Giuseppe Longo

The Lambda-Calculus: connections to higher type Recursion Theory, Proof-Theory, Category Theory 1

an algorithm, within the intended formalism, whose complete implementation is left to the reader. This a very common and well established use of informal reasoning in Mathematics: by a frequent, but sound, reference to it, that book can summarize hundreds of results in a difficult area. Probably, from a "non human" point of view, from the point of view of a computer, say, ninety per cent of Mathematics is just "hand waving". This has nothing to do, though, with Church's methodological stand on the maximality of the expressiveness of hilbertian formalisms for computations. This lecture will begin with classical computability and soon go further towards more general structures. Indeed, the point I want to raise here, following the original program of Church, is that lambda calculus is not just one of the many formalisms for computations, but should be looked at as the core Formal Theory of (computable) Functions and Functionals similarly as Peano Arithmetic is the core Formal Theory of Numbers. And numbers are as relevant in Mathematics and its foundation as much as functions are relevant in constructive proofs, categories, computations.

The foundational role of λ-calculus will be stressed by giving a brief survey of the main connections between λ-calculus and three major areas in Logic: higher type Recursion Theory, Category Theory, Proof Theory. These relations will be understood in a unified framework designed by the underlying mathematical structures, which give mathematical meaning to the terms of typed and type-free λ-calculi.

Church originally proposed a calculus of type-free terms: the "fregean paradise" of a type-free the ideas in Logic of Girard and Martin-Löf, have types become an even more successful area. In this paper we will restrict our attention to the "theory of types" of λ-calculus, as the relevant kernel of Type Theory.

). More precisely, types help avoiding paradoxes in Logic as well as protecting from errors in programming.

Type-checking is one of the very few actually implemented partial correctness algorithms since it gives effective and significant partial correctness proofs of programs (Gordon&al[1979], Nordstrom [1981], Burstall&Lampson[1984]). It may be sound to compare type-checking to "dimension analysis" in Physics, both because types are very much like "dimensions", and because the analysis of dimensions is a commonly used tool for partial correcteness of mathematical computations in Phisics, similarly as in Programming. Besides this specific but relevant point, λ-calculus provided the core of functional languages and their type disciplines, whose practical success is due to their suitability for solving or focusing many of the concerns of actual computing. As a matter of fact, the practical relevance of λ-calculus and Type Theory for computing goes together with the variety and depth of the Mathematics involved. In particular, it largely depends on those results which relate this topic to other areas, since the richness of the theory directly embeds into the expressiveness and the facilities of actual programming, by suggesting extensions or modifications or even the design of new programming languages (further references will be given in the Conclusion).

As Mathematics is relevant when it is both beautiful and applicable, I think that the founders of λcalculus and related systems should be happy with all of this.

Introduction

Church proposed his calculus of λ-conversion as "A set of postulates for the Foundation of Logic" (Church[1932-3]). Church's ideas and program were part of the leading Hilbert's school, at the time, whose aim was still a unified formalist approach to the foundation of Mathematics. In the following years, though, the growth of Recursion Theory, which soon became an independent mathematical discipline, led many authors to consider mostly the computational power of λ-calculus, i.e. its expresiveness in terms of the definable class of number-theoretic functions. Church himself, in view of the results of Kleene and Turing, proposed his welknown "Thesis", which is intended to characterize the computational power of finitistic systems (see Odifreddi[1986] for an updated discussion). This lecture is not concerned with the issue of "computability" as focused by Church's Thesis; however, the relevance of this claim on the expressiveness of formal systems must be acknowledged. On one side it sets a limit to feasible computations by finitistic methods, on the other it suggests that there is no other reasonable understanding of computability, besides the one established within the Hilbert -Brouwer lively debate in the twenties and early thirties. Almost everybody agrees nowadays that, as long as we do not have a counterexample, we may rely on Church's Thesis, provided that its use is not mathematically misleading. Namely, the philosophical point raised by the Thesis is surely crucial, but do we really need it when working out results ? In case a new system for general computations is proposed, it is then better to check carefully whether it still computes exactly the classically computable functions (what a discovery if it were not so !). If, instead, one is using a well established formal system, such as λ-calculus or Turing Machines, "hand waving" or "short cuts" should not be confused with reference to Church's Thesis. Hartley Rogers' book on Recursion Theory, for example, makes very little use of Church's Thesis, even if it is mentioned very frequently. Most of the time, an argument is only based on an incomplete sketch of 1 A short course in λ-calculus, University of Rome I, Spring 1998 ; these notes are based on an invited lecture delivered at the Conference, "Church's Thesis after 50 years" Zeiss (NL), June 1986 (On Church's Formal Theory of Functions and Functionals, published in Annals Pure Appl. Logic, 40: 93-133, 1988).

On church's formal theory of functions and functionals:

universe always fascinated logicians. But, when flying too high in order to comprehend as much as possible, one may have the wings burned: the first system invented by Church led to contradictions.

Inconsistencies, though, frequently occur in early versions of interesting formal systems: Frege's set theory, Church's "set of postulates", Martin-Löf's type theory were all inconsistent. This was due on the breadth of the mathematical intuition required to handle the structures they had in mind, on their importance and on the interconnections whith the rest of Mathematics: the more these are, the more it may happen that the first formalization is excessively powerful.

The inconsistent version of λ-calculus was later "repaired" in two different ways, which started separeted branches of the topic. Firstly, by reducing the logical expressiveness of the untyped calculus (see Curry&al[1958Curry&al[,1972]] or §.3). Secondly, by introducing types, according to Russell's answer to inconsistencies (Church[1940], Curry&Feys [1958]).

For a while, the challenges and the still strong expressiveness of the type-free calculus attracted more researchers than its typed counterpart. Scott's model of λ-calculus which started "denotational semantics" in Computer Science was a model of the type-free calculus; the entire book of Barendregt [START_REF] Barendregt | The lambda calculus; its syntax and semantics, Revised and expanded edition[END_REF]) is devoted to results in the type-free theory. Only in the last few years, mostly because of the practical success of typed functional languages and of the computer-science interest in As it should be clear by now, the focus of this lecture will be more on the interface of λ-calculus with other theories than on its "pure theory". By this one usually means the technical results inside the field, such as the Church-Rosser's theorem or Böhm's theorem or others based on the specific syntax of the system. This is clearly an extremely relevant area, as λ-calculus, among the various formalisms for computability suggested in the thirties, is the only one with plenty of interesting "machine dependent" results: one should consult [START_REF] Barendregt | The lambda calculus; its syntax and semantics, Revised and expanded edition[END_REF] in order to appreciate the varity and depth of the work carried within this specific formal system. Also in this case, the point is that, more than a formalization of a "computing device" or a toy programming language, λ-calculus is and has to be viewed as the formalization of the abstract notion of function, including higher type and higher order functions; thus, the results of the formal theory often turn out to be relevant in applications or in the general understanding of functional behaviour. By this and by the connections discussed below, there should be no doubt that looking at λ-calculus just as one of the many formalisms for computing the partial recursive functions is like being interested in Peano Arithmetic only because one can represent that class of functions in it and forget its foundational relevance as Formal Theory of Numbers. This presentation will begin with very elementary tools and little mathematical structure: the natural numbers and the partial recursive functions on them, as the least class containing the usual base functions and closed under composition, primitive recursion and minimalization. A recursion theoretic and constructive perspective (in the sense of Intuitionistic Logic) will be stressed as structures invented for the semantics of typed and type-free λ-calculus will be looked at within a constructive frame. In particular, an inductive construction of higher type computations will be given and then studied within the very simple category of countable (and numbered) sets, in the sense of Malcev, §1; then "subcountable" and still effective sets will be investigated, the quotient subsets of numbers, §2. The formalization of these structures as categories, §3, will lead us to λ-calculus and higher order type theories, §4, and, finally, to their (constructive) models, §5. In particular, §5 presents and discusses models of second order λ-calculus over "retractions" and quotient sets in the same framework; by this some connections are pointed out.

An "organized" bibliography concludes the paper: the references are classified into four parts, according to the three interconnecting areas they roughly belong to (plus one for general references).

Thus, Scott[II-1980], say, may be found in Part II, while [START_REF] Church | A set of partulates for the Foundation of Logic[END_REF] is in the final group. A preliminary version of parts of this lecture was presented at the "Logic and Computer Science" Conference (Torino, October, 1986;Rendic. Sem. Matem. Torino, in print).

From gödel-numberings to higher types.

As promised, we begin with very simple notions and structures: natural numbers, pairings, gödelnumberings. With these elementary tools we will define higher type computations.

Let ω be the natural numbers and < , > : ω 2 ←→ ω any bijective (primitive) recursive coding of pairs; denote by λxy⋅g(x,y) the map <x,y> |→ g(x,y). As usual, (P)R are the (partial) recursive functions. A simple observation may help to understand the intuition on which definition 1.1 below is based.

Note: for any (acceptable) goedel-numbering φ : ω → PR , (P.1.5) λxy.φ(x)(y)∈PR .

(P.1.5) is satisfied by any gödel-numbering, but does not characterize them: it simply tells us that the universal function for PR is still in PR . Set now C (0) = ω, C (1) = PR. The idea is to use property (P.1.5) as a definition for a class C (1.5) of total functions in C (0) → C (1) and inherit this at higher types (see 1.12 on partiality vs. totality). More precisely, we will define, for each n , a set of functions C (n+1) ⊆ C (n) → C (n) , the Hereditary Partial Effective Functionals, by inductively using a set C (n.5) ⊆ C (n-1) → C (n) . (HPEF;Longo[I-1982]). (i) Let φ : C (n-1) → C (n) . Then φ∈C (n.5) ⇔ λxy⋅φ (x)(y) ∈C (n) .

