
HAL Id: hal-03318238
https://ens.hal.science/hal-03318238

Submitted on 10 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Lambda-Calculus: connections to higher type
Recursion Theory, Proof-Theory, Category Theory

Giuseppe Longo

To cite this version:
Giuseppe Longo. The Lambda-Calculus: connections to higher type Recursion Theory, Proof-
Theory, Category Theory. Annals of Pure and Applied Logic, 1988, 40, pp.93-133. �10.1016/0168-
0072(88)90017-6�. �hal-03318238�

https://ens.hal.science/hal-03318238
https://hal.archives-ouvertes.fr

HAL Id: hal-03318238
https://hal-ens.archives-ouvertes.fr/hal-03318238

Submitted on 10 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On church’s formal theory of functions and functionals:
the Lambda-Calculus: connections to higher type

Recursion Theory, Proof-Theory, Category Theory
Giuseppe Longo

To cite this version:
Giuseppe Longo. On church’s formal theory of functions and functionals: the Lambda-Calculus:
connections to higher type Recursion Theory, Proof-Theory, Category Theory. Annals of Pure and
Applied Logic, Elsevier Masson, 1988, pp.93-133. �10.1016/0168-0072(88)90017-6�. �hal-03318238�

https://hal-ens.archives-ouvertes.fr/hal-03318238
https://hal.archives-ouvertes.fr

1

The Lambda-Calculus:
connections to higher type Recursion Theory,

Proof-Theory, Category Theory1

Giuseppe Longo
Dipartimento di Informatica, Università di Pisa

Introduction
Church proposed his calculus of λ-conversion as "A set of postulates for the Foundation of Logic"

(Church[1932-3]). Church's ideas and program were part of the leading Hilbert's school, at the

time, whose aim was still a unified formalist approach to the foundation of Mathematics. In the

following years, though, the growth of Recursion Theory, which soon became an independent

mathematical discipline, led many authors to consider mostly the computational power of λ-calculus,

i.e. its expresiveness in terms of the definable class of number-theoretic functions. Church himself,

in view of the results of Kleene and Turing, proposed his welknown "Thesis", which is intended to

characterize the computational power of finitistic systems (see Odifreddi[1986] for an updated

discussion). This lecture is not concerned with the issue of "computability" as focused by Church's

Thesis; however, the relevance of this claim on the expressiveness of formal systems must be

acknowledged. On one side it sets a limit to feasible computations by finitistic methods, on the other

it suggests that there is no other reasonable understanding of computability, besides the one

established within the Hilbert - Brouwer lively debate in the twenties and early thirties. Almost

everybody agrees nowadays that, as long as we do not have a counterexample, we may rely on

Church's Thesis, provided that its use is not mathematically misleading. Namely, the philosophical

point raised by the Thesis is surely crucial, but do we really need it when working out results ? In

case a new system for general computations is proposed, it is then better to check carefully whether it

still computes exactly the classically computable functions (what a discovery if it were not so !). If,

instead, one is using a well established formal system, such as λ-calculus or Turing Machines, "hand

waving" or "short cuts" should not be confused with reference to Church's Thesis. Hartley Rogers'

book on Recursion Theory, for example, makes very little use of Church's Thesis, even if it is

mentioned very frequently. Most of the time, an argument is only based on an incomplete sketch of

1 A short course in λ-calculus, University of Rome I, Spring 1998 ; these notes are based on an invited
lecture delivered at the Conference, "Church's Thesis after 50 years" Zeiss (NL), June 1986 (On
Church's Formal Theory of Functions and Functionals, published in Annals Pure Appl. Logic, 40: 93-
133, 1988).

On church's formal theory of functions and functionals:

2

an algorithm, within the intended formalism, whose complete implementation is left to the reader.

This a very common and well established use of informal reasoning in Mathematics: by a frequent,

but sound, reference to it, that book can summarize hundreds of results in a difficult area. Probably,

from a "non human" point of view, from the point of view of a computer, say, ninety per cent of

Mathematics is just "hand waving". This has nothing to do, though, with Church's methodological

stand on the maximality of the expressiveness of hilbertian formalisms for computations.

This lecture will begin with classical computability and soon go further towards more general

structures. Indeed, the point I want to raise here, following the original program of Church, is that

lambda calculus is not just one of the many formalisms for computations, but should be looked at as

the core Formal Theory of (computable) Functions and Functionals similarly as Peano Arithmetic is

the core Formal Theory of Numbers. And numbers are as relevant in Mathematics and its

foundation as much as functions are relevant in constructive proofs, categories, computations.

The foundational role of λ-calculus will be stressed by giving a brief survey of the main

connections between λ-calculus and three major areas in Logic: higher type Recursion Theory,

Category Theory, Proof Theory. These relations will be understood in a unified framework

designed by the underlying mathematical structures, which give mathematical meaning to the terms of

typed and type-free λ-calculi.

Church originally proposed a calculus of type-free terms: the "fregean paradise" of a type-free

universe always fascinated logicians. But, when flying too high in order to comprehend as much as

possible, one may have the wings burned: the first system invented by Church led to contradictions.

Inconsistencies, though, frequently occur in early versions of interesting formal systems: Frege's set

theory, Church's "set of postulates", Martin-Löf's type theory were all inconsistent. This was due

on the breadth of the mathematical intuition required to handle the structures they had in mind, on

their importance and on the interconnections whith the rest of Mathematics: the more these are, the

more it may happen that the first formalization is excessively powerful.

The inconsistent version of λ-calculus was later "repaired" in two different ways, which started

separeted branches of the topic. Firstly, by reducing the logical expressiveness of the untyped

calculus (see Curry&al[1958,1972] or §.3). Secondly, by introducing types, according to Russell's

answer to inconsistencies (Church[1940], Curry&Feys[1958]).

For a while, the challenges and the still strong expressiveness of the type-free calculus attracted

more researchers than its typed counterpart. Scott's model of λ-calculus which started "denotational

semantics" in Computer Science was a model of the type-free calculus; the entire book of Barendregt

(Barendregt[1984]) is devoted to results in the type-free theory. Only in the last few years, mostly

because of the practical success of typed functional languages and of the computer-science interest in

3

the ideas in Logic of Girard and Martin-Löf, have types become an even more successful area. In

this paper we will restrict our attention to the "theory of types" of λ-calculus, as the relevant kernel of

Type Theory.

Type Theory on one hand provided the mathematical connections to Proof Theory, on the other

hand it suggested type disciplines in programming (Reynolds[1974], Milner[1978]). More

precisely, types help avoiding paradoxes in Logic as well as protecting from errors in programming.

Type-checking is one of the very few actually implemented partial correctness algorithms since it

gives effective and significant partial correctness proofs of programs (Gordon&al[1979], Nordstrom

[1981], Burstall&Lampson[1984]). It may be sound to compare type-checking to "dimension

analysis" in Physics, both because types are very much like "dimensions", and because the analysis

of dimensions is a commonly used tool for partial correcteness of mathematical computations in

Phisics, similarly as in Programming. Besides this specific but relevant point, λ-calculus provided

the core of functional languages and their type disciplines, whose practical success is due to their

suitability for solving or focusing many of the concerns of actual computing. As a matter of fact, the

practical relevance of λ-calculus and Type Theory for computing goes together with the variety and

depth of the Mathematics involved. In particular, it largely depends on those results which relate this

topic to other areas, since the richness of the theory directly embeds into the expressiveness and the

facilities of actual programming, by suggesting extensions or modifications or even the design of

new programming languages (further references will be given in the Conclusion).

As Mathematics is relevant when it is both beautiful and applicable, I think that the founders of λ-

calculus and related systems should be happy with all of this.

 As it should be clear by now, the focus of this lecture will be more on the interface of λ-calculus

with other theories than on its "pure theory". By this one usually means the technical results inside

the field, such as the Church-Rosser's theorem or Böhm's theorem or others based on the specific

syntax of the system. This is clearly an extremely relevant area, as λ-calculus, among the various

formalisms for computability suggested in the thirties, is the only one with plenty of interesting

"machine dependent" results: one should consult Barendregt[1984] in order to appreciate the varity

and depth of the work carried within this specific formal system. Also in this case, the point is that,

more than a formalization of a "computing device" or a toy programming language, λ-calculus is and

has to be viewed as the formalization of the abstract notion of function, including higher type and

higher order functions; thus, the results of the formal theory often turn out to be relevant in

applications or in the general understanding of functional behaviour. By this and by the connections

discussed below, there should be no doubt that looking at λ-calculus just as one of the many

formalisms for computing the partial recursive functions is like being interested in Peano Arithmetic

only because one can represent that class of functions in it and forget its foundational relevance as

4

Formal Theory of Numbers.

This presentation will begin with very elementary tools and little mathematical structure: the

natural numbers and the partial recursive functions on them, as the least class containing the usual

base functions and closed under composition, primitive recursion and minimalization. A recursion

theoretic and constructive perspective (in the sense of Intuitionistic Logic) will be stressed as

structures invented for the semantics of typed and type-free λ-calculus will be looked at within a

constructive frame. In particular, an inductive construction of higher type computations will be given

and then studied within the very simple category of countable (and numbered) sets, in the sense of

Malcev, §1; then "subcountable" and still effective sets will be investigated, the quotient subsets of

numbers, §2. The formalization of these structures as categories, §3, will lead us to λ−calculus and

higher order type theories, §4, and, finally, to their (constructive) models, §5. In particular, §5

presents and discusses models of second order λ-calculus over "retractions" and quotient sets in the

same framework; by this some connections are pointed out.

An "organized" bibliography concludes the paper: the references are classified into four parts,

according to the three interconnecting areas they roughly belong to (plus one for general references).

Thus, Scott[II-1980], say, may be found in Part II, while Church[1932] is in the final group. A

preliminary version of parts of this lecture was presented at the "Logic and Computer Science"

Conference (Torino, October, 1986; Rendic. Sem. Matem. Torino, in print).

1. From gödel-numberings to higher types.

As promised, we begin with very simple notions and structures: natural numbers, pairings, gödel-

numberings. With these elementary tools we will define higher type computations.

Let ω be the natural numbers and < , > : ω2 ←→ ω any bijective (primitive) recursive coding

of pairs; denote by λxy⋅g(x,y) the map <x,y> |→ g(x,y). As usual, (P)R are the (partial)

recursive functions. A simple observation may help to understand the intuition on which definition

1.1 below is based.

Note: for any (acceptable) goedel-numbering φ : ω → PR ,

 (P.1.5) λxy.φ(x)(y)∈PR .

(P.1.5) is satisfied by any gödel-numbering, but does not characterize them: it simply tells us that the

universal function for PR is still in PR . Set now C(0) = ω, C(1) = PR. The idea is to use

property (P.1.5) as a definition for a class C(1.5) of total functions in C(0) → C(1) and inherit this

5

at higher types (see 1.12 on partiality vs. totality). More precisely, we will define, for each n , a set

of functions C(n+1) ⊆ C(n) → C(n) , the Hereditary Partial Effective Functionals, by inductively

using a set C(n.5) ⊆ C(n-1) → C(n) .

1.1 Definition (HPEF; Longo[I-1982]). (i) Let φ : C(n-1)→ C(n). Then

 φ∈C(n.5) ⇔ λxy⋅φ (x)(y) ∈C(n).

(ii) Let τ : C(n) → C(n) . Then

 τ ∈C(n+1) ⇔ ∀ φ∈C(n.5) τ °φ∈C(n.5).

In order to understand definition 1.1, the reader should first check the types of the functions in

C(n.5). However, there is a crucial hidden point in the two lines definition of the HPEF: they are

well defined provided that at each higher type one can give a "coding of pairs". More exactly, for

each n , in analogy to ωxω ≅ ω via < , > , an "acceptable" isomorphism

 (2) C(n)xC(n) ≅ C(n)

must be found in order to set (i) in the definition (actually, a retraction, in the sense of 3.5, may

suffice). Our elementary tools are sufficient to understand, quite in general, what "acceptable"

means.

1.2 Definition. Let U be a set and F ⊆ U→U. Then

< , > : UxU → U is an acceptable pairing w.r.t. F if:
1) ∃ p1 , p2∈F ∀x1,x2∈U pi (<x1,x2>) = xi (pi total).

2) ∀f , g ∈F λx.<f(x), g(x)>∈F.

Thus we need to define at each type n an acceptable pairing w.r.t. type n+1; this is what we

assumed at type 0, the numbers, w.r.t. type 1 , the partial recursive functions. Before getting into

this, there is another well known property at type 0 and 1 , which one may hope to inherit at higher

types as well.

Remark (s-m-n theorem): for any gödel-numbering φ1 : ω →C(1) , one has

(3) ∀φ∈ C(1.5) ∃f ∈ C(1) φ = φ1of.

This generalizes at higher types as follows.
 (4) ∀n > 0 ∃φn ∈ C(n.5) ∀φ∈ C(n.5) ∃fn ∈ C(n) φ = φnofn.

Observe that, if (4) holds, then each C(n) is countable, as φn must be surjective. Thus, in order

6

to prove (2) and (4) one may try to work within a category of countable objects and "effective"

morphisms. A good candidate for this could be Malcev's category EN of numbered sets

(enumerations), the simplest generalization of Recursion Theory to an abstract setting.

1.3 Definition. The Category EN has as objects pairs A =(A,eA), where A is a set and

eA :ω → A is a surjective map. Morphisms are defined by

f∈EN[A , B] iff ∃f'∈R f° eA = eB° f'.

