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1 Introduction

1.1 Computations

The applications of topological and order structures in Theory of Computa-
tion, a key aspect of Foundations of Mathematics and of Theoretical Computer
Science, has various origins and it is largely due to the relevance of these struc-
tures for Intuitionistic (constructive) Systems: their Logic underlies theoretical
as well as applied Computability.

Computability Theory was born in the ’30’s as a formalization of the in-
formal notion of “potentially mechanizable” deduction, which was at the core
of foundational analysis, since late ’800, and resulted from the happy marriage
of a Formalist and Intuitionistic understanding of effectiveness. For Peano,
Hilbert and many others, foundation and certainty, in Mathematics, had to
be found in stepwise deductions within “finitistic” system. For these leading
mathematicians, the abstract and symbolic nature of Mathematics, but rigor
as well, were identified and all coincided with formalism or with the “yet-to-
be-specified” notion of potentially mechanizable process. At the core of it, there
was the newly invented formal Theory of Numbers, Peano Arithmetic (PA),
based on Peano-Dedekind formal rule for induction.

Along the lines of Leibniz’s philosophical intuitions, Peano’s “pasigraphy”
is an early example of formal language, where finite strings of symbols were
manipulated in a way feasible by an (abstract) machine. Peano, Padoa, Hilbert
... were actually referring to an mathematical machine, as nor the steam
engine, nor the petrol engine, but not even the computing devices by Babbage
and Power could be the reference for the notion they had in mind. These
concrete machines were the paradigms of changing times, but these pioneers

∗Invited paper, proceedings of the Conference Géométrie au XX siècle, Paris, septem-
bre 2001 (to appear).

1



were thinking to a mathematical device yet to be invented, an absolute tool for
a deductive mind.

Such a tool was fully described in the ’30’s. Its history is rich of inde-
pendent inventions. Curry anticipated the notion of computable function by a
simple language of combinators [Curry30], proposed for the finite manipulation
of strings, on the grounds of an algebraic theory due to Shoenfinkel. Herbrand,
in 1930, see [Goldfarb87], had a mathematical definition of a class of functions
which were meant to represent logical deduction. Gödel ([Gödel31]) gave an-
other characterization for the analysis of arithmetical deduction (i. e. for the
metatheory of PA). And he encoded this metatheory within PA itself by two
fundamental steps: he “gödel-numbered” formulas by integer numbers and rep-
resented his class of (partial) recursive - or computable - functions into PA (a
much harder task than programming in Assembler). By this operation Gödel
ended Hilbert’s dream of a final solution to all foundational problems: prove
formally the consistency of PA, prove that all arithmetic statements can be
decided and ... mathematically live in the fregean Paradise of ideal (infinitary)
objects.

As a matter of fact, the (formalized) mathematics of ideal objects, Geom-
etry and Analysis, had been encoded into Arithmetic by [Hilbert99] and by
Cantor and Dedekind, respectively. Thus, foundations, certainty and knowl-
edge, for Hilbert, could be all transferred into the provable consistency and
completeness (decidability) of Arithmetic. But, by encoding the metatheory of
PA into the theory, Gödel showed that the encoded metatheoretic proposition
of consistency is an undecidable statement of PA. If his class of computable
functions were fully general (i.e. it convincingly represented the original, but
informal idea of “potentially mechanisable - deductive - process”), then this
one fact was enough to negate both Hilbert’s conjectures. And it was so. A
few years later, in [Turing36], Turing gave the most convincing, abstract notion
of formal machine ever possible. Key idea: distinguish between hardware and
software. Here is the reading/writing head and the tape, there are the pro-
grams. Formal Logic finally had his locus for absolute certainty: move right,
move left the head, read/write 1 or 0 on the tape ..., according to a program
written in a finite number of well-formed lines, possibly encoded by 0’s and
1’s. This is the action of the leibnizian man in the act of deducing, the human
computor, the definitive Calculemus: no further reduction is possible to more
elementary steps. And yet the Machine is fully expressive: Curry, Herbrand,
Gödel computable functions, but Church’s ([Church32]) and Kleene’s as well
can all be programmed over Turing Machines (TM), [Kleene36]. At once, an
“absolute” was proposed, in Gödel’s words, and Computer Science was born.
The absolute, logical Machine.

Invented for the purposes of formal Logic, TM’s engendered the early gener-
ations of computers, the sequential machines that dominated the scene for very
long. The issue of space, and of its geometric intelligibility, had been program-
matically excluded from the foundational project, all centered on Logic since
Frege (see [Tappenden95], [Longo02] and their references for more on this): the
result is that the expressive power of TM’s, a formal machine for sequential
deductions, does not depend on its being in space, e.g. it is independent from
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the Cartesian dimension of the device (TM’s, in any finite dimension, com-
pute the same class of functions). We will hint how this affects the geometric
understanding of computations, briefly presented below (its so called “Deno-
tational Semantics”) as well as the novel challenges posed by today’s modern
computing, that of concurrent systems. These systems happen to be distributed
in space, as networks of computers. As a matter of fact, classical (and intu-
itionistic) Logic and their formal machines are no longer sufficient to deal with
the new mathematical challenges posed by actual computing over concurrent
systems. TM’s are logical machines, not physical ones, as no relevant physical
process is independent from the dimension of space (many depend only on it).
And Mathematics, Geometry, proves it.

1.2 Dimensions

Computations take place along time, a linear time scanned by the clock of a
Turing Machine (TM). This absolute, Newtonian understanding of time will be
in the background of the approach to computations mostly followed here. But
what about the dimensions of space? There are two (equivalent) ways to un-
derstand its role in Computability Theory. First, some simple theorems prove
that one linear tape, one head or finitely dimensional tapes and heads TM’s
have all the same expressive power, modulo some (low) complexity issue. That
is, they compute the same class of functions, the Partial Recursive Functions
(PR), as functions from ω to ω , the integer numbers. Second, once given
PR, how to define computable functions over ωn, for any n? Easy: a many
arguments function is computable iff it is so componentwise. Equivalently,
in order to define computability from ωn to ωm, encode ωn onto ω, in some
effective and bijective way, and use PR. These two facts are a symptom of the
irrelevance of physical dimension in classical computability.

As a consequence, all categories for computations below may be easily
shown to be Cartesian, that is, to be closed under finite products. But more
than this, functions of any finite number of parameters are all treated, compu-
tationally, in the same way. The componentwise nature of computability will
be better understood by the Cartesian Closure of some of these categories, a
stronger property (see below). These categories are an effective frame for deal-
ing with functions of higher types (functions of functions ...) and on abstract
structures. This is needed, in a mathematical treatment of computations, as
programs may compute with (encoded) programs as input and, more generally,
with abstract types of data. That is, a TM may take (the program of) another
TM as input: mathematically this yields a functional acting on a function.

Of course, componentwise computability of PR (and the irrelevance of di-
mensions) presents a first mathematical difficulty, when dealing with them and
their function space by analytic tools: continuity is a topological notion and
global continuity (w. r. to several parameters) is not entailed by compo-
nentwise continuity. Moreover, Cartesian dimension is a topological invariant.
That is, if one embeds discrete structures into topological continua as space
manifolds (in Riemann’s sense), then the simple isomorphisms above between
arbitrary finite dimensional discrete spaces, between ωn and ω, say, cannot
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be extended to continuous isomorphisms, even not to isomorphic embeddings.
This is so, at least, for traditional approaches to the continuum, which refer
to physical continua and yield a physically plausible (and classical) notion of
neighborhood, i.e. where different points in space may be separated by the
topology (or the topology is at least T2, i.e. Hausdorff).

Thus, the invention of suitable, weakly separated topologies was required,
which serve the “embedding purposes” and is fully motivated by the theorems
in section 2.2. The Mathematics is very interesting and has had many relevant
applications, in particular to the Theory of Programming, but the loss of the
sense of space is not less relevant. Interestingly enough, this came out to the
limelight from within Computer Science itself, as it will be hinted below.

This lecture is not meant to be a complete survey of “Geometry in Com-
puting”, but it mainly focuses on a (rather sucessful) topological approach. For
this purpose, we will first survey the general frame for computability in some
mathematical spaces and try to stress the need for topological tools for their
sound treatment (sections 2, 3). Then, two specific applications of topologi-
cal methods will be given. They are mathematical applications, and properly
“analytic”; that is, a purely combinatorial statement will be proved by an
embedding of discrete structures into topological continua (sections 4, 5).