Definition

(ii) Let τ : C (n) → C (n) . Then τ ∈C (n+1) ⇔ ∀ φ∈C (n.5) τ °φ∈C (n.5) .

In order to understand definition 1.1, the reader should first check the types of the functions in C (n.5) . However, there is a crucial hidden point in the two lines definition of the HPEF: they are well defined provided that at each higher type one can give a "coding of pairs". More exactly, for each n , in analogy to ωxω ≅ ω via < , > , an "acceptable" isomorphism

(2) C (n) xC (n) ≅ C (n)
must be found in order to set (i) in the definition (actually, a retraction, in the sense of 3.5, may suffice). Our elementary tools are sufficient to understand, quite in general, what "acceptable" means.

1.2 Definition. Let U be a set and F ⊆ U→U. Then < , > : UxU → U is an acceptable pairing w.r.t. F if:

1) ∃ p 1 , p 2 ∈F ∀x 1 ,x 2 ∈U p i (<x 1 ,x 2 >) = x i (p i total).
2) ∀f , g ∈F λx.<f(x), g(x)>∈F.

Thus we need to define at each type n an acceptable pairing w.r.t. type n+1; this is what we assumed at type 0, the numbers, w.r.t. type 1 , the partial recursive functions. Before getting into this, there is another well known property at type 0 and 1 , which one may hope to inherit at higher types as well.

Remark (s-m-n theorem): for any gödel-numbering φ 1 : ω →C (1) , one has

(3) ∀φ∈ C (1.5) ∃f ∈ C (1) φ = φ 1 of.
This generalizes at higher types as follows.

(

) ∀n > 0 ∃φ n ∈ C (n.5) ∀φ∈ C (n.5) ∃f n ∈ C (n) φ = φ n of n . 4
Observe that, if (4) holds, then each C (n) is countable, as φ n must be surjective. Thus, in order to prove (2) and (4) one may try to work within a category of countable objects and "effective" morphisms. A good candidate for this could be Malcev's category EN of numbered sets (enumerations), the simplest generalization of Recursion Theory to an abstract setting. Clearly, EN is a category and it has several interesting (closure) properties. For example, one can look at the product of two numbered sets as a numbered set itself: just enumerate the product by using the given bijective pairing of numbers. However, since we are interested in higher type computations, as given by the HPEF, we need also other kinds of higher type objects, such as exponentiations, in the category. Unfortunately, there is no general way to enumerate the set of morphisms of two arbitrary objects in EN, if one wants that products and the representation of mophisms spaces commute in the sense of Cartesian Closed Categories, i.e. EN[

Α × Β , C] ≅ EN[Α , C B]. Consider, say, ω = (ω,id) as a (trivially) numbered set. Then, EN[ω , ω] = R. This is surely a countable set, but for no enumeration e R and R =(R,e R), one has EN[ω x ω , ω] ≅ EN[ω , R]
, as e R would be an effective enumeration of R, which is impossible; or, if preferred, the "uncurrying" u of e R , u(n,m) = e R (n)(m) , would be a computable universal function for R.

One may think of two main ways to preserve the effective flavour of the category EN and obtain the required closure properties which guaranty the existence of higher type objects in the category: the first is to look inside EN, the other is to extend EN in order to to get Cartesian Closure without loosing the simplicity of this category.

Scott and Ershov suggested a way to stay inside EN. As we want the HPEF to satisfy property (4) , this is also what we are looking for. Observe that Scott's motivation was the construction of mathematical structures where one could interpret languages for computer programming; as programs compute (possibly higher type) functions, the idea was related to generalized computability as well. Ershov, partly following earlier work of Scott, wanted to relate in a unified mathematical framework the ideas of Kleene and Kreisel for Higher Type Recursion Theory, a topic in turn motivated by the semantics of Intuitionistic Logic (see Scott[I-1970Scott[I- ,1976Scott[I- ,1982]], Ershov [I-1976]; surveys may be found in Smyth[I-1977], Giannini&Longo [I-1984] and many others).

The interesting point is that both authors used, in some essential way, topological properties in their work. That is, some numbered sets are picked up according to some extra structure they can be given, based on a topological notion of convergence (approximation). Clearly, the effectively given domain in 1.5, X = (X,X o ,e o ,≤), is uniquely determined (up to isomorphisms) by X c , and conversely, since a domain is the completion over all directed sets of its base set X o , while a constructive domain X c = (X c ,X o ,e o ,≤) is the completion only over all r.e. directed subsets of X 0 (use for this the decidability of e 0 (n)≤e 0 (m)). By the latter property, one can easily and effectively enumerate the entire poset X c , i.e. one may define canonically a surjective map e: ω → X c by using the properties of e o and an enumeration of the r.e. sets (see Weyrauch[I-1981] and Giannini&Longo [I-1984], for details). Clearly, e doesn't need to be injective. Take for example the constructive domain (PR,PR o ,ϕ o ,≤) of the partial recursive functions: in this case the compact elements, PR o , are given by the functions with a finite graph, enumerated in some canonical way, ϕ o , say. Then ϕ:ω→PR is just an (acceptable) gödel-numbering. The same applies to the domain of r.e. sets. Observe then that any (constructive) domain X has a least element ⊥ X , say, as ∅ is directed. By this, w = (w, id) , with the identical enumeration, is not a cconstructive domain (see remark 2.3).

From now on, we consider each constructive domain X c also a numbered set (X c , e) , where e is derived from e o as mentioned. However, any such numbered set X c happens to have some "structure", the partial order and the topology, which nicely relate by

(Poset) ∀x,y∈X c (x≤y ⇔ (∀A∈τ s x∈A ⇒ y∈A)) .
Moreover, these topological tools define the usual set of continuous functions; they turn out to be exactly the monotone functions which commute w.r. The lemma and the theorem essentially prove that the "compactness" and "effectiveness" properties of X o , in a fixed constructive domain X c , are inherited at higher types: this is obvious for cartesian products (and implicit in 1.7), hints were given for the construction of the compact elements in function spaces. As already mentioned, "compactness", as given in (4), characterizes the finite elements in any powerset; however, another characterizing property of finite sets (or of functions with finite domain) is lost at higher types:

1.8 Remark. In any powerset (or subposet of it), exactly the finite sets have finitely many subsets. This is not thrue if one considers the compact elements of an arbitrary effective poset. Indeed, take a (constructive) domain X 1 with an infinite collection of pairwise incompatible elements or with an infinite ascending chain, and set X n+1 = CD[X n , X n]; then, for any n>1 and x o ∈(X n) o , ^x0 is infinite. This can be easely understood, by observing that any step function step ab is antimonotone in a .

Recently, Girard[II-1985], following Berry[II-1979], suggested to consider a subcategory of Scott's domains, the qualitative domains, made out of subsets of powersets and where only some continuous functions are morphisms: the "stable" functions, which preserve also finite intersections of compatible elements As an elegant consequence, one then has that in any type each compact element x has a finite ^x . Stable functions originated in Berry[II-1979] and have some deep connections with Girard's ideas in Proof Theory, as his dilators similarly preserve pullbacks and direct limits (see [START_REF] Girard | Book on Proof Theory in preparation for Bibliopolis[END_REF]); moreover, an insight is also given into sequentiality, as stable functions are tidily related to sequentiality (see Berry&Curien[1982]). This seems to suggest an alternative approach to higher type recursion, still to be explored, since the crucial 1.10 below doesn't hold any more (see Asperti[I-1987] for some preliminary work).

As pointed out, every object in CD is a numbered set; thus CD is a subcategory of Malcev's EN. The point is to understand how the definition of morphism in EN, which is so tidely effective and is only based on the recursive functions, and the morphisms in CD, which are particular continuous functions, relate.

In should be clear by now that the role of continuity comes in quite smoothly from considering a functional f to be computable when it is continuous, i.e. it computes with compact approximations (which are finitely coded) of its (possibly infinite) input (i.e. f(x) = sup{f(^x)}) and f itself is the r.e. limit of its compact approximants in its own type.

The next lemma clarifies how Geometry and Recursion Theory relate over constructive domains. Given a numbered set (X,e) , observe first that the set { A⊆X / e -1 (A) is r.e.} satisfies the requiremennts for a topological base. Call the induced topology the Malcev-Ershov topology.

1.9 Lemma (Generalized Rice-Shapiro Theorem). Let X = (X,X o ,e o ,≤) be in CD . Then the

Scott topology on (X,≤) coincides with the Malcev-Ershov topology on (X,e).

Note that the Malcev-Ershov topology comes from Recursion Theory and has little to do with approximation and orders. (Poset) above, say, defines a non trivial partial order iff the topology is T o , which does not need to hold outside CD. Moreover, each morphism in EN turns out to be continuous, w.r.t. this topology, just by an obvious recursion theoretic argument (the inverse image of an r.e. set by a recursive function is r.e.). A proof of 1.9 may be found in Giannini& Longo[I-1984] or in Rosolini[II-1986]. In the latter, this discussion is carried on in a sound categorytheoretic setting, by considering categorical models of Intuitionistic Logic. This evidenciates also the connections to the constructive aspects of the metamathematical frame: for example, the proof of 1.9 is intuitionistically acceptable provided that Markov principle is considered (see [START_REF] Beeson | Foundations of Constructive Mathematics[END_REF],

Hyland [II-1982], McCarty[I-1984]). The significance of 1.9 is that the Scott topology, which is apparently added as extra structure, is indeed inherited by suitable enumerations of the objects of CD, as numbered sets.