Clearly, EN is a category and it has several interesting (closure) properties. For example, one

can look at the product of two numbered sets as a numbered set itself: just enumerate the product by

using the given bijective pairing of numbers. However, since we are interested in higher type

computations, as given by the HPEF, we need also other kinds of higher type objects, such as

exponentiations, in the category. Unfortunately, there is no general way to enumerate the set of

morphisms of two arbitrary objects in EN, if one wants that products and the representation of

mophisms spaces commute in the sense of Cartesian Closed Categories, i.e. EN[Α × Β , C] ≅ EN[Α ,
C B]. Consider, say, ω = (ω,id) as a (trivially) numbered set. Then, EN[ω , ω] = R. This is

surely a countable set, but for no enumeration eR and R =(R,eR), one has EN[ω x ω , ω] ≅ EN[ω ,
R], as eR would be an effective enumeration of R, which is impossible; or, if preferred, the

"uncurrying" u of eR , u(n,m) = eR(n)(m) , would be a computable universal function for R.

One may think of two main ways to preserve the effective flavour of the category EN and obtain

the required closure properties which guaranty the existence of higher type objects in the category:

the first is to look inside EN, the other is to extend EN in order to to get Cartesian Closure without

loosing the simplicity of this category.

Scott and Ershov suggested a way to stay inside EN. As we want the HPEF to satisfy property

(4) , this is also what we are looking for. Observe that Scott's motivation was the construction of

mathematical structures where one could interpret languages for computer programming; as programs

compute (possibly higher type) functions, the idea was related to generalized computability as well.

Ershov, partly following earlier work of Scott, wanted to relate in a unified mathematical framework

the ideas of Kleene and Kreisel for Higher Type Recursion Theory, a topic in turn motivated by the

semantics of Intuitionistic Logic (see Scott[I-1970,1976,1982], Ershov[I-1976]; surveys may be

found in Smyth[I-1977], Giannini&Longo[I-1984] and many others).

The interesting point is that both authors used, in some essential way, topological properties in

their work. That is, some numbered sets are picked up according to some extra structure they can be

given, based on a topological notion of convergence (approximation). The idea is, given a poset
(X,≤) , to generalize first some key properties of finite sets to a subset Xo of X and use Xo in

7

order to approximate arbitrary elements of X . More precisely,
(Compact) x∈∈∈∈Xo iff , for all directed subset D of X , x≤supD implies ∃d∈D x≤d.

Clearly, (Compact) is a "compactness" property for the elements in Xo and it generalizes a

simple fact which characterizes the finite sets in any powerset, partially ordered by set inclusion. By
this, the elements of Xo are sometimes called "finite". We prefer to refer to them as "compact" or

"noetherian", as pointed out in Remark 1.8 below.
Then (X,Xo,≤) is algebraic iff, for all x∈X , ^x = {x o∈Xo / xo≤x } is directed and x =

sup ^x . A directed complete poset, cpo, (X,≤) is bounded complete iff each bounded subset of

X has a least upper bound. A poset is a (Scott) domain iff it is a bounded complete algebraic cpo.

Define finally ↑x = {y∈X / x≤y }.

1.4 Definition. Let X =(X,Xo ,≤) be a domain. The Scott topology τs on X is given by

the base {↑xo / xo∈Xo }∪{∅}.

1.4 is a good definition, as pairs of elements of Xo , bounded by x∈X , have an upper bound in

Xo , smaller than x .

The next step, in order to get into effectiveness, is to assume countability of Xo (ω-algebraicity)

plus the decidability properties you would expect from "finite" sets (of numbers). That is, given an
injective enumeration eo : ω→Xo of Xo , a domain (X,Xo,eo,≤) is effectively given if it is

decidable whether two elements of Xo have an upper bound and their least upper bound within Xo
can be uniformely effectively found. By this, e0(n)≤e0(m) is decidable in n, m.

The point now is to obtain sufficiently rich, but countable and, possibly, enumerated posets.

1.5 Definition. X c = (Xc,Xo,eo,≤) is a Constructive Domain iff there exists an effectively

given domain X = (X,Xo,eo,≤) such that Xc⊆X and, for any directed subset D of Xo , one has:

x∈Xc iff {n / eo(n)≤x} is a recursively enumerable set

Clearly, the effectively given domain in 1.5, X = (X,Xo,eo,≤), is uniquely determined (up to

isomorphisms) by X c , and conversely, since a domain is the completion over all directed sets of its

base set Xo , while a constructive domain X c = (Xc,Xo,eo,≤) is the completion only over all r.e.

directed subsets of X0 (use for this the decidability of e0(n)≤e0(m)). By the latter property, one

can easily and effectively enumerate the entire poset Xc , i.e. one may define canonically a surjective

map e: ω → Xc by using the properties of eo and an enumeration of the r.e. sets (see Weyrauch[I-

1981] and Giannini&Longo[I-1984], for details). Clearly, e doesn't need to be injective. Take for

8

example the constructive domain (PR,PRo,ϕo,≤) of the partial recursive functions: in this case the

compact elements, PRo, are given by the functions with a finite graph, enumerated in some

canonical way, ϕo, say. Then ϕ:ω→PR is just an (acceptable) gödel-numbering. The same applies

to the domain of r.e. sets. Observe then that any (constructive) domain X has a least element ⊥X,

say, as ∅ is directed. By this, w = (w, id) , with the identical enumeration, is not a cconstructive

domain (see remark 2.3).
From now on, we consider each constructive domain X c also a numbered set (Xc, e) , where e

is derived from eo as mentioned. However, any such numbered set X c happens to have some

"structure", the partial order and the topology, which nicely relate by
(Poset) ∀x,y∈Xc (x≤y ⇔ (∀A∈τs x∈A ⇒ y∈A)) .

Moreover, these topological tools define the usual set of continuous functions; they turn out to be

exactly the monotone functions which commute w.r.t. to sups of directed sets, when they exist. As

usual, the continuous functions can be partially ordered pontwise. Some continuous functions are
more basic than others: consider, say, for xo∈Xo and yo∈Yo ,

step xoyo(x) = if xo≤x then yo else ⊥Y

By taking the sups of finite collections of compatible "step" functions, one obtains a countable
collection of continuous functions, Cont(X,Y)o say. An enumeration e' of Cont(X,Y)o can be

easily (and canonically) given by using eo:ω→Xo and e1:ω→Yo. Define then

Cont(X,Y)c ={ f∈Cont(X,Y) / {n / e'(n) ≤ f } is r.e.}.

It is not difficult then to check the following.

1.6 Lemma. If X c = (Xc,Xo ,eo,≤) and Y c = (Yc,Yo ,e1,≤) are constructive domains, then

(Cont(X,Y)c , Cont(X,Y)o, e', ≤) is a Constructive Domain. Moreover, if f∈Cont(X,Y)c , then

∀x∈Xc f(x)∈Yc .

By 1.6, Cont(Xc,Yc)c are exacly the restrictions to Xc of the functions in Cont(X,Y)c , when Xc
and Yc are given the induced topology.

1.7 Theorem. The category CD of Constructive Domains, where morphisms are defined by
CD[A,B] = Cont[A,B]c , is Cartesian Closed.

(Notation: B A is the exponent object, which internally represents CD[A,B], in accordance with the

categorical use.)

The lemma and the theorem essentially prove that the "compactness" and "effectiveness"
properties of Xo , in a fixed constructive domain X c , are inherited at higher types: this is obvious

9

for cartesian products (and implicit in 1.7), hints were given for the construction of the compact

elements in function spaces. As already mentioned, "compactness", as given in (4), characterizes the

finite elements in any powerset; however, another characterizing property of finite sets (or of

functions with finite domain) is lost at higher types:

1.8 Remark. In any powerset (or subposet of it), exactly the finite sets have finitely many

subsets. This is not thrue if one considers the compact elements of an arbitrary effective poset.

Indeed, take a (constructive) domain X 1 with an infinite collection of pairwise incompatible

elements or with an infinite ascending chain, and set X n+1 = CD[X n, X n]; then, for any n>1 and
xo∈(Xn)o , ^x0 is infinite. This can be easely understood, by observing that any step function

step ab is antimonotone in a .

Recently, Girard[II-1985], following Berry[II-1979], suggested to consider a subcategory of

Scott's domains, the qualitative domains, made out of subsets of powersets and where only some

continuous functions are morphisms: the "stable" functions, which preserve also finite intersections

of compatible elements As an elegant consequence, one then has that in any type each compact

element x has a finite ^x . Stable functions originated in Berry[II-1979] and have some deep

connections with Girard's ideas in Proof Theory, as his dilators similarly preserve pullbacks and

direct limits (see Girard[1986]); moreover, an insight is also given into sequentiality, as stable

functions are tidily related to sequentiality (see Berry&Curien[1982]). This seems to suggest an

alternative approach to higher type recursion, still to be explored, since the crucial 1.10 below

doesn't hold any more (see Asperti[I-1987] for some preliminary work).

As pointed out, every object in CD is a numbered set; thus CD is a subcategory of Malcev's EN.

The point is to understand how the definition of morphism in EN, which is so tidely effective and is

only based on the recursive functions, and the morphisms in CD, which are particular continuous

functions, relate.

In should be clear by now that the role of continuity comes in quite smoothly from considering a

functional f to be computable when it is continuous, i.e. it computes with compact approximations

(which are finitely coded) of its (possibly infinite) input (i.e. f(x) = sup{f(^x)}) and f itself is the

r.e. limit of its compact approximants in its own type.

The next lemma clarifies how Geometry and Recursion Theory relate over constructive domains.

Given a numbered set (X,e) , observe first that the set { A⊆X / e-1(A) is r.e.} satisfies the

requiremennts for a topological base. Call the induced topology the Malcev-Ershov topology.

1.9 Lemma (Generalized Rice-Shapiro Theorem). Let X = (X,Xo,eo,≤) be in CD . Then the

Scott topology on (X,≤) coincides with the Malcev-Ershov topology on (X,e).

1 0

Note that the Malcev-Ershov topology comes from Recursion Theory and has little to do with

approximation and orders. (Poset) above, say, defines a non trivial partial order iff the topology is
To , which does not need to hold outside CD. Moreover, each morphism in EN turns out to be

continuous, w.r.t. this topology, just by an obvious recursion theoretic argument (the inverse image

of an r.e. set by a recursive function is r.e.). A proof of 1.9 may be found in Giannini& Longo[I-

1984] or in Rosolini[II-1986]. In the latter, this discussion is carried on in a sound category-

theoretic setting, by considering categorical models of Intuitionistic Logic. This evidenciates also the

connections to the constructive aspects of the metamathematical frame: for example, the proof of 1.9

is intuitionistically acceptable provided that Markov principle is considered (see Beeson[1980],

Hyland[II-1982], McCarty[I-1984]). The significance of 1.9 is that the Scott topology, which is

apparently added as extra structure, is indeed inherited by suitable enumerations of the objects of

CD, as numbered sets.

From the lemma one may easily derive a precise connection between continuity and effectiveness

for functions. Namely, that the morphisms between (X,e) and (Y,e') as constructive domains,

which are continuous maps, coincide with the morphisms between (X,e) and (Y,e') as numbered

sets, which are recursive functions over indices:

1.10 Theorem (Generalized Myhill-Shepherdson). The CCC CD is a full subCategory of EN .
(Proof of the key point: Let X , Y ∈ObCD⊆ObEN and f∈EN[X , Y] ; then f is continuous by the

lemma and the subsequent observation).

Again, the relevance of these facts is based on the naturalness of the partial order on (constructive)

domains and, thus, of the induced topology (see (Poset) above): these are not defined "ad hoc" for

the purposes of 1.9 or 1.0, but come out of obvious generalizations of set inclusion. !.9 and 1.10

are the mathematical reason for the common motto in denotational semantics of programming

languages: "the computable functions and functionals are continuous".

CD has further interesting properties, which do not hold in EN: for example, CD is closed under

inverse limits of projections and limits are also preserved by the product and exponentiation functors.

By this, say, one may construct countable models of the type-free λ-calculus, as there are objects in

CD which satisfy equations such as X ≅ X X (see Smyth[I-1977], Kanda[I-1979], Smyth&

Plotkin[II-1982], Giannini&Longo[I-1984]).

We finally are in the position to understand the properties of the HPEF and, in particular, to check

the crucial facts conjectured in (2) and (4) above (listed under (2) and (4) also in 1.11 below). This

is done by using the full and faithful embedding of CD in EN.

1 1

Let P(1) be the (effectively given) domain of the partial number theoretic functions and set
P(n+1)=Cont(P(n),P (n)) . {P(n)c / n∈ω } are exactly the Ershov-Scott higher type partial

computable functionals, i.e. the (integer) type structure in CD generated by PR , the partial recursive
functions, as Pc=PR .

1.11 Theorem. For all n>1,
 1) C(n)=P(n)c
 2) C(n)xC(n) ≅ C(n) in CD .
 3) C(n.5) = Cont(P(n), P(n+1))c
 4) ∃ϕn∈C(n.5) ∀ϕ∈C(n.5) ∃fn∈C(n) ϕ = ϕn o fn.

