL,
insteadof Kleene's (w,-) , and performthe sameconstructionof the CCCM in 2.1 (seeLongo&
Moggi[ll-1986]). WriteM p for this relativized construction. Observe finally thaai@CC D any

fOD[A,AA] turns A into (A) by setting, informally, -& = f(a)(b).

3.5 Definition. Given objects A and B in a categ@yaretraction pair from B into A is
a pair (i,j) such that AIC[B,A], jLJC[A,B] and ji =idg (we write B <A via (i,]) ).A morphism
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pLIC[A,B] is principal if CAOC[A,B] [QLC[AA] f=peog . Isomorphisms"[T are well

known.

3.6 Theorem. Let C be a CCC and A an objectGf Then

(1) AAOA O A isamodel ofA\fn

) MA<A O A isamodel ofAB

(3) [POC[A,AA] principal and AXA<A O A is amodel of CL .
Conversely,

(1) Aisamodeloffn O AADA inMp

(2) Aisamodeloff O AA<A inMp

(3) A isamodel of CLO [pOMAJA,AA] principal and AA <A inMap .

It is easy to observe directly thatAA A implies CPOC[A,AA] principaland AxA < A ; the
converse does not hold, as CL is a weaker systemXfan

The core of (1) and (2) in 3.6 is in Berry[ll-1979], Koymans[ll-1982] and Obtulowicz&
Wiweger[ll-1982] (as usual, though, the main reference for the type-free calculi is
Barendregt[1984]). In Scott[ll-1972] a CCC was given, essentiallya subcategoryof Scott's
domains, and an object A such thatJAA .

(3) may be found in Longo&Moggi[ll-1986], where principal morphisms were defined.

3.7 Remark (The HPEF and Category Theory). (i) Principal morphisms are not exdatliversal
arrows", in the senseof CategoryTheory, sincethereis no requestthat g in definition 3.5 is
unique. The reader may easily observe that principal morphisms are the category theoretic
generalization of property (4) in 1.11, tkey property on the "hereditary godel-numbering'of type
c(n+1) py type €")inthe HPEF. This is where the notion originated.

(i) Thereis somemore Category Theory hiddenin the HPEF: the intermediatetype c(1.5)
contains an implicit "currying-uncurrying” operation, the same which relates the unifarszlonto
the godel-numberingf PR . Theextensiono c(n.5) in1.2 givesa meaningfultype-structure,
once that the isomorphisi@(Mxc(n) 7 c() in (3) of 1.11 proves that tHeurrying-uncurrying”
trick can be inherited at higher types. And the currying operation is theofdartesianClosurefor
categories. On the grounds of this observationRosolini[ll-1986] suggestedan alternative very
elegantproof of 1.11, wherethe hard, but elementary,work on enumerationsand induction is
distilled in a nice unified frame of topoi and Intuitionistic Logic (see the "Effective Topos" in 8.5)

Surprisinglyenoughthereis no known exampleof mathematicamodelof CL which is not a
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model of AR (i.e. except for the terrmodel)! In otherwords, any known structuresatisfyingthe
conditions in 3.6(3) does happen to yield a retractiothersenseof 3.6(2). Of course,any godel-
numberingof PR is just a principal morphismwhich is not a retractionwithin CD (nor EN), as
there is no computable inverse to a godel-numbering. However, if one wants a model ofoaL ,
applicative structure is needed and, when extendinty its lifting w-(see 1.12), wHxwl< wH is
clearly lost, inCD. The constructionof one sucha modelwould shedsomestructurallight on the
minimal conditionsfor functionalcompletenesd)esideghe categorytheoreticnotions of principal
morphisms and "AA<A".

Note that 3.6 characterizesall the three basic type-free theories of functionality: CL,
AB, ABn. 3.3, instead,only characterizesyped ABn (plus SP). Indeed,typed A has some
categorical meaningveak CCC's, werghe usualnaturalisomorphism C[AxB,C] OC[A,CB] is
only a natural retraction C[AxB,C] < C[A,CB] , characterizetyped A\B (see Hayashi[1986],
Martini[1986]).

In conclusion, Categories fit nicely with effective type-structureshacalculus, both in théyped
anduntypedcase. Observealsothat one may look at type-freemodelsas at specialcaseof typed
ones: namely, those CCC's which have a "reflexive" object, i.e. an ohjestichthat A JAA or
the weakerpropertiesin 3.6(2-3) hold. Converselyfrom any type-freestructure (A,.) one may
recover the CC®/ A ..

This correspondence has a nice syntactic counterpart: type-free terms gnagnlzetype, if any.
More precisely, there is an algorithm which decides whether a type-free term possgssesd, if
S0, assigns it to the term (Hindley[1969]). The inference system for typasits,dueto Curry, is
both soundand completew.r.t. the semanticf types over type-freestructuresgiven by the Ma
construction. For this onmay consultHindley[1983], Coppo[1984]or Longo&Martini[1986]. In
the latter completenesss shown by interpretingtypes and terms over a recursiontheoretic type-
structure (a special casé the M o model); this establishedurther relationsbetween-calculusand

higher type Recursion Theory.