From the lemma one may easily derive a precise connection between continuity and effectiveness for functions. Namely, that the morphisms between (X,e) and (Y,e') as constructive domains, which are continuous maps, coincide with the morphisms between (X,e) and (Y,e') as numbered sets, which are recursive functions over indices:

1.10 Theorem (Generalized Myhill-Shepherdson). The CCC CD is a full subCategory of EN .

(Proof of the key point: Let X , Y ∈Ob CD ⊆Ob EN and f∈EN[X , Y] ; then f is continuous by the lemma and the subsequent observation).

Again, the relevance of these facts is based on the naturalness of the partial order on (constructive) domains and, thus, of the induced topology (see (Poset) above): these are not defined "ad hoc" for the purposes of 1.9 or 1.0, but come out of obvious generalizations of set inclusion. !.9 and 1.10 are the mathematical reason for the common motto in denotational semantics of programming languages: "the computable functions and functionals are continuous".

CD has further interesting properties, which do not hold in EN: for example, CD is closed under inverse limits of projections and limits are also preserved by the product and exponentiation functors. By this, say, one may construct countable models of the type-free λ-calculus, as there are objects in CD which satisfy equations such as X ≅ X X (see Smyth[I-1977], Kanda [I-1979], Smyth&

Plotkin [II-1982], Giannini&Longo [I-1984]).

We finally are in the position to understand the properties of the HPEF and, in particular, to check the crucial facts conjectured in (2) and (4) above (listed under (2) and (4) also in 1.11 below). This is done by using the full and faithful embedding of CD in EN.

Let P (1) be the (effectively given) domain of the partial number theoretic functions and set P (n+1) =Cont(P (n) ,P (n)) . {P (n) c / n∈ω } are exactly the Ershov-Scott higher type partial computable functionals, i.e. the (integer) type structure in CD generated by PR , the partial recursive functions, as P c =PR .

1.11 Theorem. For all n>1, 1) C (n) =P (n) c 2) C (n) xC (n) ≅ C (n) in CD . 3) C (n.5) = Cont(P (n) , P (n+1)) c 4) ∃ϕ n ∈C (n.5) ∀ϕ∈C (n.5) ∃f n ∈C (n) ϕ = ϕ n o f n .
(The proof goes by combined induction and by an "essential" use of 1.10 and may be found in Longo&Moggi [I-1984] or, in a more categorical style, in Rosolini[II-1986])

From 1.11(2) it immediately follows that the isomorphism

C (n) xC (n) ≅ C (n) is acceptable w.r.t C (n+1) , in the sense of 1.2.
Theorem 1.11 should convince the reader of two facts. First, by the HPEF one can get at higher types by very elementary tools, with no apparent use, in the definition, of categories, continuity or whatsoever. However, topological and related notions seem to be essential for proving even the countability of the type structure so easily defined (point 4 above). In a sense, one may say that the HPEF are defined in a purely combinatorial or algebraic way, while analytic tools come in the proofs (see Longo[1984]). Second, Scott and Ershov definition of higher type computable functions is indeed a very natural one as it may be recovered by 1.1, i.e. just starting with PR and an acceptable gödel-numbering of it. The way these partial functionals relate to the total "countable and continuous" functionals of Kleene and Kreisel is established in Ershov[I-1976] and Longo& Moggi[I-1984].

1.12 Remark (Why are the HPEF partial ?). Indeed, definition 1.1 begins with PR which is a set of partial maps. However the functions in C (1.5) are total, as defined, and thus the same are the maps in C (2) , C (2.5) etc. Why do we soundly call them partial ? Of course, the same can be said of the morphisms in the frame category CD: they are total morphisms as well, though we all agree that they define partial higher type computations. At an informal level the answer is very simple: beginning with the domain of type 1, i.e. PR, each higher type has a least element, the empty set (or the function with the empty graph). This is usually considered as the interpretation of "divergence" in the corresponding type. More rigourously, this may be understood in category theoretic terms. It is not difficult to define categories of partial morphisms, in the proper sense of "possibly not defined maps" (see Rosolini[II-1986], Robinson&Rosolini [II-1987] and Moggi[1987] for recent approaches, surveys and references, but the reader should just trust his intuition for a definition). In one such a category C , one may easily define a "lifting functor" _⊥ by the natural isomorphism

C T [A,B ⊥] ≅ C[A,B]
, where C T are the total morphisms. This simply says that ⊥ "interpret" the divergence, as the partial maps with target B are the same as the total ones with target B ⊥ . In Longo& Moggi[II-1984a] a new categorical notion is derived from this; namely, in a partial category, an object B is complete iff B<B ⊥ , i.e. B is a retract of its lifting (see also Asperti&Longo [II- 1986] for an updated presentation and some applications).

From countable to subcountable sets

The basic idea in the definition of the subCategory CD of EN was the choice of some structured objects in EN which could form a category with enough closure properties as for the purposes of higher type computations. The suggested structures were topological ones.

As pointed out in §1, there are many countable sets which cannot be soundly enumerated in the category EN; as an example we mentioned the set R of the total recursive functions. In a sense though, one may say that R , even if not (effectively) countable, is "subcountable", i.e. it can be (effectively) enumerated by a subset of ω . The second idea one may think of, then, is to enlarge the category EN as to include this sorts of exponents (function spaces), i.e. sets (effectively) enumerated by subsets of ω .

Observe first that any numbered set defines an equivalence relation on ω (and, thus, a quotient of ω) and, conversely, any equivalence relation on ω uniquely determines a numbered set: just set to be equivalent any two numbers which code the same element and viceversa. Indeed, from now on, any numbered set A =(A,e A) will be equivalently referred to as a quotient A of ω , where n A m iff e A (n) = e A (m).

Clearly, given numbered sets A and B , not any f'∈R induces an f∈EN[A,B] , as f' must preserve A -equivalences: that is one must have n A m ⇒ f'(n) B f'(m). This suggests a way to introduce higher type objects and thus to define a cartesian closed extension of EN.

Let {ϕ i } i∈ω be an acceptable goedel-numbering of PR. Define then

(Quot.) p B A q iff n A m ⇒ ϕ p (n) B ϕ q (m) .
A B is a partial equivalence relation on ω, as it is defined on a subset of ω. Indeed, for A , B non trivial, dom(B A) = {p / p B A p } ≠ ω, and a partial numbering (i.e. a partial surjective map)

π AB : dom(B A) → B A is given by π AB (n) = {m/ n B A m}. Of course, dom(π A) = dom(A).
In general, given a set C , each partial surjective π: ω → C (or partial numbering) uniquely defines a partial equivalence relation (and conversely). It may be fair to call these new objects "modest", as suggested by Scott, as they are just and simply (quotient) subsets of ω .

2.1 Definition. The category M of partial equivalence relations on ω (the modest sets) has as objects the subsets of ω modulo an equivalence relation. Given objects A = (A,π A) and B = (B,π B) , where π A , π B are partial numberings, the morphisms are defined by

f∈M[A,B] iff ∃f'∈PR f ° π A = π B°f ' .
As f∈M[A,B] is total, one has that dom(f') ⊃ dom(A).

Note that the representative B A of M[A , B] is partially enumerated by the quotient subset of ω determined by the partial relation B A (see (Quot.) above). That is, π

AB (i) = f iff f ° π A = π B° ϕ i .
By this, one obtains, for example, a partial, but effective, enumeration of R = ω ω by a surjective map defined on a subset of ω .

Theorem. M is a CCC and includes EN as a full subCartesian Category.

Indeed, one may prove, by using also 1.10 , that the full and faithful embedding from CD into EN and, then, into M is such as to preserve products and exponentiations from CD into M. M is a natural generalization of the Hereditary Extensional Operations (HEO) in [START_REF] Troelstra | Metamathematical investigation of Intuitionistic Arithmetic and Analysis[END_REF], where they are introduced for the purposes of Intuitionistic Logic and its Proof Theory (see also Girard[III-1972] and §.5 below).

In Computer Science, M is also known as the quotient set semantics of types over ω, following the ideas in Scott[I-1976] on λ-models (see also [START_REF] Hindley | The completeness theorem for typing lambda-terms[END_REF], [START_REF] Coppo | Completeness of type assignment in continuous lambda-models[END_REF], Longo& Moggi[II-1986] for details and further work on arbitrary (partial) combinatory algebras).

Remark.

Observe that PR and R are enumerated in M in entirely different ways. As mentioned in several places, R does not live in CD , while PR cannot be enumerated as an object of M by similar tricks as hinted above for R : the maps in PR are partial, while we are looking at categories with total maps as morphisms, as usual (see 2.1). The idea is to extend ω to ω ⊥ in CD by adding a least, undefined, element ⊥ and enumerate ω ⊥ following the procedure suggested for constructive domains, based on the enumeration of the compact elements (see after 1.5); ⊥ , say, turns out to be coded by the complement of an r.e. non recursive set (see Spreen[I-1984] and Asperti&Longo [II-1986] for details). By this the enumeration of PR satisfies the s-m-n theorem, a weakly universal properties, whose generalization was relevant for the definition of the HPEF (see the discussion between 1.2 and 1.3). Note that this way of enumerating objects which gives the classical gödel-numberings in case of PR, is also required, quite generally, for the sake of 1.9 and also gives the functorial embedding of CD into M which preserves products and, hence, exponentials.

The formal theory of functions

In §.1 and 2 we have been looking at mathematical generalizations to higher types of the notion of function on a ground type of data. This was done on countable sets, because of the foundational motivations for constructive aspects of Logic and for Computer Science we assumed. Moreover, that work has some mathematical relevance in view of the new structures and the general frame proposed. It may be then the case to formalize in a theory of functions the key properties we dealt with.

