
HAL Id: hal-03316030
https://ens.hal.science/hal-03316030

Submitted on 10 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Categories, Types and Structures.
Andrea Asperti, Giuseppe Longo

To cite this version:
Andrea Asperti, Giuseppe Longo. Categories, Types and Structures.: An Introduction to Category
Theory for the working computer scientist. MIT Press, pp.1-300, 1991, 0262011255, 978-0262011259.
�hal-03316030�

https://ens.hal.science/hal-03316030
https://hal.archives-ouvertes.fr

I

This book is currently out of print. Upon kind permission of the
M.I.T.-Press, it is available on

ftp.ens.fr/pub/dmi/users/longo/CategTypesStructures
All references should be made to the published book.

CATEGORIES
TYPES

AND STRUCTURES

An Introduction to Category Theory for the working computer scientist

Andrea Asperti

Giuseppe Longo

FOUNDATIONS OF COMPUTING SERIES

M.I.T. PRESS, 1991

II

INTRODUCTION

The main methodological connection between programming language theory and category theory is

the fact that both theories are essentially “theories of functions.” A crucial point, though, is that the

categorical notion of morphism generalizes the set-theoretical description of function in a very broad

sense, which provides a unified understanding of various aspects of the theory of programs. This is

one of the reasons for the increasing role of category theory in the semantic investigation of programs

if compared, say, to the set-theoretic approach. However, the influence of this mathematical

discipline on computer science goes beyond the methodological issue, as the categorical approach to

mathematical formalization seems to be suitable for focusing concerns in many different areas of

computer science, such as software engineering and artificial intelligence, as well as automata theory

and other theoretical aspects of computation.

This book is mostly inspired by this specific methodological connection and its applications to the

theory of programming languages. More precisely, as expressed by the subtitle, it aims at a self-

contained introduction to general category theory (part I) and at a categorical understanding of the

mathematical structures that constituted, in the last twenty or so years, the theoretical background of

relevant areas of language design (part II). The impact on functional programming, for example, of

the mathematical tools described in part II, is well known, as it ranges from the early dialects of Lisp,

to Edinburgh ML, to the current work in polymorphisms and modularity. Recent applications, such

as CAML, which will be described, use categorical formalization for the purposes of implementation.

In addition to its direct relevance to theoretical knowledge and current applications, category theory

is often used as an (implicit) mathematical jargon rather than for its explicit notions and results.

Indeed, category theory may prove useful in construction of a sound, unifying mathematical

environment, one of the purposes of theoretical investigation. As we have all probably experienced, it

is good to know in which “category” one is working, i.e., which are the acceptable morphisms and

constructions, and the language of categories may provide a powerful standardization of methods and

language. In other words, many different formalisms and structures may be proposed for what is

essentially the same concept; the categorical language and approach may simplify through abstraction,

display the generality of concepts, and help to formulate uniform definitions. This has been the case,

for example, in the early applications of category theory to algebraic geometry.

The first part of this book should encourage even the reader with no specific interest in

programming language theory to acquire at least some familiarity with the categorical way of looking

at formal descriptions. The explicit use of deeper facts is a further step, which becomes easier with

access to this information. Part II and some chapters in part I are meant to take this further step, at

III

least in one of the possible directions, namely the mathematical semantics of data types and programs

as objects and morphisms of categories.

We were urged to write the general introduction contained in part I, since most available books in

category theory are written for the “working mathematician” and, as the subject is greatly indebted to

algebraic geometry and related disciplines, the examples and motivations can be understood only by

readers with some acquaintance with nontrivial facts in algebra or geometry. For most computer

scientists, it is not much help in the understanding of “natural transformations” to see an involved

example based on tensor products in categories of sheaves. Thus our examples will be based on

elementary mathematical notions, such as the definition of monoid, group, or topological space, say,

and on structures familiar for readers with some acquaintance with the tools in programming language

semantics. In particular, partial orders and the various categories of domains for denotational

semantics will often be mentioned or introduced, as well as basic results from computability theory.

For example, we will try to present the fundamental operation of “currying” for cartesian closed

categories with reference to the connection between the universal function and the g del- numbering

of the partial recursive functions. Partial morphisms will be presented as a generalization of a

common notion in theory of computation.

Category theory may be presented in a very abstract way: as a pure game of arrows and diagrams.

It is useful to reach the point where acquaintance with the formal (essentially, equational) approach is

so firm that it makes sense independently of any “structural” understanding. In this book, though, we

will stress the role of structures, and we will always try to give an independent meaning to abstract

notions and results. Each definition and fact will be exemplified, or even derived, from applications

or structures in some way indebted to computing. However, in order to stress the role of the purely

equational view, the last chapters of each part (essentially chapters 7 and 11) will be largely based on

a formal, computational approach. Indeed, even if mathematically very abstract, the equational

arguments turn out to be particularly relevant from a computer science perspective.

The early versions of this book grew out of two graduate courses taught by Longo in Pisa, in

1984/85, and at Carnegie Mellon University, in 1987/88. Then the book was entirely revised under

the influence of Asperti’s work for his Ph.D. dissertation. In particular, chapters 7 and 11, the

technically most difficult, are part of his dissertation.

We are indebted to several people. The joint work with Simone Martini and Eugenio Moggi in

several papers directly influenced many chapters. Moreover, Eugenio suggested, in handwritten notes

and electronic mail messages, the basic ideas for the categorical understanding of polymorphism via

internal categories and realizability toposes. Their mathematical insights and suggestions also

influenced other parts of the book.

We must acknowledge the influence on our approach of the ideas and work of Dana Scott and

Gordon Plotkin, who also encouraged us and made comments on early drafts. Pino Rosolini helped

IV

us with comments and many suggestions. Jean Yves Girard and Yves Lafont brought to our attention

the tidy categorical meaning of linear logic and its applications to computing. Roberto Amadio and

many students helped us by detecting errors and incompleteness in the presentation. We are looking

forward to aknowledge the readers who will detect the remaining errors.

The first draft of this book was completed while the authors were visiting Carnegie Mellon

University, in 1987/88. Longo would like to thank the Computer Science Dept. of CMU for its very

generous hospitality while he was teaching there that academic year. The circulation of the draft, its

complete revision, and the writing of the final version of the book have been made possible by the

Joint Collaboration Contract ST2J-0374-C (EDB) of the European Economic Community and by the

Italian CNR "Stanford-grant" #89.00002.26. The authors would like to thank INRIA, Rocquencourt,

for a postdoc granted to Asperti while completing this work and l’Ecole Normale Supérieure, Paris,

for inviting Longo to teach a graduate course in 1989/90 based partly on this book.

V

TABLE OF CONTENTS

PART I: Categories and Structures

CATEGORIES ... 1

1.1 Category: Definition and Examples.. 1

1.2 Diagrams.. 3

1.3 Categories out of Categories .. 4

1.4 Monic, Epic, and Principal Morphisms .. 5

1.5 Subobjects . 8

CONSTRUCTIONS.. 10

2.1 Initial and Terminal Objects . 10

2.2 Products and Coproducts.. 12

2.3 Exponentials.. 15

2.4 Examples of CCC’s .. 20

2.4.1 Scott Domains .. 20

2.4.2 Coherent Domains.. 24

2.5 Equalizers and Pullbacks .. 27

2.6 Partial Morphisms and Complete Objects. 31

2.7 Subobject Classifiers and Topoi .. 35

FUNCTORS AND NATURAL TRANSFORMATIONS ... 40

3.1 Functors .. 40

3.2 Natural Transformations.. 45

3.3 Cartesian and Cartesian Closed Categories Revisited .. 51

3.4 More Examples of CCC’s .. 54

3.4.1 Partial Equivalence Relations .. 54

3.4.2 Limit and Filter Spaces .. 55

3.5 Yoneda's Lemma ... 58

3.6 Presheaves.. 60

CATEGORIES DERIVED FROM FUNCTORS AND

NATURAL TRANSFORMATIONS... 63

4.1 Algebras Derived from Functors... 63

VI

4.2 From monoids to monads .. 67

4.3 Monoidal and monoidal closed categories .. 72

4.4 Monoidal Categories and Linear Logic.. 79

UNIVERSAL ARROWS AND ADJUNCTIONS ... 88

5.1 Universal arrows .. 89

5.2 From Universal Arrows toward Adjunctions .. 93

5.3 Adjunctions... 97

5.4 Adjunctions and Monads .. 104

5.5 More on Linear Logic .. 110

CONES AND LIMITS ... 120

6.1 Limits and Colimits... 120

6.2 Some Constructions Revisited .. 123

6.3 Existence of limits . 125

6.4 Preservation and Creation of Limits. 127

6.5 ω-limits . 130

INDEXED AND INTERNAL CATEGORIES... 132

7.1 Indexed Categories .. 132

7.2 Internal Category Theory .. 136

7.3 Internal Presheaves.. 143

7.4 Externalization .. 150

7.5 Internalization .. 156

Appendix .. 158

PART II: Types as Objects

FORMULAE, TYPES, AND OBJECTS ... 166

8.1 λ-Notation.. 167

8.2 The Typed λ-Calculus with Explicit Pairs (λβηπt) . 168

8.3 The Intuitionistic Calculus of Sequents . 171

8.4 The Cut-Elimination Theorem... 176

8.5 Categorical Semantics of Derivations .. 185

8.6 The Cut-Elimination Theorem Revisited.. 187

8.7 Categorical Semantics of the Simply Typed Lambda Calculus................ 191

8.8 Fixpoint Operators and CCCs... 197

VII

REFLEXIVE OBJECTS AND

THE TYPE-FREE LAMBDA CALCULUS... 204

9.1 Combinatory Logic.. 206

9.2 From Categories to Functionally Complete Applicative Structures. 208

9.3 Categorical Semantics of the λ-Calculus... 214

9.4 The Categorical Abstract Machine .. 217

9.5 From Applicative Structures to Categories . 220

9.6 Typed and Applicative Structures: Applications and Examples 225

Part 1: Provable isomorphisms of types .. 226

Part 2: Higher type objects as models of the type-free l-calculus 234

RECURSIVE DOMAIN EQUATIONS... 241

10.1 The Problem of Contravariant Functors. 242

10.2 0-Categories .. 245

SECOND ORDER LAMBDA CALCULUS.. 251

11.1 Syntax .. 252

11.2 The External Model .. 254

11.3 The External Interpretation.. 257

11.4 The Internal Model.. 258

11.5 The Internal Interpretation.. 261

11.6 Relating Models .. 263

EXAMPLES OF INTERNAL MODELS ... 272

12.1 Provable Retractions.. 272

12.2 PER inside ω -Set.. 275

12.3 PL-Categories Inside Their Groethendiek Completion .. 277

BIBLIOGRAPHY ... 283

1. Categories

1

Chapter 1

CATEGORIES

Category Theory studies “objects” and “morphisms” between them. These concepts are both

primitive in Category Theory: objects are not collections of “elements,” and morphisms do not need

to be functions between sets (thus morphisms cannot be applied to “elements” but only composed

with other morphisms). Any immediate access to the internal structure of objects is prevented: all

properties of objects must be specified by properties of morphisms (existence of particular

morphisms, their unicity, validity of some equations among them, and so on). This is quite similar to

considering objects as “abstract data types,” that is, data specifications that are independent of any

particular implementation. The relevance of Category Theory for programming languages comes

from the previous consideration: it offers a highly formalized language especially suited for stating

abstract properties of structures. Thus, it relates to widely used programming methodologies and

provides as well a formal setting for the mathematical investigation of the semantics of programming

languages.

1.1 Category: Definition and Examples
As we have mentioned, Category Theory is a theory of functions, and the only basic operation is

composition. The concept of Category embodies some abstract properties of the composition

operator “˚” for functions that “reasonably” must be guaranteed. In particular, if g: a→b and h:

b→c, then there exist h ˚ g: a→c; moreover, composition must be associative and an identity must

exist for all objects.

This is the formal definition:

1.1.1 Definition A category C is

- a collection ObC of objects, denoted by a, b . . . A, B . . .

- a collection MorC of morphisms (arrows), denoted by f, g . . . ,

- two operations dom, cod assigning to each arrow f two objects respectively called domain

(source) and codomain (target) of f

- an operation id assigning to each object b a morphism idb (the identity of b) such that

dom(idb) = cod(idb) = b

- an operation “ ˚ ” (composition) assigning to each pair f, g of arrows with dom(f) = cod(g) an

arrow f ˚ g such that dom(f ˚ g) = dom(g), cod(f ˚ g) = cod(f)

- identity and composition, moreover, must satisfy the following conditions:

1. Categories

2

 identity law: for any arrows f, g such that cod(f) = b = dom(g)

idb ˚ f = f

g ˚ idb = g

 associative law: for any arrows f, g, h such that dom(f) = cod(g) and dom(g) = cod(h)

(f ˚ g) ˚ h = f ˚ (g ˚ h)

We write f: a → b to denote a morphism whose source and target are respectively a and b. Given

two objects a and b, the collection of all morphisms f such that f: a → b is denoted by C[a,b]; the

writing f∈C[a,b] is thus a third way to express the fact that dom(f) = a, and cod(f) = b. For the

moment we shall use one notation or the other indifferently

The following table lists some common categories by specifying their objects and arrows, letting

the definition of their operators as an exercise for the reader:

Category Objects Morphisms

Set sets functions

Top topological spaces continuous functions

Vect vector spaces linear transformations

Grp groups group homomorphisms

PO partially ordered sets monotone functions

The intuition of the notion of “category” suggested by the previous examples is to consider the

objects as a collection of “structured” sets and the morphisms as the “associated” or “acceptable”

functions with respect to the structure. This is too restrictive, though, since no requirement is made in

the definition which may force the morphisms to be “single valued” or to be functions in extenso: a

simple example is the category Rel with sets as objects and relations as morphisms.