3.8 Remark (Somephilosophy). As the reader may have noticed, we gave priority here to a
model-theoretic view point, as we wémm structuresto theories. A beautifulunified framework,
from an alternative, formalist, perspective, may be found in Huet[I-1986]. The lifellowed may
be consideredas the usual and historical pathin Mathematicsfor functionsin extenso,suchas in
Geometryor Phisics, were known before Church and Curry's formalizationsof the Theory of
Functionality. Evenif the latter authors had a computational,algorithmic approachin mind, the
formalization in Geometrgf mathematicaktructureswas the paradigmChurch explicily referredto
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in his foundational activity (Church[1932]).

However, purely formal descriptionsand results addedplenty of informationto Mathematics.
For example,the original ideas containedin Church's formalization of Function Theory, the
A—calculus, requiredthe constructionof new structures:the A JAA models,say, which are non
trivial Mathematics. Irturn, modelssuggestedextensions'of the extanttheories. ABnSP s the
simplest example and it has, so far, only model-theocetisistencyroofs (seeBarendregt[1984]);
a richer extensionof Afn , also inspired by semanticsjs givenin Amadio&Longo[1986],for
example. Besides extensions, structures sometimes suggest modifications alyfstaneda most
relevantexampleis given by Girard's Linear Logic, where the meaningof " " in qualitative
domains (see 1.9) guided a rewriting of inference (Girard[l1-1985,1987]).

The formal behaviour of computersraised syntactic descriptions into a prominent place.
However,the blendingand interaction of denotationand meaningis a matter of riches of human
thought : this is why both perspectives and, in particular, their interplay are relevant.

4. From higher types to higher order

The working mathematicianoften makes assertionsconcerning arbitrary functions in a given
collection (when describing integration, say) or arbitrary subsets of a given set (when dealadg w
the directed subsetd a c.p.o., say)or evenwith arbitrary setswithin a given categoryor classof
sets(all c.p.o.'s havea leastelement...). In view of the analogy "types-as-objects'given by
theorem 3.3, the latter quantification would formally correspond to the possibility of quantfyeng
arbitrary types.

In the previous sectionwe have been dealing with a languagefor higher type functions.
Functionalabstractioni.e. AX.... ) wasdefinedw.r.t. to variablesrangingover groundelements,
functions, functionals ango on, in anyfinite highertype. Note thatfunctionalabstractiormay be
understoodas a form of quantification;thus, as each booleanvalued function determinesa set,
abstracting w.r.t. a variable which ranges over boolean valued funidibkes quantifying over sets
of agiventype.

However, wewere not allowedto quantify explicitly overtypes Indeed,thereis someimplicit
guantification over types in the systems mentioned at the end a@i83rch-Currytypesare defined
as type schemata: e.g. the identity.x has type scheme - a , i.e. AX.x has typeoc - ac for any
type o, or the collection of its possible typesistainedby consistentlyinstantiating a in o - a
by every type.

Mathematicalpracticeand this implicit useof quantificationsuggesta languagewhereone could
explicitly consider all types: thus, a higher order language.
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The language(A2), whosecore is describedbelow, is a variant of the "system F" due to

Girard[ll1-1972]. Thesystem F wasinventedfor the purposesof secondorder Arithmetic, asits
(inhabited)typescorrespondo (provable)formulasof a secondorderlogic language(seethe rules
below).

The point with Ao is that one canquantify over type variablesandterm variables,aswell. We

first definethe termsof the languagejn a rather broad fashion: the formation rules for typesand
terms will tell us which arethe legal typesandtermsand, at once,what arethe typesof the terms.
We start with Tp, the symbofor the (collectionof ) types,anda setof atomic typesor predicate
letters. These may contain variables.

Terms: a ;= Tp | Atomic | var | (aa) | (Avar:a.a) | (Ovar:a.a )

As usual abc stands for ((ab)c) . We write capetrsfor termswhich aretypesor Tp itself,
i.e. for terms A such that, for some assignmént '|— A :Tp or A=Tp.

Well formed assignments:  T'(x:A) stands for TO{(x:A)}; T is an ordered list.
ass.1l O ok (the empty assignment is well formed)

rok, Me— A:Tp , xOdom(I)
ass.2

r(x:A) ok

I ok, x Odom(TI)
ass.3

F(x:Tp) ok

We stress again the crucial poatiove:assignementareformedby allowing A to be atype (in
ass.2, A:Tp) or to bé&p itself (in ass.3, A =Tp). Accordingto which possibility applies,in C.2
and C.3 bellow quantification is over term or type variables.

From now on, we agree th&t|—.... implies thatl" is ok.

Typing rules:
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MN— A:Tp I (x:B) ok
C.0 (weakening)
FxB) — A:Tp

x:A)Or
C.l1 - (assumption)

M— x:A

Frx:A)|—B:Tp
C.2 (types' quantification)
N— (Ox:A.B):Tp

NrNx:A)|—a:B
C.3 (abstraction or [-intro )
N—@Ax:A.a):Ox:A.B

N —a:0Ox:A.B, T'—b:A
C4 (application or [-elim)
I |—(ab) : [b/ X]B

MN_a:A |_ A=B

C5 (conversion for types)

N—a:B

4.1 Notation. If xOFV(B),set A - B=0x: AB.

Remark. Ao hastypesdependingon terms,aswe allow atomictypesto containterm variables;

otherwise we would have exacgystem F (by 4.1). Substitutionandthe typing of variablesmay
be explicitly given for each atomic type P containing n variables, by

M — aj: A i<n

(AD
I — [ai/xj]P : Tp
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Observe thafAt) is the basisfor forming ok assignementsn particular,by (At) andby ass.2,if
{x1:A1),.... (AR} is ok and XIFV(Aj), then x = X for some j<i.