Functions may be based on three main notions: application, abstraction and tupling (in order to handle several arguments functions). That is, (App) -apply a function f to an argument a : f(a) (Abs) -abstract a function from an expression f(x) , possibly depending on a variable x : λx.f(x) (Pair) -construct a pair from elements a, b : (a,b) .

These notions need now to be formalized and typed. Let then At be a set of atomic type symbols and let Type be the least set containing At and such that: σ, τ∈Type ⇒ σ→τ, σ×τ∈Type .

Definition (Typed λ-terms).

x σ (variable of type σ)

(M σ→τ N σ) τ (λx σ .M τ) σ→τ (M σ , N τ) σ×τ fst(M σ×τ) σ snd(M σ×τ) τ .

Definition (Typed λ-calculus with surjective pairing

). The axioms of λ λ λ λβ β β βη η η ηSP t :

(β) (λx σ .M τ)N σ = [N σ /x σ]M τ (η) λx σ .M τ x σ = M τ (fst) fst(M σ ,N τ) = M σ (snd) snd(M σ , N τ) = N τ (SP) (fst(M σ×τ), snd(M σ×τ)) = M σ×τ .
The inference rules for λβηSP t are exactly what is needed to turn "=" into a congruence relation.

The next theorem sets some mathematical base to the claim concerning the relevance of λβηSP t as a theory of functions. Category Theory is often considered the alternative functional foundation for Mathematics, w.r.t.

Set Theory, as functions are first described and sets, if needed, are a derived concept. In particular, the theory of Cartesian Closed Categories, which contain function spaces, seems a sound setting for functionality. Theorem 3.3 proves that we may view types as objects, in the sense of Categories.

Theorem (Types-as-objects). The models of λβηSP t are exactly the (concrete) CCC's.

This result may be found in Lambek [II-1980], Scott[II-1980] (see also Lambek&Scott [II-1986],

Curien [II-1986], Breazu-Tannen&Meyer [II-1985]). Thus, we started with particular structures for higher type functions, then we formalized functionality and got to a formal Theory of (typed) Functions, λβηSP t . Similarly, mathematicians had first in mind particular structures (rotations of a cube, relative numbers....) and then invented Group Theory. Of course, Group Theory has many more models than those; in the same way, there are many more CCC's than CD or M. However, these specific models have some further relations to the theory, as they are defined by using the class of (partial) recursive number-theoretic functions, which are exactly the formally definable functions in the type-free λ-calculus, λ λ λ λβ β β βη η η η .

Indeed, when first formalizing the intuitive notion of computation and suggesting a language for the foundation of Mathematics, Church did not consider types. That is, λβηSP is defined just by erasing type constraints in term formation rules (λβη in Church[1941] does not have (SP) either).

The ambition was to live in a type-free Fregean paradise and preserve as much expressiveness of Mathematics as possible.

Shoenfinkel and Curry had an other idea on how to describe functions (and Mathematics), in a typeless way: (Combinatory Logic, CL). Terms of CL are variables x, y...

Definition

S, K (MN) .

The axioms are:

(KM)N = M ((SP)Q)R = (PR)(QR) .
When adding (ext) Mx = Nx ⇒ M =N to the obvious inference rules for "=", CL(ext) turns out to be equivalent to λβη (see Hindley&Seldin[1986]). For the key step write is such that YM = M(YM). Thus the original system of Church, which included a term representing negation, led to a paradox. Once this excess in expressiveness was eliminated, the consistency of λβη could be proved by purely syntactic tools (Church&Rosser[1936]). However, even though these calculi were designed in order to formalize meaningful notions from Mathematics, formalization and syntax went beyond Mathematics; that is, no mathematical model was known till Scott's construction (Scott[II-1972]).

Let's understand it in the following way.

Clearly, any model of CL, the weakest theory (see below), is an applicative structure (A, .) , as it must intepret formal application of type-free terms. Indeed, one may use any model (A, .) of CL, instead of Kleene's (ω, .) , and perform the same construction of the CCC M in 2.1 (see Longo& Moggi[II-1986]). Write M A for this relativized construction. Observe finally that in a CCC D any f∈D[A,A A] turns A into (A, .) by setting, informally, a . b = f(a)(b). [A,B] and j °i = id B (we write B < A via (i,j)). A morphism p∈C [A,B] is principal if ∀f∈C[A,B] ∃g∈C[A,A] f = p °g . Isomorphisms "≅" are well known.

Definition. Given objects A and B in a category C, a retraction pair from B into A is a pair (i,j) such that i∈C[B,A], j∈C

Theorem. Let C be a CCC and A an object of C. Then (1) A

A ≅ A ⇒ A is a model of λβη (2) A A < A ⇒ A is a model of λβ (3) ∃p∈C[A,A A] principal and A×A < A ⇒ A is a model of CL . Conversely, (1) A is a model of λβη ⇒ A A ≅ A in M A (2) A is a model of λβ ⇒ A A < A in M A (3) A is a model of CL ⇒ ∃p∈Μ A [A,A A] principal and A×A < A in M A .
It is easy to observe directly that A A < A implies ∃p∈C[A,A A] principal and A×A < A ; the converse does not hold, as CL is a weaker system than λβ .

The core of (1) and (2) in 3.6 is in Berry[II-1979], Koymans[II-1982] and Obtulowicz& Wiweger[II-1982] (as usual, though, the main reference for the type-free calculi is [START_REF] Barendregt | The lambda calculus; its syntax and semantics, Revised and expanded edition[END_REF]). In Scott [II-1972] a CCC was given, essentially a subcategory of Scott's domains, and an object A such that A ≅ A A .

(3) may be found in Longo&Moggi [II-1986], where principal morphisms were defined. (The HPEF and Category Theory). (i) Principal morphisms are not exactly "universal arrows", in the sense of Category Theory, since there is no request that g in definition 3.5 is unique. The reader may easily observe that principal morphisms are the category theoretic generalization of property (4) in 1.11, the key property on the "hereditary gödel-numbering" of type C (n+1) by type C (n) in the HPEF. This is where the notion originated.

Remark

(ii) There is some more Category Theory hidden in the HPEF: the intermediate type C (1.5) contains an implicit "currying-uncurrying" operation, the same which relates the universal function to the gödel-numbering of PR . The extension to C (n.5) in 1.2 gives a meaningful type-structure, once that the isomorphism 3) of 1.11 proves that the "currying-uncurrying" trick can be inherited at higher types. And the currying operation is the core of Cartesian Closure for categories. On the grounds of this observation Rosolini[II-1986] suggested an alternative very elegant proof of 1.11, where the hard, but elementary, work on enumerations and induction is distilled in a nice unified frame of topoi and Intuitionistic Logic (see the "Effective Topos" in §.5).

C (n) xC (n) ≅ C (n) in (
Surprisingly enough there is no known example of mathematical model of CL which is not a model of λβ (i.e. except for the term model)! In other words, any known structure satisfying the conditions in 3.6(3) does happen to yield a retraction, in the sense of 3.6(2). Of course, any gödelnumbering of PR is just a principal morphism which is not a retraction within CD (nor EN), as there is no computable inverse to a gödel-numbering. However, if one wants a model of CL , a total applicative structure is needed and, when extending ω to its lifting ω ⊥ (see 1.12), ω ⊥ ×ω ⊥ < ω ⊥ is clearly lost, in CD. The construction of one such a model would shed some structural light on the minimal conditions for functional completeness, besides the category theoretic notions of principal morphisms and "A×A<A" .

Note that 3.6 characterizes all the three basic type-free theories of functionality: CL, λβ, λβη. 3.3, instead, only characterizes typed λβη (plus SP). Indeed, typed λβ has some categorical meaning: weak CCC's, were the usual natural isomorphism C Hayashi[1986], [START_REF] Martini | Categorical models for typed and type-free non-extensional lambda-calculus and Combinatory Logic[END_REF]).

[AxB,C] ≅ C[A,C B] is only a natural retraction C[AxB,C] < C[A,C B] , characterize typed λβ (see
In conclusion, Categories fit nicely with effective type-structures and λ-calculus, both in the typed and untyped case. Observe also that one may look at type-free models as at special case of typed ones: namely, those CCC's which have a "reflexive" object, i.e. an object A such that A ≅ A A or the weaker properties in 3.6(2-3) hold. Conversely, from any type-free structure (A,.) one may recover the CCC M A .. This correspondence has a nice syntactic counterpart: type-free terms may be given a type, if any.

More precisely, there is an algorithm which decides whether a type-free term possesses a type and, if so, assigns it to the term [START_REF] Hindley | The principal type-scheme of an object in Combinatory Logic[END_REF]). The inference system for types to terms, due to Curry, is both sound and complete w.r.t. the semantics of types over type-free structures given by the M A construction. For this one may consult [START_REF] Hindley | The completeness theorem for typing lambda-terms[END_REF], [START_REF] Coppo | Completeness of type assignment in continuous lambda-models[END_REF] or Longo&Martini [1986]. In the latter completeness is shown by interpreting types and terms over a recursion theoretic typestructure (a special case of the M A model); this establishes further relations between λ-calculus and higher type Recursion Theory.

Remark (Some philosophy).

As the reader may have noticed, we gave priority here to a model-theoretic view point, as we went from structures to theories. A beautiful unified framework, from an alternative, formalist, perspective, may be found in Huet[I-1986]. The line we followed may be considered as the usual and historical path in Mathematics, for functions in extenso, such as in Geometry or Phisics, were known before Church and Curry's formalizations of the Theory of Functionality. Even if the latter authors had a computational, algorithmic approach in mind, the formalization in Geometry of mathematical structures was the paradigm Church explicily referred to in his foundational activity [START_REF] Church | A set of partulates for the Foundation of Logic[END_REF]).