(The proof goes by combined induction and by an "essential" use of 1.10 and may be found in

Longo&Moggi[I-1984] or, in a more categorical style, in Rosolini[II-1986])

From 1.11(2) it immediately follows that the isomorphism C(n)xC(n) ≅ C(n) is acceptable

w.r.t C(n+1), in the sense of 1.2.

Theorem 1.11 should convince the reader of two facts. First, by the HPEF one can get at higher

types by very elementary tools, with no apparent use, in the definition, of categories, continuity or

whatsoever. However, topological and related notions seem to be essential for proving even the

countability of the type structure so easily defined (point 4 above). In a sense, one may say that the

HPEF are defined in a purely combinatorial or algebraic way, while analytic tools come in the proofs

(see Longo[1984]). Second, Scott and Ershov definition of higher type computable functions is

indeed a very natural one as it may be recovered by 1.1, i.e. just starting with PR and an acceptable

gödel-numbering of it. The way these partial functionals relate to the total "countable and

continuous" functionals of Kleene and Kreisel is established in Ershov[I-1976] and Longo&

Moggi[I-1984].

1.12 Remark (Why are the HPEF partial ?). Indeed, definition 1.1 begins with PR which is a set

of partial maps. However the functions in C(1.5) are total, as defined, and thus the same are the

maps in C(2), C(2.5) etc. Why do we soundly call them partial ? Of course, the same can be said

of the morphisms in the frame category CD: they are total morphisms as well, though we all agree

that they define partial higher type computations. At an informal level the answer is very simple:

beginning with the domain of type 1, i.e. PR, each higher type has a least element, the empty set (or

the function with the empty graph). This is usually considered as the interpretation of "divergence" in

the corresponding type. More rigourously, this may be understood in category theoretic terms. It is

not difficult to define categories of partial morphisms, in the proper sense of "possibly not defined

1 2

maps" (see Rosolini[II-1986], Robinson&Rosolini[II-1987] and Moggi[1987] for recent

approaches, surveys and references, but the reader should just trust his intuition for a definition). In

one such a category C , one may easily define a "lifting functor" _⊥ by the natural isomorphism

CT[A,B⊥] ≅ C[A,B] , where CT are the total morphisms. This simply says that ⊥ "interpret" the

divergence, as the partial maps with target B are the same as the total ones with target B⊥ . In

Longo& Moggi[II-1984a] a new categorical notion is derived from this; namely, in a partial category,

an object B is complete iff B<B⊥ , i.e. B is a retract of its lifting (see also Asperti&Longo[II-

1986] for an updated presentation and some applications). The point is that the complete objects are

exactly those objects B such that each partial morphism with target B can be uniquely extended to a

total morphism. It is now easy to check that (constructive) domains are complete in the intended

partial categories, with the obvious definition of partial continuous morphism (the domain of

convergence must be Scott open). By this, the partial morphisms in those categories may be soundly

identified with the total ones.

2. From countable to subcountable sets

The basic idea in the definition of the subCategory CD of EN was the choice of some structured

objects in EN which could form a category with enough closure properties as for the purposes of

higher type computations. The suggested structures were topological ones.

As pointed out in §1, there are many countable sets which cannot be soundly enumerated in the

category EN; as an example we mentioned the set R of the total recursive functions. In a sense

though, one may say that R , even if not (effectively) countable, is "subcountable", i.e. it can be

(effectively) enumerated by a subset of ω . The second idea one may think of, then, is to enlarge the

category EN as to include this sorts of exponents (function spaces), i.e. sets (effectively) enumerated

by subsets of ω .

Observe first that any numbered set defines an equivalence relation on ω (and, thus, a quotient of

ω) and, conversely, any equivalence relation on ω uniquely determines a numbered set: just set to

be equivalent any two numbers which code the same element and viceversa. Indeed, from now on,
any numbered set A =(A,eA) will be equivalently referred to as a quotient A of ω , where

n A m iff eA(n) = eA(m).

Clearly, given numbered sets A and B , not any f'∈R induces an f∈EN[A,B] , as f' must

preserve A -equivalences: that is one must have n A m ⇒ f'(n) B f'(m). This suggests a way to

introduce higher type objects and thus to define a cartesian closed extension of EN.
Let {ϕi} i∈ω be an acceptable goedel-numbering of PR. Define then

1 3

 (Quot.) p B Aq iff n A m ⇒ ϕp(n) B ϕq(m) .

A B is a partial equivalence relation on ω, as it is defined on a subset of ω. Indeed, for A , B

non trivial, dom(B A) = {p / p B Ap } ≠ ω, and a partial numbering (i.e. a partial surjective map)

πAB: dom(B A) → B A is given by πAB(n) = {m/ n B Am}. Of course, dom(πA) = dom(A).

In general, given a set C , each partial surjective π: ω → C (or partial numbering) uniquely

defines a partial equivalence relation (and conversely). It may be fair to call these new objects

"modest", as suggested by Scott, as they are just and simply (quotient) subsets of ω .

2.1 Definition. The category M of partial equivalence relations on ω (the modest sets) has as

objects the subsets of ω modulo an equivalence relation. Given objects A = (A,πA) and B =

(B,πB) , where πA , πB are partial numberings, the morphisms are defined by

 f∈M[A,B] iff ∃f'∈PR f° πA= πB°f' .

As f∈M [A,B] is total, one has that dom(f') ⊃ dom(A).

Note that the representative B A of M [A , B] is partially enumerated by the quotient subset of ω
determined by the partial relation B A (see (Quot.) above). That is,

πAB(i) = f iff f° πA= πB° ϕi .

By this, one obtains, for example, a partial, but effective, enumeration of R = ω ω by a surjective
map defined on a subset of ω .

2.2 Theorem. M is a CCC and includes EN as a full subCartesian Category.

Indeed, one may prove, by using also 1.10 , that the full and faithful embedding from CD into

EN and, then, into M is such as to preserve products and exponentiations from CD into M .

M is a natural generalization of the Hereditary Extensional Operations (HEO) in Troelstra[1973],

where they are introduced for the purposes of Intuitionistic Logic and its Proof Theory (see also

Girard[III-1972] and §.5 below).

 In Computer Science, M is also known as the quotient set semantics of types over ω, following

the ideas in Scott[I-1976] on λ-models (see also Hindley[1983], Coppo[1984], Longo& Moggi[II-

1986] for details and further work on arbitrary (partial) combinatory algebras).

2.3 Remark. Observe that PR and R are enumerated in M in entirely different ways. As

mentioned in several places, R does not live in CD , while PR cannot be enumerated as an object

of M by similar tricks as hinted above for R : the maps in PR are partial, while we are looking at

categories with total maps as morphisms, as usual (see 2.1). The idea is to extend ω to ω⊥ in CD

1 4

by adding a least, undefined, element ⊥ and enumerate ω⊥ following the procedure suggested for

constructive domains, based on the enumeration of the compact elements (see after 1.5); ⊥ , say,

turns out to be coded by the complement of an r.e. non recursive set (see Spreen[I-1984] and

Asperti&Longo[II-1986] for details). By this the enumeration of PR satisfies the s-m-n theorem, a

weakly universal properties, whose generalization was relevant for the definition of the HPEF (see

the discussion between 1.2 and 1.3). Note that this way of enumerating objects which gives the

classical gödel-numberings in case of PR, is also required, quite generally, for the sake of 1.9 and

also gives the functorial embedding of CD into M which preserves products and, hence,

exponentials.

3. The formal theory of functions

In §.1 and 2 we have been looking at mathematical generalizations to higher types of the notion of

function on a ground type of data. This was done on countable sets, because of the foundational

motivations for constructive aspects of Logic and for Computer Science we assumed. Moreover,

that work has some mathematical relevance in view of the new structures and the general frame

proposed. It may be then the case to formalize in a theory of functions the key properties we dealt

with.

Functions may be based on three main notions: application, abstraction and tupling (in order to

handle several arguments functions). That is,

(App) - apply a function f to an argument a : f(a)

(Abs) - abstract a function from an expression f(x) , possibly depending on a variable x : λx.f(x)

(Pair) - construct a pair from elements a, b : (a,b) .

These notions need now to be formalized and typed. Let then At be a set of atomic type symbols

and let Type be the least set containing At and such that:

σ, τ∈Type ⇒ σ→τ, σ×τ∈Type .

3.1 Definition (Typed λ-terms). xσ (variable of type σ)

(Mσ→τNσ)τ

(λxσ.Mτ)σ→τ

(Mσ, Nτ)σ×τ

fst(Mσ×τ)σ

snd(Mσ×τ)τ .

1 5

3.2 Definition (Typed λ-calculus with surjective pairing). The axioms of λλλλββββηηηηSPt:

 (β) (λxσ.Mτ)Nσ = [Nσ/xσ]Mτ

(η) λxσ.Mτxσ = Mτ

(fst) fst(Mσ,Nτ) = Mσ

(snd) snd(Mσ, Nτ) = Nτ

(SP) (fst(Mσ×τ), snd(Mσ×τ)) = Mσ×τ .

The inference rules for λβηSPt are exactly what is needed to turn "=" into a congruence

relation.
The next theorem sets some mathematical base to the claim concerning the relevance of λβηSPt as a

theory of functions.

Category Theory is often considered the alternative functional foundation for Mathematics, w.r.t.

Set Theory, as functions are first described and sets, if needed, are a derived concept. In particular,

the theory of Cartesian Closed Categories, which contain function spaces, seems a sound setting for

functionality. Theorem 3.3 proves that we may view types as objects, in the sense of Categories.

3.3 Theorem (Types-as-objects). The models of λβηSPt are exactly the (concrete) CCC's.

This result may be found in Lambek[II-1980], Scott[II-1980] (see also Lambek&Scott[II-1986],

Curien[II-1986], Breazu-Tannen&Meyer[II-1985]).

Thus, we started with particular structures for higher type functions, then we formalized
functionality and got to a formal Theory of (typed) Functions, λβηSPt . Similarly, mathematicians

had first in mind particular structures (rotations of a cube, relative numbers....) and then invented

Group Theory. Of course, Group Theory has many more models than those; in the same way, there

are many more CCC's than CD or M . However, these specific models have some further relations

to the theory, as they are defined by using the class of (partial) recursive number-theoretic functions,

which are exactly the formally definable functions in the type-free λ-calculus, λλλλββββηηηη .

Indeed, when first formalizing the intuitive notion of computation and suggesting a language for

the foundation of Mathematics, Church did not consider types. That is, λβηSP is defined just by

erasing type constraints in term formation rules (λβη in Church[1941] does not have (SP) either).

The ambition was to live in a type-free Fregean paradise and preserve as much expressiveness of

Mathematics as possible.

Shoenfinkel and Curry had an other idea on how to describe functions (and Mathematics), in a

typeless way:

1 6

3.4 Definition (Combinatory Logic, CL). Terms of CL are variables x, y...

S, K

(MN) .

The axioms are:

(KM)N = M

((SP)Q)R = (PR)(QR) .

When adding

(ext) Mx = Nx ⇒ M =N

to the obvious inference rules for "=", CL(ext) turns out to be equivalent to λβη (see

Hindley&Seldin[1986]). For the key step write

[x]x = (SK)K

[x]y = Ky for y≠x

[x](MN) = S([x]M)([x]N) .

Then [x]M translates λx.M and conversely (note that [x]M does not contain x , or, equivalently,

x is not free in λx.M). But now comes the rub. In Logic (and in Computer Science) types help to

avoid paradoxes or inconsistencies and Church original system was proved inconsistent by Rosser.

Rosser's remark was concerned with the handling of implication in λ-calculus; we may understand it

in terms of Curry's paradoxical combinator Y , the fixed point operator, and formal negation. As

xx is well formed in λβη and CL , so is Y , where

Y ≡ λy.(λx.y(xx))(λx.y(xx))

is such that YM = M(YM). Thus the original system of Church, which included a term representing

negation, led to a paradox.

Once this excess in expressiveness was eliminated, the consistency of λβη could be proved by

purely syntactic tools (Church&Rosser[1936]). However, even though these calculi were designed

in order to formalize meaningful notions from Mathematics, formalization and syntax went beyond

Mathematics; that is, no mathematical model was known till Scott's construction (Scott[II-1972]).

Let's understand it in the following way.

Clearly, any model of CL, the weakest theory (see below), is an applicative structure (A,.) , as it

must intepret formal application of type-free terms. Indeed, one may use any model (A,.) of CL,

instead of Kleene's (ω,.) , and perform the same construction of the CCC M in 2.1 (see Longo&
Moggi[II-1986]). Write MA for this relativized construction. Observe finally that in a CCC D any

f∈D[A,AA] turns A into (A,.) by setting, informally, a.b = f(a)(b).

3.5 Definition. Given objects A and B in a category C, a retraction pair from B into A is
a pair (i,j) such that i∈C[B,A], j∈C[A,B] and j°i = idB (we write B < A via (i,j)). A morphism

1 7

p∈C[A,B] is principal if ∀f∈C[A,B] ∃g∈C[A,A] f = p°g . Isomorphisms "≅" are well

known.

3.6 Theorem. Let C be a CCC and A an object of C. Then

(1) AA ≅ A ⇒ A is a model of λβη
(2) AA < A ⇒ A is a model of λβ

(3) ∃p∈C[A,AA] principal and A×A < A ⇒ A is a model of CL .

Conversely,
(1) A is a model of λβη ⇒ AA ≅ A in MA
(2) A is a model of λβ ⇒ AA < A in MA
(3) A is a model of CL ⇒ ∃p∈ΜA[A,AA] principal and A×A < A in MA .