The limits of this approach will be hinted as well, in reference to the novel
needs for Logic and Computing (see the Intermezzo). The point is that these
topologies are directly (and provably) related to classical computability, that is
to the logico-mathematical theory born in the ’30’s, while both Logic and The-
oretical Computing need today to reconsider the mathematical understanding
of space as an integral part of their contribution to knowledge and applications.
Turing Computability should be gradually considered as classical (Laplace’s)
Rational Mechanics in Mathematical Physics: a major start, but entirely super-
seded by the Mathematics (the Geometry) of Dynamical Systems, Relativity
and Quantum Mechanics. Yet, the main ideas, born in between 1930 and
2000, are worth recalling, as they may yield some fundamental mathematical
concepts. In Rational Mechanics, say, laplacians or hamiltonians, as geodetics
and energy conservation properties, passed over to XX century Mathematical
Physics, as key conceptual and mathematical invariants (with all due changes,
of course). As for now, the notion of sequential computation, Type, Polymor-
phism, sub-typing, some limit constructions and their topological and categori-
cal understanding seem to remain basic tools in Programs’ Theory and Design,
in spite of the dramatic changes Computer Science is undergoing. Future His-
tory will better tell.

2 Scott Topologies and Computable Functionals

It is fair to say that Myhill-Shepherdson Theorem [MyhillSheph55], in Re-
cursion Theory, is one of the earliest results which provided a “topological”,
though implicit, characterization of a purely recursion theoretic notion of func-
tional (or function with function argument). The topological content of this
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relevant theorem was made explicit and generalized by Dana Scott in the early
’70’s, for an analysis of typed and type-free computations (see below). Since
then, the Scott topologies and their numerous variants have had a major role,
both in higher-types Recursion Theory (where Ershov later rediscovered the
same structures, within an original frame) and, more importantly, in the De-
notational Semantics of Programming Languages.

Higher Type Recursion and Denotational Semantics have different but re-
lated motivations. First, the intuitionistic analysis of propositions naturally
yields higher type computations: as it will be better explained below, alternat-
ing quantifiers are understood as (effective) functions (“for all x, there exists
y ... ” yields a computable function from x to y - this is the sense of the
“constructive existence” of y), then further alternations of quantifiers yield
functions of functions . . . (see section 4). Second, Programming Languages
need types, as they work on various “types of data”, in particular of any fi-
nite order or level, as programs may take numbers as inputs but programs as
well or even programs acting on programs . . . . In either case, in Logic and
in Programming, a crucial mathematical issue is posed: in Mathematics, when
working with functions, as sets of input/output values, one has to deal with in-
finite objects. And the royal way out towards infinity, in constructive systems,
is provided by approximation. But approximation means order, and topology.

2.1 Continuous Domains

Recall that computations, since Turing’s early results, are essentially partial
(the halting problem is undecidable or there exists partial computable functions
that cannot be extended to total ones). There is now a natural way to order
partial functions as input/output devices: they can be partially ordered by
graph inclusion (that is, “smaller” means “less defined”). This is the underlying
intuition that motivates the constructions below.

Consider a partial order D = (D,≤). For the purposes of an analysis of
approximation, we need to generalize the notion of “chain” and “limits” in
total orders to partial ones. A subset A of D is directed if for x and y in
A, there exists z in A such that x, y ≤ z (a chain is particular directed set, of
course). The limits will be provided by the suprema of directed sets, supA,
whenever they exist.

Definition 2.1 Let x and y be elements of D, then x is way below y (nota-
tion: x << y) if: for any directed set A in D, if y ≤ supA, then ∃a ∈ A x ≤ a.

Clearly, the relation << is finer than <, and one has: x << y and x′ ≤ x and
y ≤ y′ imply x′ << y′. Notation: ↑↑a = {b ∈ D | a << b} ; ↓↓a = {b ∈ D | b << a}.

Definition 2.2 D is a Continuous Domain if, for each a ∈ D, the set ↓↓a is
directed and a = sup ↓↓a.

Consider a continuous domain D. Then ∅ ∪ {↑↑a | a ∈ D} trivially forms
a basis for a topology (the order topology, i.e. x ≤ y iff for all open U ,
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x ∈ U ⇒ y ∈ U). Call this topology, the Scott topology. A subset D0 is
a basis, if, for each a ∈ D, the set ↓↓a ∩ D0 is directed and a = sup ↓↓a ∩ D0.
Clearly, also ∅ ∪ {a | a ∈ D0} is a basis for the Scott topology. If D has a
countable base, then D is ω-continuous.

Note that the notion of approximation (or neighborhood) is given “from
below” and that Scott open sets are upward closed: moving up, along the
partial order, gives more and more defined (better approximated) elements
([Scott70], [Scott72]).

Example 2.3 Let Pω be the powerset of ω , the set of natural numbers, and
P the set of partial (number theoretic) functions. Pω and P are ω-continuous
domains by set inclusion, where a << b for some b iff a is finite iff a << a
(finite, in P , means “function with a finite graph”, or equivalently “with a
finite domain” - of definition; approximation is graph inclusion - thus, the total
functions are the maximal elements).

In general, call algebraic any element a in a continuous domain, that
satisfies the a << a relation. This is a key general notion of “finiteness” that will
be extended to functions and functionals in higher types: it yields the useful
properties of “finite elements” in more general settings, where there are no
(properly) finite elements. As a preliminary exercise, consider two continuous
domains A, B and the collection CD[A,B] of continuous functions (w.r.t. the
Scott topology); give to CD[A,B] the structure of a continuous domain by
taking the pointwise convergence topology on it. (When A = B = P , finite
elements in CD[P, P ] are non-obvious but useful functionals - for example, they
can be effectively enumerated, see below).

However, many interesting domains have no algebraic elements. Here is one
that will be used later on, for further applications of Domain theory.

Example 2.4 (The upperspace of [0, 1]). Consider the collection I([0, 1]) of
the compact intervals in the real interval [0, 1]. Let D = (I([0, 1]),⊇), that is ≤
is the reverse inclusion. Then:

• (I([0, 1]),⊇) is an ω-continuous domain (base: the intervals with rational
end points).

• [a, b] << [c, d] iff [c, d] ⊇]a, b[ (note!!)

• the singleton intervals are the largest elements and [0, 1] is the least one.

The intuition should be clear: in I([0, 1]), the real points are approximated from
below by decreasing the size of the intervals containing it. No element of this
domain is algebraic. Note also that a base for the Scott topology is given by
{[a, b] | [a, b] ⊆ O}, when O ranges over the open sets (of the real topology over
[0, 1]). Clearly, the induced topology from I[0, 1] over [0, 1], the set of maximal
elements, is the real topology. Thus, approximation from below gives the reals as
fully specified elements (the total ones, in a sense), with their familiar topology.
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2.2 Myhill-Shepherdson Theorem

Consider now an ω-continuous domain D. Then its basis D0 can be enumerated
by a bijection e : ω → D0 , say. The domain is called effective if e(n) ≤ e(m)
is a decidable predicate in n and m. This is a key property as for effectiveness,
as it clearly applies to our leading examples above, in particular Pω and P ,
and it allows to define the collection of computable elements in an effective
domain: just take the limit (the sup) of all effectively enumerable directed set
in D0. That is, consider the directed subsets A which possess a recursively
enumerable (r.e.) set of indices, i.e. {n | e(n) ∈ A} is r.e.. Their suprema,
if they exist, will be the generalized computable functions and functionals in
(higher) types or in abstract structures. In Pω and P , these sets give exactly
the r.e. sets (RE ⊆ Pω) and the partial recursive functions (PR ⊆ P ). In
(I([0, 1]),⊇) they are the intervals with computable reals as end points (a real
is computable, when it is “effectively generated”, as a sequence). Thus, if one
starts by considering TM’s and their computable functions (PR or RE), we
are now seeing them as embedded into suitable continua (P or Pω), endowed
with an order topology (note that both (P,⊆) and (Pω,⊆) contain chains with
the order structure of the reals).

Is this construction of a category of domains, really “natural”? At least
a theorem with two important corollaries proves it, by establishing a nice
correspondence between topologies and computations. In order to state them,
observe first that it is easy to enumerate the limits or sups of r.e. directed sets
of the base, if they exist: just use the indices of the r.e. set, which enumerate
the directed set below it. Each of these limits, of course, will have infinitely
many indices, at least as many as the indices of enumerating r.e. set. In an
effective ω-continuous domain D, call Dc the set of the computable elements
in D, and w : ω → Dc this (canonical) enumeration of Dc. If all limits of the
r.e. directed sets of the base exist in D, call then effectively complete such
an effective domain. Then one has:

Theorem 2.5 In an effectively complete ω-continuous domain D, consider a
canonical enumeration w : ω → Dc and B ⊆ Dc. Then, if {n |w(n) ∈ B} is
recursively enumerable, one has that B is an open set (in the Scott topology).
Conversely, for any basic open set B ⊆ Dc , the set {n |w(n) ∈ B} is recursively
enumerable.