However, purely formal descriptions and results added plenty of information to Mathematics. For example, the original ideas contained in Church's formalization of Function Theory, the λ-calculus, required the construction of new structures: the A ≅ A A models, say, which are non trivial Mathematics. In turn, models suggested "extensions" of the extant theories. λβηSP is the simplest example and it has, so far, only model-theoretic consistency proofs (see [START_REF] Barendregt | The lambda calculus; its syntax and semantics, Revised and expanded edition[END_REF]); a richer extension of λβη , also inspired by semantics, is given in Amadio&Longo [1986], for example. Besides extensions, structures sometimes suggest modifications of formal systems: a most relevant example is given by Girard's Linear Logic, where the meaning of "→" in qualitative domains (see 1.9) guided a rewriting of inference (Girard[II-1985,1987]).

The formal behaviour of computers raised syntactic descriptions into a prominent place. However, the blending and interaction of denotation and meaning is a matter of riches of human thought : this is why both perspectives and, in particular, their interplay are relevant.

From higher types to higher order

The working mathematician often makes assertions concerning arbitrary functions in a given collection (when describing integration, say) or arbitrary subsets of a given set (when dealing with all the directed subsets of a c.p.o., say) or even with arbitrary sets within a given category or class of sets (all c.p.o.'s have a least element...). In view of the analogy "types-as-objects" given by theorem 3.3, the latter quantification would formally correspond to the possibility of quantifying over arbitrary types.

In the previous section we have been dealing with a language for higher type functions. Functional abstraction (i.e. λx....) was defined w.r.t. to variables ranging over ground elements, functions, functionals and so on, in any finite higher type. Note that functional abstraction may be understood as a form of quantification; thus, as each boolean valued function determines a set, abstracting w.r.t. a variable which ranges over boolean valued functions is like quantifying over sets of a given type.

However, we were not allowed to quantify explicitly over types. Indeed, there is some implicit quantification over types in the systems mentioned at the end of §3. Church-Curry types are defined as type schemata: e.g. the identity λx.x has type schema α→α , i.e. λx.x has type σ→σ for any type σ, or the collection of its possible types is obtained by consistently instantiating α in α→α by every type.

Mathematical practice and this implicit use of quantification suggest a language where one could explicitly consider all types: thus, a higher order language.

The language (λ λ λ λ 2 2 2 2), whose core is described below, is a variant of the "system F" due to Girard[III-1972]. The system F was invented for the purposes of second order Arithmetic, as its (inhabited) types correspond to (provable) formulas of a second order logic language (see the rules below).

The point with λ 2 is that one can quantify over type variables and term variables, as well. We first define the terms of the language, in a rather broad fashion: the formation rules for types and terms will tell us which are the legal types and terms and, at once, what are the types of the terms.

We start with Tp, the symbol for the (collection of) types, and a set of atomic types or predicate letters. These may contain variables. As usual abc stands for ((ab)c) . We write capital letters for terms which are types or Tp itself, i.e. for terms A such that, for some assignment Γ , Γ| __ A :Tp or A ≡ Tp .

Terms

Well formed assignments:

Γ(x:A) stands for Γ∪{(x:A)} ; Γ is an ordered list. We stress again the crucial point above: assignements are formed by allowing A to be a type (in ass.2, A:Tp) or to be Tp itself (in ass.3, A ≡ Tp). According to which possibility applies, in C.2 and C.3 bellow quantification is over term or type variables.

From now on, we agree that Γ | __ implies that Γ is ok.

Typing rules:

Observe that (At) is the basis for forming ok assignements; in particular, by (At) and by ass.2, if {(x 1 :A 1),..., (x n :A n)} is ok and x∈FV(A i) , then x = x j , for some j < i . Assignements rules and C.1 are self explanatory: they formalize assumptions made on the types of variables. C.2 is the key rule. If A is a type (i.e. A:Tp), then C.2 and C.4 are first order rules, as quantification is over term variables ranging within a given type. Otherwise (i.e. if A≡Tp), ∀x:Tp is clearly a second order quatification. Now, there are (at least) two possibilities: Girard suggested the approach we basically follow. As we want ∀x:Tp.B to be a type (i.e. (∀x:Tp.B):Tp), types are defined in an impredicative way: their collection (Tp), which is being defined, includes elements, such as (∀x:Tp.B), which are defined by refering (quantifying) over the collection itself.

Martin-Löf [III-1982] instead gives a second order predicative approach by stratifying the universe of types into several layers, Tp 1 , Tp 2 In short, for Tp 1 =Tp , if A:Tp 1 and B:Tp 1 , then (∀x:A.B):Tp 1 , while (∀x:Tp 1 .B):Tp 2 and so on.

C.3 and C.4 tell us which terms live in universally quantified types and how they behave. In short, terms in (∀x:A.B) are functions (C.3) such that, when fed with a term b in A, they give as output a term of type [b/x]B (C.4). Thus both the output and the type of the output both depend on the input. This is the core of dependent types and the main problem for the mathematical semantics of second order, jointly to impredicativity. It will be discussed in the next section.

As already mentioned, Girard invented second order λ-calculus as a tool for the proof theoretic investigation of second order Arithmetic: type formation rules, such as C.2, give second order formulas. The approach is soundly viewed as an intuitionistic perspective in Proof Theory:

λx:A.a , say, is an effective proof of ∀x:A.B , as, given any term (proof) b of A , it computes a term (proof) of [b/x]B . This language, though, which we presented in an extended version, somewhat in the style of the "Constructions" of Coquand and Huet (see Coquand&Huet[III-1985], Amadio&Longo [1986]), turned out to be relevant in itself, besides its proof-theoretic interest, mostly since the work started in Computer Science by [START_REF] Reynolds | Towards a theory of type structures[END_REF].

We conclude this section by recalling that the terms of this calculus strongly normalize, i.e. any reduction strategy takes to a normal form (Girard[III-1972], Coquand[III-1985]). Girard applied this property to the proof theory of second order Arithmetic, as normalization of terms corresponds to normalization of proofs. By this, Takeuti conjecture on the normalizability of second order proof was settled, as well as its consequences: consistency, interpolation. This crucial correspondence, in Proof Theory, may be summarized as follows. Consider this "simplification" or "reduction" of a natural deduction: (Girard[III-1972]). (Second order) typed terms have a normal form (actually, they Strongly Normalize).

Inversion Γ, x:A |--b:B _________________ (∀-intro) Γ |-

Theorem

Corollary. Any deduction can be reduced to a normal deduction [i.e. where (→-intro) and (→-elim) are not used sequentially]

There are two more very relevant results which relate λ-calculus and Proof Theory, in this framework. One is concerned with the computational expressiveness of λ 2 , the other is a "concrete" independence result.

4.4 Theorem. (Girard[III-1972]

) Let f : ω → ω . Then PA 2 |--∀x∃yf(x)=y ⇔ f is Λ 2 -definable.
Thus exactly the recursive functions which are provably total in PA 2 are definable in λ 2 .

As for independence, observe that the normalization property in 4.2 (Norm(λ 2), say) can be formalized in PA 2 and, by that very theorem, it is true in the standard model. However:

Theorem. PA 2 |-/-Norm(λ 2).

(The proof in (Girard[III-1972]) is given by showing that PA 2 |--Norm(λ 2) → Cons(PA 2)) .

That proof of the independence result is very informative, as it also guaranties the (truth of the) consistency of PA 2 . However, a simpler one may be given, based on 4.4. Remark. One of the earliest and most relevant contributions to the triangular connection λ-calculus, higher type Recursion Theory, Proof Theory has been entirely omitted here: namely, Gödel's system T in his [1958]. It may suffice to say that the work in [START_REF] Girard | Interpretation fonctionelle et elimination des coupure dans l'arithmetic d'ordre superieur[END_REF] may be viewed as an extension to Analysis (PA 2) of Gödel's work for PA.

An introductory account to [START_REF] Gödel | Ueber eine bicher noch nicht benuetze Erweiterung des finiten Standpuntes[END_REF] may be found in Hindley&Seldin [1986].

Constructive Domains and Modest

Sets as models for λ λ λ λ 2 .

Recall that our original motivation referred to the desire of representing higher type computations, for the purposes of Logic and of Computer Science. We defined Constructive Domains (CD; §.1) and Modests Sets (M; §.2) as a very natural framework for this; their naturality was clearly suggested by their relation to the category of enumerated sets (EN) and by the way they provided tools in order to extend pairings and gödel-numberings at higher types, following the HPEF. We then formalized the intended calculus, the typed λ-calculus, and characterized the class of models of that calculus (the CCC's; §.3). Logic and the practice of Mathematics suggested in turn an extended language and Type Theory suitable for the description of higher order constructs (λ 2 ; §.4).

In this section, we see how those structures, CD and M, yield also models for λ 2 .

As already mentioned, the crucial mathematical point is due to the second order, impredicative definition of λ 2 and the way types and terms mix up (rules C.2, C.3, C.4). In both models types will be interpreted as objects and terms as morphisms. In particular, one has to give a mathematical meaning to (∀x:Tp.B):Tp , i.e. one has find an object wich interprets (∀x:Tp.B) , where Tp is interpreted by a collection of objects, including the interpretation of (∀x:Tp.B) itself. This requires non trivial closure properties for the underlying structure. In particular, the interpretation of Tp must be closed under products indexed over Tp, i.e. under dependent products indexed over the structure itself, since elements (of the interpretation) of (∀x:Tp.B) interpret terms such as (λx:Tp. The first model, over CD, will be given by turning the collection of all (interpretations of) types into an object of CD. Thus Tp itself will be interpreted as a type. This strong closure property will greatly simplify the interpretation of (∀x:Tp.B):Tp .