The simplest category has only one object and one arrow (the identity for that object): this

category is usually called 1. Note that, by definition, if C is a category, then every object b of C

has an identity idb: b→b. The identity is unique, since if idb' is another identity for b, then for

the identity law, idb' = idb ° idb' = idb . A category is called discrete if every arrow is the identity

of some object: in this case a category is fully determined by the collection of its objects. 1 is a

discrete category.

A category is called a preorder if for every pair of objects a, b there is at most one morphism

f: a→b. The reason for the name is that a preorder category is fully determined by a preordering

relation among its objects. Indeed, in a preorder C, there is only one way that composition may be

defined; thus C is known when the collection of morphisms MorC and the operations dom and cod

are known. But every arrow f: a→b may be identified with the pair (a,b), since once the source and

1. Categories

3

target are known there is no choice about what the arrow is to be; thus, all the information about the

category C is given by the relation RC = {(a,b) / there is an arrow f∈C[a,b]}, that is, by a preorder

relation.(Exercise: prove that the relation RC is a preorder for every category C).

Every discrete category is a preorder. The simplest nondiscrete category which is a preorder is

the category 2, which has two objects, let us call them 0 and 1, and three arrows: the two identities

id0, id1 and an arrow (0,1): 0→1. In a similar way we can define for each natural number n a

preorder category n, from the usual ordering on the set {0,1, . . . n-1}. Preorder categories have a

common property: they may have plenty of objects, but given two objects, there exists at most one

morphism between them.

A dual situation is given by monoids, viewed as categories. A monoid is a set having an

associative binary operation and an identity element. A category with just one object yields a monoid,

where composition of morphisms is the binary operation. Conversely, any monoid (A, .) is a

category with just one object. For example, the category with the set of natural numbers as unique

object and the recursive functions as morphisms yields the monoid of the recursive functions.

As well as preorders, another example where objects are not necessarily understood as

“structured sets” is given by deductive systems as categories. In these categories propositions are

objects and each morphism f : a→b corresponds to (a suitable equivalence class of) a proof of a |−

b (a entails b). Observe that a category is obtained easily in the presence of the identical entailment

ia : a→a and the associative composition of proofs

f : a→b g : b→c

g ° f : a→c

This approach to deduction is very relevant in the categorical understanding of logics of a

constructive nature, such as Intuitionistic Logic, where the intended interpretation of proofs is given

by (effective) operations. It will be the main paradigm for understanding the relation between types

and objects investigated in the second part of this book.

1.2 Diagrams
An important tool in the practice of Category Theory is the use of diagrams for representing

equations. In a diagram a morphism f∈C[a,b] is drawn as an arrow from a to b labeled f. A diagram

commutes if the composition of the morphism along any path between two fixed objects is equal.

For example, the associative and identity laws of the definition of “category” may be nicely visualized

by the following commuting diagrams:

1. Categories

4

Diagrams are a typical way, in Category Theory, to describe equational reasoning and turn out to

be particularly effective when dealing with several equations at a time. In particular, assertions such

as “if diagram1 and . . . diagramn commute, then diagram commutes” express conditional

statements about equalities.

We hope that the reader, while using this book, will acquire some familiarity with diagrams and

will learn how to go back and forth from diagrams to equations. Our extended use of equations in

this book comes from our desire to stress the “computational” nature of most categorical reasoning.

1.3 Categories out of Categories
A main feature of Category Theory is the facility to define new, more structured categories out of

simpler ones. In this section we consider only a few simple constructions; a number of other

examples occur throughout the book.

1.3.1 Definition A category D is a subcategory of a category C, if

1. ObD ⊆ ObC;

2. for all a, b in ObD, D[a,b] ⊆ C[a,b];

3. composition and identities in D coincide with those of C.

A subcategory is full if for all a, b in ObD D[a,b] = C[a,b].

A full subcategory is fully determined by its collection of objects.

1.3.2 Definition The dual category Cop of a category C has the same objects and the same

morphisms of C, idopb = idb, domop(f) = cod(f), codop(f) = dom(f), and f °op g = g ° f.

Note that Cop[b,a] = C[a,b] and (Cop)op = C.

Exercise Setop is a subcategory of Rel, but not of Set. Is it a full subcategory?

Duality is a very powerful technique of Category Theory. If P is a generic proposition expressed

in the language of Category Theory, the dual of P (Pop) is the statement obtained by replacing the

1. Categories

5

word “dom” by “cod,” “cod” by “dom,” “g ° h” by “h ° g.” If P is true in a category C, then Pop

is true in Cop; if P is true in every category, then also Pop is, since every category is the dual of its

dual.

Duality may be applied to diagrams as well: given a diagram in a category C, the dual diagram in

Cop is obtained by simply reverting the arrows; of course, a dual diagram commutes if and only if

the original one does.

1.3.3 Definition Given two Categories C and D, the product category C××××D has for objects

the pairs (a,b) where a and b are respectively objects of C and D, and for morphisms pairs (f,g):

(a,b)→(a',b') where f: a→a' and g: b→b' are respectively morphisms of C and D. Finally, id(a,b)
= (ida,idb) and (f,g) ° (f',g') = (f ° f', g ° g').

1.3.4 Definition Given a category C and an object a in ObC, the category C↓a of objects

over a is so defined: ObC↓a = {f∈MorC / cod(f) = a}; given two objects f: b→a, g: c→a, a

morphism with source f and target g is an arrow h∈C[b, c] such that g ° h = f. Identities and

composition in C↓a are inherited from C.

In case C is Set in the above definition, it is useful to think of an object g: B→A in Set↓A as an

A-indexed family of disjoint sets, namely, {g-1(a)}a∈A (these sets are the inverse images of

elements in A under g). Then h: B→B' is a morphism from g: B→A to g': B'→A if and only if

it is consistent with the “decomposition” of B and C induced by g and g', i.e., if and only if (iff)

∀b b∈g-1(a) ⇒ h(b)∈g'-1(a).

Since the intended meaning behind the construction of a category C↓I is that to consider an

object g: A→I as a collection {{i}×g-1(i)}i∈I, it is usual to call C↓I a slice category over I

(denoted C/I). An object g: A→I of the slice category is then called a generalized object of C at

stage I. A section of g: A→I is a function s: I→A such that g ° s = idI; the idea is that s gives,

for each index i∈I, an element s(i)∈g-1(i).

Exercise Define the dual notion, that is, the category C↑a of objectsunder a, whose objects are

the arrows with source a.

1.4 Monic, Epic, and Principal Morphisms
A function f between two sets A and B is called “injective” when, for all a , a' ∈ A , if f(a) =

f(a') then a = a'. In particular, given any two functions g, h : C→Α, if for all c∈C f(g(c)) =

f(h(c)), then for all c∈C g(c) = h(c) or, also, if f ° g = f ° h then g = h . Thus, every injective

function behaves like a left identity (it is left cancellable). The converse is also true: given f: A→Β, if

1. Categories

6

for any pair of functions g, h : C→Α , f ° g = f ° h implies g = h , then f is injective. For suppose

otherwise: then there are a and a' such that f(a) = f(a') but a ≠ a' ; define then g and h by g(c)

= a for all c∈C , and h(c) = a' for all c∈C; of course f ° g = f ° h but g ≠ h , that is, a

contradiction.

We have proved thus that a function f is injective if and only if f ° g = f ° h implies g = h . In a

similar way it is not difficult to prove that f is surjective if and only if g ° f = h ° f implies g = h.

These considerations motivate the following definitions.

1.4.1 Definition. Let C be a category and a, b∈ObC. Then

i. an arrow h∈C[a,b] is epic (is an epimorphism) iff

g ˚ h = f ˚ h ⇒ g = f ;

ii. an arrow h∈C[a,b] is monic (is a monomorphism) iff

h ˚ g = h ˚ f ⇒ g = f ;

iii. an arrow h∈C[a,b] is iso (is an isomorphism) iff there exists g∈C[b,a] such that

g ˚ h = id and h ˚ g = id .

Two objects a and b are isomorphic (a ≅ b) if there exists an isomorphism h∈C[a,b]. Clearly,

any isomorphism is monic and epic; the converse, though, does not need to be true (see the example

and the exercises below).

A monic (or epic) h∈C[a,b] (or h'∈C[a,b]) is split if there exist g∈C[b,a] (or g'∈C[b,a])

such that g ˚ h = id (h' ˚ g' = id).

Although the intuition of regarding mono- and epimorphisms as injective and surjective maps is

correct for many interesting categories, sometimes it can be misleading. Consider, say, the category

Mon of monoids and the inclusion inc from ω, the positive integers, into z, the relative ones. Clearly

mono, inc is also epi, though. As a matter of fact, take g,h∈Mon[z,a] for some monoid a, and write

\g(n) for g(-n). Then g ˚ inc = h ˚ inc implies g = h for g(-n) = \g(n) =\h(n) = h(-n) (that is, the

behavior of the monoids’ homomorphism g or h on z is entirely determined by their behavior on

ω). As a side consequence, we may also conclude that not every arrow that is both monic and epic is

an isomorphism: this is clearly in contrast to the set-theoretic intuition.

Exercises

1. Give an epi which is not surjective in Top.

2. Find a counterexample for the following assertion: let C be a category; if f∈C[a,b] and g∈C[b,a]

are mono, then a is isomorphic to b. (Note that the assertion is true in Set.)

3. Prove that a split monic is an iso.

1.4.2 Definition Let C be a category and a, b∈ObC. Then

i. an arrow h∈C[a,b] is a principal morphism iff

1. Categories

7

∀f∈C[a,b] ∃g∈C[a,a] f = h˚ g ;

ii. a pair of arrows f∈C[a,b] and g∈C[b,a] is a retraction pair iff g ˚ f=id. Then, a is called a

retract of b (a<b) via the retraction pair (f,g).

By diagrams, h is principal iff for all f there is a g such that

Principal morphisms have been inspired by recursion theory; the idea they are based on essentially

corresponds to a classical notion of reducibility (see the category EN in section 2.2 below).

1.4.3 Proposition Let C be a category and a, b∈ObC. Then

1. if a<b via (i,h), then h is epi and principal, i is mono;

2. if h∈C[a,b] is principal and there exists an epi k∈C[a,b,], then h is epi;

3. if a<b and f∈C[b,a] is principal, then there exists g∈C[a,b] such that a<b via (g,f).

Proof 1. g˚h = f˚h ⇒ g˚h˚i = f˚h˚i ⇒ g = f, for h˚i = id.

The proof that h is principal is a simple diagram chase:

That is, ∀f ∃g f = h˚g. Just take g = i˚f; then h˚g = h˚i˚f = f.

Finally, i˚g = i˚f ⇒ h˚i˚g = h˚i˚f ⇒ g = f.

2. g˚h = f˚h ⇒ g˚k = g˚h˚g' = f˚h˚g' = f˚k (for a suitable g') ⇒ g = f .

3. Let a<b via (j,i). Since f is principal, ∃s∈C[b,b] j = f°s. Then, for g = s°i, one has f°g = j°i =

ida. As a diagram,

♦

1. Categories

8

Exercises

1. Characterize retractions in terms of split monos and epis.

2. Show that, given a category C, one can define a category CRet whose objects are the same of C

and whose morphisms are retraction pairs in C, that is F∈CRet[a,b] iff F=(f,g) and a<b via (f,g) in

C .

If (f:a→b, g:b→a) is a retraction pair, then the function h = f ° g: b→b is idempotent, that is, h ° h

= h . Indeed, h ° h = (f ° g) ° (f ° g) = f ° (g ° f) ° g = f ° g = h . This property suggests the following

definition:

1.4.4 Definition Given a category C and an object b∈ObC, the category of idempotents on

b (Retb) is so defined:

ObRetb = { f∈C[b,b] / f ° f = f }

MorRetb = { (f, k, g) / f, g∈ObRetb, k∈C[b,b], k = g ° k ° f }

dom((f, k, g)) = f, cod((f, k, g)) = g

idf = (f, f, f)

(f, k, g) ° (g', k', f) = (g', k ° k', g)

We leave as an exercise for the reader to check the identity and associative laws for the previous

category. Retb will be used in several places because of its relevance to this book.

1.5 Subobjects
The concept of subobject is the categorical version of the set-theoretical subset . The main idea is to

regard a subset A of a given object B as a monomorphism f: D→B (intuitively, a monomorphism

f such that “f(D) = A”). Of course, many different monic arrows may define the same subset; thus,

it is necessary to introduce a reasonable equivalence relation, and define subobjects up to this

equivalence.

Let C be a category. If f: b→a and g: c→a are two monic arrows with common target a, then

we say f ≤ g if and only if there exists h: b→c such that g ° h = f. Note that in this case, the unique

h must be monic too, indeed h ° k = h ° k' ⇒ g ° h ° k = g ° h ° k' ⇒ f ° k = f ° k' ⇒ k = k'.

Exercise Prove that the preorder ≤ is the full subcategory of C↓a determined by monomorphisms

only.

1. Categories

9

When f ≤ g and g ≤ f we write f ≅ g. Then ≅ is an equivalence relation among the

monomorphisms with common target a (prove it as an exercise); the equivalence classes of this

equivalence relation are called subobjects of a.

1.5.1 Definition Let a be an object of a category C. A subobject [f] of a is an equivalence

class of a monomorphism f: b→a, with respect to the equivalence relation ≅ defined above.

Very often, we shall make no distinction between equivalence classes and their representatives, and

we shall denote a subobject with a single monomorphism.

It should be clear that the categorical approach to “subsets” carries more information than the set-

theoretic one. Monomorphisms, like all morphisms, preserve the structural information of the

category. For example, in the category Grp of groups subobjects are subgroups: (mono)morphisms

must take the identity to the identity and preserve the group operation. Similarly consider the category

of p.o.sets (partially ordered sets) with a bottom element. A subobject of one such p.o.set must be a

structured subset as well, and it must contain an element smaller than all the others.

References: Any book in Category Theory, such as MacLane (1971) Herrlich and Strecker

(1973), Arbib and Manes (1975), Barr and Wells (1985), Rydeheard and Burstall (1988). The

specific notions and categories introduced (such as retractions) will be used later in more structured

settings, with the appropriate references.