The congruence relation "=" above is derived by the followdngversion rules

N—((Ax:A.a)b):B
B)

N —(Ax:A.a)b= [b/xX]a

N —@Ax:A.ax):B, xUOFV(a)

(n)
N —MAx:A.ax)=a.

Assignementsulesand C.1 are self explanatorythey formalize assumptiongnadeon the types
of variables.

C.2isthekeyrule. If A is atype (i.e. A:Tp), thenC.2 and C.4 arefirst orderrules, as
quantification is over term variables ranging within a gitsgre. Otherwise(i.e. if A=Tp), Ox:Tp
is clearly asecondorder quatification. Now, thereare (at least)two possibilities:Girard suggested
the approach wbasicallyfollow. As we want [x:Tp.B to beatype(i.e. (Ox:Tp.B):Tp), types
are defined in ammpredicativeway: their collection (Tp), whicks beingdefined,includeselements,
such as[(x:Tp.B), which are defined by refering (quantifying) over the collection itself.

Martin-Lo6f[I11-1982] instead gives a second order predicative approach by stratifhgnmiverse
of typesinto severallayers,Tpy , Tp2 .... In short,for Tpp =Tp, if ATpy and B:Tp1, then

(Ox:A.B):Tp1 , while (x:Tp1.B):Tp2 and so on.

C.3 andC.4 tell us which termslive in universally quantified types and how they behave. In
short, terms in [(x:A.B) are functions (C.3) such that, when fed with a term b inth&y give as
output a term of typdb/ X]B (C.4). Thus both the output and the type of the output delendon
the input. This is theore of dependentypesandthe main problemfor the mathematicakemantics

of second order, jointly to impredicativity. It will be discussed in the next section.
As alreadymentioned Girard inventedsecondorder A-calculusas a tool for the proof theoretic

investigationof secondorder Arithmetic: type formation rules, such as C.2, give secondorder
formulas. The approach is soundly viewed as an intuitionistic perspective in Proof Theory:
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Ax:A.a, say, is an effective proof dfix:A.B , as,givenanyterm (proof) b of A, it computesa
term (proof) of [b/x]B .

This language, though, which we presentednmextendedversion,somewhain the style of the
"Constructions"of Coquandand Huet (see Coquand&Huet[llI-1985], Amadio&Longo[1986]),
turned out to be relevant in itself, besides its proof-theoretic interest, mostlyrsneerk startedin
Computer Science by Reynolds[1974].

We concludethis sectionby recallingthat the termsof this calculusstrongly normalize,i.e. any
reductionstrategytakesto a normal form (Girard[ll1-1972], Coquand[lll-1985]). Girard applied
this property tahe proof theory of secondorder Arithmetic, as normalizationof termscorresponds
to normalization of proofs. By this, Takegtnjectureon the normalizability of secondorder proof
was settled, as well as its consequences: consistency, interpolation.

This crucial correspondencen Proof Theory, may be summarizedas follows. Considerthis
"simplification” or "reduction" of a natural deduction:

Inversion
I x:A|—b:B
(O=intro)
I [-— (Ax:A. b): OxA.B a A
(O-elim)
(Ax:A. b)a: [a/X]B
reduces to

a: A |——[a/x]b: [a/x]B

By looking at terms, the above reduction rule for types (propositions) corresponds to
B-reduction, i.e. (Ax:A. b)a > [a/X]b .
Observe that, if xOFV(B) (and AZTp), one obtains exactly Gentzen-Prawitz rule:

I x:A|—b:B
(- —intro)

I [— (Ax:A.b): A =B aA
(- -elim)

(Ax:A.b)a: B
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reduces to
aA|—[aXxb:B

Again, this corresponds to (Ax:A. b)a > [a/x]b , which is exactly classical [-reduction.

4.2 Theorem (Girard[lll-1972]). (Second order) typed terms have a normal form
(actually, they Strongly Normalize).

4.3 Corollary. Any deduction can be reduced to a normal deduction
[i.e. where (- —intro) and (- -elim) are not used sequentially]

There are two more very relevant results which relate A-calculus and Proof Theory, in
this framework. One is concerned with the computational expressiveness of A» , the

other is a "concrete" independence result.

4.4 Theorem. (Girard[l11-1972]) Let f: w - w. Then
PAo [—— [Xyf(x)=y < f is Ap-definable.

Thus exactly the recursive functions which are provably total in PAo are definable in
Ao .

As for independence, observe that the normalization property in 4.2 (Norm(A2), say)
can be formalized in PA> and, by that very theorem, it is true in the standard model.

However:

4.5 Theorem. PA2 [-/-Norm(Ap).

(The proof in (Girard[l11-1972]) is given by showing that
PAs |-- Norm(A2) — Cons(PA»2)) .

That proof of the independence result is very informative, as it also guaranties the
(truth of the) consistency of PAo . However, a simpler one may be given, based on 4.4.

Givenaterm b,let b' be its normal form. Define then the function ®(b) =b'. Of

course, modulo godelization of terms, this is a number theoretic map and a universal
function or "interpeter" in the sense of programming. Assume now that PAy |-

Norm(A2) or, equivalently, that PA2 |-— OxLy®(x) =y . Then, by 4.4, ® would be A»p-
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definable, which is impossible, by the usual diagonal argument.