The first implication is a non-obvious fact, with several consequences (the
converse is easy). Observe first that there is no apparent reason by which
a recursion theoretic notion, the recursive enumerability of a set of indices,
should lead to topological openness. Look at it in Pω or P , where it was
first proved by Rice and Shapiro (see Theorem 14.XIV in [Rogers67]) by a
non-trivial argument: its key lemma, later called of “effective discontinuity”,
has a relevant logical-intuitionistic meaning, and it may be also reconstructed
from the proof of Myhill-Sheperdson Theorem, see corollary 2.7 below (the
generalisation to domains given here is easy). The theorem above says that if
you take a collection of r.e. sets or of partial recursive functions, then their
semi-decidability gives a certain order or topological structure to the set of
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sets or of functions, considered in extenso (as set-theoretic relations, e.g. as
elements of Pω or P ). An immediate consequence is that a property of r.e.
sets or partial recursive functions is decidable iff it is trivial. More generally:

Corollary 2.6 In an effectively complete ω-continuous domain D, with w :
ω → Dc and B ⊆ Dc , {n |w(n) ∈ B} is recursive iff B is empty or coincides
with D.

Proof. Observe that an effectively complete ω-continuous domain has nec-
essarily a least element, the sup of the empty set (which may be effectively enu-
merated by the ... the empty set of numbers). Assume then that {n |w(n) ∈ B}
is recursive, i.e. that it is r.e. with its complement, then the set and its com-
plement are both Scott open, by the theorem. One of them must contain the
least element and thus, coincide with D. The converse is obvious. 2

The relevance of the Corollary should be clear, even in the basic case of Pω
or P , where the result was originally given in [Rice53]. In summary, no non-
trivial property of programs is decidable (Corollary 2.6), and the semi-decidable
properties are “very few” or “topologically very structured” (Theorem 2.5). In
particular, we cannot decide nor semi-decide whether a program is correct, that
is if it computes a given function or a function in the desired set. Large part
of Theoretical Computer Science has been dedicated, in the last 30 years, to
the analysis of program properties and to the invention of methods for partial
correctness, exactly because these properties are not decidable (and very rarely
partially decidable). Type Theory provides some of these methods and we will
discuss it as well as the topological structures that it inspired.

The approach by Scott domains easily gives a notion of computable func-
tional or function in all finite (higher) type. Call now SD the category of (pos-
sibly, effectively complete ω-continuous) Scott domains and continuous maps as
morphisms. Observe then that any finite Cartesian product of these domains is
still a domain (in each of the intended categories: continuous, ω-continuous, ef-
fectively complete ω-continuous ...). That is, they are all Cartesian Categories.
Consider further two (effectively complete ω-continuous) domains D and D′,
then one may show that the set of continuous functions from D to D′ yields
an effectively complete ω-continuous domain, SD[D,D′]. The construction of
SD[D,D′] is (relatively) easy: partially order this set of functions pointwise,
observe that the Scott topology is the pointwise convergence topology and give
all the required enumerations.

But something more happens: products and function spaces nicely com-
mute. That is, there is a natural isomorphism, in the sense of Category The-
ory, between the functors SD[D × −, C] and SD[D,C−] (where C− is the
contravariant exponent functor). In technical terms, these categories are Carte-
sian Closed. The natural isomorphisms guaranty that the higher type sets, e.g.
SD[D′, C], are internally represented by the exponents; that is, CD′

is an ob-
ject of the category that “corresponds” to the set of function SD[D′, C]. Thus,
in each higher type one has, internally, continuous (and computable) elements,
continuous (and computable) functions on them and so on so forth. Moreover,
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a function of several variables may be seen as a continuous function of one
variable at the time (or, componentwise continuity implies global continuity, as
SD[D,CD′

] and SD[D ×D′, C] are isomorphic).
However, does this approach yield a sound notion of higher type compu-

tation? In order to prove this, consider a more elementary or purely com-
putational approach against which we can check the one above; an approach
with no reference to topologies and approximations. Given two enumerated
sets A and A′, i.e. two countable sets and surjective maps (enumerations)
w : ω → A and w′ : ω → A′, there is an obvious notion of“effective transforma-
tion” F : A → A′. Just define F to be an effective transformation, if there
exists a total recursive function f such that F (w(n)) = w′(f(n)). That is, F
may be effectively computed over the indices. This category EN of enumer-
ated sets and effective transformations is Cartesian but, and this is the rub,
it is not Cartesian Closed. In short, there is no natural way to turn into an
enumerated set the function space of two enumerated sets, or, in general, this
construction does not commute with products, in the sense given above by a
natural isomorphism.

The solution follows from the construction of Scott Domains. Consider the
category CSD whose objects are the computable parts of effectively complete
ω-continuous domains. That is, the computable elements Dc , D′c in Scott
domains D and D′, enumerated by w : ω → Dc and w′ : ω → D′c , respectively.
By the construction above, this is Cartesian Closed, if one takes as morphisms
the continuous and computable functions (as elements of the higher types).
Then one has:

Corollary 2.7 CSD is a full sub Cartesian Closed Category of EN .

Proof. The only delicate point is in the proof that the embedding is full.
But, by Theorem 2.5, the effective transformations on enumerated sets are
continuous (the inverse image of an r.e. set by a total recursive function is
r.e.). 2

This fact shows that a purely recursion theoretic, or combinatorial, defini-
tion of higher type function (by using computable functions over the “indices”,
i.e. within EN) can be extended to all finite higher types. The definition actu-
ally commutes with products and yields the required uniformity in one or sev-
eral parameters (componentwise computability and continuity), categorically
called Cartesian Closure. This is obtained by embedding partial (recursive)
functions into suitable topological spaces and by using continuity of functions
and pointwise convergence topologies on their function spaces. Corollary 2.7 is
a (broadly) generalized version of Myhill-Shepherdson theorem.

It should be clear that we are not following history here. As a matter of
fact, Rice theorem was proved first, as a consequence of the halting problem
([Rice53]), then Myhill-Shepherdson and Rice-Shapiro theorems followed, but
just over Pω and P , with no explicit reference to topology (see [Rogers67]).
Note finally that a function on sets or functions (a type-two functional) trans-
forms or “reduces” a set or a function to another: Myhill-Shepherdson function-
als, say, define “enumeration reducibilty”, while further “reducibility notions”
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are given in purely recursion-theoretic terms (Turing reducibility, or reducibil-
ity by oracles, truth-table reducibility . . . , see [Rogers67]). Yet, as proved
in [BarendregtLo82]), by (small) changes in the (induced) topology on Pω,
one may characterize these notions of “recursion-theoretic reducibility”. Once
more, a “geometric” perspective unifies notions and results. And, more im-
portantly, Scott Domains gave the general mathematical frame and extended
the results for type-two recursive functionals to the so-called Denotational Se-
mantics of typed and type-free Functional Programming Languages, see section
3.

2.3 Total Functionals, Filter Spaces and Real Numbers

As already mentioned, the notion of “partial map” is fundamental in Recursion
Theory, in view of the early results on undecidability. Attempts to work di-
rectly with total maps lead to complex syntactic approaches. The reason is first
due to the impossibility to enumerate effectively the total recursive functions;
thus only some subclasses (e.g. the primitive recursive functions) bear some
interesting recursion theoretic analysis. As for higher types, Geometry, by an
analysis of convergence, spells out the reasons for the mathematical difficulties.
In [Hyland77] an elegant approach is proposed by Filter or Limit Spaces, à la
Kuratowski. A Filter Space is a set with a local “notion of convergence” (for
each point, a filter of filters of subsets); the category Fil has Filter Spaces, as
objects, and, as morphisms, all maps transforming converging filters (towards
a point) into converging filters (towards its image). Any Topological Space is
a Filter Space with, at each point, the filter of neighborhoods as least filter
(of convergence); this yields an adjunction from Top into Fil. Yet, not any
collection (filter) of converging filters has a least element; that is, there are
interesting objects of Fil, which are not in Top. For example, the type two
total recursive functionals, formally defined by Kleene by 9 extremely complex
axioms, [Kleene59]. By Hyland’s “limit approach”, some feasible (and elegant)
Mathematics begun also on hereditarely total maps (see [Normann80]). More
recent consequences use this very weak notion of convergence and the following
approach to computability over metric spaces.