It is easy to observe directly that AA < A implies ∃p∈C[A,AA] principal and A×A < A ; the

converse does not hold, as CL is a weaker system than λβ .
The core of (1) and (2) in 3.6 is in Berry[II-1979], Koymans[II-1982] and Obtulowicz&

Wiweger[II-1982] (as usual, though, the main reference for the type-free calculi is

Barendregt[1984]). In Scott[II-1972] a CCC was given, essentially a subcategory of Scott's

domains, and an object A such that A ≅ AA .

(3) may be found in Longo&Moggi[II-1986], where principal morphisms were defined.

3.7 Remark (The HPEF and Category Theory). (i) Principal morphisms are not exactly "universal

arrows", in the sense of Category Theory, since there is no request that g in definition 3.5 is

unique. The reader may easily observe that principal morphisms are the category theoretic

generalization of property (4) in 1.11, the key property on the "hereditary gödel-numbering" of type

C(n+1) by type C(n) in the HPEF. This is where the notion originated.

(ii) There is some more Category Theory hidden in the HPEF: the intermediate type C(1.5)

contains an implicit "currying-uncurrying" operation, the same which relates the universal function to

the gödel-numbering of PR . The extension to C(n.5) in 1.2 gives a meaningful type-structure,

once that the isomorphism C(n)xC(n) ≅ C(n) in (3) of 1.11 proves that the "currying-uncurrying"

trick can be inherited at higher types. And the currying operation is the core of Cartesian Closure for

categories. On the grounds of this observation Rosolini[II-1986] suggested an alternative very

elegant proof of 1.11, where the hard, but elementary, work on enumerations and induction is

distilled in a nice unified frame of topoi and Intuitionistic Logic (see the "Effective Topos" in §.5).

Surprisingly enough there is no known example of mathematical model of CL which is not a

1 8

model of λβ (i.e. except for the term model)! In other words, any known structure satisfying the

conditions in 3.6(3) does happen to yield a retraction, in the sense of 3.6(2). Of course, any gödel-

numbering of PR is just a principal morphism which is not a retraction within CD (nor EN), as

there is no computable inverse to a gödel-numbering. However, if one wants a model of CL , a total

applicative structure is needed and, when extending ω to its lifting ω⊥(see 1.12), ω⊥×ω⊥< ω⊥ is
clearly lost, in CD. The construction of one such a model would shed some structural light on the

minimal conditions for functional completeness, besides the category theoretic notions of principal

morphisms and "A×A<A" .

Note that 3.6 characterizes all the three basic type-free theories of functionality: CL,

λβ, λβη. 3.3, instead, only characterizes typed λβη (plus SP). Indeed, typed λβ has some

categorical meaning: weak CCC's, were the usual natural isomorphism C[AxB,C] ≅ C[A,CB] is

only a natural retraction C[AxB,C] < C[A,CB] , characterize typed λβ (see Hayashi[1986],

Martini[1986]).

In conclusion, Categories fit nicely with effective type-structures and λ-calculus, both in the typed

and untyped case. Observe also that one may look at type-free models as at special case of typed

ones: namely, those CCC's which have a "reflexive" object, i.e. an object A such that A ≅ AA or

the weaker properties in 3.6(2-3) hold. Conversely, from any type-free structure (A,.) one may
recover the CCC MA..

This correspondence has a nice syntactic counterpart: type-free terms may be given a type, if any.

More precisely, there is an algorithm which decides whether a type-free term possesses a type and, if

so, assigns it to the term (Hindley[1969]). The inference system for types to terms, due to Curry, is
both sound and complete w.r.t. the semantics of types over type-free structures given by the MA

construction. For this one may consult Hindley[1983], Coppo[1984] or Longo&Martini[1986]. In

the latter completeness is shown by interpreting types and terms over a recursion theoretic type-
structure (a special case of the MA model); this establishes further relations between λ-calculus and

higher type Recursion Theory.

3.8 Remark (Some philosophy). As the reader may have noticed, we gave priority here to a

model-theoretic view point, as we went from structures to theories. A beautiful unified framework,

from an alternative, formalist, perspective, may be found in Huet[I-1986]. The line we followed may

be considered as the usual and historical path in Mathematics, for functions in extenso, such as in

Geometry or Phisics, were known before Church and Curry's formalizations of the Theory of

Functionality. Even if the latter authors had a computational, algorithmic approach in mind, the

formalization in Geometry of mathematical structures was the paradigm Church explicily referred to

1 9

in his foundational activity (Church[1932]).

However, purely formal descriptions and results added plenty of information to Mathematics.

For example, the original ideas contained in Church's formalization of Function Theory, the

λ−calculus, required the construction of new structures: the A ≅ AA models, say, which are non

trivial Mathematics. In turn, models suggested "extensions" of the extant theories. λβηSP is the

simplest example and it has, so far, only model-theoretic consistency proofs (see Barendregt[1984]);

a richer extension of λβη , also inspired by semantics, is given in Amadio&Longo[1986], for

example. Besides extensions, structures sometimes suggest modifications of formal systems: a most

relevant example is given by Girard's Linear Logic, where the meaning of "→" in qualitative

domains (see 1.9) guided a rewriting of inference (Girard[II-1985,1987]).

The formal behaviour of computers raised syntactic descriptions into a prominent place.

However, the blending and interaction of denotation and meaning is a matter of riches of human

thought : this is why both perspectives and, in particular, their interplay are relevant.

4. From higher types to higher order

The working mathematician often makes assertions concerning arbitrary functions in a given

collection (when describing integration, say) or arbitrary subsets of a given set (when dealing with all

the directed subsets of a c.p.o., say) or even with arbitrary sets within a given category or class of

sets (all c.p.o.'s have a least element...). In view of the analogy "types-as-objects" given by

theorem 3.3, the latter quantification would formally correspond to the possibility of quantifying over

arbitrary types.

In the previous section we have been dealing with a language for higher type functions.

Functional abstraction (i.e. λx....) was defined w.r.t. to variables ranging over ground elements,

functions, functionals and so on, in any finite higher type. Note that functional abstraction may be

understood as a form of quantification; thus, as each boolean valued function determines a set,

abstracting w.r.t. a variable which ranges over boolean valued functions is like quantifying over sets

of a given type.

However, we were not allowed to quantify explicitly over types. Indeed, there is some implicit

quantification over types in the systems mentioned at the end of §3. Church-Curry types are defined

as type schemata: e.g. the identity λx.x has type schema α→α , i.e. λx.x has type σ→σ for any

type σ, or the collection of its possible types is obtained by consistently instantiating α in α→α
by every type.

Mathematical practice and this implicit use of quantification suggest a language where one could

explicitly consider all types: thus, a higher order language.

2 0

The language (λλλλ2222), whose core is described below, is a variant of the "system F" due to

Girard[III-1972]. The system F was invented for the purposes of second order Arithmetic, as its

(inhabited) types correspond to (provable) formulas of a second order logic language (see the rules

below).
The point with λ2 is that one can quantify over type variables and term variables, as well. We

first define the terms of the language, in a rather broad fashion: the formation rules for types and

terms will tell us which are the legal types and terms and, at once, what are the types of the terms.

We start with Tp, the symbol for the (collection of) types, and a set of atomic types or predicate

letters. These may contain variables.

Terms: a ::= Tp | Atomic | var | (aa) | (λvar:a.a) | (∀var:a.a)

 As usual abc stands for ((ab)c) . We write capital letters for terms which are types or Tp itself,

i.e. for terms A such that, for some assignment Γ , Γ|__ A :Tp or A ≡ Tp .

Well formed assignments: Γ(x:A) stands for Γ∪{(x:A)} ; Γ is an ordered list.

 ass.1 ∅ ok (the empty assignment is well formed)

 Γ ok , Γ |__ A : Tp , x ∉dom(Γ)
ass.2 ___________________________
 Γ(x:A) ok

 Γ ok , x ∉dom(Γ)
ass.3 ________________
 Γ(x:Tp) ok

We stress again the crucial point above: assignements are formed by allowing A to be a type (in

ass.2, A:Tp) or to be Tp itself (in ass.3, A ≡ Tp). According to which possibility applies, in C.2

and C.3 bellow quantification is over term or type variables.

From now on, we agree that Γ |__ implies that Γ is ok.

Typing rules:

2 1

 Γ |__ A : Tp Γ (x:B) ok

C.0 _____________________ (weakening)
 Γ (x:B) |__ A : Tp

 (x:A) ∈ Γ
C.1 ________ (assumption)
 Γ |__ x : A

 Γ(x : A) |__ B : Tp

C.2 _______________ (types' quantification)

 Γ |__ (∀x : A . B) : Tp

 Γ(x : A) |__ a : B

 C.3 ____________________ (abstraction or ∀−intro)
 Γ |__ (λx : A . a) : ∀x : A . B

 Γ |__ a : ∀x : A . B , Γ |__ b : A

C.4 ______________________ (application or ∀-elim)

 Γ |__ (ab) : [b/x]B

 Γ |__ a : A |__ A = B

C.5 ____________________ (conversion for types)

 Γ |__ a : B

4.1 Notation. If x∉FV(B) , set A → B ≡ ∀x:A.B .

Remark. λ2 has types depending on terms, as we allow atomic types to contain term variables;

otherwise we would have exactly system F (by 4.1). Substitution and the typing of variables may

be explicitly given for each atomic type P containing n variables, by

 Γ |__ ai : Ai i ≤ n

(At) _______________

 Γ |__ [ai/xi]P : Tp

2 2

Observe that (At) is the basis for forming ok assignements; in particular, by (At) and by ass.2, if
{(x 1:A1),..., (xn:An)} is ok and x∈FV(Ai) , then x = xj , for some j < i .

The congruence relation "=" above is derived by the following conversion rules.

 Γ |__ ((λx : A . a) b) : B

(β) ____________________

 Γ |__ (λx : A . a) b = [b/x]a

 Γ |__ (λx : A . ax) : B , x ∉ FV (a)

(η) _________________________

 Γ |__ (λx : A . ax) = a .

Assignements rules and C.1 are self explanatory: they formalize assumptions made on the types

of variables.

C.2 is the key rule. If A is a type (i.e. A:Tp), then C.2 and C.4 are first order rules, as

quantification is over term variables ranging within a given type. Otherwise (i.e. if A≡Tp), ∀x:Tp

is clearly a second order quatification. Now, there are (at least) two possibilities: Girard suggested

the approach we basically follow. As we want ∀x:Tp.B to be a type (i.e. (∀x:Tp.B):Tp), types

are defined in an impredicative way: their collection (Tp), which is being defined, includes elements,

such as (∀x:Tp.B), which are defined by refering (quantifying) over the collection itself.

Martin-Löf[III-1982] instead gives a second order predicative approach by stratifying the universe
of types into several layers, Tp1 , Tp2 In short, for Tp1 =Tp , if A:Tp1 and B:Tp1, then

(∀x:A.B):Tp1 , while (∀x:Tp1.B):Tp2 and so on.

C.3 and C.4 tell us which terms live in universally quantified types and how they behave. In

short, terms in (∀x:A.B) are functions (C.3) such that, when fed with a term b in A, they give as

output a term of type [b/x]B (C.4). Thus both the output and the type of the output both depend on

the input. This is the core of dependent types and the main problem for the mathematical semantics

of second order, jointly to impredicativity. It will be discussed in the next section.

As already mentioned, Girard invented second order λ-calculus as a tool for the proof theoretic

investigation of second order Arithmetic: type formation rules, such as C.2, give second order

formulas. The approach is soundly viewed as an intuitionistic perspective in Proof Theory:

2 3

λx:A.a , say, is an effective proof of ∀x:A.B , as, given any term (proof) b of A , it computes a

term (proof) of [b/x]B .

This language, though, which we presented in an extended version, somewhat in the style of the

"Constructions" of Coquand and Huet (see Coquand&Huet[III-1985], Amadio&Longo[1986]),

turned out to be relevant in itself, besides its proof-theoretic interest, mostly since the work started in

Computer Science by Reynolds[1974].

We conclude this section by recalling that the terms of this calculus strongly normalize, i.e. any

reduction strategy takes to a normal form (Girard[III-1972], Coquand[III-1985]). Girard applied

this property to the proof theory of second order Arithmetic, as normalization of terms corresponds

to normalization of proofs. By this, Takeuti conjecture on the normalizability of second order proof

was settled, as well as its consequences: consistency, interpolation.

This crucial correspondence, in Proof Theory, may be summarized as follows. Consider this

"simplification" or "reduction" of a natural deduction:

Inversion

 Γ, x:A |−− b:B

_________________ (∀−intro)

Γ |−− (λx:A. b): ∀xA.B a: A

______________________________ (∀-elim)

 (λx:A. b)a : [a/x]B

reduces to

a: A |−− [a/x]b : [a/x]B

By looking at terms, the above reduction rule for types (propositions) corresponds to
β-reduction, i.e. (λx:A. b)a > [a/x]b .

Observe that, if x∉FV(B) (and A≠Tp), one obtains exactly Gentzen-Prawitz rule:

 Γ, x:A |−− b:B

_________________ (→−intro)

Γ |−− (λx:A. b): A →B a: A

______________________________ (→-elim)

 (λx:A. b)a : B

2 4

reduces to
 a: A |−− [a/x]b : B

Again, this corresponds to (λx:A. b)a > [a/x]b , which is exactly classical β-reduction.