2. Constructions

10

Chapter 2

CONSTRUCTIONS

In this chapter we consider some fundamental categorical constructions, i. e., particular objects (and

morphisms) that satisfy a given set of axioms described in the language of Category Theory. Since in

this language there is no way to look at the internal membership structure of objects, all the concepts

must be defined by their relations with other objects, and these relations are established by the

existence and the equality of particular morphisms. This property of the categorical language, if

compared to the traditional set-theoretic jargon, may be well understood by an analogy with computer

science; namely, as we already mentioned, the categorical description corresponds to an abstract data

specification, while the traditional set-theoretic approach is more similar to a concrete implementation.

2.1 Initial and Terminal Objects

2.1.1 Definition Let C be a category. An object 0 is initial iff for any b∈ObC there is a unique

f∈C[0,b].

The typical example of an initial object is the empty set ∅ in Set; indeed the empty function (i.e., the

function whose graph is empty) is the unique arrow with ∅ for source.

A more interesting example is the following. Let ΣΣΣΣ be a signature. The class AlgΣΣΣΣ of ΣΣΣΣ-algebras

with ΣΣΣΣ-homomorphisms as arrows forms a category. AlgΣΣΣΣ has an initial object TΣΣΣΣ which is called ΣΣΣΣ-

word-algebras, or also Herbrand Universe for ΣΣΣΣ. The set TΣΣΣΣ,s (the carrier of TΣΣΣΣ of sort s) is just the

set of all well-formed expressions of sort s. If ΣΣΣΣ is derived by a context free grammar (that is: sorts

are nonterminals and operator symbols are productions of the grammar), then TΣΣΣΣ,s is the set of all

parse trees for derivations in the grammar from the nonterminal s. In general the initial ΣΣΣΣ-algebra TΣΣΣΣ
corresponds to the syntax of a language of signature ΣΣΣΣ. Any other ΣΣΣΣ-algebras A in AlgΣΣΣΣ is a possible

semantic domain; the semantic function (interpretation) is the unique homomorphism from TΣΣΣΣ to A.

Initiality is the simplest universal notion in Category Theory, since it is given by the existence and

unicity of morphisms satisfying certain properties. This method is used everywhere in Category

Theory.

2.1.2 Proposition If 0 and 0' are two initial objects in a category C, then they are isomorphic.

2. Constructions

11

Proof. Let i: 0→0', j: 0'→0 the morphisms respectively given by the initiality of 0 and 0'. Then

j ° i: 0→0, but also id0: 0→0, and since by initiality of 0, there is exactly one morphism in C[0,0],

then j ° i = id0; in the same way, by initiality of 0' we have i ° j = id0'.♦

We will now show how duality can be used to define new concepts and to prove new assertions.

Let P(c) be the property “for any b∈ObC there is a unique f, such that dom(f) = c, cod(f) = b.” By

definition c is initial iff P(c) holds; that is, P defines initiality. The dual statement of P is Pop(c) =

“for any b∈ObC there is a unique f, such that cod(f) = c, dom(f) = b.” Usually the dual Qop of a

property Q defines a concept named by prefixing “co-” to the name of the property Q. In our case, we

say that Pop defines coinitiality. An object c such that Pop(c) holds, is called co-initial. Anyway it

is common practice to assign to every coentity an independent name which better expresses its

properties; for example, a coinitial object is known as terminal object. Note that an initial object is

coterminal.

Terminal objects are usually represented with the number 1 or with the letter t. The unique

morphism from an object a to the terminal object t is usually written !a: a→t.

Any singleton set is terminal in Set. In the category 2 one object is initial and the other one is

terminal. If c is initial in C, then it is terminal in the dual category Cop.

Consider now the statement P1 = “If 0 and 0' are two initial objects, then they are isomorphic.”

Its dual is: P1op = “If 0 and 0' are two terminal objects, then they are isomorphic.” (the property

to be an isomorphism is the dual of itself: prove it as an exercise.) By our discussion of duality in

chapter 1 and, since by proposition 2.1.2 P1 holds in every category, P1op also does. We conclude

the following:

2.1.3 Proposition If 0 and 0' are two terminal objects in a category C , then they are

isomorphic.

Proof By duality and by proposition 2.1.2.♦

An object c in a category C may be both initial and terminal. An example is the unit group in Grp;

in this case, it is called a zero object.

In Set, a morphism from the singleton {*} to a set A defines an element of A. For this reason an

arrow from a terminal object t to an object a in a generic category C is usually called an element

or a point of a. In this case, however, the set-theoretic intuition must be used very carefully, because

it is quite common to work in categories where the categorical notion does not reflect the behavior of

elements in Set. For example the set-theoretic intuition would suggest that every non-initial object

must have at least one element: but consider the partial order category 3 which has three object 0 ≤

1 ≤ 2; clearly 0 is initial and 2 is terminal, 1 is non-initial but has no elements. Similarly, in Set

two arrows are equal iff they coincide on all points, or, more formally, given functions f and g,

2. Constructions

12

one has f ≠ g iff there is an element x of their domain such that f ° x ≠ g ° x. However, in a

generic category C with terminal object t, this is not necessarily true.

2.1.4 Definition. Let C be a category. t∈ObC is a generator iff for all a,b∈ObC and all

f,g∈C[a,b], one has: f ≠ g ⇒ ∃h∈C[t,a] f°h ≠ g°h .

C has enough points (or is well pointed), if there exists a generator t that is terminal in the

given category.

In short, a category has enough points when the arrows from the terminal object allow to discriminate

between morphisms, similarly as for elements over Set. Of course, it is not a surprise that the set-

theoretic notions of “element” and of “extensionality” are somewhat awkward to deal with in the

language of Category Theory.

2.2 Products and Coproducts
The categorical product is merely a “structural” generalization of the notion of Cartesian product of

sets. Given two sets A and B, their cartesian product is:

A×B = {<x,y> / x∈A, y∈B}

Associated with this set there are two special maps pA: A×B→A , pB: A×B→B called projections,

such that for every <x,y> in A×B pA(<x,y>) = x, pB(<x,y>) = y. Note that for every c in A×B,

<pA(c), pB(c)> = c.

Let C be another set, and f: C→A, g: C→B. Define <f,g>: C→A×B by <f,g>(c) = <f(c),g(c)>

for every c∈C. Then, for every c∈C, pA(<f,g>(c)) = pA(<f(c),g(c)>) = f(c), that is, pA ° <f,g>

= f. In the same way, we obtain pB ° <f,g> = g. Conversely, let h: C→A×B. Then for every c∈C,

<pA ° h, pB ° h >(c) = <pA(h(c)), pB(h(c))> = h(c), that is, <pA ° h, pB ° h > = h.

The previous consideration suggests the following definition:

2.2.1 Definition Let C be a category, and a,b∈ObC. The categorical product of a and b is

an object a×b together with two morphisms pa: a×b→a, pb: a×b→b, and for every object c an

operation < , >c : C[c,a]×C[c,b]→C[c,a×b] such that for all morphisms f: c→a, g: c→b, h:

c→a×b, the following equations hold:

ia. pa ° <f,g>c = f ;

ib. pb ° <f,g>c = g ;

ii. <pa ° h, pb ° h >c = h .

It is common practice to omit the subscript c in < , >c when its meaning is clear from the context.

2. Constructions

13

The operation < , > : C[c,a]×C[c,b]→C[c,a×b] of a categorical product is a bijection: its inverse

is the operation that takes every arrow h∈C[c,a×b] to the pair (pa ° h, pb ° h)∈C[c,a]×C[c,b].

The proof that these operations are inverse of each other is stated above in definition 2.2.1.

Conversely, given a bijective operation < , > : C[c,a]×C[c,b]→C[c,a×b] which satisfies (ia) and

(ib), then (ii) is necessarily true. Indeed, let h∈C[c,a×b]. Then, since < , > is bijective, there is a

pair (f,g)∈C[c,a]×C[c,b] such that h = <f,g>; but f = pa ° <f,g> = pa ° h and analogously, g = pb °
<f,g> = pb ° h; thus, h = <pa ° h, pb ° h >.

The last consideration leads us to a more compact but equivalent definition of a categorical

product.

2.2.2 Definition Let C be a category, and a,b∈ObC. The categorical product of a and b is

an object a×b together with two morphisms pa: a×b→a , pb: a×b→b, such that, for any f∈C[c,a]

and g∈C[c,b], there exists exactly one h∈C[c,a×b] such that the following diagram commutes

2.2.3 Definition For f∈C[a,c] and g∈C[b,d], set f×g = <f˚pa,g˚pb> : a×b→ c×d.

Exercise Prove that for all arrows h: e→a and k: e→b, f×g˚<h,k> = <f˚h,g˚k>.

2.2.4 Proposition In a category, the product is unique (up to isomorphisms), if it exists.

Proof Let a⊗b be an alternative product with projections qa and qb.

Then <qa,qb> ˚ <pa,pb> is the unique morphism such that the following diagram commutes:

2. Constructions

14

Since ida×b also does the same job, ida×b = <pa,pb>˚<qa,qb>.

By symmetry, one also has <pa,pb> ˚ <qa,qb> = ida�⊗b .♦

Exercise. Prove the following facts:

1. a ≅ a' and b ≅ b' imply a×b ≅ a'×b'.

2. a×b ≅ b×a.

2.2.5 Definition A category C is Cartesian (C is a CC) iff

i. it contains a terminal object t;

ii. every pair a,b∈ObC has a categorical product (a×b, pa,b,1: a×b→a, pa,b,2: a×b→b)

Exercises

1. Generalize the definition of a product of two objects to arbitrary products.

2. Prove that a Cartesian category C always contains all finite products.

3. Let C be a CC and let t be its terminal object. Prove that for all b in ObC, b ≅ t×b ≅ b×t .

Examples The categories Set, Top, Grp are all Cartesian.

An interesting Cartesian category in Computability Theory is the category EN of numbered sets.

Objects in EN are pairs a = (a,ea), where a is a countable set and ea: ω→a is an onto map (an

enumeration of a). f∈EN[a,b] iff for some total recursive f' the following diagram commutes:

We say that f' represents f. The product is easily obtained by using any effective pairing of ω2,

[,]: ω×ω→ω.

A typical numbered set which is worth studying is PR = (PR,φ), the partial recursive functions

with a Goedel numbering φ: ω→PR. Then EN[PR,PR] are exactly the type two recursive

functionals. Of course, this is also a countable set. It is not trivial, though, to construct an

“acceptable” enumeration of it. This will be an important issue in the sequel.

Exercises

1. Let ω = (ω ,id) in EN . Then f∈EN[ω ,PR] iff ∃f'∈PR f'([x,y]) = f(x)(y). Moreover, g∈

EN[ω,PR] is principal iff g is an acceptable Goedel numbering of PR, in the sense of classical

recursion theory.

2. Constructions

15

2. Let C be a CC, and V be an object such that V×V<V. Then the category of retractions on V (see

definition 1.4.4) is a CC.

The dual of the notion of a product is the coproduct a+b with embeddings q1, q2.

2.2.6 Definition. Let C be a category, and a,b∈ObC. The coproduct of a and b is an object

a+b together with two morphisms qa: a→a+b, qb: b→a+b such that, for any f∈C[a,c] and

g∈C[b,c], there exists exactly one h∈C[a+b,c] such that the following diagram commutes

By duality, the coproduct is unique (up to isomorphisms).

Examples

1. In Set the coproduct is the disjoint union.

2. In a preorder P the product is the greatest lower bound, if it exists. The coproduct is the least

upper bound, if it exists.

3. Let CPO be the category of complete partial orders with continuous functions with respect to the

order or Scott topology. CPOS is the subcategory with only strict functions, i.e., morphisms always

take the least element ⊥ to the least element of the target space. It is easy to see that both categories

are Cartesian. The coproduct in CPOS is given by the coalesced sum, i.e., the disjoint union except

for the identification of the two least elements. On the other hand, there is no coproduct in CPO.

This may be seen by observing that in CPO one may have f(⊥) ≠ g(⊥), by which the coalesced

sum fails to give a coproduct; an extra common least element (disjoint sum) may give more than one

extension of the required <f,g>op.

2.3 Exponentials
In the connection we mentioned between Category Theory and Computation Theory, as “theories of

functions,” a fundamental aspect still has to be taken care of. In either case, we may be interested in

computing with procedures as arguments. That is, we may need to describe higher type functions.

So far we have only become familiar with Cartesian categories, where the object a×b, representing

the product, is defined. Thus, the notion of morphism taking morphisms as arguments doesn't yet

make sense. What we first need, then, is a further closure property, namely, the existence within the

2. Constructions

16

category of an object ba which suitably represents the set of morphisms from b to a. With an

informal reference to typing in programming, the key property of the objects, which represent the

sets of morphisms, provides an interpretation to a common construct in actual programming, namely,

the identification of types such as A×B→C and A→(B→C). This corresponds to the following

important uniformity property of programs of several arguments, which is directly inherited from

classical Recursion Theory.

Let {φi}i∈ω = PR be an acceptable Gödel numbering of the partial recursive functions and [,]:

ω×ω→ω be an effective pairing. Define then, as usual, f: ω×ω→ω is a binary partial recursive

function iff ∃f'∈PR f(x,y) = f'([x,y]) (similarly, for n-ary functions, n ≥ 2). By this and by the

s-m-n iteration theorem one immediately has f: ω×ω→ω is partial recursive iff ∃s∈R φs(x)(y) =

f(x,y).

Thus, a two-(or more) argument function f is computable iff it is computable in each argument

and the function x |_ f(x,_) is also “computable,” i.e., ∃s∈R φs(x) = f(x,_). In other words, in

computability theory, f is in ω×ω→ω iff x |_ f(x,_) is in ω→(ω→ω). Similarly, the category-

theoretic closure property we need concerns the existence, for any f: c×a→b, of a morphism within

the category, which does the same job as s or x |_ f(x,_) in recursion theory. We will call it Λ(f).