In example 2.4 above, the reals, with the Euclidean metric, were embedded,
as maximal elements, into a Scott Domain (the so-called “upperspace”). This is
a paradigmatic treatment of classic structures within a suitable frame for com-
putability and opened the way to some relevant effective analysis of continua.
Computable reals, say, are exactly the maximal computable elements of the up-
perspace, as an effectively complete ω-continuous domain. The work by Edalat
and others (see [Edalat95A], [Edalat95B], [Escardo96]) allowed to embed sev-
eral structures for Effective Analysis, including some Geometry of Dynamical
Systems, into Scott’s categories, where closure properties under higher type
constructions and existence of effective limits have been used to revisit several
known results, in a constructive frame (effective versions and/or improvement
of Banach fixed point theorem, Hutchinson’s theorem, existence of Markov op-
erators, see [Edalat97B] for a survey). A general idea, for example, is to look
at spaces of open balls in a metric space as a Continuous Domain, partially
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ordered under reverse inclusion, as in the upperspace over [0, 1] (example 2.4);
then Ruelle’s notions of “attractivity” and “invariance” can be described as
convergence and fixed points and dealt with in a constructive way, also in
higher types (see below and [Edalat97A]).

A blend of the two approaches above has been recently proposed in [DeJaeger02].
The filter structure on reals and, hereditarely, on their functions and func-
tionals, gives a sound notion of effectiveness in higher types (functionals and
measures over the reals) by the combined use of weak forms of convergence
(filters) and strong algebraic-geometric properties (convexity and the vectorial
structure of the reals and their continuous functions). But this work belongs
already to the new century.

3 Types

As already mentioned, Computability Theory was born by the encounter of
formalist and intuitionistic views on foundations. In modern terms, this may
be understood by the “Types as Propositions” analogy (also known as the
Curry-Howard isomorphism below). In [Church32] a simple formal language
for computing was defined, the type-free λ-calculus. The purpose, as for Her-
brand, Gödel, Turing and the others in the ’30’s, was the understanding of
formal deductions as effective/finitistic procedures. Church’s elegant theory of
computable functions only relies on two notions: given the formal definition
of a function by a term, bind (abstract) a variable by a λ; apply a term to
another term. Briefly, λx.f(x) is an (explicit) function of x and when applied
to a, say, it gives f(a).

More formally: variables are terms; if M is a term, then λx.M is a terms;
if M and N are terms, then MN is a term. Warning: also xx is a term! This
immediately produces a fixed-point operator: Y = λy.(λx.y(xx))(λx.y(xx)) .
As a consequence, Curry gave a simple antinomy within the calculus, which
originally included an negation operation, Neg. As an informal paraphrasis of
it, note that YM = M(YM) for each term M , thus Y (Neg) = Neg(Y (Neg))
contradicts any reasonable property for negation or complement. It was simple
to give a solution to the antinomy (yet another obtained by a diagonal con-
struction): avoid complementation in the calculus, as this remains very expres-
sive. As a matter of fact, by a simple encoding of numbers as terms, type-free
λ-calculus computes all (Turing) computable functions: it actually served as
a tool for proving the equivalence results between the various formalisms, in
’35-’36 (the Y operator above yields recursion). The lack of negation may be
then understood as the fact that recursively enumerable sets are not closed un-
der complement, an easy consequence of Turing’s undecidability of the Halting
Problem.

Yet, there is another relevant way out from antinomies: give types to vari-
ables, and thus to terms as suggested by [Church41]. Actually, one can intro-
duce and eliminate types and define terms at once, by two rules:
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[x : A]....
b : B

(λx : A.b) : A→ B
(→ I) a : A c : A→ B

ca : B
(→ E)

The reader will recognize in (→ E) the classic ’modus ponens’: if A and
A imply B, then B. While the rule (→ I) transfers into the language of
formulas the metalinguistic deduction: that is “from A infer B” is transformed
into an implication, A → B. By this very construction, the types of terms
are also propositions of a simple implicative calculus. Just add products “×”
as conjunction and you have Intuitionistic Propositional Calculus, with the
obvious rules that characterize the Cartesian projections. This was Curry-
Howard’s remark in the ’60’s that gave full logical meaning to Church’s typed
version of λ-calculus. The idea is that terms living in types are proofs of these
types, seen as propositions: (λx : A.b) : A → B is a proof of A → B in the
precise sense that it takes a proof of A and transforms it into a proof of B, as
expressed by (→ E).

Note now that, by definition, several argument functions in λ-calculus are
given componentwise. If M (possibly) contains x and y, the function explic-
itly depending on them as variables is obtained by successive binding by λ:
λx.λy.M . Thus, as for TM’s or any other calculus for recursive functions,
computability is defined componentwise; actually, in this calculus, the types
A×B → C and A→ (B → C) are provably isomorphic (there exists invertible
terms in either direction). Clearly, this isomorphism has a precise logical mean-
ing: as propositions, it is easy to prove that A×B → C and A→ (B → C) are
equivalent. This is a basic example of the connection between computations
(as terms) and proofs, thus between types and propositions; their isomorphism
is constructively given by the terms proving their equivalence as propositions.

And here come again the Cartesian Closed Categories (CCC’s), as this iso-
morphism is the natural isomorphism, which defines them (see above). Thus,
Logic and computations force this topologically un-natural feature: global con-
tinuity is equivalent to componentwise continuity, a mathematical translation
(or semantics) of the computational and logical isomorphism above. Yet, the
construction of Scott Domains gave a simple answer to the problem, in topolog-
ical terms. And the construction was far from arbitrary: functions, as infinite
objects, are naturally partially ordered by graph inclusion (and this yields the
pointwise convergence topology). Finite functions (functions of finite graphs)
provide the finitary (algebraic) approximating elements, hereditarily extended
to higher types by the categorical construction; theorem 2.5 and its corollaries
above further justify it. Clearly the price to be paid is that “topological ap-
proximation” is defined only from below: these topologies are order topologies,
and not Hausdorff.

Besides this general motivation for continuity (approximation), there is a
further motivation for Scott topologies, at least up to these days. The type-free
λ-calculus is expressive enough to compute all partial recursive functions: this
is easily show by implementing recursion within the calculus, by Curry’s fixed-
point operator Y = λy.(λx.y(xx))(λx.y(xx)). Recall that, in this calculus,
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functions may be inputs as well (any term can be applied to any other term:
there no difference of type). Formally, the domain of terms, D, is isomorphic
to the domain of functions on terms, D → D. But how to find a solution D to
the equation (isomorphism) X = X → X?

By Cantor’s cardinality theorem, this is far from obvious, if we want D
to be different from the singleton set (e.g. to contain all natural numbers
and computable functions). Well, in Scott Domains, by an inverse limit con-
struction, one can find a solution to this equation, as isomorphism between
a domain and its function space (the continuous functions or morphisms in
SD), called the D∞ model in [Scott72] (see [Barendregt84], [AbramskyJung92]
for surveys and references). A simpler, but weaker, solution, on Pω actually,
is given in [Scott76] (for general category-theoretic and set-theoretic analyses
of continuous domains and their equations, see [SmythPlo82] and [Longo83],
respectively). It is worth noticing that, so far, while there are plenty of inter-
esting Cartesian Closed Categories (thus, models of the typed λ-calculus), no
model has been given of the type-free calculus, without some use of continuity
and topological notions.

Clearly, the very simple order topology of these models has an immediate
advantage. Recursive functions are defined by . . . recursion; that is, a function
f is usually given by a formal expression, a program, a “context of defini-
tion” F and an equation f = F (f). Thus, partially ordered spaces, which are
(effectively) complete, easily yield a solution f0 of the equation: once inter-
preted F by a continuous, thus monotone map F , take the least upper bound
of the chain ⊥ = F (⊥) = F (F (⊥)) = . . . , where ⊥ is the least element of
the partial order. The (continuous and computable) functional Fix, defined by
Fix(F ) = supn F

n(⊥), provides a simple mathematical interpretation of the
formal operator Y above. Thus, a solution of the formal equation f = F (f) is
given in these topological spaces as f0 = Fix(F )

As for the type equation X = X → X, or more generally X = Σ(X),
where Σ is a type constructor or a recursive definition of data types, one may
try to use a similar techniques, at the level of the category, by interpreting
Σ as an (endo-)functor. However, the key case above - and most interesting
ones - use functors that may be covariant in one argument (the second one),
but contravariant in the other: thus, no obvious extension of the monotonicity
argument can be given. Scott’s ’72 paper, by an original inverse limit con-
struction, started the Denotational Semantics of Programming Languages, as
the mathematical investigation of recursive definitions of functions and, more
importantly, of data types: this crucial practice of programming found by this
a proper mathematical frame, while the first (topological) model of type-free
λ-calculus was given, i.e. a solution of the equation X = X → X.