The second model is based on early ideas in Girard[III-1972] and Troelstra[1973c] and on a recent unpublished result of Moggi, who proved unexpected closure properties of M, as a crucial substructure of the Effective Topos in Hyland [II-1982].

The Constructive Finitary Projection Model

We start with a model in CD for the classical type-free λ-calculus (λβ), that is, by theorem 3.6.2, over an object U of CD such that U U < U . The existence of such an U will be guarantied by, say, a constructive version of Scott's D ∞ construction (see [START_REF] Barendregt | The lambda calculus; its syntax and semantics, Revised and expanded edition[END_REF], Hindley& [START_REF] Hindley | Introduction to Combinators and Lambda-Calculus[END_REF] and, for the effective counterpart, Smyth [I-1977], Kanda [I-1979], Giannini& Longo[I-1984]). To be precise, something more is required; this motivates the following definitions.

Recall that the morphisms in CD are continuous and computable maps, partially ordered pointwise. The following definition is a constructive version of the model in Amadio&al [II-1986] (which was inspired by MacCracken [II-1984] and Scott[II-1980b]). As usual, we identify a morphism space CD[A,B] with its representative B A , when needed and unambiguous.

Definition. Let A , B be constructive domains. (θ,φ) is a projection pair

on A, B iff θ∈CD[A,B] , φ ∈CD[B,A] and φ oθ = idA, θ oφ ≤ id B. Write A « B iff there is a projection pair of A into B .
Note that a projection pair is more than a retraction pair in the sense of §.3.5.

Definition. Let A , B be constructive domains such that A⊆B and

≤ A = ≤ B A×A. φ ∈CD[B,A] is a projection iff for all b ∈ B, φ (b)
≤ B b , and for all a∈ range(φ) , φ(a)= a .

We write A ∠ B if φ is onto.

Thus a projection is a retraction less or equal to the identity. It is easy to show that « and ∠ are reflexive and transitive (although « is not antisymmetric). Moreover, if A « B then there is an A' ≅ A such that A' ∠ B .

Next we show how to define a constructive domain which represents a collection of constructive domains. This will be done by taking as constructive domains the ranges of a particular class of projections.

Definition. A projection φ in CD is said to be finitary if the range of φ is a domain (and thus a constructive domain).

We note here that essentially all projection pairs which normally arise are finitary. We are now ready to define the constructive domain which will represent the type of all types, that is the domain of the Constructive Finitary Projections.

Definition.

Let U be a constructive domain such that U U « U . Then let

CFP U = { φ∈CD[U,U] | φ is a finitary projection}.
U as in 5.4 exists by the effective D ∞ construction recalled above, which actually gives U U ≅ U. One may also find an object U which strictly satisfies U U « U : take, say, the constructive part of the "filter model" in Barendregt&al[1983] and its variant in Coppo&al [1984].

If U is obvious from the context then we write simply CFP. Fix U as in the definition above.

Theorem

. (i) CFP is a constructive domain. (ii) (ϕ∈CFP ⇒ range(ϕ) ∠ U) and (A ∠ U ⇒ ∃ϕ∈CFP range(ϕ)=A).
The constructive domains we will be interested in are the subdomains of U . Notice that, by 5.5(ii), there is a one-to-one correspondence between elements of CFP and constructive domains A ∠ U . Thus CFP represents the collection of subdomains of U

. Somewhat surprisingly, CFP can be isomorphically embedded as a subdomain of U .

Lemma. CFP ∠ U U and hence CFP

« U . Proof hint: Define φ∈CD[U,U] by φ(g) = sup U {f ≤ g | f ∈CFP }.
Clearly φ(g) ≤ g and if g ∈ CFP then φ(g) = g. Thus range(φ)

⊇ CFP . Conversely, CFP ⊇ range(φ) since CFP is consistently complete w.r.t. CD[U,U]. Therefore CFP ∠ U U « U and CFP « U by transitivity. ∆ Let now Ψ∈CD[U U ,U] , Φ∈CD[U, U U]
be the projection pair of U U into U . Set CFP = {Ψ(f) / f∈CFP } : these are the canonical representative of CFP within U . When there is no ambiguity we identify CFP and CFP .

Corollary. There exists p∈CFP such that range(p) = CFP.

Types will be interpreted by finitary projections. More precisely, types are ranges of finitary projections. Note first that finitary projections are particular retractions, and that , if r is a retraction, then range(r) = { u∈U / u = ru }, the set of its fixed points. Moreover, finitary projections and their ranges tidily relate, by the following fact.

Proposition

. Let f,g ∈ CFP. Then f ≤ g iff range(f) ⊆ range(g) .
We are now ready to define our second order model. We sketch how to interpret types: details about the interpretation of terms may be found in Amadio&al [II-1986] or a simpler syntactic translation, sufficient for the guidelines of the interpretation, may be seen in Amadio&Longo [1986].

Recall that we interpret Tp by CFP or, equivalently, by p . Ground types (integer, booleans..., if given in the theory) are interpreted as subdomains of U , which is rich enough for this purpose, since it is a model of λβ . In order to give first an informal explanation on how to interpret higher types, we mix up syntax and semantics; λx.f(x) is the informal lambda notation for functions. The key point is that, in all interpretations of types as retractions, a:A is interpreted by a ∈ range(A) or, equivalently, by a = Aa , where the retraction A interprets type A . The definitions of "→" and "∀" originate from elementary notions in Category Theory (see Scott[I-1976,II-1980b], Seely[II-1984,1986]]).

Recall that "→" is just a special case of "∀" , by 4.1. We discuss this simple case first. In a category C, if an object A is a retract of B via (i,j), then A , as a "subtype" of B , may be identified with (i,j) or, by some abuse of language, since categories do not need to have points or elements, it may be identified with the fixed points of i °j (the range of i °j, which is a retraction).

If C is a CCC, let C A be the exponent of C and A in C; then, if A is a retract of B via (i',j') and C is a retract of D via (i,j), one has C A is a retract of D B via (λx.i °x°j ', λx.j °x°i ') .

Indeed, (λx.i °x°j ') °(λx.j °x°i ') is a retraction and its fixed points may be identified with C A as a subtype of D B . In other words, if one writes r = i °j and s = i' °j' , then C A coincides with {x/ x = r °x°s } = range(λx.r °x°s) , where r , s and λx.r °x°s are all retractions.

In our case, over the type-free universe U , if (i,j) and (i',j') are projection pairs, then also (λx.i °x°j ', λx.j °x°i ') is so, and thus r, s and λx.r °x°s are all finitary projections, whose ranges are subdomains of U .

Thus, if types A and C are interpreted as finitary projections A and C , one has:

(→ → → →Interpret.)
A→C is interpreted as λx.C °x°A (or its range).

As for "∀", consider first rule C.3. This is a formation rule for terms; its meaning is that terms which have an applicative behaviour (λ-abstractions) can be only applied to terms of the intended imput type (A in the rule). The idea, in models where types are retractions, is to interpret those terms as functions which coerce each input to be of the right type. That is, λx:A.a wil be interpreted as f °A , where f depends on a .

As A category-theoretic understanding of this may be found in [START_REF] Seely | Categorical semantics for higher order polymorphic lambda calculus[END_REF].

In conclusion:

(∀ ∀ ∀ ∀Interpret.) ∀x:A.B is interpreted as λzt.(λx.B)(At)(z(At)) (or its range).

If B does not depend on x , then (→ Interpret.) is a special case (∀ Interpret.) , as one may easily check by β-reduction (cf. 3.1). As a side remark, for p = pp , observe that the CFP model also interprets an extension of the given language by Tp:Tp , i.e.

the collection of types is a type (see Amadio&Longo [1986] for a discussion).

Problem. In Amadio&Longo [1986] a simple extension λ λ λ λβ β β βη η η ηp of λβη is proposed, where λ λ λ λ 2 can be easily "interpreted" (or translated). Add for this a constant symbol p to λβη jointly with the following two axioms and rule:

a.1) pp = p MοM = M a.2) pxοpx = px R) ________ pM = M
Clearly, λβηp is directly inspired by semantics and provides a very simple "model" for λ λ λ λ 2 2 2 2 , by the translation described above. However, CFP is not a mathematical model for λβηp and λβηp is not Church-Rosser (more precisely, there is no simple extension of λβηp to a CR reduction system, Amadio&Longo [1986]).

Conjecture: λβηp is consistent; it should even be conservative over λβη .

The Modest or HEO 2 Model

The cartesian closed extension M of the category EN of numbered sets has been defined in §.2. In that category, types are interpreted as quotient subsets of ω .

In Girard[III-1972] and Troelstra[1973c] some hints are given on how to build a model for λ 2 in M: the HEO 2 model. Second order terms are interpreted by erasing types from them and universally quantified types are interpreted as intersections. In that way, then, information is lost from terms and no apparent connection is given between intersection and the natural interpretation of universally quantified types as dependent products. This is not a criticism of that early work, first because of its pioneering role, second because some deep mathematical intuition was already present also in that sketchy model construction: for example, in [START_REF] Girard | Interpretation fonctionelle et elimination des coupure dans l'arithmetic d'ordre superieur[END_REF], terms are more precisely interpreted as pairs (type-free term, its type). Surprisingly enough this is sufficient to recover the information preserved in the interpretation summarized below, since one may easily prove that the interpretation of a typed term is the equivalence class of its type (a quotient set), which contains that term, as pointed out below. Recently, Moggi[II-1986Tp] suggested how to turn the HEO 2 into a fully satisfying model of λ 2 .