4.2 Theorem (Girard[III-1972]). (Second order) typed terms have a normal form

(actually, they Strongly Normalize).

4.3 Corollary. Any deduction can be reduced to a normal deduction
 [i.e. where (→−intro) and (→-elim) are not used sequentially]

There are two more very relevant results which relate λ-calculus and Proof Theory, in
this framework. One is concerned with the computational expressiveness of λ2 , the

other is a "concrete" independence result.

4.4 Theorem. (Girard[III-1972]) Let f : ω → ω . Then
PA2 |−− ∀x∃yf(x)=y ⇔ f is Λ2-definable.

Thus exactly the recursive functions which are provably total in PA2 are definable in

 λ2 .

As for independence, observe that the normalization property in 4.2 (Norm(λ2), say)

can be formalized in PA2 and, by that very theorem, it is true in the standard model.

However:

4.5 Theorem. PA2 |−/− Norm(λ2).

(The proof in (Girard[III-1972]) is given by showing that
PA2 |−− Norm(λ2) → Cons(PA2)) .

That proof of the independence result is very informative, as it also guaranties the
(truth of the) consistency of PA2 . However, a simpler one may be given, based on 4.4.

Given a term b , let b' be its normal form. Define then the function Φ(b) = b' . Of

course, modulo gödelization of terms, this is a number theoretic map and a universal
function or "interpeter" in the sense of programming. Assume now that PA2 |−−
Norm(λ2) or, equivalently, that PA2 |−− ∀x∃yΦ(x) = y . Then, by 4.4, Φ would be Λ2-

2 5

definable, which is impossible, by the usual diagonal argument.

Remark. One of the earliest and most relevant contributions to the triangular
connection λ-calculus, higher type Recursion Theory, Proof Theory has been entirely

omitted here: namely, Gödel's system T in his [1958]. It may suffice to say that the work
in Girard[1972] may be viewed as an extension to Analysis (PA2) of Gödel's work for PA.

An introductory account to Gödel[1958] may be found in Hindley&Seldin[1986].

5. Constructive Domains and Modest Sets as models for λλλλ2 .

Recall that our original motivation referred to the desire of representing higher type computations, for

the purposes of Logic and of Computer Science. We defined Constructive Domains (CD; §.1) and

Modests Sets (M ; §.2) as a very natural framework for this; their naturality was clearly suggested by

their relation to the category of enumerated sets (EN) and by the way they provided tools in order to

extend pairings and gödel-numberings at higher types, following the HPEF. We then formalized the

intended calculus, the typed λ-calculus, and characterized the class of models of that calculus (the

CCC's; §.3). Logic and the practice of Mathematics suggested in turn an extended language and
Type Theory suitable for the description of higher order constructs (λ2 ; §.4).

In this section, we see how those structures, CD and M , yield also models for λ2 .

As already mentioned, the crucial mathematical point is due to the second order, impredicative
definition of λ2 and the way types and terms mix up (rules C.2, C.3, C.4). In both models types

will be interpreted as objects and terms as morphisms. In particular, one has to give a mathematical

meaning to (∀x:Tp.B):Tp , i.e. one has find an object wich interprets (∀x:Tp.B) , where Tp is

interpreted by a collection of objects, including the interpretation of (∀x:Tp.B) itself. This requires

non trivial closure properties for the underlying structure. In particular, the interpretation of Tp

must be closed under products indexed over Tp, i.e. under dependent products indexed over the

structure itself, since elements (of the interpretation) of (∀x:Tp.B) interpret terms such as (λx:Tp.

a) , which are functions taking each element b of Tp to [b/x]a of type [b/x]B (recall C.2, C.3

and C.4).

The first model, over CD, will be given by turning the collection of all (interpretations of) types

into an object of CD. Thus Tp itself will be interpreted as a type. This strong closure property will

greatly simplify the interpretation of (∀x:Tp.B):Tp .

The second model is based on early ideas in Girard[III-1972] and Troelstra[1973c] and on a

recent unpublished result of Moggi, who proved unexpected closure properties of M , as a crucial

2 6

substructure of the Effective Topos in Hyland[II-1982].

The Constructive Finitary Projection Model
We start with a model in CD for the classical type-free λ-calculus (λβ), that is, by theorem 3.6.2,

over an object U of CD such that UU< U . The existence of such an U will be guarantied by,
say, a constructive version of Scott's D∞ construction (see Barendregt[1984], Hindley&

Seldin[1986] and, for the effective counterpart, Smyth[I-1977], Kanda[I-1979], Giannini& Longo[I-

1984]). To be precise, something more is required; this motivates the following definitions.

Recall that the morphisms in CD are continuous and computable maps, partially ordered

pointwise. The following definition is a constructive version of the model in Amadio&al[II-1986]

(which was inspired by MacCracken[II-1984] and Scott[II-1980b]). As usual, we identify a

morphism space CD[A,B] with its representative BA , when needed and unambiguous.

5.1 Definition. Let A , B be constructive domains. (θ,φ) is a projection pair on

A, B iff θ∈CD[A,B] , φ ∈CD[B,A] and

φ oθ = idA, θ oφ ≤ id B.

Write A « B iff there is a projection pair of A into B .

Note that a projection pair is more than a retraction pair in the sense of §.3.5.

5.2 Definition. Let A , B be constructive domains such that A⊆B and
≤A = ≤B A×A. φ ∈CD[B,A] is a projection iff for all b ∈ B,

φ(b) ≤B b , and for all a∈ range(φ) , φ(a)= a .

We write A ∠ B if φ is onto.

Thus a projection is a retraction less or equal to the identity.
It is easy to show that « and ∠ are reflexive and transitive (although « is not

antisymmetric). Moreover, if A « B then there is an A' ≅ A such that A' ∠ B .

Next we show how to define a constructive domain which represents a collection of

constructive domains. This will be done by taking as constructive domains the ranges

of a particular class of projections.

5.3 Definition. A projection φ in CD is said to be finitary if the range of φ is a

domain (and thus a constructive domain).

2 7

We note here that essentially all projection pairs which normally arise are finitary. We

are now ready to define the constructive domain which will represent the type of all

types, that is the domain of the Constructive Finitary Projections.

5.4 Definition. Let U be a constructive domain such that U U « U . Then let
CFPU = { φ∈CD[U,U] | φ is a finitary projection}.

U as in 5.4 exists by the effective D∞ construction recalled above, which actually

gives UU ≅ U. One may also find an object U which strictly satisfies U U « U : take,

say, the constructive part of the "filter model" in Barendregt&al[1983] and its variant in

Coppo&al[1984].

If U is obvious from the context then we write simply CFP. Fix U as in the definition

above.

5.5 Theorem. (i) CFP is a constructive domain.
(ii) (ϕ∈CFP ⇒ range(ϕ) ∠ U) and (A ∠ U ⇒ ∃ϕ∈CFP range(ϕ)=A).

The constructive domains we will be interested in are the subdomains of U . Notice

that, by 5.5(ii), there is a one-to-one correspondence between elements of CFP and
constructive domains A ∠ U . Thus CFP represents the collection of subdomains of U

. Somewhat surprisingly, CFP can be isomorphically embedded as a subdomain of U .

5.6 Lemma. CFP ∠ U U and hence CFP « U .

Proof hint: Define φ∈CD[U,U] by
φ(g) = supU{f ≤ g | f ∈CFP }.

Clearly φ(g) ≤ g and if g ∈ CFP then φ(g) = g. Thus range(φ) ⊇ CFP . Conversely,

CFP ⊇ range(φ) since CFP is consistently complete w.r.t. CD[U,U].

Therefore CFP ∠ U U « U and CFP « U by transitivity. ∆

Let now Ψ∈CD[UU,U] , Φ∈CD[U, UU] be the projection pair of UU into U . Set

CFP = {Ψ(f) / f∈CFP } : these are the canonical representative of CFP within U . When

there is no ambiguity we identify CFP and CFP .

5.7 Corollary. There exists p∈CFP such that range(p) = CFP.

Types will be interpreted by finitary projections. More precisely, types are ranges of

2 8

finitary projections. Note first that finitary projections are particular retractions, and that ,
if r is a retraction, then range(r) = { u∈U / u = ru }, the set of its fixed points. Moreover,

finitary projections and their ranges tidily relate, by the following fact.

5.8 Proposition. Let f,g ∈ CFP. Then f ≤ g iff range(f) ⊆ range(g) .

We are now ready to define our second order model. We sketch how to interpret

types: details about the interpretation of terms may be found in Amadio&al[II-1986] or a

simpler syntactic translation, sufficient for the guidelines of the interpretation, may be

seen in Amadio&Longo[1986].

Recall that we interpret Tp by CFP or, equivalently, by p . Ground types (integer,

booleans..., if given in the theory) are interpreted as subdomains of U , which is rich
enough for this purpose, since it is a model of λβ . In order to give first an informal

explanation on how to interpret higher types, we mix up syntax and semantics; λx.f(x) is

the informal lambda notation for functions. The key point is that, in all interpretations of
types as retractions, a:A is interpreted by a ∈ range(A) or, equivalently, by a = Aa ,

where the retraction A interprets type A . The definitions of "→" and "∀" originate

from elementary notions in Category Theory (see Scott[I-1976,II-1980b], Seely[II-

1984,1986]]).
Recall that "→" is just a special case of "∀" , by 4.1. We discuss this simple case

first. In a category C, if an object A is a retract of B via (i,j), then A , as a "subtype" of

B , may be identified with (i,j) or, by some abuse of language, since categories do not
need to have points or elements, it may be identified with the fixed points of i°j (the

range of i°j, which is a retraction).

If C is a CCC, let CA be the exponent of C and A in C; then, if A is a retract of B

via (i',j') and C is a retract of D via (i,j), one has
CA is a retract of DB via (λx.i°x°j', λx.j°x°i') .

Indeed, (λx.i°x°j')°(λx.j°x°i') is a retraction and its fixed points may be identified with

CA as a subtype of DB . In other words, if one writes r = i°j and s = i'°j' , then CA

coincides with {x/ x = r°x°s } = range(λx.r°x°s) , where r , s and λx.r°x°s are all

retractions.

In our case, over the type-free universe U , if (i,j) and (i',j') are projection pairs, then
also (λx.i°x°j', λx.j°x°i') is so, and thus r, s and λx.r°x°s are all finitary projections,

whose ranges are subdomains of U .

Thus, if types A and C are interpreted as finitary projections A and C , one has:

2 9

(→→→→Interpret.) A→C is interpreted as λx.C°x°A (or its range).

As for "∀", consider first rule C.3. This is a formation rule for terms; its meaning is that

terms which have an applicative behaviour (λ-abstractions) can be only applied to terms

of the intended imput type (A in the rule). The idea, in models where types are

retractions, is to interpret those terms as functions which coerce each input to be of the
right type. That is, λx:A.a wil be interpreted as f°A , where f depends on a .

As for rule C.4, the intuition is that a has type ∀x:A.B iff a is a function which takes

any b in (the range of) A into an element ab of (the range of) [b/x]B . Since types are

particular retractions, this means ab is a fixed point of [b/x]B :

ab = ([b/x]B)(ab) .
 Thus, ab = (λx.B)b(ab) . Since b = Ab , then

ab = (λx.B)(Ab)(a(Ab)) .
Observe now that a must be a λ-abstraction, by C.3, i.e. it is interpreted by f°A , for

some f ; therefore
ab = (f°A)b = (λx.B)(Ab)(f°A (Ab)) .

That is, a coerces any argument b to be in (the range of) the retraction A . Thus

one may abstract (generalize) w.r.t. b :
a = λt.(λx.B)(At)(a(At)) .

Equivalently:
a = (λzt.(λx.B)(At)(z(At)))a .

Indeed, (λzt.(λx.B)(At)(z(At))) turns out to be a retraction, when A and B are

retractions. Thus, a:(∀x:A.B) gives, in the model, that a is a fixed point of the retraction

λzt.(λx.B)(At)(z(At)) .

The informal argument above shows that λzt.(λx.B)(At)(z(At)) soundly interprets

∀x:A.B , as we derived it exactly from the intended meaning of universal quantification
as dependent product, i.e. as ΠA([b/x]B) . This may be summarized as follows:

5.9 Theorem. CFP is a CCC. Moreover, for A,B ∈CFP , one has
range(λzt.(λx.B)(At)(z(At))) = ΠA([b/x]B) .

A category-theoretic understanding of this may be found in Seely[1986].

In conclusion:

3 0

(∀∀∀∀Interpret.) ∀x:A.B is interpreted as λzt.(λx.B)(At)(z(At)) (or its range).

If B does not depend on x , then (→ Interpret.) is a special case (∀ Interpret.) , as

one may easily check by β-reduction (cf. 3.1). As a side remark, for p = pp , observe

that the CFP model also interprets an extension of the given language by Tp:Tp , i.e.

the collection of types is a type (see Amadio&Longo[1986] for a discussion).

Problem. In Amadio&Longo[1986] a simple extension λλλλββββηηηηp of λβη is proposed, where
λλλλ2 can be easily "interpreted" (or translated). Add for this a constant symbol p to λβη

jointly with the following two axioms and rule:

a.1) pp = p MοM = M

a.2) pxοpx = px R) ________

 pM = M

Clearly, λβηp is directly inspired by semantics and provides a very simple "model"
for λλλλ2222, by the translation described above. However, CFP is not a mathematical model

for λβηp and λβηp is not Church-Rosser (more precisely, there is no simple extension

of λβηp to a CR reduction system, Amadio&Longo[1986]).