In conclusion, types of (typed) λ-terms are propositions; their mathemati-
cal meaning is that of objects in categories with some closure properties, that
relate products and function spaces. Some of them contain non-trivial solutions
of the equation X = X → X. These correspondences (types as propositions as
objects of CCC’s) greatly enriched Proof Theory as well, in particular since the
work of Girard and Martin-Löf, in the ’70’s. On the side of applications, type-
free and typed λ-calculi have been the paradigms for Functional Languages,
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one of the main programming styles, for more than 30 years. The main di-
alects of LISP, born in the ’60’s, directly derived from the type-free calculus;
Edinburgh ML, an extension of the typed calculus of the mid ’70’s, started a
major flow of programming languages. By the notion of polymorphism, due in
Proof Theory to Girard’s second order λ-calculus, novel and rigorous reusabil-
ity tools moved into programming (see [Girard89], [Castagna97] for surveys).
Moreover, their mathematical semantics provided connections to further non-
trivial constructions, which also originated in Geometry: Toposes.

In short, polymorphism may be understood as the possibility, for a function
(a term) to live in many types. The identity function, for example, belongs to
X → X, for any X; or, one should be able to write just one program computing
it, in all types. The idea is that types may include “variable types”. Then,
both types and terms may depend on types, as variables: e.g., (λX.λx : X.x) :
(∀X.X → X) is the polymophic identity function, or the program for this
function may be “reused” over all types. More generally, if A is a type, also
∀X.A is a type, for X ranging over types (formally: (∀X : Type.A) : Type).
Thus one may define a type by a quantification over the very collection of types
that is being defined, see [Girard89]. This challenging impredicative feature is
the reason for the expressivity of the calculus (Girard’s system computes all
recursive functions which are provably total in II order Arithmetic, and thus it
proves the consistency of - II order - Arithmetic), as well of its success, due to
the idea of “reusing” as polymorphisms or variable types, with no restrictions
(no stratified universes, for example).

Girard’s second order calculus (with type variables) may be interpreted over
toposes (where variation is described as “fibration”), with a non-obvious closure
property, which may be informally expressed as follows. The intended category
must be closed under fibred or indexed products over itself. That is, it must
contain, as an object, the result of a product indexed over the entire collection
of objects (“small completeness”). The first construction of this kind was pro-
posed by Moggi, in 1985, and developed by many since then ([LongoMoggi91],
[Hyland87], [Pitts87]; see [AspertiLongo91] for an approach via “internal cate-
gories” and more references). Moggi’s idea may be accommodated into several
realisability toposes, a natural generalization of computability in categorical/
intuitionistic frameworks, which contains various versions of Scott Domains.
Their logic is essentially intuitionistic and they allow strong closure proper-
ties exactly because they yield “very few morphisms” (only the “constructive
ones”), see [Birkedal02] for surveys and recent advances.

Realizabilty toposes do not necessarily relate to continuity notions. How-
ever, their origin is due to Grothendiek’s idea of topos, which extended the
gluing technique of Riemann, for differentiable functions on manifolds, to more
general structures, see [MacLaneMoer92]. Lawvere made the connection to
Logic, [Lawvere76]. The main theorem in [LongoMoggi91] uses Lawvere’s un-
derstanding of (second order) universal quantification as right adjoint to the
diagonal functor (note that existential quantification is understood as the left
adjoint: a very elegant “geometric” understanding of logical quantification, by
a symmetry).
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Intermezzo: Logic, Concurrent Processes and Geom-
etry

Logic and Sequentiality

As mentioned in the Introduction, the logico-formal origin of Computability
Theory is reflected into the topological structures that were first proposed to
understand it (as already hinted, since [Frege84], foundations only relied on
“logic judgements”, with the exclusion of “geometric judgements”, as hypothe-
sis grounded on key regularities of space, in the sense of [Riemann54], [Weyl27];
see [Longo02] for a discussion). The componentwise analysis of continuity, as
Cartesian Closure of the intended categories, the weakness of the topology
(T0 separation) . . . are all symptoms of this “lack of attention” to physical
space (and its cartesian dimension) which is typical of this theory. The se-
quentiality of (classical and intuitionistic) logical deduction is at the core of it.
TM’s are conceived as a human computor sequentially writing/erasing/moving
0’s and 1’s. And theorems prove that λ-calculus is a sequential system (see
[BerryCurien82], [AmadioCurien98]). Also the results mentioned in subsection
2.2 have an essentially sequential nature. A close analysis of the proof of the
“effective discontinuity lemma” (see the comments after theorem 2.5) shows
that its proof relies on the sequential generation of an r.e. set: a bifurcation
towards a superset or a finite subset is decided, with no other alternatives,
along its effective production; and this seems crucial to the construction. As
a further remark, recall that the type-free λ-calculus may be considered as the
cleanest functional theory of computations, as it represents all partial recursive
functions with the simplest syntactic structure. Observe then that all its mod-
els force the strong isomorphic embedding that we considered as a paradigm of
“being unrelated to physical space" (as dimension is a topological invariant):
in any Cartesian Closed Category, a solution D of the equation X = X → X is
such that D×D can be isomorphically embedded into D (a simple consequence
of the syntax or of the categorical characterization in [LongoMoggi90]).

Yet, the deep links between Computability, Cartesian Closure and weak
topologies, as concrete models for types and computations, have had lots of
remarkable fall-out. Functional programming, since the design of (dialects of)
LISP (such as Scheme, and their models) and even more as for Edinburgh
ML, till the more recent versions of polymorphic programming languages, have
been invented and enriched on the grounds of this mathematical understand-
ing. As already hinted, some of the related ideas passed into Object Oriented
progamming: for example, subtyping helped to formally describe inheritance
(the features of programs may be inherited and reused, a further form of poly-
morphism, see [Castagna97]). But even Logic has been influenced by these
structures. On the grounds of early work by Berry, in [Girard86] it was re-
marked that one can give models for typed and type-free computations by
considering a restricted class of continuous functions as morphisms, the stable
ones. In the categories of Berry-Girard Coherent Domains, the key property of
“finiteness”, interpreted by the algebraic elements of Scott Domains, is nicely
preserved, as proper finiteness also in higher types (there are only finitely many
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elements below a finite - algebraic - one; see [AmadioCurien98] for an account).
And this was the beginning of new ideas in Proof Theory: Girard’s Linear
Logic was conceived by observing that stable maps include some interesting
linear ones, [Girard87]. In this case, then, the mathematical structure pre-
ceded and suggested the logic formalization: the linear maps interpret a novel,
very fruitful, notion of implication.

Girard’s work went further on, in this revision of classical and intuitionistic
systems. Linear Logic originated an original analysis of proofs, in terms of their
geometric structures: proof-nets describe rules and proofs also on the grounds
of symmetries and connectivity. The logic machinery of the founding fathers
is thus enriched by some fundamental geometric judgements that bring space
back into Foundations, through the window of deductions. A further insight
on the relevance of spatial organization in Logic is given in [Girard01].

Concurrency and Geometry

It is clear that Turing machines may run in parallel, and that one machine
can simulate any finite number of them. This is parallelism and its use largely
enhanced complexity, but did not require any change in paradigm. The sit-
uation, in actual computing, changed dramatically since distributed systems
and networks of computers came to the limelight. In these systems, possibly
asynchronous processors concur in performing a task. That is, they exchange
messages that may modify each individual computation, in a largely unpre-
dictable way, in particular in view of the lack of an absolute, Newtonian clock.
Distribution in space is crucial, as well as a richer understanding of physical
time. Their mathematics is changing accordingly. A wide effort is carried
on in order to provide a suitable mathematical frame for Concurrency (see
[Aceto02] for recent approaches and surveys). Categories play a major role,
see [WinskelNiel95], [Joyal96] among others, but we are far from a unified un-
derstanding of a very complex phenomenon, where computations are no longer
compositional (the result of truly concurrent processes cannot be analyzed by
composing the independent analyses of individual processes; this radically de-
parts from Turing’s approach1).