Remark. One of the earliest and most relevant contributions to the triangular
connection A-calculus, higher type Recursion Theory, Proof Theory has been entirely
omitted here: namely, Godel's system T in his [1958]. It may suffice to say that the work
in Girard[1972] may be viewed as an extension to Analysis (PA2) of Gddel's work for PA.

An introductory account to Godel[1958] may be found in Hindley&Seldin[1986].

5. Constructive Domains and Modest Sets as models fok»o .

Recall that our original motivation referred to the desire of representing highemtygeitationsfor
the purposes of Logic araf ComputerScience. We definedConstructiveDomains(CD; 8.1) and
Modests Setd\; 8.2) as a very natural framework for this; theaturality was clearly suggestedy
their relation to the category of enumerated 6§ @nd by thewvay they providedtools in orderto
extend pairings and godel-numberings at higher types, following the HRERhen formalizedthe
intendedcalculus,the typed A-calculus,and characterizedhe classof modelsof that calculus(the

CCC's;8.3). Logic andthe practiceof Mathematicssuggestedn turn an extendedianguageand
Type Theory suitable for the description of higher order constragets; 8.4).

In this section, we see how those structu@d,andM, yield also models foiy .

As alreadymentionedthe crucial mathematicajpoint is due to the secondorder, impredicative
definition of Ao and the way types artdrmsmix up (rulesC.2, C.3, C.4). In both modelstypes
will be interpreted as objects and termsragphisms. In particular,onehasto give a mathematical
meaningto (Cx:Tp.B):Tp, i.e. onehasfind an objectwich interprets(Cix:Tp.B) , where Tp is
interpreted by a collection of objects, including the interpretationlafTf.B) itself. This requires
non trivial closurepropertiesfor the underlying structure. In particular, the interpretationof Tp
mustbe closedunderproductsindexedover Tp, i.e. underdependenproductsindexedover the
structure itself, since elements (of the interpretationf[0X: Tp.B) interprettermssuchas (Ax:Tp.
a) , which are functions taking each eleméniof Tp to [b/x]a of type [b/ x]B (recallC.2, C.3
and C.4).

The first model, ove€D, will be given by turning the collectionof all (interpretationsof) types
into an object o£D. Thus Tp itself will be interpreted as a type. This strdagurepropertywill
greatly simplify the interpretation of 1&:Tp.B):Tp .

The secondmodelis basedon early ideasin Girard[llI-1972] and Troelstra[1973cJand on a
recentunpublishedresultof Moggi, who provedunexpectedtlosure propertiesof M, as a crucial
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substructure of the Effective Topos in Hyland[l1-1982].

The Constructive Finitary Projection Model
We startwith a modelin CD for the classicaltype-freeA-calculus(AB), thatis, by theorem3.6.2,

over an object U o€D suchthat UY< U . Theexistenceof suchan U will be guarantiedby,
say, a constructiveversion of Scott's Dy, construction (see Barendregt[1984],Hindley&

Seldin[1986] and, for the effective counterpart, Smyth[l-1977], Kanda[l-1979], Gianhmngo[l-
1984]). To be precise, something more is required; this motivates the following definitions.
Recall that the morphismsin CD are continuousand computablemaps, partially ordered
pointwise. The following definition is a constructiveversionof the model in Amadio&al[ll-1986]
(which was inspired by MacCracken[ll-1984]and Scott[lI-1980b]). As usual, we identify a
morphism space CD[A,B] with its representativ® Bvhen needed and unambiguous.

5.1 Definition. Let A, B be constructive domains. (6,¢) is a projection pair on
A, B iff 6JCD[A,B], @[JCD[B,A] and
@oB=id[A, Bop <id [B.
Write A « B iff there is a projection pair of A into B.

Note that a projection pair is more than a retraction pair in the sense of §.3.5.

5.2 Definition. Let A, B be constructive domains such that AIB and
<p = <g [AxA. @[ICD[B,A] is a projection iff forall b [JB,

@b) <g b, and for all alirange(¢), ¢a)=a.
We write A LJB if ¢ is onto.

Thus a projection is a retraction less or equal to the identity.

It is easy to show that « and [ are reflexive and transitive (although « is not
antisymmetric). Moreover, if A« B thenthereisan A'0A suchthat A'0B.

Next we show how to define a constructive domain which represents a collection of
constructive domains. This will be done by taking as constructive domains the ranges
of a particular class of projections.

5.3 Definition. A projection ¢@in CD is said to be finitary if the range of ¢ is a
domain (and thus a constructive domain).
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We note here that essentially all projection pairs which normally arise are finitary. We
are now ready to define the constructive domain which will represent the type of all
types, that is the domain of the Constructive Finitary Projections.

5.4 Definition. Let U be a constructive domain such that U U « U . Then let
CFPy ={@JCD[U,U] | @ is a finitary projection}.

U as in 5.4 exists by the effective Dy construction recalled above, which actually

gives UU OU. One may also find an object U which strictly satisfies U U « U : take,
say, the constructive part of the "filter model” in Barendregt&al[1983] and its variant in
Coppo&al[1984].

If U is obvious from the context then we write simply CFP. Fix U as in the definition
above.

5.5 Theorem. (i) CFP is a constructive domain.
(i) (pLCFP [ range(¢) OU) and (AOU [O [BHLOCFP range(g)=A).

The constructive domains we will be interested in are the subdomains of U . Notice
that, by 5.5(ii), there is a one-to-one correspondence between elements of CFP and
constructive domains A [JU . Thus CFP represents the collection of subdomains of U

. Somewhat surprisingly, CFP can be isomorphically embedded as a subdomain of U .