Conjecture: λβηp is consistent; it should even be conservative over λβη .

The Modest or HEO2 Model

The cartesian closed extension M of the category EN of numbered sets has been
defined in §.2. In that category, types are interpreted as quotient subsets of ω .

In Girard[III-1972] and Troelstra[1973c] some hints are given on how to build a model
for λ2 in M: the HEO2 model. Second order terms are interpreted by erasing types

from them and universally quantified types are interpreted as intersections. In that way,

then, information is lost from terms and no apparent connection is given between

intersection and the natural interpretation of universally quantified types as dependent

products. This is not a criticism of that early work, first because of its pioneering role,

second because some deep mathematical intuition was already present also in that

sketchy model construction: for example, in Girard[1972], terms are more precisely

interpreted as pairs (type-free term, its type). Surprisingly enough this is sufficient to

recover the information preserved in the interpretation summarized below, since one

3 1

may easily prove that the interpretation of a typed term is the equivalence class of its

type (a quotient set), which contains that term, as pointed out below. Recently, Moggi[II-
1986Tp] suggested how to turn the HEO2 into a fully satisfying model of λ2.

Remark (Some more references). We refer to Moggi's version of this result, which has

not yet been fully written down (see the conclusion on how the discussion started on

elettronic mail). However, since Moggi mentioned to have proved the "internal

completeness" (i.e. the closure under all limits) of M within the topos in 5.12, several

other relevant categories, in the same framework, have been shown to be internally

complete by Martin Hyland, Pino Rosolini, Dana Scott. (Hyland's lecture in this volume

should present a broader and less elementary account of this story: the reader is

recommended to refer to it for a more category-theoretic oriented presentation. Also

Freyd and Carboni recently devised a generalization of the results below).

If A = (A,πa) is an object in M, write A {n} = {m | m A n} for the equivalence class of n

w.r.t A . In particular, then,
f ∈ M[A , B] iff ∃n f = B A{n} .

As types are interpreted by ObM (quotient sets), terms will be elements of types, i.e.

equivalence classes: for A interpreting A,

a:A is interpreted as " a is an equivalence class in A ",
or, also, ∃n a = A {n} . (We write x for the interpretation of the term or type x).

More precisely, A→B is interpreted as B A and universally quantified types as

follows. We discuss, for the sake of simplicity, ∀x:A.B only when A = Tp , i.e. when A is

the collection of types: the crucial, impredicative case. For the other case see 5.10.2.
We keep using an informal λ-notation for functions and →-notation for function spaces

(not necessarily formal terms and types).
Note first that ∀x:Tp.B may be understood as ∀(λx:Tp.B) where λx:Tp.B is a

function from types to types. As types are objects of M, ∀ : (ObM → ObM) → ObM turns

each function λ x :Tp. B : ObM → ObM into a type, i.e. an object of M . Thus, all that we

have to do is to find a meaning in M to ∀(f) for at least each formally definable function

f (by the notation for types).
In general, given f : ObM → ObM , define ∀ : (ObM → ObM) → ObM by

for all n, m∈ω , n ∀(f) m iff for all A , n f(A) m .

Clearly, ∀(f) is a partial equivalence relation. Thus,

3 2

 (∀∀∀∀Interpret.) ∀x:Tp.B is interpreted as ∀(λ x :Tp. B).

5.10 Remark. 1 - ∀(f) = ∩ A f(A) .

2 - In case A:Tp , define
p(∀ x:A.B)q iff for all n, m (n A m ⇒ ϕp(n) ([A {n}/x] B) ϕp(m))

which collapses to (Quot) of §.2, if x∉FV(B) .

An other key point, formalized in rule C.4, is that terms of type ∀x:Tp.B may be

applied to a type: thus, elements of ∀(f) , that is equivalence classes, must be applicable

to quotient sets, that is to collections of equivalence classes.

5.11 Definition (Moggi; Polymorphic application). Let f : ObM → ObM. Set

APPf(∀(f){n}, A) = f(A){n}.

Note that this is a good definition, since Appf depends on f : as ∀ is not injective,

relevant information from f could be lost when trying to recover f(A) .

Our aim now is to prove that the interpretation of second order types based on the
definition of ∀(f) above, i.e. as intersection, preserves the naive mathematical meaning

one would attach to them; namely, it corresponds to a product indexed over the
interpretation ObM of Tp. In other words, a suitable framework, or category, must be

found such that, for f : ObM → ObM , in the category,

(Iso) ∀(f) is (isomorphic to) ∏Mf(A) .

Clearly, (Iso) would give a strong closure property of M, as ∀(f) is trivially in ObM .

The embedding in one direction is easy and true for every set-theoretic function
f : ObM → ObM. Indeed, by 5.11, one may injectively associate to each element ∀(f){n}

of ∀(f) a function λ A .(f(A){n}) in ∏Mf(A) , as λ A .(f(A){n}) : ObM → f(A).

Conversely, given g∈∏Mf(A) , by definition of dependent product, one has

(1) ∀ A ∃n g(A) = f(A){n} .

And here is the key point. In order to prove that g has indeed the structure λ A .(f(A){n}) ,

i.e. that, for some n , g is the same as an equivalence class ∀(f){n}, one has to reverse

the quantification in (1) and prove
(2) ∃n ∀ A g(A) = f(A){n} .

The observation that, under certain circumstances, one can actually go from (1) to

(2), is independently due to Hyland and Moggi and is based on the use of a very

3 3

constructive framework, i.e. a particular model of Intuitionistic Set Theory (IZF), Hyland's

Effective Topos (Eff; Hyland[II-1982], Hyland&al[II-1980]).

We give some hints for that structure and sketch how one can view at M at once as a

full subCCC and an object of Eff, in the sense of 5.13 below.

5.12 Definition. (Eff) Objects: (A, =A) , with =A : A x A → Pω partial ;

Morphisms: Eff(A1,A2) is the set of the "total functions" w.r.t. =1 and =2

(i.e. total, single-valued , strict and substitutive relations).

Observe now that M is a small category; that is, ObM and the collection of all

morphisms are objects of Set (they are just sets). More formally, this amounts to say

that M is an internal category of Set, the classical category of sets (see

Johnstone[1977]). The nice fact is that M may be also seen as an internal category of
Eff, as there exist Mo, M1 in ObEff representing the objects and the morphisms of M,

respectively.

5.13 Theorem. M is a full subCCC of Eff and an internal category of Eff.
(Proof hint : for (A,eA)∈ObM set (a = Ab) := {n / eA(n) = a ∧ a = b}; thus

(A, =A) ∈ ObEff. Note that (A, =A) ∈ ObEff is (isomorphic to an object) in ObM iff

(∃n ∈(a =Ab) ∩ (c =Ad) ⇔ a = b = c = d) ,

in this case set eA(n) = a iff n ∈(a =Aa) . Thus the embedding is full and faithful.

In order to turn M into an internal category, set Mo = (X0, =0) with X0 := ObM and

=0: X0 x X0 → Pω given by

(A = 0 B) := if A = B then ω else ∅.

Mo represents ObM . As for the morphisms, take M1 = (X1, =1) with

X1: = {(A , B A{n}, B) / A , B ∈ ObM, n B A n }

and =1: X1 x X1 → Pω given by

((A , B A{n}, B) =1 (A' , B' A'{m}, B')) := if A = A' , B = B' , B A{n} = B' A'{m},

 then B A{n} else ∅ .) ∆

Eff is a topos and, thus, a model of intuitionistic Logic. It also satisfies, among other
properties, the Uniformity Principle (or König's Lemma), for M0 is as in 5.13:

(UP) ∀ A ∈M0 ∃n Φ(A ,n) ⇒ ∃n ∀ A ∈M0 Φ(A ,n) .

By applying (UP) on can go from (1) to (2). (This requires some work, within Eff; note

also that the isomorphism in (Iso) above depends on f .)

3 4

In the model, then, the quantification over types (or ObM), is the same as over M0 , an

object, now, of Eff. Moreover, we can fix the class of functions for which (Iso) above
holds: they are just the morphisms in Eff from Mo to Mo (i.e. the internal functions). By

this and by the Uniformity Principle (UP), the isomorphism in Eff between ∀(f) and
∏Mf(A) is proved.

The strong closure property for M, within Eff, we have sketched, that is its closure

under products indexed over M itself, is the mathematical meaning of Girard's

impredicative definition of second order types, over this very natural model, the "modest"
or quotient subsets of ω .

5.14 Remark. (Models and Intuitionistic Logic) The proof-theoretic connections
between λ−calculus and Intuitionistic Logic were clear since Curry-Howard remark that

the inhabited types of λ−terms are exactly the propositions of (positive) intuitionistic

propositional calculus. This analogy was fruitfully extended at higher orders by Girard

and Martin-Löf. The relevance of the intuitionistic perspective should now be clear also
in the model theory of λ-calculus. As for the first order case, this is stressed by the

constructive approach we followed here, which can be framed within a categorical

approach to the semantics of Intuitionistic Logic, as shown in Rosolini[II-1986] (see also

MItchell&Moggi[II-1987], for an elementary, elegant use of Kripke models). By the result

just presented, this is even more striking in the second order case. As a matter of fact, in

Reynolds[II-1984] it is shown that there is no non trivial model of Girard's second order
language λλλλ2 in the category of sets, if classical Set Theory (ZF) is taken. In Reynolds'

words: polymorphism is not set-theoretic. By the discussion above, a set-theoretic

model may be found, provided that a suitable model of IZF is taken; that is

"polymorphism is intuitionistically set-theoretic".

As pointed out before 3.5, the definition of M may be easily relativized to an arbitrary

(partial) model of Combinatory Logic, CL; the same applies to the definition of Eff. Thus,
instead of Kleene's (ω,.) , take a model V of type-free λβ and consider MV and EffV

over (V,.) , see 3.6.

Given a second order term a , let er(a) be the erasure of a , i.e. the untyped term

obtained from a by erasing all type information. Of course, er(a) may be soundly

interpreted over V ; call er(a) its meaning. By induction one can easily establish the
following tidy connection between er(a) and the interpretation of a in MV. Assume that

a:A in λ2 , then

3 5

a = A { er(a) } ,

i.e. the interpretation of the typed term a is the equivalence class of er(a) w.r.t. A

(details may be found in Mitchell[1986]). Thus, the interpretation sketched in Girard [III-

1972] contained enough information.

We conclude this section by relating the various constructions above by some useful

category-theoretic embeddings. These will only relate, by cartesian functors, the first

order structures of the various categories presented here, i.e. ordinary products and

exponents, as products indexed over different categories do not seem to bear any

relevant connection.

As worked out in Amadio&al[II-1986], the CFP construction in the first part of this

section may be performed over any Scott domain U such that

UU « U .
Namely, over any λ-model where the retraction in 3.6 is indeed a finitary projection in

the category of domains (see 5.3). Thus, when dropping the request on costructivity in
5.4, call FPU the corresponding model of λ2 . In this general case, one has that

FPU is a full subCCC of MU , which is a full subCCC and an internal category of EffU .

This may be proved by putting toghether the previous work and Scott[I-1976], Hyland[II-

1982], Longo&Moggi[II-1986].

Within the constructive appoach followed here, where we began with numbers and

enumerations, analogue embeddings may be factorized through CD without relativizing

the constructions of M and Eff. That is:

5.15 Theorem. CFPU full subCCC of

 CD full subCCC of

 M full subCCC and an i nternal category of

 Eff .

With some more work, one can look also at CD as an internal category of Eff; indeed,

an internal subcategory of M.

Conclusion
The interest in Church's λ-calculus is mostly due, nowadays, to its relevance in Computer Science.

We already quoted a few areas where this is explicit. As most of the problems and issues discussed

in this lecture derive from the practice of computing, it is worth mentioning a few more references

3 6

which set a bridge between the Logic and the computing perspectives in λ-calculus.

As mentioned in the introduction, Scott's invention of models of the λ−calculus started denotational

semantics of programming languages and brought into language design, via λ-calculus, the well-

established tools of Tarskian semantics, i.e. the mathematical investigation of denotation and

meaning. The analysis of the connections between theories and models received an important impulse

by the results in Wadsworth[1976] and Hyland[1976] and was continued by several authors (e.g.

Barendregt& Longo[1980], Longo[1983]). The interest in applications of this analysis is concerned

with the comparison between operational and denotational semantics, as theories provide the

operational description of languages. Further work in this direction led to the issue of "fully

abstracness" in Computer Science, motivated by the desire of proving results on languages and

operations by a direct analysis of models; this is possible by a full correspondence, in some cases,

between denotation and meaning (see Mulmuley [1985] and Luke-Ong [1987] for recent work).

A relevant example of the influence of denotational semantics in language design is given by the

continuously expanding Edinburgh programming language ML (Milner[1978], Gordon&al[1979],

Damas[1985], Milner[1986]). Even compilers are nowadays built up with some use of model

theoretic concepts of λ-calculus (Jones[1980]).