Even access to stored data is becoming a major mathematical challenge:
competing independent processors, in a distributed systems, may modify a
database while accessing to it and, by this, influence the other computations. A
recent geometric approach to this relevant and difficult problem uses non-trivial
tools from Homotopy Theory. The idea is that the allowed computations may
be seen as homotopic paths in a continuous phases space (see [Goubault00]).
Fault tolerance, typically, is analyzed in terms of small continuous deformations
along oriented paths. Space is finally back and true geometry follows. The
point is that Computer Science is moving from the discipline engendered from

1The number-theoretic functions computed by these systems are the usual ones, of course.
The point is that, in Concurrency, what really matters is the data flow, not the input-output
relation. Church Thesis, the thesis for the old absolutes of the 30’s, for Computing (and
Mind (!!)), may be soundly considered the “tar-pit” of modern (mathematical) computing,
see [Aceto02].
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pure Logic, an heritage of the spaceless foundations à la Frege and Hilbert,
focusing only on sequential languages for deductions, Integer Numbers and
their Arithmetic, to an analysis of actual computations by concurrent agents,
distributed in space and computing along a dynamical understanding of time
(time as scanned by irreversible and asynchronous bifurcations). The founding
fathers of Logic, one century ago, opened the way, by their mathematical in-
ventions, to the early logico-formal machines; but these machines are changing
nowdays. And it is time to move towards new ideas for the “next machine”,
possibly grounded on physical space and its mathematics. A good source of
inspiration may be another relevant machine, rather unrelated to the digital
ones, the animals’ neural system (which includes ours, of course). This machine
originated from action in space, along the evolution of life, and its elaboration
of information seems more to be a dynamics of forms, of a geometric nature
(from the tridimensional folding of proteins, as neuroreceptors, to the structure
of neural nets - see the project “Géometrie et Cognition” in Longo’s web page;
but this is yet another possible program for the new century).

4 The Hereditary Partial Effective Functionals

In this section and in the following one, two “finitary” statements are given,
which have been proved by an explicit use of the continuous structures we
previously introduced. It is fair to say that “analytic" methods have been
used, for elements of domains are described by finite approximations, similarly
to approximations by finite expansions of Fourier series in complex function
theory. Of course, we do not yet deal with the width and the difficulties of
number theory: the Theory of Numbers is the oldest and most basic topic in
Mathematics, since Pythagora’s school. Computability Theory is surely not as
old as that2.

More precisely, this section presents an elementary (arithmetic) notion of
higher type computation. The basic properties of the type structure are proved
by an essential use of continuous domains for denotational semantics and gen-
eralized computability. In section 5 below, a (basic) fact for the solution of
recursive equations between programs is discussed. This is done for our core
functional language, λ-calculus. The proof uses a non-axiomatizable ("infini-
tary") consistent extension of λ-calculus and a continuous topological model.
Unfortunately, some technical definitions are unavoidable.

Gödel and Kreisel’s motivation for classical higher type recursion theory
refers to the analysis of the meaning in constructive mathematics of Peano
or Heyting arithmetic (see Kreisel’s paper in [Heyting59]). Recall first that
∀x∃y A(x, y) (constructively) yields a function f from x to y, i.e. it corresponds
to ∃f∀x A(x, f(y)) . More generally, following Kreisel’s “no counterexample"
interpretation,

2The two theorems in sections 4 and 5 have been proved by [LongoMoggi84] and
[BergstraKlo80], respecively. In [Longo84] they were already presented in a unified per-
spective.
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from ∃x∀y∃z∀w A(x, y, z, w)
write ∃F∃G∀f∀g A(F (f, g), f(F (f, g)), G(f, g), g(F (f, g).G(f, g))),
where F,G, f, g are function variables in the due type (type 1, the type of
number theoretic functions, as for f and g; (pure) type 2, as for the functionals
F and G, since they are functions of functions). Then x and y are effectively
recovered from f and g, if F and G are (higher type) total computable func-
tionals, and so on so forth for further alternations of quantifiers. Thus the need
to define this sort of computable maps, in any finite higher type.

Recall now that the partial recursive functions (PR) can be effectively num-
bered (notation: PR = {φi}i∈ω); thus, also the universal function u(i, x) =
φi(x) is in PR. By using this idea, in [LongoMoggi84] a direct elementary
approach was proposed to higher type partial functionals (the HPEF below).

The difference w.r. to Scott-Ershov approach (or Hyland’s, for total func-
tionals) is that the later first introduces the notion of continuity, possibly in
abstract categorical settings, then defines the continuous and computable ob-
jects in any type, by using also PR. The HPEF instead are presented by an
inductive elementary construction, only based on PR. Interestingly enough,
the key structural property of the HPEF, which may be expressed in purely
arithmetical terms, could only be proved by using continuous structures. This
may be considered a further motivation to the invention of the topological
category of domains.

4.1 The problem

For sets A,B, write f : A→ B if f is a total map from A to B. By setting ω⊥ =
ω ∪ {⊥}, we may write f : ω → ω⊥ for any partial number-theoretic function
({⊥} means “divergence”). As for higher types, integer (or, respectively, pure)
types are defined by n+ 1 : n→ n (or, respectively, n+ 1 : n→ 0), for n ∈ ω.

Let <,> be any effective coding of pairs in ω; that is <,> codes a pair of
numbers by a single number. Set C(0) = ω and C(1) = PR. In order to define
C(n), the key idea is to extend to a map from C(n−1) to C(n) the notion of
gödel-numbering, which is welknown as a map from C(0) to C(1)

We will define then C(n), for all n > 1, as the set of hereditary partial
effective functionals (HPEF) of integer type n, by induction on n, by using a
set C(n.5) of maps from C(n−1) to C(n) (functions of “intermediate" type). The
maps in C(n) will go from C(n−1) to C(n−1). The coding <,> is extended to
higher types in one of the several possible ways. In other words, the extented
<,> codes C(n) × C(n) by C(n), for any n, as it will be shown below.
Notation:

λxy.g(x, y) is the map < x, y >` g(x, y).

Definition 4.1 (i) C(n.5) = {φ : C(n−1) → C(n) | λxy.φ(x)(y) ∈ C(n)};
ii) C(n+1) = {τ : C(n) → C(n) | ∀φ ∈ C(n.5)τ ◦ φ ∈ C(n.5)}.

In order to see that this definition makes sense, let’s check the types.
Assume that C(n−1) and C(n) are given. Consider first φ : C(n−1) → C(n)

and set ψ(< x, y >) = φ(x)(y), for x, y ∈ C(n−1) (check the typing for exercise:
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e.g., observe that φ(x) : C(n−1) → C(n−1)). Clearly ψ : C(n−1) → C(n−1).
Then, by (i) in the definition above, φ ∈ C(n.5) iff ψ ∈ C(n).

The following diagram should help in understanding how C(n+1), the “next"
higher type, is defined in (ii), by using C(n.5), which has been defined in (i)
from the given C(n−1) and C(n):

C(n−1)

?

@
@

@
@R

φ τ ◦ φ

C(n) C(n)-
τ

That is, τ ∈ C(n+1) iff ∀φ ∈ C(n.5) τ ◦φ ∈ C(n.5), as in (ii) in the definition.
Note that the pure type functionals {PC(n)}n∈ω, i.e. for n+1 : n→ 0), may

be also defined, by the technique above: just substitute PC(n) in the second
instance of C(n.5) in the definition of PC(n+1) corresponding to definition 4.1
(ii) (see [LongoMoggi84]; 3.12)). In either cases, one only needs to know C(0) =
ω and C(1) = PR, to start with. Apparently, though, it may seem that the full
strength of Set Theory is needed in order to define the sets C(n.5) and C(n+1)

above. As a matter of fact, a consequence of the results mentioned below is
that, for all n,C(n) and C(n.5) are countable and can be effectively numbered.
By this we do not need to look, say, at the set of all functions from C(n−1) to
C(n) in order to define C(n.5), but a countable subset would do. A posteriori,
this is all expressible in Peano Arithmetic.

We want to know, now, what the C(n)’s are and how they behave, for
n > 1. It is easy to see that all acceptable Gödel-numberings of C(1) = PR
live in C(1.5). It would be nice, say, if one could extend the notion of effective
numbering to maps in C(n.5), for n > 1. In view of the s-m-n (iteration)
theorem (see [Rogers67]), this corresponds to proving the property (P) below.
This property says that each C(n.5) contains a function φn to which any other
function, in the same type, can be reduced (by a function fn ∈ C(n)). Function
φn palys the role of “generalized gödel-numbering”.