Exercise For n ≥ 2, not every n-ary function which is computable in each argument needs to be

computable. (Hint: take g total nonrecursive and set f(x,y) = g(min{x,y})).

2.3.1 Definition Let C be a Cartesian category, and a,b∈ObC. The exponent of a and b is

an object ba together with a morphism evala,b: ba×a→b (evaluation map), and for every object c an

operation Λc : C[c×a,b]→C[c,ba] such that for all morphisms f: c×a→b, h: c→ba, the following

equations hold:

β). evala,b ° (Λ(f)×ida) = f ;

η) . Λc(evala,b ° (h×ida)) = h .

(We may omit the indices when unambiguous, as usual.)

In Set the exponent set of A and B is BA = {f / f is a function from A to B}, thus BA =

Set[A,B]. The function eval: BA×A→B is given by the rule: eval(<f,x>) = f(x) .

Λ: Set[C×A,B]→Set[C,BA] takes every function f: C×A→B to the function Λ(f): C→BA

defined by Λ(f)(c) = λa.f(c,a), where λa.f(c,a)∈ΒΑ=Set[A,B] is the function which takes a∈A to

f(c,a)∈B. The proof of (β) and (η) is almost immediate.

As in the case of the product, observe that in general the operation Λ: C[c×a,b]→C[c,ba] in

definition 2.3.1 is a bijection. Indeed, by (β) and (η), Λ-1 is the operation which takes every

h∈C[c,ba] to evala,b ° (h×ida)∈C[c×a,b].

2. Constructions

17

Conversely, if Λ : C[c×a,b]→C[c,ba] is a bijection and (β) holds, then (η) is necessarily true.

Indeed, let h∈C[c,ba] and take f∈C[c×a,b] such that h = Λ(f); then Λ(evala,b ° (h×ida)) =

Λ(evala,b ° (Λ(f)×ida)) = Λ(f) = h .

The following is thus an equivalent definition of “exponent”:

2.3.2 Definition Let C be a Cartesian category and a,b∈ObC. The exponent of a and b is an

object ba together with a morphism evala,b: ba×a→b, such that for all morphisms f: c×a→b, there

exists one and only one h: c→ba such that the following diagram commutes:

Exercise By setting Λ(f) = h, give the details of the equivalence proof between the two definitions.

The previous diagram should suggest in which sense ba “represents” C[a,b]. The eval morphism

generalizes the set-theoretic evaluation function eval(f,x) = f(x). Moreover, take c = t, the terminal

object. Then C[t,ba] ≅ C[t×a,b] ≅ C[a,b] as sets. This is particularly significant if C has enough

points (why?).

2.3.3 Definition. C is a Cartesian closed category (CCC) iff

1. C is cartesian,

2. for every pair a,b∈ObC, there is an exponent.

Set is a CCC: the previous definition of exponents in Set clearly holds for every pair of sets.

Another simple CCC is CPO, the category of complete partial orders and continuous maps. As well-

known, given c.p.o.’s a and b, CPO[a,b] is also a c.p.o., with respect to the pointwise ordering.

Moreover, both eval and Λ(f), defined as for Set by using continuous functions, are continuous

and satisfy the required conditions. Note that the proof uses the well-known fact that in CPO a

function is continuous iff it is so in each argument and the map x |_ λy.f(x,y) is continuous.

Actually, even Λ is continuous.

Among the various examples of categories mentioned in these notes, an important one does not

satisfy Cartesian closedness: the category EN in section.2.2. Consider, say, ω = (ω,id). Then

EN[ω,ω] (= R, the recursive functions) is surely countable. However, if a numbered set (ωω,ϕ) and

2. Constructions

18

a morphism eval with the above properties existed, then u(x,y) = eval(ϕ(x),y) would be a universal

function for R.

Also, the ω-algebraic c.p.o.’s, that is, the c.p.o.’s with a countable collection of compact elements

approximating all the others (see Scott domains below) and continuous maps as morphisms do not

form a CCC. They contain, though, some fundamental subCCC's for the purposes of denotational

semantics of programming languages and higher type Recursion Theory. They will be explored in the

examples below.

Given a CCC D, it may be interesting to consider specific "structures of types" in it. That is, for a

collection A of objects in D, let DA be the full sub CCC generated by A in D, i.e., the least full

sub category such that A⊆DA and a,b∈DA ⇒ a×b,ab∈DA.

Exercise Prove that in any CCC one has ab×c ≅ (ab)c.

In definition 1.4.2, we introduced the notion of “retract”: in a category C, a<b via the retraction

(i,j) iff j ˚ i = ida. In these assumptions, i turns out to be mono and j epic. Thus, a retract a of

b is a subobject of b in the sense of section 1.5. In the case of Set, nonempty subsets and retracts

happen to coincide, as surjections from a set to a subset are always possible. In more structured

categories this reinforcement of the idea of subset, given by retractions, turns out to be very

informative. In particular, we will discuss categories with nontrivial objects a such that aa<a. This

is clearly impossible in Set because, by Cantor’s theorem, the cardinality of the exponent aa , when

a is not a singleton, is strictly bigger than the cardinality of a. In short, we will put together retracts

and exponents, in a nontrivial way, in order to discuss one of the early relevant applications of

categorical notions to computer science, namely the invention of mathematical (categorical, to be

precise) models of type-free languages. In these languages, programs are viewed as data or,

semantically, exponents may be retracted into (source and target) objects. It is convenient to prove, in

general, some basic properties of exponents and retractions for their relevance and simplicity as well

as for some preliminary training on equational reasononing, which will turn out to be useful to the

reader in the sequel.

2.3.4 Proposition Let C be a CCC. If a<a' (via ina: a→a', outa: a'→a), and b<b' (via inb:

b→b', outb: b'→b), then ba<b'a', via Λ(inb°eval°(id×outa)): ba→b'a', Λ(outb°eval°(id×ina)):

b'a'→ba.

Proof. Λ(outb°eval°(id×ina)) °°°° Λ(inb°eval°(id×outa)) =

= Λ(outb°eval°(id×ina)°Λ(inb°eval°(id×outa))×id)

= Λ(outb°eval°Λ(inb°eval°(id×outa))×id°(id×ina))

= Λ(outb°(inb°eval° id×outa)°(id×ina))

= Λ(eval ° id×(outa°ina))

2. Constructions

19

= Λ(eval ° id×id)

= id. ♦

2.3.5 Definition Let C be a CCC. An object V of C is reflexive iff VV<V.

Before we get to see some reflexive objects in relevant CCC's in the following sections, it is worth

proving two simple, but general, properties of reflexive objects (see chap.8 for applications).

2.3.6 Proposition Let C be a CCC, and V a reflexive object. Then t < V and V×V < V .

Proof. Let (in: VV→V, out: V→VV) the retraction pair between VV and V. In order to prove that

t<V we must only prove the existence of a morphism from t to V (why?). Let then p1: t×V→V be

the projection; Λ(p1): t→VV, and thus in ° Λ(p1): t→V.

The proof that V×V<V is much more complex; we prove that V×V<VV; then V×V<V follows by

composition.

Let app = eval°(out×idV): V×V→V, and let αa,b,c be the isomorphism αa,b,c: (b×c)×a→

(a×b)×c. Then: app ° (app×id) ° αV,V,V : (V×V)×V→V

and in1 = Λ(app ° (app×id) ° α) : (V×V)→VV.

By proposition 2.3.4 one has (VV)V<VV via

in2 = Λ(in ° eval ° (id×id)) : (VV)V→VV

out2 = Λ(out ° eval ° (id×id)) : VV→(VV)V.

Let p2: t×V→V and pr1:V×V→V, pr2: V×V→V be the projections respectively associated with the

products t×V and V×V. Then, for i =1,2, Λ(pri): V→VV and, thus, for Λ(Λ(pri) ° p2) :

t→(VV)V, pi = in ° in2 ° Λ(Λ(pri) ° p2) : t→V.

Define, then, out1 = < eval ° <id, p1 ° !VV> , eval ° <id, p2 ° !VV> > : VV→V×V.

We must prove that out1 ° in1 = idV×V , or equivalently that for i = 1,2, pri ° out1 ° in1 =

pri .

 pri ° out1 ° in1 = eval ° <id, pi ° !VV> ° in1
= eval ° < Λ(app ° (app×id) ° α), pi ° !V×V>

= app ° (app×id) ° α ° < idV×V, pi ° !V×V>

= app ° < app ° < pi ° !V×V, pr1> , pr2>

= app ° < eval°(out×idV) ° < in°in2°Λ(Λ(pri) ° p2) ° !V×V, pr1>, pr2>

= app ° < eval°<in2°Λ(Λ(pri) ° p2) ° !V×V, pr1>, pr2>

= app ° < eval°< Λ(in°eval°(id×id))°Λ(Λ(pri) ° p2) ° !V×V, pr1>, pr2>

= app ° < eval°< Λ(in°eval°(Λ(Λ(pri) ° p2)×id))° !V×V, pr1>, pr2>

= app ° < eval°< Λ(in ° Λ(pri) ° p2)° !V×V, pr1>, pr2>

= app ° < in ° Λ(pri) ° pr1, pr2>

= eval°(out×idV) ° (in ° Λ(pri))×idV

2. Constructions

20

= eval° (Λ(pri)×idV)

= pri . ♦

Exercises For the following exercises, assume that C is a CCC.

1. Let V be a reflexive object of C. Prove that the collection RetV of all retracts of V in C is a CCC.

2. (Difficult, see section 8.8) Let b be an object of C. A fixpoint operator for b is a morphism

Fixb: bb→b such that Fixb = evalb,b° <id,Fixb>. Let VV<V via (in,out). Let also

F = eval ° <id, in> : VV→V ;

H = Λ(eval ° (id×(F°out))) : VV→VV.

Prove that F°H is a fixpoint operator for V. Define a fixpoint operator for all objects in RetV.

3. Let C be a CCC and suppose that for all a, b in ObC there exists the coproduct a+b (with

embedding ina: a→a+b , inb: b→a+b). Prove that, for all c in ObC, (a×c)+(b×c) is isomorphic to

(a+b)×c, and define explicitly the isomorphism.

Result: (a×c)+(b×c) ≅ (a+b)×c via

i1 = (ina×idc)+(ina×idc): (a×c)+(b×c) → (a+b)×c

i2 = Λ-1(Λ(ina×c)+Λ(inb×c)): (a+b)×c → (a×c)+(b×c)

Proving i2°i1=id is easy. For i1°i2 = id, note first that g°Λ-1(f) = Λ-1(Λ(g°eval)°f).

Then, in a few steps, one obtains

 i1°i2 = Λ-1(Λ(ina×idc)+Λ(inb×idc))

= Λ-1(Λ(id)°ina+Λ(id)°inb)

= Λ-1(Λ(id))

= id

2.4 Examples of CCC’s

2.4.1 Scott Domains
In this section and in the following one we introduced two fundamental examples of CCC's, namely,

Scott domains and coherent domains. We define only the exponent object and the eval function and

check that they are respectively an object and an arrow of the category. We leave the problem of

defining the isomorphism Λ and checking (βcat) and (ηcat) as an (easy) exercise for the reader.

2.4.1.1 Definition Let (X,≤) be a partiallly ordered set (po-set).

D ⊆ X is directed iff it is nonempty and, for any i,j∈D, there is k∈D such that i ≤ k, j ≤ k. A

p.o.set (X,≤) is complete (is a CPO) iff every directed subset D⊆X has a least upper bound ∪D

(the least element ⊥ is the least upper bound of the empty directed set).

2. Constructions

21

A point x∈X is compact (finite) if for every directed D such that x ≤ ∪D , there is an element

y∈D such that x ≤ y. Let X0 denote the collection of compact elements of X.

The c.p.o. (X, ≤) is algebraic if for every x∈X the set x↓ = {x0∈X0 | x0 ≤ x}is directed and

∪(x↓) = x.

A c.p.o. (X,≤) is bounded complete if every bounded subset of X has a least upper bound. A

Scott Domain is a bounded complete algebraic c.p.o..

Exercises

1. Check that {{y | x0 ≤ y} | x0∈X0} is a basis for a T0 topology on a Scott Domain. This topology

is usually called Scott topology.

2. Prove that the least upper bound of a finite set of finite elements is always finite, if it exists.

3. (Nontrivial) Find counterexamples for the following assertions:

i. if x0 is compact then the set {y | y ≤ x0} is finite;

ii. if x0 is compact and y ≤ x0 then y is compact.

2.4.1.2 Definition Let (X,≤X), (Y, ≤Y) be c.p.o.’s. A function f: X→Y is monotonic if it

is order preserving, i.e., i ≤X j implies f(i) ≤Y f(j) . (We will often omit the subscript X in ≤X.)

A function f: X→Y is continuous if for every directed D⊆X, f(∪D) = ∪d∈Df(d).

Exercise Let (X,≤X), (Y, ≤Y) be Scott domains. Prove that a function f: X→Y is continuous

according to the previous definition iff it is continuos with respect to the Scott topology.

2.4.1.3 Definition The category D has Scott domains for objects and continuous functions for

morphisms. Let X, Y be objects of D. YX is just the collection of the continuous functions from

X to Y ordered pointwise.

Of course YX is a c.p.o.. We have to prove that it is bounded complete and algebraic.

In order to show that YX is bounded complete, assume that {fi}i∈Ι has an upper bound g.

Define then h by h(x) = ∪ i∈Ι{fi(x)}. The function h is well defined since the set {fi(x)}i∈I is

bounded by g(x) and, thus, it has a least upper bound in Y. Moreover, h is continuous because for

every directed set D in X one has:

 h(∪D) = ∪ i∈Ι{fi(∪D)}

= ∪ i∈Ι ∪ x∈D {fi(x)} by the continuity of fi
= ∪ x∈D ∪ i∈Ι {fi(x)}

= ∪ x∈D {h(x)}

It easy to check that h is a least upper bound for {fi}i∈Ι.