The higher order or explicity polymorphic languages provide a very interesting area for new

applcations of λ-calculus. On one hand, the language invented by Girard for the purposes of proof-

theory is the core of a several ways interaction among proof-theory, topos theory and the theory of

functional languages. For example, Moggi's theorem above was given as an answer, raised by

Albert Meyer, on the consistency of certain extensions of explicitly polymorphic languages. The

result answered the question, by providing a model, and went further because it opened up a whole

line of research in polymorphic model theory.

On the side of language design, the various theories of types have served to organize the study of

type disciplines in programming and are now implemented in several languages (Nordstrom [III-

1981], Burstall&Lampson[1984], Damas[1985], Constable&al[III-1986]). These investigations

and their applications lead to new insights into polymorphism, modularity and abstraction, mostly

since the work of Reynolds[1975] and Milner[1978] (see also Reynolds[1985], MacQueen[1986],

Cardelli&Wegner[1985], Cardelli[1986]).

Under the motto "types as formulae" (see §4), Type Theory greatly influenced also automated

theorem proving (deBruijn[III-1980], Constable&al[III-1984], Miller[III-1984], Coquand&Huet

[III-1985]) and it even serves as a knowledge representation language for AI (Turner[1984],

Constable&al [III-1986]). The other motto, "types as objects", summarizes instead the connections

with Category Theory (see §3 and Lambek&Scott[II-1986]); surprisingly enough, even these very

abstract studies influenced programming, since the equations mentioned in §3 have become the core

3 7

of a running machine (Cousinau&al[1985]).

Connections to other approaches in semantics (equational, algebraic) nicely come in, in the typed

and higher order cases, by results an conservativity of extensions of equational theories (see Breazu-

Tannen&Meyer[1987]) and by an original understanding of "abstract data types" (see

Mitchell&Plotkin[1985]).

Acknowledgement. I am greatly endebted to my (former) student Eugenio Moggi: his deep

insight into Mathematics and his curiosity for scientific knowledge meant much to me. In particular,

he tought and keeps teaching me most of what I know on the categorical approach to life (and to the

foundation of Mathematics).

Several people red an earlier version of this paper and suggested corrections and changes; these

include Pierre Louis Curien, Pino Rosolini, Eugenio Moggi, Roger Hindley, Dieter Spreen, Kim

Bruce.

3 8

Bibliography

This bibliography is organized according to the "line of thought" followed in the lecture. Thus Part
I lists contributions to the areas broadly relating λ-calculus to higher type Recursion Theory, Part II

is concerned with the connections to categories and Part III to Proof Theory.

The list is far from complete. Moreover, many entries should appear in more than one part and

the classification is as arbitrary as any. For example, Scott[I-1976] had mostly relevance in

Computer Science and uses several category-theoretic notions; however, the key ideas derive from

type 2 Recursion Theory (classical Myhill-Shepherdson theorem). Similarly, Girard[II-1985] does

not deal explicilely with Category Theory, but functorial notions play a major role. Ershov[I-1976]

or Longo& Moggi[I-1984], say, do not mention λ-calculus at all; the underlying mathematical

structures, though, are entirely borroughed from the model-theory of λ-calculus. Finally, the

inclusion in Part III of some Computer Science papers is due to the increasing impact of theoretical

ideas in automated deduction and program synthesis, which in turn stimulated the theory.

It should also be clear that papers in the "pure theory", both of types and of terms, are essentially

not included: rather complete references to writings "within" λ-calculus may be found in

Barendregt[1984] and Hindley&Seldin[1986]. The fourth and last part contains papers referred to in

the previous pages, including a few papers in the pure theory.

Part I

Asperti A.[1987] "Stability, sequentiality and oracles" Dip. di Informatica, Pisa.

Barendregt H., Longo G. [1982] "Recursion Theoretic Operators and Morphisms of Numbered

Sets," M.I.T., Lab. for Computer Science Tech. Mon. 194, Fundamenta Mathematicae

CXIX (pp. 49-62).

Ershov Yu. L. [1976] "Model C of the partial continuous functionals," Logic Colloquium 7 6

(Gandy, Hyland eds.) North Holland, 1977.

Friedman, H. [1975], "Equality between functionals," Logic Colloquium (Parikh ed.), LNM

453, Springer-Verlag.

Giannini P., Longo G. [1984] "Effectively given domains and lambda calculus semantics,"

Information and Control 62, 1 (36-63).

3 9

Kanda A. [1979] "Fully effective solutions of recursive domain equations" Proc. of MFCS'79,

LNCS 74, Springer-Verlag.

Kleene S. C. [1936] "Lambda definability and recursiveness," Duke Math. J., 2, (pp. 340-353).

Longo, G. [1982] "Hereditary partial effective operators in any finite type," Forshungsinstitut

für Mathematik E.T.H. Zürich, 1982.

Longo, G. [1984p] "Limits, higher type computability and type free languages," MFCS'84,

Prague (Chytil, Koubek eds.), LNCS 176 , Springer- Verlag, 1984 (pp. 96-114).

Longo G., Martini S. [1984] "Computability in higher types, Pω and the completeness of type

assignement," Theor. Comp. Sci. 46, 2-3 (197-218).

Longo G., Moggi E. [1984] "The Hereditary Partial Recursive Functionals and Recursion Theory

in higher types," J. Symb. Logic, vol. 49, 4 (pp. 1319-1332).

McCarty D. [1984] "Realizability and Recursive Mathematics" Ph. D. Thesis, Computer Sci.

C.M.U..

Spreen D. [1984] "On r.e. inseparability of cpo indexed sets" (Börger et al. eds) LNCS 171,

Springer- Verlag.

Spreen D., Young P. [1984] "Effective operators in a topological setting" Logic Coll. 83 (Börger

et al. eds) LNM, Springer- Verlag.

Scott D. [1970] "Outline of a mathematical theory of computation" 4th Ann. Princeton Conf.

on Info. Syst. Sci.(pp. 169-176).

Scott D. [1976] "Data types as lattices," SIAM Journal of Computing , 5 (pp. 522-587).

Scott, D. [1982] "Some ordered sets in Computer Science," in Ordered Sets (Rival Ed.), Reidel.

Scott D. [1982] "Domains for denotational semantics," (preliminary version), Proceedings ICALP

82, LNCS 140, Springer-Verlag).

4 0

Smyth M. [1977] "Effectively Given Domains", Theoret. Comput. Sci. 5, pp 255-272.

Weyrauch K. [1981] "Recursion and complexity theory on cpo's" (Deussen et al. eds) LNCS 104,

Springer-Verlag.

Part II

Adachi T. [1983] "A categorical characterization of lambda-calculus models" Dept. of Info. Sci.

Tokyo Inst. Tech., n. C-49.

Amadio R., Bruce K. B., Longo G. [1986] "The finitary projections model and the solution of

higher order domain equations" IEEE Conference on Logic in Computer Science,

Boston, June 1986.

Asperti A., Longo G. [1986] "Categories of partial morphisms and the relation between type-

structures" Invited Lecture, Semester on theory of Computation, Banach mathematical

Center, Warsaw, December 1985 (preliminary version: CAAP '86, LNCS 214, Spriger-Verlag).

Berry G. [1979] "Modèles complètament adequats et stables des lambda-calculus types", Thèse de

Doctorat, Universite' Paris VII.

Berry G. [1979] "Some Syntactic and Categorial Constructions of lambda-calculus models" INRIA,

Valbonne.

Breazu-Tannen V., Meyer A.[1985] "Lambda Calculus with Constrained Types" in Logic o f

Programs, Parikh (ed.), LNCS 193, Springer-Verlag.

Bruce K., Longo G. [1985] "Provable isomorphisms and domain equations in models of typed

languages," (Preliminary version) 1985 A.C.M. Symposium on Theory of Computing

(STOC 85), Providence (R.I.) , May 1985 (pp. 263-272).

Curien P.L., [1986] "Categorical Combinarors" Info.&Contr. (to appear).

4 1

Curien P.L., [1986] Categorical Combinators and Functional Programming, Pitman.

Dibjer P. [1983], "Category-theoretic logics and algebras of programs," Ph.D. Thesis, Chalmers

University, Goeteborg.

Gunter C. [1985] "Profinite solutions for Recursive Domain Equations" Ph. D. Thesis, Comp. Sci.

Dept., C.M.U..

Girard J.Y.[1985] "The system F of variable types, fifteen years later" TCS, to appear

Hayashi S. [1985] "Adjunction of semifunctors: categorical structures in non-extensional lambda-

calculus" Theor. Comp. Sci. 4.

Hyland M. [1982] "The effective Topos," in The Brouwer Symposium, (Troelstra, Van

Dalen eds.) North-Holland.

Hyland M., Johnstone P., Pitts A. [1980] "Tripos Theory," Math. Proc. Camb. Phil. Soc.,

88 (205-232).

Koymans K. [1982] "Models of the lambda calculus", Information and Control, 52, pp. 306-

332.

Lambeck J. [1968] " Deductive systems and categories," I. J. Math Systems Theory 2,

(pp.278-318).

Lambeck J. [1974] "Functional completeness of cartesian categories," Ann. Math. Logic 6,

(pp.259-292).

Lambek J. [1980] "From lamba-calculus to cartesian closed categories," in Hindley

andSeldin[1980], (pp. 375-402).

Lambek J., Scott P.J. [1974] "Aspects of higher order categorical logic" Contemporary

Mathematics 30 (145-174).

Lambek J., Scott P.J. [1986] Introduction to higher order Categorial Logic, Cambridge

University Press.

4 2

Longo G., Moggi E. [1984a] "Cartesian Closed Categories of Enumerations and effective Type

Structures," Symposium on Semantics of Data Types (Khan, MacQueen, Plotkin eds.),

LNCS 173, Springer-Verlag, (pp. 235-247).

Longo G., Moggi E. [1986] "Type-structures, principal morphisms, Combinatory Algebras: a

category-theoretic characterization of functional completeness," Dip. di Informatica, Pisa (prelim.

version in Math. Found. Comp. Sci., Prague 1984 (Chytil, Koubek eds.) LNCS 176 ,

Springer-Verlag, 1984 (pp. 397-406)).

Martini S. [1986] "Categorical models for typed and type-free non-extensional lambda-calculus and

Combinatory Logic" Dip. Informatica, Pisa.

McCarthy D.[1984] "Realizability and Recursive mathematics" Ph. D. Thesis, Merton College,

Oxford.

McCracken N. [1984] "A finitary retract model for the polymorphic lambda-calculus,"

Information and Control (to appear).

Minc G.E. (G.E. Mints) [1977] "Closed categories and the theory of proofs," Translated from

Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Mat. Instituta im. V.A. Steklova AN

SSSR 68 (pp. 83-114).

Mitchell J., Moggi E. [1987] "Kripke-style models for typed lambda caculus" LICS 87, Cornell.

Moggi E. [1986Tp] Message of Jan. 1986 on Type e-mailing List.

Moggi E.[1987] Ph. D. Thesis, Edinburgh, in preparation.

Moggi E. [1986] "Partial Morphisms in Categories of effective objects," Info&Contr. , to appear.

Obtulowicz A. [1986] The logic of categories of partial functions and its applications

Dissertationes Mathematicae CCXLI, Warsaw.

Obtulowicz A. [1985] "Algebra of constructions I", Information and Control (to appear)

4 3

Obtulowicz A. , Wiweger A. [1982] "Categorial, Functorial and algebraic aspects of the type-free

lambda-calculus" Universal Algebra and Applications. Banach Center Publications vol. 9, (399-

422) PWN-Polish Scientific Publishers, Warszawa.

Panangaden P., Schwartzbach M.I. [1985] "Categorical Type Theory". Computer Science

Department Technical Report, TR 85-716. Cornell University, Ithaca, NY, 1985.

Plotkin G. [1978] "Tω as a universal domain," J. Comp. Syst. Sci., 17 (pp. 209-236).

Reynolds J. [1984], "Polymorphism is not set-theoretic," Symposium on Semantics of Data

Types, (Kahn, MacQueen, Plotkin, eds.) LNCS 173, Springer-Verlag

Rosolini G. [1986] "Continuity and efffectiveness in Topoi" D. Phil. Thesis, Oxford University .

Robinson E., Rosolini P. [1987] "Categories of partial maps" Math. Dept., Univ. of Cambridge.

Scott D. [1972] "Continuous lattices" Toposes, algebraic Geometry and Logic, (Lawere

ed.), SLNM 274, (pp.97-136) Springer-Verlag.

Scott D. [1980] "Relating theories of the lambda-calculus," in Hindley/Seldin[1980].

Scott D. [1980b] "A space of retracts" Manuscript, Bremen.

Scott P.J. [1978] "The "dialectica" interpretation and categories," Zeitschr. f. Math. logik und

Grundlagen d. Math. 24 (pp. 553-575).

Seely R.A.G. [1984] "Locally cartesian closed Categories and type theory" Math. proc.

Cambridge Phil. Soc., 95, 33, pp. 33-48.

Seely R.A.G. [1986] "Categorical semantics for higher order polymorphic lambda calculus", JSL

(to appear).

Smyth M., Plotkin G. [1982] "The category-theoretic solution of recursive domain equations"

SIAM Journal of Computing 11, (pp.761-783).

Wand M. [1979] " Fixed-point Constructions in Order-enriched Categories," Theoret. Comp.

4 4

Sci. (pp. 13-30).

Wiweger A. [1984] "Pre-adjunctions and lambda-algebraic theories" Coll. Math. XLVIII , (153-

165), Warszava.