(P ) ∀n ≥ 0 ∃φn ∈ C(n.5) ∀φ ∈ C(n.5)∃fn ∈ C(n)φ = φn ◦ fn

Recall now that for all fn+1 ∈ C(n+1) one has fn+1 ◦ φn ∈ C(n.5). Then by
(P), for some fn ∈ C(n), fn+1 ◦ φn = φn ◦ fn.

By this, HPEF may be visualized in the integer types by the following
diagram:

ω -f ω

? ?

φ1 φ1

C
-

f2
C

···
?

···
?

C(n−1) -

fn

C(n−1)

? ?

φn φn

C(n) -

fn+1

C(n)

···
···
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In order (P) to hold, the φn’s have to be surjective as well and, by this,
preserve the cardinality of ω at higher types. Again, (P) is elementary and has
a combinatory flavour.

4.2 The method

In this section we give the basic hints for the main result concerning the HPEF,
with the only aim to display the use of continuous topological structures in the
proofs. In [LongoMoggi84], (P) has been proved by an heavy induction load.
Note first that, by looking only at definition 4.1, the HPEF do not need to be
... well defined. As a matter of fact, <,>: ω2 ↔ ω is not trivially inherited at
higher types. A first sight, one would just set < f, g > (n) = < f(n), g(n) >
as a definition for <,>: C × C ↔ C and so on. This is clearly wrong, for
divergence of f or g cause essential problems. Set then < f, g > (n) = if n is
even then f(n

2 ) else g(n−1
2 ).

This is fine for C(1), but it doesn’t automatically prove that
< τ, σ > (f) = < τ(f), σ(f) >
defines an (effective) coding of C(n) × C(n) into C(n), for n ≥ 2. The proof
of this goes inductively together with the proof of (P) and of two more facts,
which need a few definitions.

Recall that a numbered set is a pair (D, e) where e : ω → D is onto.
f : D → D′ is a morphism (of the numbered sets (D, e), (D′, e′)) if ∃f ′ ∈
R f ◦ e = e′ ◦ f ′ where R are the recursive functions. Define then d : ω → D
is an acceptable numbering of D if ∃f, g ∈ R e = d ◦ g and d = e ◦ f
(or, d and e are recursively equivalent). Now, one can enumerate D′ from
D: that is, φ : D → D′ is a relative numbering (of (D′, e′) w.r.t. (D, e))
if φ ◦ e is an acceptable numbering of (D′, e′). Finally, φ : D → D′ is a
principal numbering (of (D′, e′) w.r.t. (D, e)) if φ is a morphism and ∀ψ ∈
Mor(D,D′) ∃θ ∈ Mor(D,D) ψ = φ ◦ θ. Clearly acceptable, relative and
principal numberings are onto maps and generalize Gödel-numberings.

Consider now E = Cont(ω, ω⊥), where ω is given the discrete topol-
ogy. Clearly, E is the effective domain of the partial functions Ec = PR.
Set E(n+1) = Cont(E(n), E(n)). We can then state the main theorem in
[LongoMoggi84].

Theorem 4.2 For all n ≥ 1 one has:
(1) C(n) = E

(n)
c

(2) C(n) × C(n) ∼= C(n) via <,>
(3) C(n.5) = Cont(E(n−1), E(n))c

(4) ∃φ ∈ C(n.5) principal relative numbering.

Properties (1) - (4) are proved by combined induction. (1) and (3) give the
continuity of the HPEF. More precisely, (2) at type n+1 is obtained from (1)
+ (2) at type n. by first showing that, in an effective domain, any effective
coding of pairs of algebraic elements by algebraic elements is inherited to a
corresponding effective coding at the higher type (the function space). (1) +
(3) + (4) give (1) at the higher type. (1) + (2), again, prove (3) and so on,
with various combinations, to prove the rest.
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Note, now, that once proved that each C(n) is a countable set, with the
natural numbering of constructive domains, (P) above amounts to say that
each C(n.5) contains a principal numbering. In fact, by generalized Myhill-
Shepherdson theorem (see Corollary 2.7), the continuous and computable func-
tions over the computable elements of effective domains coincide with their
morphisms, as numbered sets.

There may be direct arguments for proving the arithmetic statement (P),
i.e. with no use of the continuous structure. In [LongoMoggi84], though,
it seemed essential to use finite approximants (algebraic elements) and their
effectiveness properties to deal with the functions in the C(n)’s, which are
infinite objects.

Remark. Topological or limit structures are implicit in the definition of
the Kleene-Kreisel countable functionals, when given by the “associates" (see
[Normann80]). This is not so for the HPEF, where in the definition, there
is no flavour of continuity nor approximation. Though, as soon as we just
want to check if the definition makes sense in any type, finite approximants,
that is the algebraic elements of suitable domains, come in. Of course, Myhill-
Shepherdson theorem and its generalization is the key fact to understand this;
once more, that theorem provides the main justification for Scott’s continuity
and its deep connections to computability.

5 Invertible terms in λ-calculus

Terms of λ-calculus are defined by variables, formal application and the binding
operator λ. The computation (reduction) rules are axiomatized as follows:

(β) (λx.M)N ≥ [N/x]M , for N free for x in M , as usual;

(η) λx.Mx ≥M , for x not free in M.

The reduction predicate “≥" is reflexive, transitive and substitutive. “="

is the least equivalence relation such that M ≥ M ′ ⇒ M = N ; “=" also is
substitutive. A term is in (β-)normal form (βη-normal form) if no subterm
is the LHS of axiom (β)((β) or (η)). A term M possesses a (βη-) normal
form if, for some M ′ in (βη )normal form, one has λβ(η) ` M = M ′. Finally,
M is solvable (or has head normal form), if, for some P1, ..., Pq,

→
x and y,

λβ ` M = λx1...xn.yP1...Pq, M is unsolvable, otherwise. The paradigmatic
role of λ-calculus and Combinatory logic, as functional programming languages,
is well known since long, see [Backus78].

5.1 The problem

Combinatory Logic and λ-calculus, as type free applicative languages, have a
set of terms which forms a monoid with I ≡ λx.x as identity and composition
“◦" as application, where M ◦N = BMN for B = λxyz.x(yz). Church proved
that the closed terms of λβη-calculus form a recursively presented monoid,
with an unsolvable word problem. Note, now, that equations among terms give
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a standard methods for defining terms, as well as for programs. Equations,
though, as well known from algebra, can be more easily solved when working
in a group. Consider, for example, the following definition of the (unknown)
term X : M ◦ X = X ◦ P . If M , say, possesses an inverse, M−1 , an easy
application of Curry’s fixed point combinator gives X from X = M−1 ◦X ◦ P ,
since we obtain an ordinary recursive definition of X. It is then an important
question, raised by [CurryFeys58], under what conditions a term in the monoid
has an inverse.

Definition 5.1 Let T be (an equational extension of) λ-calculus. M is T -
invertible if ∃N T ` M ◦ N = I and T ` N ◦M = I. (In this case we that
M,N are T -inverse).

[Dezani76] gives a characterization of invertible terms in λβη-calculus, among
those which possess a normal form (for λβ-calculus, the group coincides with
I). This was done by an (implicit) use of the notion below of tree for terms.

For the purposes of the main theorem of this section, a fundamental defini-
tion is required: a term of λ-calculus may be seen as a tree, by taking as root
the “head” of the term (e.g. λx.y in λx.yM), hereditarely.

Definition 5.2 (Informal) The Böhm tree of M is given by:

BT (M) = Ω if M has no head normal form (i.e. M is unsovable)

BT (M) = λx1...xn.y if M =β λx1...xn.yM1...Mp

�
�

@
@

BT (M1) · · · BT (Mp)

The definition is informal, since Böhm-trees may be infinite (see [Barendregt84]
for a precise definition). In particular, BT (M) finite and Ω-free iff M has a
normal form. Thus, there are plenty of interesting terms with infinite Böhm-
trees. Take, say the fixed point combinator Y = λy.(λx.y(xx))(λx.y(xx)) or
the solution of X = λz.zX, and a lot more. Since early work by Wadsworth
and Hyland, Böhm-trees have been a basic tool in the comparison of opera-
tional and denotational semantics of λ-calculus (see [Barendregt84], [Longo83]).
Roughly, this is because all terms, as all programs, are finite Böhm-trees “dis-
play" their computational (operational) behaviour, which may be infinite (see
[Longo84] for a discussion).