Remark (Some more references). We refer to Moggi's version of this result, which has not yet been fully written down (see the conclusion on how the discussion started on elettronic mail). However, since Moggi mentioned to have proved the "internal completeness" (i.e. the closure under all limits) of M within the topos in 5.12, several other relevant categories, in the same framework, have been shown to be internally complete by Martin Hyland, Pino Rosolini, Dana Scott. (Hyland's lecture in this volume should present a broader and less elementary account of this story: the reader is recommended to refer to it for a more category-theoretic oriented presentation. Also

Freyd and Carboni recently devised a generalization of the results below).

If A = (A,π a) is an object in M, write A {n} = {m | m A n} for the equivalence class of n w.r.t A . In particular, then, f ∈ M[A , B] iff ∃n f = B A {n} . As types are interpreted by Ob M (quotient sets), terms will be elements of types, i.e. equivalence classes: for A interpreting A, a:A is interpreted as " a is an equivalence class in A ", or, also, ∃n a = A {n} . (We write x for the interpretation of the term or type x).

More precisely, A→B is interpreted as B A and universally quantified types as follows. We discuss, for the sake of simplicity, ∀x:A.B only when A = Tp , i.e. when A is the collection of types: the crucial, impredicative case. For the other case see 5.10.2. We keep using an informal λ-notation for functions and →-notation for function spaces (not necessarily formal terms and types). Note first that ∀x:Tp.B may be understood as ∀(λx:Tp.B) where λx:Tp.B is a function from types to types. As types are objects of M, ∀ : (Ob M → Ob M) → Ob M turns each function λ x :Tp. B : Ob M → Ob M into a type, i.e. an object of M . Thus, all that we have to do is to find a meaning in M to ∀(f) for at least each formally definable function f (by the notation for types).

In general, given f : Ob M → Ob M , define ∀ : (Ob M → Ob M) → Ob M by for all n, m∈ω , n ∀(f) m iff for all A , n f(A) m . Clearly, ∀(f) is a partial equivalence relation. Thus, (∀ ∀ ∀ ∀Interpret.) ∀x:Tp.B is interpreted as ∀(λ x :Tp. B).

Remark

. 1 -∀(f) = ∩ A f(A) . 2 -In case A:Tp , define p(∀ x:A.B)q iff for all n, m (n A m ⇒ ϕ p (n) ([A {n}/x] B) ϕ p (m)) which collapses to (Quot) of §.2, if x∉FV(B) .
An other key point, formalized in rule C.4, is that terms of type ∀x:Tp.B may be applied to a type: thus, elements of ∀(f) , that is equivalence classes, must be applicable to quotient sets, that is to collections of equivalence classes.

Definition (Moggi; Polymorphic application). Let f : Ob

M → Ob M . Set APP f (∀(f){n}, A) = f(A){n}.
Note that this is a good definition, since App f depends on f : as ∀ is not injective, relevant information from f could be lost when trying to recover f(A) .

Our aim now is to prove that the interpretation of second order types based on the definition of ∀(f) above, i.e. as intersection, preserves the naive mathematical meaning one would attach to them; namely, it corresponds to a product indexed over the interpretation Ob M of Tp. In other words, a suitable framework, or category, must be found such that, for f : Ob M → Ob M , in the category, (Iso)

∀(f) is (isomorphic to) ∏ M f(A) .
Clearly, (Iso) would give a strong closure property of M, as ∀(f) is trivially in Ob M .

The embedding in one direction is easy and true for every set-theoretic function f : Ob M → Ob M . Indeed, by 5.11, one may injectively associate to each element ∀

(f){n} of ∀(f) a function λ A .(f(A){n}) in ∏ M f(A) , as λ A .(f(A){n}) : Ob M → f(A).
Conversely, given g∈∏ M f(A) , by definition of dependent product, one has (1) ∀ A ∃n g(A) = f(A){n} .

And here is the key point. In order to prove that g has indeed the structure λ A .(f(A){n}) , i.e. that, for some n , g is the same as an equivalence class ∀(f){n}, one has to reverse the quantification in (1) and prove (2) ∃n ∀ A g(A) = f(A){n} .

The observation that, under certain circumstances, one can actually go from (1) to (2), is independently due to Hyland and Moggi and is based on the use of a very In the model, then, the quantification over types (or Ob M), is the same as over M 0 , an object, now, of Eff. Moreover, we can fix the class of functions for which (Iso) above holds: they are just the morphisms in Eff from M o to M o (i.e. the internal functions). By this and by the Uniformity Principle (UP), the isomorphism in Eff between ∀(f) and ∏ M f(A) is proved.

The strong closure property for M, within Eff, we have sketched, that is its closure under products indexed over M itself, is the mathematical meaning of Girard's impredicative definition of second order types, over this very natural model, the "modest" or quotient subsets of ω .

Remark. (Models and Intuitionistic Logic)

The proof-theoretic connections between λ-calculus and Intuitionistic Logic were clear since Curry-Howard remark that the inhabited types of λ-terms are exactly the propositions of (positive) intuitionistic propositional calculus. This analogy was fruitfully extended at higher orders by Girard and Martin-Löf. The relevance of the intuitionistic perspective should now be clear also in the model theory of λ-calculus. As for the first order case, this is stressed by the constructive approach we followed here, which can be framed within a categorical approach to the semantics of Intuitionistic Logic, as shown in Rosolini[II-1986] (see also MItchell&Moggi[II-1987], for an elementary, elegant use of Kripke models). By the result just presented, this is even more striking in the second order case. As a matter of fact, in Reynolds[II-1984] it is shown that there is no non trivial model of Girard's second order language λ λ λ λ 2 in the category of sets, if classical Set Theory (ZF) is taken. In Reynolds' words: polymorphism is not set-theoretic. By the discussion above, a set-theoretic model may be found, provided that a suitable model of IZF is taken; that is "polymorphism is intuitionistically set-theoretic".

As pointed out before 3.5, the definition of M may be easily relativized to an arbitrary (partial) model of Combinatory Logic, CL; the same applies to the definition of Eff. Thus, instead of Kleene's (ω,.) , take a model V of type-free λβ and consider M V and Eff V over (V, .) , see 3.6. Given a second order term a , let er(a) be the erasure of a , i.e. the untyped term obtained from a by erasing all type information. Of course, er(a) may be soundly interpreted over V ; call er(a) its meaning. By induction one can easily establish the following tidy connection between er(a) and the interpretation of a in M V . Assume that a:A in λ 2 , then a = A { er(a) } , i.e. the interpretation of the typed term a is the equivalence class of er(a) w.r.t. A (details may be found in Mitchell[1986]). Thus, the interpretation sketched in Girard [III-1972] contained enough information.

We conclude this section by relating the various constructions above by some useful category-theoretic embeddings. These will only relate, by cartesian functors, the first order structures of the various categories presented here, i.e. ordinary products and exponents, as products indexed over different categories do not seem to bear any relevant connection.

As worked out in Amadio&al [II-1986], the CFP construction in the first part of this section may be performed over any Scott domain U such that U U « U .

Namely, over any λ-model where the retraction in 3.6 is indeed a finitary projection in the category of domains (see 5.3). Thus, when dropping the request on costructivity in 5.4, call FP U the corresponding model of λ 2 . In this general case, one has that FP U is a full subCCC of M U , which is a full subCCC and an internal category of Eff U .

This may be proved by putting toghether the previous work and Scott [I-1976], Hyland[II-1982], Longo&Moggi [II-1986]. Within the constructive appoach followed here, where we began with numbers and enumerations, analogue embeddings may be factorized through CD without relativizing the constructions of M and Eff. That is: With some more work, one can look also at CD as an internal category of Eff; indeed, an internal subcategory of M.

Conclusion

The interest in Church's λ-calculus is mostly due, nowadays, to its relevance in Computer Science.

We already quoted a few areas where this is explicit. As most of the problems and issues discussed in this lecture derive from the practice of computing, it is worth mentioning a few more references which set a bridge between the Logic and the computing perspectives in λ-calculus.

As mentioned in the introduction, Scott's invention of models of the λ-calculus started denotational semantics of programming languages and brought into language design, via λ-calculus, the wellestablished tools of Tarskian semantics, i.e. the mathematical investigation of denotation and meaning. The analysis of the connections between theories and models received an important impulse by the results in [START_REF] Wadsworth | The relation between computational and denotational properties for Scott's D ∞ -models of the lambda-calculus[END_REF] and [START_REF] Hyland | A syntactic characterization of the equality in some models of lambda calculus[END_REF] and was continued by several authors (e.g.

Barendregt& Longo[1980], [START_REF] Longo | Set-Theoretical Models of Lambda-calculus: Theories, Expansions, Isomorphisms[END_REF]). The interest in applications of this analysis is concerned with the comparison between operational and denotational semantics, as theories provide the operational description of languages. Further work in this direction led to the issue of "fully abstracness" in Computer Science, motivated by the desire of proving results on languages and operations by a direct analysis of models; this is possible by a full correspondence, in some cases, between denotation and meaning (see [START_REF] Mulmuley | Full abstraction and semantic equivalence[END_REF] and [START_REF][END_REF] for recent work).

A relevant example of the influence of denotational semantics in language design is given by the continuously expanding Edinburgh programming language ML [START_REF] Milner | A theory of type polymorphism in programming[END_REF], Gordon&al[1979], [START_REF] Damas | Tye disciplines in Programming Languages[END_REF], [START_REF] Milner | Is computing an experimental Science?[END_REF]). Even compilers are nowadays built up with some use of model theoretic concepts of λ-calculus [START_REF] Jones | Semantics-Directed Compiler Generation[END_REF]).