5.6 Lemma. CFP JUUY and hence CFP «U .
Proof hint: Define @ICD[U,U] by
@) =supyff<g| fOCFP }.
Clearly ¢(g)<g andif g 0 CFP then @(g) =g. Thus range(¢) 0 CFP . Conversely,
CFP [ range(¢) since CFP is consistently complete w.r.t. CD[U,U].
Therefore CFP O U U «U and CFP «U by transitivity. A

Let now WOCD[UY,U], ®OCD[U, UY] be the projection pair of UY into U . Set
CFP = {W(f) / fOCFP }: these are the canonical representative of CFP within U. When
there is no ambiguity we identify CFP and CFP .

5.7 Corollary. There exists pLJCFP such that range(p) = CFP.

Types will be interpreted by finitary projections. More precisely, types are ranges of
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finitary projections. Note first that finitary projections are particular retractions, and that ,
if r is aretraction, then range(r) ={uJU/ u = ru }, the set of its fixed points. Moreover,

finitary projections and their ranges tidily relate, by the following fact.

5.8 Proposition. Let f,g JCFP. Then f<g iff range(f) [Jrange(g) .

We are now ready to define our second order model. We sketch how to interpret
types: details about the interpretation of terms may be found in Amadio&al[ll-1986] or a
simpler syntactic translation, sufficient for the guidelines of the interpretation, may be
seen in Amadio&Longo[1986].

Recall that we interpret Tp by CFP or, equivalently, by p . Ground types (integer,
booleans..., if given in the theory) are interpreted as subdomains of U , which is rich
enough for this purpose, since it is a model of AB . In order to give first an informal
explanation on how to interpret higher types, we mix up syntax and semantics; Ax.f(x) is
the informal lambda notation for functions. The key point is that, in all interpretations of
types as retractions, a:A is interpreted by a 0range(A) or, equivalently, by a = Aa ,
where the retraction A interprets type A . The definitions of "-" and "' originate
from elementary notions in Category Theory (see Scott[l-1976,11-1980b], Seely[ll-
1984,1986])).

Recall that "-" is just a special case of "[0", by 4.1. We discuss this simple case
first. In a category C, if an object A is aretract of B via (i,j), then A, as a "subtype" of

B , may be identified with (i,j) or, by some abuse of language, since categories do not
need to have points or elements, it may be identified with the fixed points of iej (the

range of iej, which is a retraction).

If Cisa CCC, let CA be the exponent of C and A in C; then, if A is a retract of B

via (iI',j) and C isaretractof D via (i,j), one has
CA is aretract of DB via (Ax.ieXoj', AX.joxoi') .

Indeed, (AX.ioxej")o(AX.joxei") is a retraction and its fixed points may be identified with
CA as a subtype of DB . In other words, if one writes r =ioj and s =i}’ , then CA
coincides with {x/ x = roxes } = range(Ax.rexes) , where r,s and AXx.rexes are all
retractions.

In our case, over the type-free universe U, if (i,j)) and (i',j) are projection pairs, then
also (Ax.iexej', AX.jexel') is so, and thus r, s and Ax.rexes are all finitary projections,

whose ranges are subdomains of U .
Thus, if types A and C are interpreted as finitary projections A and C, one has:
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( = Interpret.) A- C is interpreted as AX.CoxeA (or its range).

As for "[0", consider first rule C.3. This is a formation rule for terms; its meaning is that
terms which have an applicative behaviour (A-abstractions) can be only applied to terms
of the intended imput type ( A in the rule). The idea, in models where types are
retractions, is to interpret those terms as functions which coerce each input to be of the
right type. Thatis, Ax:A.a wil be interpreted as foA , where f dependson a.

As for rule C.4, the intuition is that a has type [x:A.B iff a is a function which takes
any b in (the range of) A into an element ab of (the range of) [b/X]B . Since types are
particular retractions, this means ab is a fixed point of [b/x]B :

ab = ([b/x]B)(ab) .
Thus, ab = (Ax.B)b(ab) . Since b =Ab, then
ab = (Ax.B)(Ab)(a(Ab)) .

Observe now that a must be a A-abstraction, by C.3, i.e. it is interpreted by foA , for

some f; therefore
ab = (feA )b = (AXx.B)(Ab)( foA (Ab)) .

Thatis, a coerces any argument b to be in (the range of ) the retraction A . Thus
one may abstract (generalize) w.r.t. b:

a = At.(Ax.B)(At)(a(At)) .

Equivalently:

a = (Azt.(AX.B)(At)(z(At)))a .

Indeed, (Azt.(Ax.B)(At)(z(At))) turns out to be a retraction, when A and B are
retractions. Thus, a:(0x:A.B) gives, in the model, that a is a fixed point of the retraction
Azt.(Ax.B)(At)(z(At)) .

The informal argument above shows that Azt.(Ax.B)(At)(z(At)) soundly interprets
[Ox:A.B , as we derived it exactly from the intended meaning of universal quantification
as dependent product, i.e. as Ma([b/x]B) . This may be summarized as follows:

5.9 Theorem. CFP is a CCC. Moreover, for A,B [JCFP, one has
range(Azt.(Ax.B)(At)(z(At))) = Ma([b/X]B) .

A category-theoretic understanding of this may be found in Seely[1986].
In conclusion:
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( Ointerpret.) Ox:A.B is interpreted as Azt.(Ax.B)(At)(z(At)) (or its range).