Part III

Aczel P [1980] "Frege structures and the notions of proposition, truth and set." In The Kleene

Symposium, ed. J. Barwise et al., Northe-Holland, pp. 31-59.

Allen S.F. [1987] "The Semantics of Type Theoretic Languages" Doctoral Dissertation, Computer

Science Department, Cornell University March 1987, (expected).

Andrews P.B. [1971] "Resolution in type theory". J. Symbolic Logic, v.36 pages 414-432.

de Bruijn N.G. [1980] "A survey of the project AUTOMATH" In Essays in Combinatory

Logic, Lambda Calculus, and Formalism", J.P. Seldin and J.R. Hindley, eds. Academic

Press, New York, 1980, pages 589-606.

Bunder M.W.V. [1983] "A weak absolute consistency proof for some systems of illative

combinatory logic," JSL 48, pp. 771-76

Church A. [1940] "A formalisation of the simple theory of types" JSL 5, pp. 56-58.

Constable R.L. [1980] "Programs and types" 21st I.E.E.E. Symposium on Foundations o f

Comput. Sci., pp 118-128.

Constable R.L., Knoblock T.B., and Bates J.L. [1984] "Writing programs that construct proofs."

J. Automated Reasoning, v.1 n.3, (1984), pages 285-3236.

Constable R. L. et al. [1986] Implementing Mathematics with the Nuprl Proof

Development System. Prentice-Hall.

Coquand T. [1985] "Une théorie des constructions", Thèse de 3ème cycle, Université Paris VII.

4 5

Coquand T. [1986] "An analysis of Girard paradox", LICS 86, Boston.

Coquand T., Huet G. [1985] "Constructions: a higher order proof system for mechanizing

mathematics" Report 401 INRIA, presented at EUROCAL 85.

Curry H. B., [1930] "Grundlagen der kombinatorischen Logik" Amer. J. Math. 52 (pp. 509-

536,

789-834).

Girard J.Y. [1971] " Une extension de l'interpretation de Gödel a l'analyse, et son application a

l'elimination des coupures dans l'analyse et la theorie des types". In 2nd Scandinavian Logic

Simposium, J.E. Festand, ed. North-Holland, Amsterdam, 1971, pages 63-92.

Girard, J. [1972] "Interpretation fonctionelle et elimination des coupure dans l'arithmetic d'ordre

superieur," These de Doctorat d'Etat, Paris.

Gödel K. [1958] "Ueber eine bicher noch nicht benuetze Erweiterung des finiten Standpuntes,"

Dialectica, vol.12, pp.280-287.

Harper R., Honsell F., Plotkin G. [1987] "A framework for defining logics" LICS 87, Cornell.

Howard W. [1980] "The formulas-as-types notion of construction", in Hindley and Seldin 1980

pp.479-490. (MS written in 1969).

Huet G. [1986] "Formal Structures for Computation and Deduction" Lecture Notes, C.M.U..

Knoblock T.B., Constable R.L. [1986] "Formalized metareasoning in Type Theory". In

Proceedings of Symposium on Logic in Computer Science, 1986, pages 237-248.

Lambeck J., Scott P.J. [1980] "Intuitionist type theory and the free topos," J. Pure Appl.

Algebra 19 (215-257).

Martin-Löf P. [1971] "A theory of types," Report 71-3, Dept of Mathematics, Unibversity of

Stockholm, February 1971, revised October 1971.

4 6

Martin-Löf P. [1975] "An intuitionistic theory of types" Logic Colloqium 73, Rose Shepherdson

(Eds.), North-Holland (73-118).

Martin-Löf [1982] "Constructive logic and computer programming," In Logic, Methodology and

Philosophy of Science VI, ed. L.J. Cohen et al. (eds.) North-Holland (pp. 153-175).

Martin-Löf P. [1984] Intuitionistic Type Theory Bibliopolis, Napoli.

McCarthy D.[1984] "Realizability and Recursive mathematics" Ph. D. Thesis, Merton College,

Oxford.

Miller D. [1984] "Automating Higher Order Logic". PhD Thesis, Canergie-Mellon University.

Nederpelt R.P. [1980] "An approach to theorem proving on the basis of a typed lambda calculus,"

SLNCS 87, (pp.182-194).

Nordstrom B. [1981] "Programming in constructive set theory: some examples". In Proceedings

1981 Conference on Functional Programming Languages and Computer

Architecture . Portsmouth, England, pages 141-153.

Petersson K. [1982] "A programming system for type theory" Chalmers University, Göteborg.

Rezus A. [1986] "Impredicative Type Theories" Informatica, Univ. Nijmegen.

Seldin J.P. [1978] "A sequent calculus formulation of type assignment with equality rules for the

λβ-calculus," JSL 43, (pp.643-649).

Seldin J.P. [1980] " Curry's program," In Hindley and Seldin 1980, (pp.3-34).

Stenlund S. [1972] "Combinators, λ-terms, and Proof Theory". D. Reidel, Dordrecht, The

Netherlands, 1972.

4 7

References

Amadio R., Longo G. [1986] "Type-free compiling of parametric Types" IFIP Conference on

Formal description of Programming Concepts Ebberup (DK), North Holland, 1987 (to

appear).

Backus J. (1978) "Can Programming be liberated of the Von Neumann style? A functional style and

its algebra of programs" CACM 21, 8 (613-641).

Barendregt, H. [1984], The lambda calculus; its syntax and semantics, Revised and

expanded edition, North Holland.

Barendregt H., Coppo M., Dezani M. [1983] "A filter lambda model and the completeness of type

assignment," J. Symb. Logic 48, (931-940).

Barendregt H., Longo G. [1980] "Equality of lambda terms in the model Tω," in To H . B .

Curry: Essays in Combinatory Logic, Lambda-calculus and Formalism, (Seldin,

Hindley eds.) Academic Press, London, (pp. 303-337).

Beeson M.[1980] Foundations of Constructive Mathematics, Springer- Verlag.

Berry G., [1978] "Stable models of typed λ−calculi". SLNCS 62, pp.72-89.

Berry G., Curien P.L. [1982] "Sequential Algorithms on Concrete Data Structures" Theor.

Comp. Sci. 20, (265-321).

Breazu-Tannen V., Meyer A. [1987] "Polymorphism is conservative over simple types" 2nd IEEE

LICS , Cornell.

Burstall M.R., Lampson B. [1984] "A kernel language for abstract data types and modules". In

Semantics of Data Types, LNCS, Vol. 173 Springer-Verlag, New York, 1-50.

Cardelli L. [1983] "The functional abstract machine" Polymorphism: The ML/LCF/Hope

Newsletter I.

Cardelli L., Wegner P. [1985] "On understanding types, data abstraction, and polymorphism",

4 8

ACM Comp. Surveys, 17, 4.

Church A. [1932-3] "A set of partulates for the Foundation of Logic" Annals of Math. XXXIII

(348-349) and XXXIV (839-864).

Church A., [1940] "A formalisation of the simple theory of types" J. Symb. Logic 5, pp. 56-58.

Church A. [1941] The Calculi of Lambda Conversion, Princeton Univ. Press, reprinted 1963

by University Microfilms Inc., Ann Arbor, Michigan, U.S.A.

Church A., Rosser J.[1936] "Some properties of conversion", Trans. A.M.S. 39 (472-482).

Constable R.L. and Zlatin D.R. [1984] "The type theory of PL/CV3". ACM Trans. Prog. Lang.

Sys., v.7, n.1 pages 72-93.

Coppo, M. [1984] "Completeness of type assignment in continuous lambda-models," Theor.

Comp. Sci. 29 (309-324).

Coppo M., Dezani M. [1979] "A new type assignment for lambda terms," Archiv Math. Logik

19, (139-156).

Coppo M., Dezani M., Honsell F., Longo G. [1984] "Extended Type structures and filters lambda

models," Logic Colloquium 82 (Lolli, Longo, Marcja eds.), North-Holland, Studies in Logic

112, (241-262).

Cousineau G., Curein P.L., Mauny M. [1985] "The categorical Abstract Machine" LITP, CNRS-

Paris 7, Janvier 1985.

Curry H. B., Hindley J. R., Seldin J. [1972] Combinatory Logic vol. II , North-Holland.

Damas A. [1985] "Tye disciplines in Programming Languages" Ph. D. Thesis, Comp. Sci. Dept.,

Edinburgh.

Girard J.Y.[1986] Book on Proof Theory in preparation for Bibliopolis.

Girard J.Y.[1987] "Linear Logic", TCS, to appear.

4 9

Gordon M., Milner R., Wadsworth C.[1979] Edindurgh LCF , LNCS 78, Springer-Verlag.

van Heijenoort J. (ed.) [1967] "From Frege to Gödel," Harvard University Press.

Hindley, R. [1969] "The principal type-scheme of an object in Combinatory Logic," Trans.

A.M.S., 146 (22-60).

Hindley, R. [1983] "The completeness theorem for typing lambda-terms," Theor. Comp. Sci. 22

1-17 (also TCS 22, pp. 127-133).

Hindley R., Longo G. [1980] "Lambda-calculus models and extensionality," Zeit. Math.

Logik Grund. Math. n. 2, vol. 26 (289-310).

Hindley R., Seldin, J. (eds.) [1980] To H.B. Curry: Essays in Combinatory Logic,

Lambda calculus and formalism, Academic Press.

Hindley R., Seldin J. [1986] Introduction to Combinators and Lambda-Calculus, London

Mathematical Society.

Hyland M. [1976] "A syntactic characterization of the equality in some models of lambda calculus"

J. London Math. Soc. 2, 12.

Jones N.[1980] (ed.) Semantics-Directed Compiler Generation, LNCS 94, Springer-Verlag.

Johnstone P. [1977] Topos Theory. Academic Press.

Leivant, D. [1983] "Polymorphic type inference", 1oth ACM Symposium on Principles o f

Prog. Langs., publ. ACM, (pp.88-98).

Longo, G. [1983] "Set-Theoretical Models of Lambda-calculus: Theories, Expansions, Isomor-

phisms," Annals Pure Applied Logic vol. 24, (153-188).

Longo, G. [1984] "Continuous structures and analytic methods in Computer Science," Lecture

delivered at Coll. on Trees in Algebra and Programming, Bordeaux (Courcelle ed.)

Cambridge University Press, 1984 (pp. 1-22).

5 0

Luke-Ong[1987] Ph. D. Thesis, Comp. Sci. Dept., Imperial College, London (in preparation).

MacQueen D.B. [1986] "Using Dependent Types to Express Modular Structure". In 13th ACM

Symposium on Principles of Programming Languages.

Meyer A. R., Mitchell J., Moggi E., Statman R. [1987] "Empty types in polymorphic lambda

calculus" (ACM Conference on) POPL '87 , Münich.

Meyer, A. R. Reinhold, M.B.[1986] "Type is not a type" , Proc. Popl 86, ACM.

Milner R. [1978] "A theory of type polymorphism in programming," Journal of Computer and

Systems Sci., 3 (348-375).

Milner, R. [1986] "Is computing an experimental Science?" Inaugural lecture for the LFCS,

Edinburgh.

Mitchell, J. C. [1984] "Type inference and type containment", Symposium on Semantics o f

Data Types (Kahn, MacQueen, Plotkin eds.),SLNCS 173, Springer-Verlag (257-278).

Mitchell J. C., Plotkin G. [1985] "Abstract types have exixtential types" Proc. POPL 85, ACM

(ACM - TOPLAS, to appear).

Mulmuley K. [1985] "Full abstraction and semantic equivalence" Ph. D. Thesis, Comp. Sci. Dept.,

C.M.U..

Odifredi P.G. [1986] "Church's Thesis: The extent of Recursiveness in The Universe and Man" Dip.

di Informatica, Torino.

Odifredi P.G. [1987] Classical Recursion Theory, North-Holland.

Reynolds J. [1974], "Towards a theory of type structures," Colloque sur la Programmation,

LNCS 19, Springer-Verlag (pp. 408-425).

Reynolds J.C. [1985] "Three approaches to type structure," SLNCS 185, (pp. 145-146).

5 1

Scott D. [1980a] "Lamda-calculus, some models, some philosophy," The Kleene Symposium

(Barwise et al. eds.) North-Holland.

Statman R. [1979] "Intuitionistic propositional Logic is Polynomial time complete" Theor. Comp.

Sci. 9, pp. 67-72.

Statman R. [1980] "Completeness, invariance and lambda-definability," J. Symb. Logic 47, 1 ,

(pp. 17-26).

Statman R. [1985] "Equality between functionals revisited" in H. Friedman's research on the

found. of Math. (Harrington et al. eds), North Holland.

Troesltra A.S. [1973] " Notes in intutionistic second order atithmetic," Cambridge Summer School

in Math Logic, Springer LNM 337 (pp. 171-203).

Troelstra A. [1973] Metamathematical investigation of Intuitionistic Arithmetic and

Analysis. LNM 344 , Springer-Verlag, Berlin.

Troelstra A.S. and van Dalen D. (eds) [1982] The L.E.J. Brouwer Centenary Simposium,

Studies in Logic 110, North-Holland.

Turner R. [1984] Logics for Artificial Intelligence . Halsted Press (John Wiley & Sons), New

York, 1984.

Wadsworth C.P. [1976] " The relation between computational and denotational properties for Scott's
D∞-models of the lambda-calculus," S.I.A.M. J. Computing 5 (pp.488-521).