To show that YX is algebraic, we explicitly define the set (YX)0 of its compact elements.

2. Constructions

22

2.4.1.4 Definition A step funcion from X to Y is a function step-a,b where a∈X0, b∈Y0,

defined by: step-a,b (x) = if a ≤ x then b else ⊥ .

We claim that the compact element of YX are exactly the least upper bound of finite bounded sets of

step functions. In other words, for every f0∈(YX)0, (*) f0 = ∪i∈Ι{step-ai,bi} for some finite I.

Let us prove first that every function f = ∪i∈Ι{step-ai,bi} is compact, when I is finite and

∪i∈Ι{step-ai,bi} exists, i.e., when for all subset J of I, aJ = ∪i∈J{ai} exists ⇒ bJ = ∪i∈J{bi}

exists (We then say that I is a compatible set of indices.)

Then, let {gh}h∈D be a directed family in YX such that f ≤ ∪h∈D{gh}. In particular, for every

J in Ι as above, f(aJ) = bJ ≤ (∪h∈D{gh})(aJ) = ∪h∈D {gh(aJ)}. Clearly, for each J, bJ is

compact and {gh(aJ)}h∈D is directed. Let then bJ ≤ gh(J)(aJ) for some h(J)∈D. Since I is finite

and {gh}h∈D is directed, let gk , for k∈D , be such that gk ≥ gh(J) for all J in I. Clearly f ≤

gk and we are done.

Prove now for exercise that for every continuous function f: X→Y, one has

i. the set F = { ∪i∈Ι{step-ai,bi}| I finite, and bi ≤ f(ai) } is directed

ii. f = ∪F

Suppose then that f is compact. We need to prove that f = ∪i∈Ι{step-ai,bi} for some finite

compatible I. By the exercise, f = ∪F, for F directed; thus, there exists I such that ∪i∈Ι{step-

ai,bi}∈F and ∪i∈Ι{step-ai,bi} ≥ f = ∪F ≥ ∪i∈Ι{step-ai,bi}. In conclusion f = ∪i∈Ι{step-ai,bi};

that is, every finite element in XY has the form (*) and, in particular, XY is a Scott domain.

The function evalX,Y: YX×X→Y is defined by evalX,Y(f,x) = f(x). The proof that eval is

continuous is straightforward.

Interesting examples of Scott Domains may be found everywhere in the literature of denotational

semantics. Indeed, the Cartesian closedness of the category allows you to construct plenty of them as

products and exponents over commonly used ground types. That is, consider your preferred types

of data (integers, booleans, strings,etc.). Organize them as flat p.o.sets, i.e., add a least element ⊥

and set x ≤ x' iff x = ⊥ or x = x'. These are clearly objects of D as well as their products and

exponents.

Other relevant examples are given, for example, by the p.o.sets P of the partial maps from ω to

ω, the natural numbers, and Pω, the powerset of ω. The partial order, in these cases, is given by set

inclusion, which on P means graph inclusion of functions, i.e., f ≤ g iff ∀n (f(n)↓ ⇒ g(n) =

f(n)). As an exercise, the reader may check that both P and Pω live in D.

Interestingly enough, these two familar structures are also reflexive objects in D . We sketch the

proof of this for Pω , see section 9.6-2 for more on P.

2. Constructions

23

Let {en}n∈ω be a canonical (bijective and effective) enumeration of the finite subsets of ω and let

< , > : ω×ω→ω be a canonical coding of pairs. Define then graph: D[Pω,Pω]→Pω by graph(f) =

{<n,m> | m∈f(en)} and fun: Pω→D[Pω,Pω] by fun(a)(b) = {m | ∃en ⊆ b <n,m>∈a}. It is a

simple exercise to check that graph and fun are morphisms in D. Moreover, fun ˚ graph = id and,

thus, PωPω<Pω.

This example, which played a relevant role in denotational semantics, has been directly inspired by

Recursion Theory (see the references). Indeed, the work carried on so far can be naturally

“effectivized.”

2.4.1.5 Definition A Scott domain X = (X,≤) is effectively given if ∃e0: ω→X0 bijective

and 1. ∃z∈X e0(n), e0(m) ≤ z is decidable in n, m

2. ∃g∈R (∃z∈X e0(n), e0(m) ≤ z ⇒ e0(g(n,m)) = sup{e0(n),e0(m)}).

Call ED the category of effectively given Scott domains and continuous functions. ED is a CCC. As

a matter of fact, the effectiveness properties are easily inherited at higher types.

Observe that, instead of taking the least upper bounds (l.u.b.’s) of all directed sets, as required in

the definition of ED, one may take only the computable l.u.b.'s, i.e. the l.u.b.'s of directed sets or

ideals in (X0,e0) that are indexed over recursively enumerable (r.e.) sets. (One may independently

choose directed sets or ideals and obtain the same collection of computable elements.)

These limits are computable in a very sound sense. For example, (Pω, {en}n∈ω, ⊆) is in ED

and its computable elements are exactly the r.e. sets.

Exercise Prove a similar fact for the set P of partial maps from ω to ω .

Call constructive domain a domain whose elements are the computable elements in an

effectively given domain. Since ED is Cartesian closed, this may be done in any (higher) type. In

particular, given the constructive domains Xc, Yc obtained from X and Y , one may consider the

constructive domain YXc of the computable elements of YX . Define then the following

2.4.1.6 CD is the category of constructive domains and continuous and computable morphisms.

Exercise One clearly has to check that, for f∈YXc, ∀x∈Xc f(x)∈Yc.

By the Cartesian closedness of ED, CD also is a CCC. Observe that each Xc is countable and that it

can be effectively enumerated by using an acceptable enumeration of the r.e. sets. Typical objects in

CD are RE, the recursively enumerable sets, and PR (= Pc), the partial recursive functions (see the

exercise above).

2. Constructions

24

Thus, in a rather indirect way, that is by topological and order properties, we obtained a CCC of

countable (and numbered) sets. The proof that CD is a full sub-CCC of EN requires an important

generalization, in higher types, of the classical Myhill-Shepherdson theorem for enumeration

operators. The main application of CD is the characterization of the partial (continuous) and

computable functionals as the sub-CCC of CD generated by PR, i.e., taking PR and constructing all

higher types within CD (see also section 8.4-I). Moreover, one can give a countable and effective

interpretation to the recursive definitions of programs and data types within CD (by a constructive

version of the “limit constructions” in chapter 10).

Exercise Prove that RE is reflexive in CD (use the full and faithful embedding of CD in EN).

2.4.2 Coherent Domains

2.4.2.1 Definition A coherent structure is a pair (|X|,↑), where |X| is a set and ↑ is a

binary, reflexive, symmetric relation on |X|. The elements of |X| are called points, and the relation

↑ is called coherence.

The coherent domain associated with (|X|,↑) is the collection X of subsets of P(|X|) whose

points are pairwise coherent. The elements of X are ordered by set-inclusion.

Coherence is extended to X in the obvious way, that is: A ↑ B iff A∪B∈X.

Exercise Prove, when X is a coherent domain, that

1. ∅∈X

2. X is closed under directed union

3. (A∈X and B ⊆ A) ⇒ B∈X

2.4.2.2 Definition Let X, Y be two coherent domains. A function F: X → Y is stable iff

i). F is continuous

ii.∀A, B∈X A ↑ B ⇒ F(A∩B) = F(A)∩F(B)

2.4.2.3 Definition The category Stab has coherent domains as objects and stable functions as

morphisms.

Given two coherent domains X and Y, their product X×Y is defined by:

i |X×Y| = {(0,z) / z∈|X| } ∪ {(1,z) / z∈|Y| }

ii. (a,z)↑(a',z') [mod X×Y] iff a = a' ⇒ z ↑ z' [mod D(a)], where D(0) = X and D(1) = Y.

2. Constructions

25

Exercise Define the projections and check that they are stable, i.e., prove that Stab is Cartesian.

There is simple way to obtain stable functions over coherent domains.

2.4.2.4 Definition Let X,Y be coherent domains. Let also f be an injective function from |X|

to |Y| such that, for all x,x'∈|X|, one has {x, x'}∈X ⇔ {f(x), f(x')}∈Y. Define then f+:X→Y

and f -: Y→X by

i. f+(a) = {f(z) / z∈a }

ii. f -(b) = {z / f(z)∈b }

It is a matter of a simple exercise to prove that both f+ and f- are stable functions.

We need to construct next an exponent object out of the set of stable maps over coherent domains.

2.4.2.5 Definition Let F: X→Y be a stable function. The Trace of F is Tr(F) = {(a,z) / a∈X,

a is finite, z∈|Y|, z∈F(a), (∀a'⊆ a , z∈F(a') ⇒ a = a')}.

F is completely determined by its trace by means of the following equation: F(A) = {z∈|Y| / ∃a ⊆ A

(a,z)∈Tr(F)}.

Exercise Prove that the correspondence between stable functions and their traces is bijective.

Notation The symbol ↑↑ is used to represent strict coherence, i.e., A↑↑Β iff A↑Β and A≠B.

2.4.2.6 Definition Let |YX| = {(a,z) / a∈X, a is finite, z∈|Y| }. Moreover, let (a,z) ↑ (a',z')

iff

i. a ↑↑ a' [mod X] ⇒ z ↑↑ z' [mod Y] and

ii. a ↑ a' [mod X] ⇒ z ↑ z' [mod Y].

Then YX is the arrow domain (exponent object).

Exercises

1. Prove that conditions (i) and (ii) may be stated equivalently as

(a,z) = (a',z') or z↑↑z' or not a↑a'.

2. Prove that every element of YX is a trace of some stable function from X to Y , and conversely

that if F: X→Y is stable then tr(F)∈YX.

3. Let f,g : X → Y be two stable functions.

Define f ≤B g (Berry's order) iff ∀x,y∈X x ⊆ y ⇒ f(x) = f(y)∩g(x)

Prove that f ≤B g if and only if Tr(f) ⊆ Tr(g). Let moreover ≤p be the pointwise order. Prove that:

2. Constructions

26

i. f ≤B g ⇒ f ≤p g

ii. f↑g ⇒ (f ≤Bg ⇔ f ≤p g)

4. Let X,Y be coherent domains. A stable function f: X→Y is linear iff :

i. a ∪ b∈X ⇒ f(a ∪ b) = f(a) ∪ f(b)

ii. f(∅) = ∅

Prove that f: X→Y is linear iff its trace is formed of pairs (a,z), where the component a is a

singleton. Observe that the maps f+ and f- in 2.4.2.4 are actually linear. Call Lin the category of

coherent domains and linear maps.

5. Let f: X→Y, g: X→Y be two linear functions. Prove that Tr(f) ⊆ Tr(g) if and only if for all x

in X f(x) ≤ g(x). Deduce as a corollary that on linear functions between coherent domains the order

of Berry coincides with the pointwise order.

2.4.2.7 Definition The function evalX,Y: YX×X→Y is defined by the following equation:

∀A∈YX, ∀B∈X evalX,Y(A,B) = {y / ∃(b,y)∈A, b ⊆ Β}.

We prove that evalX,Y is stable. Continuity is trivial. We must only check that if (A,B)↑(A',B')

[mod YX] then evalX,Y((A,B)∩(A',B')) = evalX,Y((A,B)) ∩ evalX,Y((A',B')). The inclusion

⊆ is immediate by continuity.

Take then z in evalX,Y((A,B)) ∩ evalX,Y((A',B')). This implies ∃(b,z)∈A, b ⊆ Β and

∃(b',z)∈A', b' ⊆ Β'. Note that B↑B' by hypothesis and, thus, b↑b'. Moreover, also by

hypothesis, A↑A' and then, by definition of consistency mod YX, one has b = b'. This implies

(b,z)∈A∩A',b ⊆ Β∩B' ⇔ z∈evalX,Y((A∩A'),(B∩B')) ⇔ z∈evalX,Y((A,B) ∩ (A',B')).

In conclusion, the category Stab of coherent domains and stable functions is a CCC.

Exercise Let f+ and f- be defined as in 2.4.2.4, over coherent domains X and Y. Prove that f-

°f+ = idX, i.e., that X<Y via (f+,f-) in Stab.

By this technique and the following construction, one can easily construct, in each cardinal, a

coherent domain of which all other coherent domains of the same cardinality are retracts. In

particular, it will be so also its own function space.

2.4.2.8 Definition If X is a coherent domain, then !X (read of course X) is the coherent

domain defined by

i. |!X| = {a / a∈X, a finite}

ii. a ↑ b [mod !X] iff a ∪ b ∈X .

2. Constructions

27

Let T be the three-element truth value poset {⊥,true, false}, i.e., the “lifting” of {true, false}. For

simplicity, we look at the cardinal ω. Consider then the ω-power Tω of T. That is, take all the

functions from ω to T. When T is partially ordered in the usual way, with ⊥ least and true and

false incomparable, then Tω is clearly a coherent domain. One may also understand Tω as the set

of disjoint subsets of ω. Of course, !Tω is aslo in Stab by the definition just given.

2.4.2.9 Theorem Let D be a coherent domain with a countable |D|, and let e: ω→|D| be a

bijective map. Then there exist an injective function f from |X| to |!Tω| such that, for all x,x'∈|X|,

one has {x, x'}∈X ⇔ {f(x), f(x')}∈!Tω.

Proof Let f: |D| → |!Tω| be defined in the following way:

f(e(i)) = < {i}, {j / j ≤ i and not e(i)↑e(j)} >

Obviously f is injective. It is also trivial that {e(i),e(j)}∈D implies {f(e(i)),f(e(j))}∈!Tω. Conversely

suppose not e(i)↑e(j) [mod D] , and let i ≤ j (the other case is analogous). This implies that

i∈f(e(j))1 and then not f(e(i))↑f(e(j)) [mod !Tω].