If B does notdepend on x,then ( - Interpret.) is a special case ( O Interpret.) , as
one may easily check by B-reduction (cf. 3.1). As a side remark, for p = pp , observe
that the CFP model also interprets an extension of the given language by Tp:Tp , i.e.
the collection of types is a type (see Amadio&Longo[1986] for a discussion).

Problem. In Amadio&Longo[1986] a simple extension ABnp of ABn is proposed, where
Ao can be easily "interpreted" (or translated). Add for this a constant symbol p to Afn

jointly with the following two axioms and rule:

a.l) pp=p MoM =M
a.2) pXopXx = px R)
pM =M

Clearly, APnp is directly inspired by semantics and provides a very simple "model"
for A9, by the translation described above. However, CFP is not a mathematical model

for ABnp and APnp is not Church-Rosser (more precisely, there is no simple extension
of ABnp to a CR reduction system, Amadio&Longo[1986]).
Conjecture: APnp is consistent; it should even be conservative over Af3n .

The Modest or HEOZ Model

The cartesian closed extension M of the category EN of numbered sets has been
defined in 8.2. In that category, types are interpreted as quotient subsets of w.

In Girard[llI-1972] and Troelstra[1973c] some hints are given on how to build a model
for Ao in M: the HEOZ model. Second order terms are interpreted by erasing types
from them and universally quantified types are interpreted as intersections. In that way,
then, information is lost from terms and no apparent connection is given between
intersection and the natural interpretation of universally quantified types as dependent
products. This is not a criticism of that early work, first because of its pioneering role,
second because some deep mathematical intuition was already present also in that
sketchy model construction: for example, in Girard[1972], terms are more precisely
interpreted as pairs (type-free term, its type). Surprisingly enough this is sufficient to
recover the information preserved in the interpretation summarized below, since one
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may easily prove that the interpretation of a typed term is the equivalence class of its

type (a quotient set), which contains that term, as pointed out below. Recently, Moggi[ll-
1986Tp] suggested how to turn the HEOZ into a fully satisfying model of A».

Remark (Some more references). We refer to Moggi's version of this result, which has
not yet been fully written down (see the conclusion on how the discussion started on
elettronic mail). However, since Moggi mentioned to have proved the "internal
completeness” (i.e. the closure under all limits) of M within the topos in 5.12, several
other relevant categories, in the same framework, have been shown to be internally
complete by Martin Hyland, Pino Rosolini, Dana Scott. (Hyland's lecture in this volume
should present a broader and less elementary account of this story: the reader is
recommended to refer to it for a more category-theoretic oriented presentation. Also
Freyd and Carboni recently devised a generalization of the results below).

If A= (A1) is an objectin M, write A{n} ={m | mAn} for the equivalence class of n

w.rt A. In particular, then,
fOM[AB] iff Ch f=BA[n}.

As types are interpreted by Obyp, (quotient sets), terms will be elements of types, i.e.

equivalence classes: for A interpreting A,
a:A is interpreted as "a is an equivalence classin A",
or,also, [h a=A{n}. (Wewrite x forthe interpretation of the term or type x).

More precisely, A—B is interpreted as BA and universally quantified types as
follows. We discuss, for the sake of simplicity, Ox:A.B only when A=Tp,i.e.when A is
the collection of types: the crucial, impredicative case. For the other case see 5.10.2.

We keep using an informal A-notation for functions and - -notation for function spaces
(not necessarily formal terms and types).

Note first that [x:Tp.B may be understood as 0OAXx:Tp.B) where AxTp.B is a

function from types to types. As types are objects of M, O : (Obpg — Obpg) — Obpg turns

each function Ax:Tp.B : Obpg — Oby, into a type, i.e. an object of M . Thus, all that we
have to do is to find a meaning in M to [(f) for at least each formally definable function

f (by the notation for types).
In general, given f:Obp; — Obp,, define O:(Obp - Obpg) - Obpyy by

forall n,mw, n[(f)m iff forall A, nf(A)m.
Clearly, 0(f) is a partial equivalence relation. Thus,
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( Ointerpret.) Ox:Tp.B is interpreted as [(Ax:Tp.B).

5.10 Remark. 1- [(f) = naf(A) .
2 - Incase ATp, define

p(Lx:A.B)q iff foralln,m (nAm [J ¢p(n) ([A{n}/x] B) ¢p(m))
which collapses to (Quot) of 8.2, if Xx[JFV(B) .

An other key point, formalized in rule C.4, is that terms of type [Ox:Tp.B may be
applied to a type: thus, elements of [(f) , that is equivalence classes, must be applicable
to quotient sets, that is to collections of equivalence classes.

5.11 Definition (Moggi; Polymorphic application). Let f: Oby; - Obyy. Set
APP{(LIf{n}, A) = f(A){n}.

Note that this is a good definition, since Apps depends on f: as 0 is not injective,

relevant information from f could be lost when trying to recover f(A).
Our aim now is to prove that the interpretation of second order types based on the
definition of [I(f) above, i.e. as intersection, preserves the naive mathematical meaning

one would attach to them; namely, it corresponds to a product indexed over the
interpretation Oby, of Tp. In other words, a suitable framework, or category, must be

found such that, for f: Oby; - Obyp , in the category,

(Iso) O(f) is (isomorphic to) [Tmf(A) .
Clearly, (Iso) would give a strong closure property of M, as [(f) is trivially in Oby .