The higher order or explicity polymorphic languages provide a very interesting area for new applcations of λ-calculus. On one hand, the language invented by Girard for the purposes of prooftheory is the core of a several ways interaction among proof-theory, topos theory and the theory of functional languages. For example, Moggi's theorem above was given as an answer, raised by Albert Meyer, on the consistency of certain extensions of explicitly polymorphic languages. The result answered the question, by providing a model, and went further because it opened up a whole line of research in polymorphic model theory.

On the side of language design, the various theories of types have served to organize the study of type disciplines in programming and are now implemented in several languages (Nordstrom [III-1981], Burstall&Lampson[1984], [START_REF] Damas | Tye disciplines in Programming Languages[END_REF], Constable&al [III-1986]). These investigations and their applications lead to new insights into polymorphism, modularity and abstraction, mostly since the work of Reynolds[1975] and [START_REF] Milner | A theory of type polymorphism in programming[END_REF] (see also [START_REF] Reynolds | Three approaches to type structure[END_REF], [START_REF] Macqueen | Using Dependent Types to Express Modular Structure[END_REF], Cardelli&Wegner[1985], Cardelli[1986]). Under the motto "types as formulae" (see §4), Type Theory greatly influenced also automated theorem proving (deBruijn [III-1980], Constable&al [III-1984], Miller[III-1984], Coquand&Huet [III-1985]) and it even serves as a knowledge representation language for AI [START_REF] Turner | Logics for Artificial Intelligence[END_REF], Constable&al [III-1986]). The other motto, "types as objects", summarizes instead the connections with Category Theory (see §3 and Lambek&Scott[II-1986]); surprisingly enough, even these very abstract studies influenced programming, since the equations mentioned in §3 have become the core

Bibliography

This bibliography is organized according to the "line of thought" followed in the lecture. Thus Part I lists contributions to the areas broadly relating λ-calculus to higher type Recursion Theory, Part II is concerned with the connections to categories and Part III to Proof Theory.

The list is far from complete. Moreover, many entries should appear in more than one part and the classification is as arbitrary as any. For example, Scott[I-1976] had mostly relevance in Computer Science and uses several category-theoretic notions; however, the key ideas derive from type 2 Recursion Theory (classical Myhill-Shepherdson theorem). Similarly, Girard[II-1985] does not deal explicilely with Category Theory, but functorial notions play a major role. Ershov [I-1976] or Longo& Moggi[I-1984], say, do not mention λ-calculus at all; the underlying mathematical structures, though, are entirely borroughed from the model-theory of λ-calculus. Finally, the inclusion in Part III of some Computer Science papers is due to the increasing impact of theoretical ideas in automated deduction and program synthesis, which in turn stimulated the theory.

It should also be clear that papers in the "pure theory", both of types and of terms, are essentially not included: rather complete references to writings "within" λ-calculus may be found in [START_REF] Barendregt | The lambda calculus; its syntax and semantics, Revised and expanded edition[END_REF] and Hindley&Seldin [1986]. The fourth and last part contains papers referred to in the previous pages, including a few papers in the pure theory. A.[1987] "Stability, sequentiality and oracles" Dip. di Informatica, Pisa. Barendregt H., Longo G. [1982] Friedman, H. [1975], "Equality between functionals," Logic Colloquium (Parikh ed.), LNM 453, Springer-Verlag.

Part I

Asperti

Giannini P., Longo G. [1984] "Effectively given domains and lambda calculus semantics,"

Information and Control 62, 1 (36-63).

1. 3

 3 Definition. The Category EN has as objects pairs A =(A,e A), where A is a set and e A :ω → A is a surjective map. Morphisms are defined by f∈EN[A , B] iff ∃f'∈R f ° e A = e B° f'.

 [x]x = (SK)K [x]y = Ky for y≠x [x](MN) = S([x]M)([x]N) . Then [x]M translates λx.M and conversely (note that [x]M does not contain x , or, equivalently, x is not free in λx.M). But now comes the rub. In Logic (and in Computer Science) types help to avoid paradoxes or inconsistencies and Church original system was proved inconsistent by Rosser. Rosser's remark was concerned with the handling of implication in λ-calculus; we may understand it in terms of Curry's paradoxical combinator Y , the fixed point operator, and formal negation. As xx is well formed in λβη and CL , so is Y , where Y ≡ λy.(λx.y(xx))(λx.y(xx))

 : a ::= Tp | Atomic | var | (aa) | (λvar:a.a) | (∀var:a.a)

 The congruence relation "=" above is derived by the following conversion rules. Γ | __ ((λx : A . a) b) : B (β) ____________________ Γ | __ (λx : A . a) b = [b/x]a Γ | __ (λx : A . ax) : B , x ∉ FV (a) (η) _________________________ Γ | __ (λx : A . ax) = a .

 -(λx:A. b): ∀xA.B a: A ______________________________ (∀-elim) (λx:A. b)a : [a/x]B reduces to a: A |--[a/x]b : [a/x]B By looking at terms, the above reduction rule for types (propositions) corresponds to β-reduction, i.e. (λx:A. b)a > [a/x]b . Observe that, if x∉FV(B) (and A≠Tp), one obtains exactly Gentzen-Prawitz rule: Γ, x:A |--A. b)a : B reduces to a: A |--[a/x]b : B Again, this corresponds to (λx:A. b)a > [a/x]b , which is exactly classical β-reduction.

 Given a term b , let b' be its normal form. Define then the function Φ(b) = b' . Of course, modulo gödelization of terms, this is a number theoretic map and a universal function or "interpeter" in the sense of programming. Assume now that PA 2 |--Norm(λ 2) or, equivalently, that PA 2 |--∀x∃yΦ(x) = y . Then, by 4.4, Φ would be Λ 2 -definable, which is impossible, by the usual diagonal argument.

 a) , which are functions taking each element b of Tp to [b/x]a of type [b/x]B (recall C.2, C.3 and C.4).

 for rule C.4, the intuition is that a has type ∀x:A.B iff a is a function which takes any b in (the range of) A into an element ab of (the range of) [b/x]B . Since types are particular retractions, this means ab is a fixed point of [b/x]B : ab = ([b/x]B)(ab) . Thus, ab = (λx.B)b(ab) . Since b = Ab , then ab = (λx.B)(Ab)(a(Ab)) . Observe now that a must be a λ-abstraction, by C.3, i.e. it is interpreted by f °A , for some f ; therefore ab = (f °A)b = (λx.B)(Ab)(f °A (Ab)) . That is, a coerces any argument b to be in (the range of) the retraction A . Thus one may abstract (generalize) w.r.t. b : a = λt.(λx.B)(At)(a(At)) . Equivalently: a = (λzt.(λx.B)(At)(z(At)))a . Indeed, (λzt.(λx.B)(At)(z(At))) turns out to be a retraction, when A and B are retractions. Thus, a:(∀x:A.B) gives, in the model, that a is a fixed point of the retraction λzt.(λx.B)(At)(z(At)) . The informal argument above shows that λzt.(λx.B)(At)(z(At)) soundly interprets ∀x:A.B , as we derived it exactly from the intended meaning of universal quantification as dependent product, i.e. as Π A ([b/x]B) . This may be summarized as follows: 5.9 Theorem. CFP is a CCC. Moreover, for A,B ∈CFP , one has range(λzt.(λx.B)(At)(z(At))) = Π A ([b/x]B) .

5. 15

 15 Theorem. CFP U full subCCC of CD full subCCC of M full subCCC and an i nternal category of Eff .

 The point is that the complete objects are exactly those objects B such that each partial morphism with target B can be uniquely extended to a total morphism. It is now easy to check that (constructive) domains are complete in the intended

partial categories, with the obvious definition of partial continuous morphism (the domain of convergence must be

Scott open)

. By this, the partial morphisms in those categories may be soundly identified with the total ones.

 "Recursion Theoretic Operators and Morphisms of Numbered Sets," M.I.T., Lab. for Computer Science Tech. Mon. 194, Fundamenta Mathematicae CXIX (pp. 49-62). Ershov Yu. L. [1976] "Model C of the partial continuous functionals," Logic Colloquium 76 (Gandy, Hyland eds.) North Holland, 1977.

Remark. λ 2 has types depending on terms, as we allow atomic types to contain term variables; otherwise we would have exactly system F (by 4.1). Substitution and the typing of variables may be explicitly given for each atomic type P containing n variables, by

a particular model of Intuitionistic Set Theory (IZF), Hyland's

Effective Topos (Eff;Hyland[II-1982], Hyland&al [II-1980]). We give some hints for that structure and sketch how one can view at M at once as a full subCCC and an object of Eff, in the sense of 5.13 below.

5.12 Definition. (Eff) Objects: (A, = A) , with = A : A x A → Pω partial ;

Morphisms: Eff(A 1 ,A 2) is the set of the "total functions" w.r.t. = 1 and = 2 (i.e. total, single-valued , strict and substitutive relations).

Observe now that M is a small category; that is, Ob M and the collection of all morphisms are objects of Set (they are just sets). More formally, this amounts to say that M is an internal category of Set, the classical category of sets (see [START_REF] Johnstone | Topos Theory[END_REF]). The nice fact is that M may be also seen as an internal category of Eff, as there exist M o , M 1 in Ob Eff representing the objects and the morphisms of M, respectively. By applying (UP) on can go from (1) to (2). (This requires some work, within Eff; note also that the isomorphism in (Iso) above depends on f .)

Theorem. M is a full subCCC of