2.4.2.10 Corollary Let f+ and f- be as in 2.4.2.4, for f: |D|→|!Tω|. Then, for any coherent

domain D with a countable |D|, one has D<!Tω via (f+,f-).

The proof easily follows from the exercise above. Note now that, if D is countably based, so is

DD, in Stab (check this for exercise). Since, in particular, |!Tω| is countable, then !Tω turns ou to

be a reflexive object, as !Tω!Tω< !Tω.

2.5 Equalizers and Pullbacks
Let f,g: A→B a pair of “parallel” functions in Set, i.e. f, g have the same source and target. The

subset E of A on which f and g agree, i.e., E = {x / x∈A, and f(x) = g(x)} is called an

equalizer of f and g. We try now to give a categorical characterization of previous set-theoretic

notion. The starting point is that E being a subset of A it must be represented as a subobject, that

is, as a mono i: E→A; moreover, i must enjoy the property f ° i = g ° i. But E is the maximal

subset of A on which f and g agree, and in order to guarantee this condition we require that if h:

C→A is any other function such that f ° h = g ° h, then h “factors” uniquely through i , that is,

there exist a unique k: C→E such that h = i ° k. We now prove that the previous condition is

enough to ensure, in Set, that i(E) contains all the x∈A, such that f(x) = g(x).

Suppose not, then there exist a∈A, a∉i(E) such that f(a) = g(a). Consider the function l:

E∪{a}→A defined by l(e) = i(e) if e∈E, l(a) = a. Of course f ° l = g ° l, and therefore a morphism

k: E∪{a}→E must exists such that l = i ° k. But then a = l(a) = i(k(a))∈i(E); this is a contradiction.

2. Constructions

28

Since this condition of unique factorization also implies that i is mono (see proposition 2.5.2

below) we are led to the following definition:

2.5.1 Definition Given a pair of morphisms f,g∈C[a,b], an equalizer of f and g is a pair (e,

i∈C[e,a]) such that :

i. f° i = g° i

ii. for all h∈C[c,a], f° h'= g° h' implies ∃! k∈ C[c,e] i ° k = h.

Coequalizers are defined dually, that is a coequalizer of f,g is a pair (e, i∈C[b,e]) such that:

i. i ° f = i ° g

ii. for all h∈C[b,c], h ° f = h ° g implies ∃! k∈C[e,c] k ° i = h.

2.5.2 Proposition Every equalizer is monic.

Proof Let i: e→a be the equalizer of f, g: a→b. Let j, l : c→e, such that i ° j = i ° l .

Since f ° (i ° j) = (f ° i) ° j = (g° i) ° j = g ° (i ° j) there exists a unique h: c→e such that (i ° j) = i ° h,

hence j = h = l. ♦

2.5.3 Proposition Every epic equalizer is iso.

Proof Let i: e→a be the equalizer of f, g: a→b. Since i is epic, and f ° i = g ° i, it follows that f =

g. The identity ida equalizes f and g, and there is a unique morphism h: a→e such that ida = i ° h.

Moreover i ° h ° i = ida ° i = i ° ida, and since i is monic (by proposition 2.5.2), then h ° i = ida . ♦

We now introduce one of the most powerful notions of Category Theory: the pullback. In a sense,

pullbacks generalize equalizers to pairs of morphisms with different sources.

2.5.4 Definition Given two arrows f: b→a and g: c→a with common target a, the pullback

of (f,g) is an object b×ac and two arrows p: b×ac→b, q: b×ac→c , such that

1. f ˚ p = g ˚ q: b×ac→a

2. for every other triple (d, h: d→b, k: d→c) such that g˚ k = f˚ h, there exists a unique arrow

<h,k>a: d→b×ac such that p ˚ <h,k>a = h, and q ˚ <h,k>a = k.

The dual notion is called pushout.

2. Constructions

29

A typical pullback diagram is as follows:

The lower “square” is also called “pullback square.” Note that the notation used for pullbacks is quite

similar to the one used for products; indeed, they behave similarly (products are just a particular case

of pullbacks, see proposition. 2.5.5 below). Note also that the subscript a is meant to express the

dependency of b×ac and <h,k>a on f and g, but b×f,gc and <h,k>f,g, is too heavy a notation:

the subscript must be considered essentially as a warning that we are dealing with a pullback, not just

a product. Usually this omission of information is harmless, because the particular pullback we are

considering is clear from the context.

Example In Set the pullback of (f: B→A, g: C→A) is as follows:

({<x,y> / x∈B, y∈C, f(x) = g(y) }, p1, p2) where p1(<x,y>) = x and p2(<x,y>) = y.

2.6.5 Proposition Let C be a category with a terminal object t. For any object a of C, let !a be

the unique morphism in C[a,t]. If C has pullbacks for every pair of arrows, then it also has products

for every pair of objects.

Proof Hint. Given a,b in C, let (a×b, p1: a×b→a, p2: a×b→b) be the pullback of (!a: a→t, !b:

b→t). It is easy to verify that this is a product. ♦

2.6.6 Proposition If a category C has pullbacks for every pair of arrows and it has terminal

object, then it has an equalizer for every pair of arrows.

Proof Let f,g: a→b. Let (c, fst:c→a, snd:c→a) be the pullback of (<f,ida>: a→b×a, <g,ida>:

a→b×a). Then the equalizer of f,g is (c, fst = snd). Indeed, f ˚ fst = p1˚ <f˚fst,fst> = p1˚ <f, ida> ˚
fst = p2 ˚ <g,ida> ˚ snd = p2 ˚ <g˚snd,snd> = g ˚ snd. Moreover, for any (c', h:c'→a) such that f

˚ h = g ˚ h , also <f,ida> ˚ h = <g,ida> ˚ h; by definition of pullback, there exists a unque k: c'→c

such that fst ˚ k = h. ♦

2. Constructions

30

2.6.7 Pullback Lemma (PBL) If a diagram of the form

commutes, then

i. if the two small squares are pullbacks, then the outer rectangle is a pullback;

ii. if the outer rectangle and the right-hand square are pullbacks, then the left-hand square is a

pullback.

Proof Exercise. ♦

2.6.8 Proposition If the square

is a pullback and g is monic, then p is monic as well.

Proof: Exercise. ♦

The previous property suggests an interesting generalization of a common set-theoretic construction.

If f is a function from a set A to a set B, and C is a subset of B, then the inverse image of C

under f, denoted f-1(C) is that subset of A defined by f-1(C) = {x/ x∈A, f(x)∈C }.

It is easy to show that the diagram

is a pullback square in Set.

2. Constructions

31

In general, given a monic g: c�→b and a morphism f: a→b, the inverse image of g under f

is the subobject of a (if it exists) obtained by pulling back g along f.

2.6 Partial Morphisms and Complete Objects
As mentioned in the introduction, the common perspective of Programming Language Theory and

Category Theory is due to the priority given to “functions” with respect to “sets.” The latter notion,

when required, is a derived notion of the former, in a sense.

There is an other aspect, though, that should be considered. In Computation Theory, as well as in

actual programming, diverging computations cannot be avoided unless a restriction is made to a

subclass of the computable functions.

The notion of partiality has a natural interpretation over sets. Let f: A→B be a partial function; the

domain of convergence of f, call it f↓, is just a subset of its “domain” A in the broader sense;

moreover the restriction of f to f↓ is a total map f|(f↓): f↓→B. Thus a partial map f may be

represented by a pair of total functions (i: D→A, h: D→B), where D⊆A is the domain of

convergence of f, h is the restriction of f to D, and i: D→A is the canonical injection .

If we try to simulate the previous definition in categorical language, it is natural to define a partial

map f between two objects a and b in a category C as a pair (m: d→a , h: d→b), where m is

monic. However, as in the case of subobjects, we have no way to choose d in a canonical way, so

we are forced to identify partial morphisms up to isomorphic variations of d (see section 1.5.)

2.6.1 Definition Given a category C and two objects a and b, a partial map [m, h]: a→b is an

equivalence class of pairs (m: d→a, h: d→b), where m is monic, with respect to the following

relation R: (m: d→a, h: d→b) R (m': d'→a, h': d'→b) iff ∃k: d→d', k iso, m' = m ° k , h' = h ° k.

With a little abuse of language, we will often speak about a particular pair (m: d→a, h: d→b) when

we actually mean [(m: d→a, h: d→b)]R.

Our next aim is to define a category pC of partial maps on C. The main problem is in defining

composition. If C has pullbacks for every pair of arrows, then the problem is resolved in the

following way.

Given (n: e→b, k: e→c) and (m: d→a, h: d→b), define [n, k] ° [m, h]: a→b as the equivalence

class determined by the outermost sides in the following diagram, i.e., (m˚n': d×be→a, k˚h':

d×be→c) :

2. Constructions

32

where the square is a pullback. Note that by proposition 2.5.8, since n is monic, n' is monic, too.

Let us see how the previous definition works in Set. For the equivalence relation defined on

partial morphisms, we suppose d⊆a, e⊆b and take m: d→a, n: e→b as canonical injections. Then

d×be = {(x,y) / x∈d, y∈e, h(x) = n(y) } = {(x,y) / x∈d, y∈e , h(x) = y } ≅ {x / x∈d, h(x)∈e },

that is, the expected domain of convergence of the composed function. The projections h' and n'

associated with the pullback {x / x∈d, h(x)∈e} are respectively h|{x / x∈d, h(x)∈e} and the

canonical injection i: {x / x∈d, h(x)∈e}→d. In conclusion, for all x∈{x / x∈d, h(x)∈e }, one has

k(h'(x)) = k(h(x)) , as we wanted.

Every arrow f∈C[a,b] has a natural associated arrow in pC, that is (id: a→a, f: a→b). We say

that a map in pC is total iff it has the above form (up to equivalences). (pC)t is the subcategory of

pC of total maps. As will become clearer in the next chapter, C is “isomorphic” to (pC)t.

Exercise Prove the following assertions:

1. id is total;

2. f,g total ⇒ f°g total;

3. f°g total ⇒ g total;

Example pSet is the category of sets with partial maps as morphisms. pR = PR is the monoid of

the partial recursive functions. pEN is defined by using partial recursive functions in the diagram

that defines the morphisms, instead of the total ones (see section 2.2). Observe that the diagrams

commutes iff eb°f' = f°ea for f'∈PR and, hence, ea(n) = ea(m) and f'(n)↓ ⇒ f'(m)↓. Clearly,

(pSet)t = Set, PRt = R and (pEN)t = EN.

Remark Sometimes, in the construction of the category pC from C, it may be intersting to restrict

our attention to only a subset of the class of monics of C. Consider, for example, the category PO of

p.o.sets: an interesting definition of a partial map f between two p.o.sets would also require f to be

defined in an upward closed subset. Let C be a category with pullbacks for every pair of arrows. An

2. Constructions

33

admissible family M of monics of C , is a family of monics closed under identities,

compositions, and pullbacks. Every admissible M on a category C gives rise to a different category

(M)(pC) of partial maps.

As already recalled, diverging computations play an essential role in the theory of computation.

They also have an obvious interpretation in Set Theory. However, the set-theoretic understanding of

computations may not suffice. Type-free languages and many typed ones, as we shall see later,

escape a “naive” interpretation as sets and functions.

As a matter of fact, since the early days of denotational semantics of programming languages, the

need to give meaning to (possibly) diverging computations over nontrivial mathematical structures

suggested the introduction of various categories of p.o.sets with least elements. The naive

understanding of this is immediate: add to all required data types, as sets, an extra element and give

them a p.o.set structure as flat p.o.sets (i.e., ⊥ is the least element and all others are incomparable).

We already dealt with this in practice, when presenting various categories of p.o.sets as examples of

CCC's. In a sense, the bottom element ⊥ provides the first hint of the introduction of approximation

and continuity notions to the mathematical semantics of programs.

As we have demonstrated, this concept is very clear matematically, at least in several specific

categories, such as continuous or algebraic lattices, c.p.o’s, and Scott domains. It is not so simple in

interesting categories for computations such as EN, though. In order to understand it in a general

setting and avoid any abuse of this simple concept, a category-theoretic perspective may provide a

sound mathematical frame.

Notation In the rest of this section, C is a category of partial maps, i.e., C = pD for some

category D with pullbacks for every pair of arrows. Ct is the associated category of total maps. Since

Ct is a subcategory of C, we compose total and partial morphisms by using the same operation of

composition. For typographical reasons, we write a° instead of a⊥.

The set-theoretic idea we try to formalize categorically is that, when an object a is “lifted” to a° by

adding an extra least element, then any hom-set of total maps with target a° is isomorphic to the

corresponding hom-set with target a .

2.6.2 Definition. The lifting of a∈ObC is an object a°∈ObCt together with a morphism

exa∈C[a°,a] and for every c∈ObC an operation τc: C[c,a]→Ct[c,a°] such that, for every f∈C[c,a]

and for every g∈Ct[c,a°] one has

1. exa ° τc(f) =f

2. τc(exa ° g) = g.

2. Constructions

34

The operation τc: C[c,a]→Ct[c,a°] is bijective, as τc-1 is defined by τc-1(g) = exa ° (g).

Conversely, if τc is bijective and (1) holds, then also (2) does. Indeed, let g∈Ct[c,a°]; since τc is

surjective, then there is f∈C[c,a] such that τc(f) = g. That is, τc(exa ° g) = τc(exa ° τc(f)) = τc(f) =

h Thus, the following is an equivalent definition of the lifting object:

2.6.3 Definition. The lifting of a∈ObC is an object a°∈ObC together with a morphism exa∈

C[a°,a] such that, for every f∈C[c,a], there exists one and only one g∈Ct[c,a°] satisfying the

equation: exa ° g = f.

Thus, as we wanted, for all b, C[b,a] and Ct[b,a°] are isomorphic, since any partial morphism

f∈C[b,a] may be uniquely extended to a total one when the target object is lifted (and the lifting

exists).

Exercise Prove that the lifting a° of an object a is unique, if it exists.