The embedding in one direction is easy and true for every set-theoretic function
f : Obp —» Obpg. Indeed, by 5.11, one may injectively associate to each element O(f){n}
of O(f) afunction AA.(FLAXN}) in [TMf(A) , as AA.(F(AXN}) : Obp - T(A).

Conversely, given gO[mf(A) , by definition of dependent product, one has

1) DA [h g(A) =f(A)n}.
And here is the key point. In order to prove that g has indeed the structure AA.(f(A}{n}) ,
i.e. that, for some n, g isthe same as an equivalence class [(f){n}, one has to reverse

the quantification in (1) and prove
(2) [h DA g(A) =f(A)Xn}.

The observation that, under certain circumstances, one can actually go from (1) to
(2), is independently due to Hyland and Moggi and is based on the use of a very
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constructive framework, i.e. a particular model of Intuitionistic Set Theory (1ZF), Hyland's
Effective Topos (Eff; Hyland[lI-1982], Hyland&al[ll-1980]).

We give some hints for that structure and sketch how one can view at M at once as a
full subCCC and an object of Eff, in the sense of 5.13 below.

5.12 Definition. (Eff) Objects: (A, =p),with =p:AXA - Pw partial;
Morphisms: Eff(A1,A2) is the set of the "total functions" w.r.t. =1 and =2

(i.e. total, single-valued , strict and substitutive relations).

Observe now that M is a small category; that is, Obp, and the collection of all
morphisms are objects of Set (they are just sets). More formally, this amounts to say

that M is an internal category of Set, the classical category of sets (see

Johnstone[1977]). The nice fact is that M may be also seen as an internal category of
Eff, as there exist Mg, M1 in Obgf representing the objects and the morphisms of M,

respectively.

5.13 Theorem. M is a full subCCC of Eff and an internal category of Eff.
(Proof hint: for (A,ep)dO0bpy set (a= ab) :={n/ea(n) =alla=b}; thus
(A, =p) U Obg¢f. Note that (A, =p) U Obgff is (isomorphic to an object) in Oby, iff

(hO@=pb)n(c=pd) =« a=b=c=d),
in this case set eap(n) =a iff nO(a=pa). Thus the embedding is full and faithful.

In order to turn M into an internal category, set Mg = (X, =g) with Xg := Obpg and
=0: XX Xg - Pw given by
(A=0oB):=if A=B then w else [.

Mg represents Oby, . As for the morphisms, take M1 = (X1, =1) with

X1:={(A, BA{n}, B)/A,BO0Oby, nBAN}
and =1:X1xX1 - Pw given by
(A BAn}, B) =1 (A, B"A{m}, BY)) := if A=A', B=B', BA{n}=BA{m},

then BA[n} else O.) A

Eff is a topos and, thus, a model of intuitionistic Logic. It also satisfies, among other
properties, the Uniformity Principle (or Konig's Lemma), for Mg is as in 5.13:

(UP) OAOMg [h ®A,n) O [h OAOMg P(ADN).
By applying (UP) on can go from (1) to (2). (This requires some work, within Eff; note
also that the isomorphism in (Iso) above depends on f.)
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In the model, then, the quantification over types (or Obyy), is the same as over Mg, an

object, now, of Eff. Moreover, we can fix the class of functions for which (Iso) above
holds: they are just the morphisms in Eff from Mg to Mg (i.e. the internal functions). By

this and by the Uniformity Principle (UP), the isomorphism in Eff between 0O(f) and
[mf(A) is proved.

The strong closure property for M, within Eff, we have sketched, that is its closure
under products indexed over M itself, is the mathematical meaning of Girard's

impredicative definition of second order types, over this very natural model, the "modest"
or quotient subsets of w.

5.14 Remark. (Models and Intuitionistic Logic) The proof-theoretic connections
between A—calculus and Intuitionistic Logic were clear since Curry-Howard remark that
the inhabited types of A-terms are exactly the propositions of (positive) intuitionistic
propositional calculus. This analogy was fruitfully extended at higher orders by Girard
and Martin-Lof. The relevance of the intuitionistic perspective should now be clear also
in the model theory of A-calculus. As for the first order case, this is stressed by the
constructive approach we followed here, which can be framed within a categorical
approach to the semantics of Intuitionistic Logic, as shown in Rosolini[ll-1986] (see also
Mitchell&Moggqi[ll-1987], for an elementary, elegant use of Kripke models). By the result
just presented, this is even more striking in the second order case. As a matter of fact, in
Reynolds[l1-1984] it is shown that there is no non trivial model of Girard's second order
language A» in the category of sets, if classical Set Theory (ZF) is taken. In Reynolds'
words: polymorphism is not set-theoretic. By the discussion above, a set-theoretic
model may be found, provided that a suitable model of IZF is taken; that is
"polymorphism is intuitionistically set-theoretic".

As pointed out before 3.5, the definition of M may be easily relativized to an arbitrary
(partial) model of Combinatory Logic, CL; the same applies to the definition of Eff. Thus,
instead of Kleene's (w,.) , take a model V of type-free AR and consider My, and Effy
over (V,), see 3.6.