Böhm-trees may be partially ordered by setting Ω, the undefined tree, as
the least one and, then, by setting BT (M) ⊆ BT (N) if BT (N) is obtained
from BT (M) by replacing Ω in some leaves of BT (M) by some Böhm-tree.
Dezani’s result (see theorem 5.4, below) uses a difficult combinatory technique,
where the finiteness of the Böhm-trees considered has an essential role. The
question remained of characterizing all invertible terms, not necessarily with
normal form; equations like the example above are perfectly sound also if
BT (M) is infinite, for M could still possess a head normal-form.
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[BergstraKlo80] fully answered the general questions, by using results in
[Dezani76]3. Our present interest in the methods used in [BergstraKlo80] relies
on the essential application made of infinitary, continuous structures to solve
this typically combinatorial problem. What’s nice is that the characterization
in [BergstraKlo80] confirms the result in [Dezani76], since invertible terms turn
out to live only among normal forms. To see this, though, one needs to look
also at terms with an infinite computational behaviour.

5.2 The method

Let σ1, ..., σn be a permutation of 1, ..., n and
→
z be a finite string of variables.

Definition 5.3 (i) The hereditary permutators (HP) is the set of λ-terms
defined by:

M ∈ HP if BT (M) = λzx1...xn.z

�
�

@
@

λ
→
y1 .xσ1 · · · λ

→
yn .xσn

�@ �@

and each subtree is the tree of a term in HP.
(ii) The finite hereditary permutators (FHP) are the terms in HP with

a finite, Ω-free Böhm-tree.

Theorem 5.4 Assume that M has a normal-form. Then M is βη-invertible
iff M ∈ FHP .

Proof. [Dezani76] (see also [BergstraKlo80]). 2

Theorem 5.5 M is βη-invertible iff M ∈ FHP .

Proof. [BergstraKlo80] (see also [Barendregt84]). 2

It is clear that in order to prove theorem 5.5 from theorem 5.4 one only has to
show

(O) M is βη-invertible ⇒M has a normal form,
since any M in FHP automatically has a normal form.

Bergstra and Klop give two arguments for (O), by embedding λ-terms into
different continuous models, D∞ and Pω (see section 3). Observe first that
the valid equalities between λ-terms in Pω are characterized by the following
theorem.

Theorem 5.6 (Hyland) Pω |= M = N iff BT (M) = BT (N).

Proof. (see [Barendregt84]). 2

3A categorical application of invertible terms is given in [BruceEtAl92], as these terms are
used to caracterize the isomorphisms which hold in all Cartesian Closed Categories.
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We also need to introduce an interesting extension of λβη-calculus, which
may be defined in terms of Böhm-trees. Note first that, once the (possibly
infinite) operational behaviour of a λ-term has been displayed by its Böhm-
tree, one may also consider infinitary reduction rules (or expansion rules, their
inverse operations). In particular, one may η-expand (possibly infinitely many)
nodes of a tree. Call “=η" such an equality obtained by (possibly infinitely
many) η-expansions between trees.

Examples
�

�
@

@
y �

�
@

@
x

≤η

�
�

@
@

λx.y

x

�
�

@
@
λz.x

z

λx.x ≤η λxy.x λxy.x

y
≤η

λz1.y

λz2.z1

λz3.z2
···

(infinitary)

It is easy to see that the last tree is BT (J), for J = λxy.x(Jy).

Definition 5.7 H? = {M = N | M , N are λ-terms and BT (M) =η BT (N) }

H? is a consistent extension of λβη-calculus. It is actually the largest
consistent extension of the theory H, where all unsolvable terms are equated
([Barendregt84]). Thus H? is the unique Hilbert-Post completion of H.

Theorem 5.8 If M is βη-invertible, then M ∈ HP .

Proof. (Sketch) Assume that M,N are βη-inverse. Then M,N are also
H?-inverse, since λβη ⊆ H?. Write now M ∈k HP if M is in HP up to level k
of BT (M) (the root is level 0 of a tree).

If we prove

1) ∀k (M H?-invertible ⇒M ∈k HP ),

we are done, by the inductive definition of HP.
1) above holds for k = 1, by (a lot of) combinatory work on BT (M), up to

the first two levels (see [Dezani76], [BergstraKlo80] or [Barendregt84]).
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Assume now (1) for k > 1. Then, by some further non-obvious work, prove
that, if M,N H?-inverse, then Ni,Mσi are H?-inverse.

Thus, by induction hypothesis, Ni,Mσi ∈k HP and, clearly, M,N ∈k+1

HP . 2

The key idea is that, by the infinitary character of the provable equalities,
H? allows to compare terms with infinite Böhm-trees. Roughly, it is like looking
at full decimal expansions of rational numbers, without restricting the attention
to numbers with finite expansions (normal forms). The proof, though, works,
at finite levels, exactly as for the finitary result and it is then analytically
extended to the infinite expansions.

Church original work on λ-conversion used a more restrictive notion of λ-
term. Namely, λI-terms are defined similarly to λ-terms, provided that λx.M
is a λI-term iff x occurs free in M . It is easy to see that a λI-term M has
a normal form iff all of its subterms have a normal form. By looking at the
definition of HP, one may work out the following fact.

Theorem 5.9 If M ∈ HP , then BT (M) is Ω-free and there exists a λI-term
M ′ such that BT (M ′) = BT (M).

Let’s now follow stepwise Bergstra and Klop’s argument for

(O) If M is βη-invertible, then M has a normal form. Assume that M,N are
βη-inverse and that M has no normal form. Then

(1) There exist λI-terms M ′, N ′ s.t. BT (M ′) = BT (M) and BT (N ′) =
BT (N), by theorem 5.9.

(2) BT (M ′) is infinite, by assumption and theorem 5.8, and, hence M ′ has no
normal form.

(3) M ′ ◦ N ′ is a λI-term, for M ′ ◦ N ′ ≡ BMN where B ≡ λxyz.x(yz), and,
hence, it has no normal form, by (2).

(4) Pω |= M ′ = M and Pω ` N ′ = N . by (1) and theorem 5.6.

(5) Pω |= M ′ ◦N ′ = M ◦N . by (4).

(6) BT (M ′ ◦N ′) = BT (M ◦N), by (5) and theorem 5.6, again.

(7) BT (M ◦N) is infinite, by (3) and (6), and, hence , M ◦N has no normal
form.

The conclusion in (7) is clearly impossible, for λβη |= M ◦N = I.

Comment 5.10 The role of Pω, as continuous topological model should be
clear. It essentially allows to go from (1) to (6), by using theorem 5.6. Since
BT-equal terms are the same object in Pω by theorem 5.6, one has (4) and,
hence, (5) and (6) trivially follow.
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It is like looking at a property of natural numbers by studying them as
elements of a more structured continuum they live in, the real or complex field,
say. Where does continuity come in, in this case? The proof of theorem 5.6
heavily relies on continuity properties of Pω. To see this more closely, one may
consult [Barendregt84] or look at results which distillate the notion of “approx-
imable application" in [Longo83]. This notion relates, in a general setting, the
interpretation of formal application to the limit structure of models. Can one
directly go from (1) to (6) by working over Böhm-trees with some smart combi-
natory technique? This is done in [Barendregt84], but the continuity argument
is important as well. As a matter of fact one has to take the completion of the
set of Böhm-trees, partially ordered as after definition 5.2, and heavily work
with approximation and Scott continuity over this domain.

A final remark on cardinality. It is possible to take a countable model
instead of Pω, in the argument above, since RE ⊆ Pω, the set of recursively
enumerable sets, is an equationally equivalent sub-model of Pω. That is, by
the same notions of application and abstraction, RE yields a model which
satisfies the same equalities as Pω. More generally, for any infinite cardinal α,
there is an applicative structure of cardinal α which yields lots of different λ-
models, including one equationally equivalent to Pω (see [Longo83]). The use
of RE, though, instead of Pω would be like looking at rational numbers (or
complex numbers with rational coordinates), for the analysis of the behaviour
of continuous functions or predicates over the real (or complex) numbers. Those
countable subsets are dense and they perfectly determine continuous functions
or predicates on the latter sets. Similarly, RE is dense in Pω w.r.t. the Scott
topology (and contains all algebraic elements).

It should be clear that this informal survey is far away from being exhaus-
tive as far as the use of “analytic" methods in Computer Science is concerned.
We hope, though, that the examples mentioned provide some sufficiently clear
analyses of combinatorial facts within continuous/topological frameworks even
in Theory of Computations.
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