2.6.4 Proposition. Let a° be the lifting of a and set ina = τ a(ida) . Then a is a retract of a° in

C (notation: a <p a°) via (ina ,exa).

Proof. exa° ina = (τ a°)-1(id) ° ina by definition of (τ a°)-1

= (τ a)-1(id ° ina)

= (τ a)-1(τa(id))

= id. ♦

2.6.5 Definition. An object a∈ObC is a complete object iff a < a° in Ct.

The intuition should be clear. An object is complete when it “already contains,” in a sense, the extra

⊥ . Think of an object d of pCPO and take its lifting d° , i.e., add a least element ⊥ to d. Then

d is complete, that is, d < d° via (i,j), iff d already contained a least element, j(⊥) to be precise. It

is actually easy to show that the complete objects in pPO, and likewise in pCPO, are exactly the

partial ordered sets with a least element.

Note that in contrast to the partial retraction a <p a° via (in,ex) in definition 2.6.4, which may be

always given, only complete objects yield total retractions a < a°.

2.6.6 Lemma. If a < a° via (i,j) (in Ct), then ∃out∈Ct[a°,a] a < a° via (τa(ida),out).

Proof Set out = j ° τ(exa°i°exa). Then

 out ° τa(ida) = j ° τ(exa°i°exa) ° τa(ida)

= j ° τ(exa°τ(exa°i°exa) ° τa(ida)) by (2) in def. 2.6.2

= j ° τ(exa ° i ° exa ° τa(ida)) by (1)

2. Constructions

35

= j ° τ(exa ° i) by (1)

= j ° i by (2)

= ida. ♦

Thus we may then assume that, if a is complete, a < a° via (in=τa(ida),out).

The following fact gives the main motivation for the invention of complete objects: exactly on

complete objects as targets all partial morphisms may be extended to total ones, with the same target.

2.6.7 Definition f∈Ct[b,a] extends f∈C[b,a] iff ∀c∈ObC, ∀h∈Ct[c,b], (f ° h)∈Ct[c,a]

⇒ f ° h = f ° h.

2.6.8 Theorem. Let a° be the lifting of a∈ObC. Then a < a° ⇔ ∀b, ∀f∈C[b,a], ∃f∈Ct[b,a]

such that f extends f.

Proof.(⇒) Set f = out ° τb(f). Then, for every h∈Ct[c,b], such that (f ° h)∈Ct[c,a] ,

 f°h = out°τb(f)°h

= out°τc(exa°τb(f)°h) by (2) in def. 2.6.2

= out°τc(f°h) by (1)

= out°τc(exa°τa(ida)°f°h) by (1)

= out°τa(ida)°f°h by (2)

= f°h

(⇐) just take ex ∈Ct[a°,a]. ♦

Exercises Prove the following facts:

1. a° < a°°.

2. b < a < a° ⇒ b < b°. (Hint: let b < a via (i,j). For any f∈C[c,b] consider the extension

i°f∈Ct[c,a] of i°f∈C[c,a]. Then j°i°f∈Ct[c,b] and ∀h into dom(f) j°i°f°h = j°(i°f°h) = f°h.)

2.7 Subobject Classifiers and Topoi
Subobjects and partial morphisms already forced some typical set-theoretic notions into the realm of

categories. Let us take now a further step and categorically reconstruct power-sets and related

constructions. By this, it will be possible to relativize these notions to structured sets. As for

subobjects, the categorical version carries the structural information of the intended category.

In Set there is a one-to-one correspondence between subset of a set A and functions from A to

2={true, false}. The isomorphism takes every B⊆A to its characteristic function cB:A→2,

defined by the following: cB(a) = true if a∈B, cB(a) = false if a∉B. This isomorphism may be

expressed in the categorical language by means of a pullback diagram

2. Constructions

36

where inB: B→A is the subset inclusion, and true: {*}→{true, false} takes * to “true.”

The above diagram suggests the following definition in Category Theory:

2.7.1 Definition Let C be a category with a terminal object t. A subobject classifier is an

object Ω together with a morphism true: t→Ω such that for every monic i: b→a there is a unique

arrow cb: a→Ω such that the following diagram is a pullback diagram:

Exercise A subobject classifier, when it exists in C, is unique up to isomorphisms.

The subobject classifier Ω plays a central role in the translation of Set Theory into Category Theory.

It allows the simulation into the categorical language of concepts like intersection, union, and

complement, by the definition of a Heyting algebra of truth-morphisms over Ω.

2.7.2 Definition A topos is a category C with a terminal object, a subobject classifier, pullbacks

for every pairs of arrows, and exponents for all pairs of objects.

It will turn out that a topos is a “universe” where we can carry out constructions with almost the same

confidence as we do in Set. Of course, Set itself is a topos.

Exercises

1. Prove that if C is a topos, then C is a CCC.

2. In a topos C, what is the arrow eval: Ωa×a→ Ω ?

2. Constructions

37

In the spirit of a categorical description of set-theoretic concepts, one may also talk in topoi of

“relations”, “powersets”, and so forth. Quite generally, given objects a and b, a relation on a and

b, is simply a monic r: d→a×b. In particular, then, one may consider power-objects P(a) as given

by a relation ∈a: d→a×P(a) with the following universal property:

2.7.3 Definition Let C be a cartesian category and a∈ObC. The power-object P(a) is an

object of C together with an object d and a monic ∈a: d→a×P(a) (a membership-relation)

which is universal in the sense that, for any object b and monic m : e→a×b, there is a unique map

r: b→P(a) and a (forcedly unique) map g: e→d to make the following square a pullback:

As Ω is the truth value object, the set-theoretic intuition suggests that, in a topos, the object Ωa

should represent exactly the power-object of a.

2.7.4 Proposition In a topos C every object a has a power-object Ωa.

Proof. Let ∈a: d→a×P(a) be defined by the following pullback square:

Then the required universality of ∈a is given by the properties

1. of the subobject classifier, i.e. the existence of the characteristic map ce of m;

2. of the map eval , i.e. the existence and unicity of Λ(ce);

3. of the above pullback ;

an by an application of the pullback lemma 2.5.7. All this is described by the following commuting

diagram, where the squares are pullbacks:

2. Constructions

38

♦

The reader who has completed exercise (2) above may easily understand the intuitive meaning of

the construction in 2.7.3 and compare it to his set-theoretic understanding. In particular, eval says

whether “an element of a is in a given subset of a .”

Exercises

1. Prove that any topos has lifting.

2. Prove that a category C is a topos if and only if it has a terminal objects, and all pullbacks and

powerobjects.

References The general notions can be found in the texts mentioned at the end of chapter 1,

though their presentation and notation may be different. For example, in the case of CCC's, this is so

also because these categories play a greater role in the categorical approach to Type Theory, or to

denotational semantics, than in other applications of Category Theory. Notice that Grp and Top are

not CCC's and consider that the origin of Category Theory is largerly indebted to algebraic geometry.

Applications of universal concepts from Category Theory to Programming Language Theory have

been developed by several authors, in particular for program specification. For instance, the work by

the ADJ group is explicitly based on universal conditions for specification (initial algebras of abstract

data types; see Goguen et al. (1973/78)). An early insight in the connections between programs and

categories may be found in Burstall and Thatcher (1974). All these aspects go beyond the limited

aims of this book, which privileges “theories of functions” over “algebraic theories.” Some more

notions with an algebraic flavor may be found in chapter 4.

As for the examples we have provided, they originated entire areas of research. In particular, the

category EN was first introduced by Malcev, as a general setting of Recursion Theory, and widely

used in Ershov (1973/75). Scott domains and related categories are broadly treated in several places,

2. Constructions

39

e.g. Scott (1981/82), Scott and Gunter (1989) or many books in denotational semantics. Scott (1976)

presents Pω as a reflexive object and discusses categories of retractions. The (generalized) Myhill-

Shepherdson theorem and related matters may be found in Scott (1976), Giannini and Longo (1984),

Berger (1986), Rosolini (1986), and Longo (1988a), among others.

Coherent domains are given in Berry (1978) and used in Girard (1986), where linear maps are

introduced (with some relevant consequences, see section 4.4).

There is a broad literature on categories with partial maps. We partly followed the approach in

DiPaola and Heller (1984), and in Longo and Moggi (1984), where the notions of “complete object”

and partial Cartesian Closed Category were introduced (and applied in Asperti and Longo (1987)).

The properties of complete objects carry on also when using a more topos-theoretic perspective, as

shown in Moggi (1988), which is devoted to a deeper insight into the concepts just sketched here.

New results and surveys on categories with partial morphisms may be also found in Rosolini (1986),

Moggi (1988a), Robinson and Rosolini (1988) and Curien and Obtulowicz (1988). Independently of

the category-theoretic approach, Plotkin (1984) used the category pCPO for the purposes of

denotational semantics.

Toposes originated by works of Lawvere and Tierney. A (difficult) introduction to Topos Theory

may be found in Johnstone (1977). The reader may also consult Goldblatt (1979) or Barr and Wells

(1985) on this subject.

3. Functors and Natural Transformations

40

Chapter 3

FUNCTORS AND NATURAL TRANSFORMATIONS

The starting point of Category Theory is the premise that every kind of mathematically structured

object comes equipped with a notion of “acceptable” transformation or construction, that is, a

morphism that preserves the structure of the object. This premise holds for categories themselves: a

functor is the “natural” notion of morphisms between categories. By a further step, the question

about what a morphism between functors should look like suggests the notion of natural

transformation.

Of course, this is not a matter of arbitrary generalizations: it is a habit of mathematics to build

constructions on top of constructions, since one may understand in this way, by the uniformity of

methods and language, the reasonableness of specific constructions. And this theoretical unification,

suggesting power and intellectual unity, is one of the major merits of Category Theory and its

applications.

Moreover, as we shall see in several examples, there are notions which are clarified in an

essential way or even suggeted by the categorical language of functors and natural transformations.

Indeed, there are even too many examples for our purposes, and we will be able to mention only a

few that are easily met in computer science.

3.1 Functors
If a transformation F between two categories C and D must map the categorical structure of C to that

of D, it must take objects and morphisms of C to objects and morphisms of D; moreover, it must

preserve source, target, identities and composition. Such a transformation F: C→D is called a

functor.

3.1.1 Definition Let C and D be categories. A (covariant) functor F : C → D is a pair of

operations Fob: ObC → ObD , Fmor: MorC → MorD such that, for each f: a→b , g: b→c in C,

- Fmor(f) : Fob(a)→ Fob(b)

- Fmor(g ° f) = Fmor(g) ° Fmor(f)

- Fmor(ida) = idFob(a).

It is usual practice to omit the subscripts “ob” and “mor” as it is always clear from the context

whether the functor is meant to operate on objects or on morphisms.

3. Functors and Natural Transformations

41

1.2 Examples

1. If C and D are preorders, then a functor F: C→D is just a monotone function from the objects of

C to the objects of D, indeed a <C b ⇔ ∃�f∈C[a,b] ⇒ F(f)∈D[F(a),F(b)] ⇔ F(a) <D F(b).

Conversely, given a monotone function f between two partial orders C and D, there is of course

only one way to extend f to a functor among the categories associated with C and D.

2. The identity functor I: C→C is defined by a pair of identity operations both on objects and on

morphisms of C. Similarly, we define the inclusion functor Inc: C→D when C is a subcategory

of D.

3. If C is a Cartesian category define ××××: C××××C→C as the pair of operations that take (a,b)∈ObC××××C
to ××××(a,b) = a×b∈ObC, and (f,g)∈C××××C[(a,b),(c,d)] to ××××(f,g) = f×g = <f˚p1,g˚p2>∈C[a×b,c×d]. ××××

is a functor. Indeed ×××× preserves sources and targets and, moreover,

××××(ida,idb) = ida×idb = <pa,pb> = ida×b = id××××(a,b)
××××((f,g)°(h,k)) = ××××(f°h,g°k) = (f°h)×(g°k) = (f×g)°(h×k) = ××××(f,g) ° ××××(h,k)

×××× is usually called product functor (since products are only determined up to isomorphisms, we

must assume here a canonical choiche, for each object a, b, of their product a×b).

4. The power-set functor P: Set→Set takes every set A tο its power-set P(A) and every function

f: A→B to the function P(f): P(A)→P(B) defined by

∀A'⊆A P(f)(A') = {y∈B / ∃x∈A', y = f(x)}.

Note that the set P(f)(A') is what is usually called f(A').

A functor F: C→D preserves a property P that an arrow f may have in C, if the arrow F(f) has

the same property in D. For example, every functor preserves isomorphisms, or the property of

being a component of a retraction pair, as it is stated in the following proposition:

3.1.3 Proposition Let F: C→D be a functor. If a<b (a ≅ b) in C, then F(a) <F(b) (F(a) ≅

F(b)) in D.

Proof. If f˚g = id, then F(f)˚F(g) = F(f˚g) = F(id) = id. ♦

Exercise Does every functor F preserve the property of being monic or epic?

A functor F: C→D is faithful if for all a,b∈ObC and for all f,g∈C[a,b], F(f) = F(g) implies f = g;

it is full if for all a,b∈ObC and every h∈D[F(a),F(b)] there is g∈C[a,b] such that h = F(g). A

functor F: C→D is a full embedding iff it is full and faithful, and it is also injective for objects.

A functor that “forgets” (part of) the intended structure of the objects is called forgetful: typical

examples are the functors from Grp, Top, or PO to Set which assign to each object its set of

elements and to each arrow the function associated with it. This notion is not a precise one, but it is

3. Functors and Natural Transformations

42

usually clear when a functor can be considered “forgetful”; note however that a forgetful functor

should always be faithful (and very rarely full).