Given a second order term a, let er(a) be the erasure of a, i.e. the untyped term
obtained from a by erasing all type information. Of course, er(a) may be soundly

interpreted over V ; call er(a) its meaning. By induction one can easily establish the
following tidy connection between er(a) and the interpretation of a in Myy. Assume that

a:A in Ao, then
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a=Afer(a)} ,
i.e. the interpretation of the typed term a is the equivalence class of er(a) w.rt A
(details may be found in Mitchell[1986]). Thus, the interpretation sketched in Girard [llI-
1972] contained enough information.

We conclude this section by relating the various constructions above by some useful
category-theoretic embeddings. These will only relate, by cartesian functors, the first
order structures of the various categories presented here, i.e. ordinary products and
exponents, as products indexed over different categories do not seem to bear any
relevant connection.

As worked out in Amadio&al[ll-1986], the CFP construction in the first part of this
section may be performed over any Scott domain U such that

uY«u
Namely, over any A-model where the retraction in 3.6 is indeed a finitary projection in
the category of domains (see 5.3). Thus, when dropping the request on costructivity in
5.4, call FPy the corresponding model of Ao . In this general case, one has that
FPy is a full subCCC of My , which is a full subCCC and an internal category of Effy .
This may be proved by putting toghether the previous work and Scott[lI-1976], Hyland[ll-
1982], Longo&Moggi[ll-1986].

Within the constructive appoach followed here, where we began with numbers and
enumerations, analogue embeddings may be factorized through CD without relativizing
the constructions of M and Eff. That is:

5.15 Theorem. CFPy _full subCCC of

CD full subCCC of
M full subCCC and an internal category of
Eff .

With some more work, one can look also at CD as an internal category of Eff; indeed,
an internal subcategory of M.

Conclusion
The interest in ChurchXs-calculus is mostly due, nowadays,it®relevancan ComputerScience.

We already quoted a few areas where this is explgtmostof the problemsandissuesdiscussed
in this lecturederive from the practiceof computing,it is worth mentioninga few more references
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which set a bridge between the Logic and the computing perspectivesliculus.

As mentioned in the introduction, Scott's invention of modeth®A—calculusstarteddenotational
semanticof programminglanguagesand broughtinto languagedesign,via A-calculus,the well-
establishedtools of Tarskian semantics,i.e. the mathematicalinvestigation of denotationand
meaning. The analysis of the connections between theories and models received an impoitant
by the results iWwadsworth[1976and Hyland[1976] and was continuedby severalauthors( e.g.
Barendregt& Longo[1980], Longo[1983]). The interesapplicationsof this analysisis concerned
with the comparisonbetween operationaland denotationalsemantics,as theories provide the
operationaldescriptionof languages. Further work in this direction led to the issue of "fully
abstracnesslh ComputerScience,motivatedby the desireof proving resultson languagesand
operationdby a direct analysisof models;this is possibleby a full correspondencen somecases,
between denotation and meaning (see Mulmuley [1985] and Luke-Ong [1987] for recent work)

A relevantexampleof the influenceof denotationalsemantican languagedesignis given by the
continuouslyexpandingeEdinburghprogramminglanguageML  (Milner[1978], Gordon&al[1979],
Damas[1985] Milner[1986]). Even compilers are nowadaysbuilt up with some use of model
theoretic concepts afcalculus (Jones[1980]).

The higher order or explicity polymorphic languagesprovide a very interestingarea for new
applcations oh-calculus. On one hanthe languaganventedby Girard for the purposesof proof-
theory is thecore of a severalways interactionamongproof-theory,topostheory andthe theory of
functional languages. For example,Moggi's theoremabovewas given as an answer,raised by
Albert Meyer, on the consistencyof certain extensionsof explicitly polymorphic languages.The
result answered the question, by providawgpodel,andwent further becausat openedup a whole
line of research in polymorphic model theory.

On theside of languageadesign,the varioustheoriesof typeshaveservedto organizethe study of
type disciplinesin programmingand are now implementedin severallanguagegNordstrom[lll-
1981], Burstall&Lampson[1984] Damas[1985],Constable&al[lll-1986]). Theseinvestigations
andtheir applicationdeadto new insightsinto polymorphism,modularity and abstractionmostly
sincethe work of Reynolds[1975pnd Milner[1978] (seealso Reynolds[1985],MacQueen[1986],
Cardelli&Wegner[1985], Cardelli[1986]).

Under the motto "types as formulae” (see84), Type Theory greatly influenced also automated
theorem proving (deBruijn[llI-1980], Constable&al[lll-1984], Miller[l11-1984], Coquand&Huet
[111-1985]) and it even servesas a knowledge representationanguagefor Al (Turner[1984],
Constable&al [I11-1986]). Thethermotto, "typesas objects”,summarizesnsteadthe connections
with CategoryTheory (see83 and Lambek&Scott[II-1986]);surprisingly enough,eventhesevery
abstract studies influenced programming, sitheequationsamentionedn 83 havebecomethe core
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of a running machine (Cousinau&al[1985]).

Connectiondo otherapproaches semantic§equationalalgebraic)nicely comein, in the typed
and higher order cases, by results an conservativity of extendi@asiationaktheories(seeBreazu-
Tannen&Meyer[1987]) and by an original understanding of "abstract data types" (see
Mitchell&Plotkin[1985]).

Acknowledgement | am greatly endebtedo my (former) studentEugenio Moggi: his deep
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foundation of Mathematics).
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