The definition of functor we have given preserves also the direction of the arrows in C. In some

cases, it is interesting to study transformations among categories that reverse such directions, that is,

by mapping sources to targets and vice versa. A transformation of this kind between two categories

C to D may be considered as a functor from the dual category Cop to D, and it is known as

contravariant functor (from C to D). Explicitly, note the following definition

3.1.4 Definition Let C and D be categories. A contravariant functor F: C→D is a pair of

operations Fob: ObC→ObD, Fmor: MorC→MorD such that for each f: a→b , g: b→c in C,

- Fmor(f) : Fob(b)→Fob(a)

- Fmor(g ° f) = Fmor(f) ° Fmor(g)

- Fmor(ida) = idFob(a)

Examples

1. Each functor F: C→D defines a contravariant functor Fop: Cop→D that coincides with F on

objects and such that Fop(f) = F(fop), Fop(g˚f) = Fop(f)˚Fop(g). Of course, F = (Fop)op.

2. The duality functor ()op: C→Cop is a contravariant functor such that (a)op = a for a∈ObC
and (f)op = f for f∈MorC.

3. The function that takes every set A tο its power-set P(A) may be also extended in a natural way to

a contravariant power-set functor P: Set→Set. Just define, for f: A→B, P(f): P(B)→P(A)

as the function that assigns to each B'⊆B the set P(f)(B') = f -1(B') = {x∈A / ∃y∈B', f(x)=y}.

4. Let C be a category with pullbacks, and let f∈C[a,b]. Then f induces a pullback functor f*:

C↓b→C↓a, whose action is described in the following diagram:

In this diagram, g and h are objects of C↓b, and k∈C↓b[g,h]; f*(g) and f*(h) are the pullbacks

of g and h along f, yielding a unique arrow f*(k) making the above diagram commute. The proof

that f* is a functor is a consequence of elementary properties of pullback, and it is left as an exercise

for the reader.

3. Functors and Natural Transformations

43

5. Let C be a CCC. For every c∈ObC the exponent functor expc: C→C is defined as follows.

For every a∈ObC, set expc(a) = ca , and for every f∈C[a,b], expc(f) = Λ(evalb,c ° id×f) : cb→ca.

As a diagram,

In order to check that expc is actually a contravariant functor, we must take these steps:

expc(id) = Λ(eval ° id×id) = Λ(eval) = id

expc(f ° g) = Λ(eval ° id×(f ° g))

= Λ(eval ° id×f ° id×g)

= Λ(eval °Λ(eval ° id×f)×id ° id×g) by the diagram

= Λ(eval ° id×g ° Λ(eval ° id×f)×id)

= Λ(eval ° id×g) ° Λ(eval ° id×f)

= expc(g) ° expc(f). ♦

Note that the composition of two functors is still a functor and that there exists the identity functor

which is right and left invariant w.r.t. composition. Thus, it is sound to define the category Cat

whose objects are categories and whose morphisms are functors. It is worth pointing out that this is a

convenient and unusual algebraic property. The collection of groups is not (naturally) a group;

similarly for topological spaces and so on. The definition of Cat, so similar to the paradoxical “set of

all sets” of Set Theory, must be used with some caution, however. It is not our intention to engage in

foundational questions in this book, but it is time to say a few more words about our “axiomatic”

defintion of Category. So far we have made no assumption at all about the dimension of the classes

ObC and MorC; the word “class” itself has been used in an intuitive sense, without any reference to

an underlying Set Theory. From now on, though, the reader may refer to the notions of set and class

as used, say, in Gödel-Bernays Set Theory, in order to make this distinction clear. From this

perspective, a Category C such that ObC and MorC are sets, is called small. In the sequel, when

we refer to Cat, we mean the category of all small categories; of course, Cat itself is not a small

category, and thus it is not among its own objects.

(Question: which of the categories mentioned so far are small, and which are not?)

If C is a small category, then, for all a,b∈ObC, C[a,b] is a set, usually called hom-set of a

and b (some authors use the word “hom-set” in an arbitrary category). We say that a category C is

locally small when for all a,b∈ObC, C[a,b] is a set and not a class. If C is a locally small

3. Functors and Natural Transformations

44

category, it is possible to define some functors from C to Set, called hom-functors, that play a

central role in the developments of Category Theory. We shall see later that most of this work may be

done at a more abstract level, taking an arbitrary topos D instead of Set.

3.1.5 Definition Let C be a locally small category. Given a∈ObC, the covariant hom-functor

C[a,_]: C→Set is given by:

i. for every b∈ObC C[a,_](b) = C[a,b]∈ObSet;

ii. for every g∈C[b,b'], C[a,_](g): C[a,b]→C[a,b'] is the function that takes f∈C[a,b] to (g°f)

∈C[a,b'] that is,

The function C[a,_](g) will be denoted in the sequel by “C[a,g]” or also by the suggestive “g ° _”

(some authors use also g*). Note that the drawing above is clearly an implication between diagrams.

Their plain juxtaposition will be used often in the sequel with this meaning, as a special case of the

“conditional equational reasoning” mentioned earlier in section 1.2.

3.1.6 Definition Let C be a locally small category. Given b∈ObC , the contravariant hom-

functor C[_,b]: C→Set is given by:

i. for every a∈ObC C[_,b](a) = C[a,b]∈ObSet
ii. for every h∈C[a',a], C[_,b](h): C[a,b]→C[a',b] is the function that takes f∈C[a,b] to f °

h ∈C[a',b] that is

The function C[_,b](h) will be denoted in the sequel by “C[h,b]” or by the suggestive “_ ° h”

(some authors use also h* .)

3.1.7 Definition Let C be a locally small category. Given b∈ObC , the hom-functor C[_,_]:

CopxC→Set is given by:

3. Functors and Natural Transformations

45

i. for every (a,b)∈ObCxC C[_,_](a,b) = C[a,b]∈ObSet
ii. for every h∈C[a',a], g∈C[b,b'], C[_,_](h,g): C[a,b]→C[a',b'] is the function that takes

f∈C[a,b] to g ° f ° h ∈C[a',b']

C[_,_] is contravariant in the first argument and covariant in the second. One may understand how

C[_,_] works on morphisms by the following commutative diagram:

The function C[_,_](h,k) will be denoted by “C[h,k]” or by “g °_ ° h.”

Exercise: prove in details that C[a,_] and C[_,b] are a covariant and a contravariant functor,

respectively.

Exercise A category C has enough points iff the functor C[t, -] is faithful, when t is terminal.

3.2 Natural Transformations
The fact that F is a functor from a category C to a category D may be equivalently expressed by

F(id) = id and, for every f and g in MorC , by the following (implication between) diagrams:

Consider now two functors F, G: C→ D. A quite reasonable idea of transformation from F to G

is a “translation” as described in the following picture, where the dotted lines should yield

commutative squares

3. Functors and Natural Transformations

46

Thus, the “translation” can be defined by assigning to each object a∈ObC an arrow τa:

F(a)→G(a), with the only condition that, for every f∈C[a,b], the following diagram commutes:

The properties described in this diagram are equivalently formalized by the following definition.

3.2.1 Definition. Let F,G : C → D be functors. Then τ : F → G is a n a t u r a l

transformation from F to G iff:

i. ∀a∈ObC τa∈D[F(a),G(a)]

ii. ∀f∈C[a,b] τb ° F(f) = G(f) ° τa .

3.2.2 Example Let C be a small category, and h∈C [a',a] . The collection (in Set) of

morphisms {C[h,b] / C[a,b]→C[a',b] }b∈C, defines a natural transformation C[h,_] from the

(contravariant) hom-functor C[a,_] to the (contravariant) hom-functor C[a',_]. Note the following

diagram:

3. Functors and Natural Transformations

47

The same diagram proves that, given k∈C [b,b'], the collection of morphisms {C [a,k] /

C[a,b]→C[a,b'] }a∈C defines a natural transformation C[_,k] from the hom-functor C[_,b] to

the hom-functor C[_,b'].

It is easy to close up natural transformations under composition by setting (τ˚β)a = (τa)˚(βa). This

composition of natural transformation is usually called vertical, as opposed to the horizontal

composition, defined at the end of this section. Since the identity transformation from a functor F

to itself is defined in the obvious way, we have actually constructed a new category, starting from

any two given categories C and D .

The new category is called the category of functors from C to D, (C→D) = Funct(C,D);

its objects are functors and the morphisms are natural transformations. In particular, if F,G: C→D,

Funct(C,D)[F,G] is the collection of all the natural transformations from F to G; in the following

we shall use the abbreviation Nat(F,G) instead of Funct(C,D)[F,G].

Two functors from C to D are equivalent (or naturally isomorphic) iff they are isomorphic

as objects of Funct(C,D). For example, it is well understood that any set A is isomorphic to A×1,

where 1 is a singleton. For arbitrary cartesian categories, this corresponds to saying that the functor

_×1 and the identity functor Id are naturally isomorphic. If F: C→D is a full embedding, then C

is isomorphic to a full subcategory of D. The next section will present further examples of natural

isomorphisms.

The concept of natural isomorphism of functors also allows us to define a notion of

“equivalence” between categories, which captures better than the notion of isomorphism the sense

that two categories can be said to be “essentially the same.” Two categories C and D are

equivalent if and only if there are two functors F: C→D and G : D→C such that G ° F ≅ idC
and F ° G ≅ idD (note that C is isomorphic to D iff G ° F = idC and F ° G = idD).

3.2.3 Proposition Let F,G : C→D be functors and τ : F→G be a natural transformation from

F to G. Assume that, for each a∈ObC, τa ∈ D[F(a),G(a)] is an isomorphism. Then τ is a

natural isomorphism.

3. Functors and Natural Transformations

48

Proof Define τ-1 : G→F by τ-1a = (τa)-1. τ-1 is natural, since ∀f∈C[a,b]

τ−1b ° G(f) = τb−1 ° G(f) ° τa ° τa-1

= τb−1 ° τb ° F(f) ° τa-1

= G(f) ° τ−1a. ♦

Examples A simple example of natural transformation may be given by studying “liftings” (see

section 2.6), in various categories. One may actually understand the general notion better, by

completing a little exercise on natural transformations. Indeed, what is hidden behind definition

2.6.2, is the “naturality” of τc. When writing this down explicitly, the definition is tidier and more

expressive. Let C be a Category of partial maps, Ct be the associated category of total maps, and

Inc: Ct→C be the obvious inclusion. Thus, 2.6.2 may be simply restated as

The lifting of a∈ObC is the object a° such that the functors C[_,a] ° Inc, Ct[_,a°] : Ct→Set

are naturally isomorphic.

Then, by definition of natural transformation and hom-functor, this requires the existence of a

function τ such that the following diagram commutes, for any object b and c in C and f∈Ct[c,b]

That is, τc(g°f) = τb(g)°f and (τc)-1(h°f) = (τb)-1(h)°f , for any total f, since τ is an isomorphism.

With this definition, to prove unicity of liftings is even smoother than in section 2.5. Indeed, let

τ be the given natural isomorphism, and let a' and β be an alternative lifting and natural

isomorphism. Set φ = τ ° β-1. Then Ct[_,a'] and Ct[_,a°] are naturally isomorphic via φ and, for

f = φa'(id): a'→a° and g = (φa°)-1(id): a°→a', one has:

 g°f = (φa°)-1(id)°f

= (φa')-1(id°f) by naturality

= (φa')-1(φa'(id))

= id.

Similarly for f°g = id (on a°).

Since we are now familiar with functors, we may look also at lifting as a functor.

3. Functors and Natural Transformations

49

Let C be a pC and assume that for each a∈ObC there exists the lifting a°. Then there is a (unique)

extension of the map a |_ a° to a functor _° : C→Ct (the lifting functor).

The reader may check this as an exercise (hint: observe that exa = (τa°)-1(id): a˚→a and use the

naturality of τ) .

As for specific examples, the lifting functor for pSet is obvious. It can be easily guessed also for

the category pPo of p.o.sets and partial monotone functions with upward closed domains: just add a

fresh least element and the rest is easy for the reader who has completed the last exercise. Note, and it

is crucial, that by monotonicity the lifting functor does not exist if one doesn't assume that the

domains are upward closed.

The category pCPO is given by defining complete partial orders under the assumption that

directed sets are not empty. Thus, the objects of pCPO do not need to have a bottom element. As

for morphisms, take the partial continuous functions with open subsets as domains. Clearly, the

lifting functor is defined as it is for pPo.

A more complex example is given by EN, the category of numbered sets in section 2.2. Let

pEN be the partial category of numbered sets in the example before 2.5.2. Given a = (a,e)∈ObpEN,

define a° = (a°,e°) by adding a new element ⊥ to the set a and by defining e°(n) = if φn(0)

converges then e(φn(0)) else ⊥ . Clearly, e° : ω→a° is surjective. Let now b = (b,e') and

f∈pEN[b,a]. By definition, there exists f'∈PR such that f°e' =e°f'. We define the extension

f∈EN[b,a°] of f by giving f'∈R which represents f . That is, set φf'(n)(0) = f(n). Such an f'∈R

exists by the s-m-n (iteration) theorem. Thus,

 f(e'(n)) = e°(f'(n))

= if φf'(n)(0) converges then e(φf'(n)(0)) else ⊥ .

Therefore, if f(e'(n)) = e(f'(n)) is defined, then φf'(n)(0) converges and, hence, f(e'(n)) =

e(φf'(n)(0)) = f(e'(n)). Finally, set τab(f) = f . For each a, τa gives the required natural

isomorphism, as ∀g∈EN[b,a°] ∃!f∈pEN[b,a] f'(n) = φg'(n)(0). (Exercise: check the due

diagram). By the fact above, this defines the lifting functor in pEN.

Exercise Define the category ER of equivalence relations on ω and effective maps (hint: the

objects are quotient sets on ω, and the morphisms are induced by total recursive functions similarly

as for EN). Observe that ER and EN are equivalent, but not isomorphic. Indeed, one is small, while

the other is not.

We next discuss ways to derive natural transformations from a given one and, finally, the notion of

horizontal composition.

Let H: A→B, F: B→C, G: B→C, K: C→D be functors, and let τ: F→G be a natural

transformation as shown in the following diagram:

3. Functors and Natural Transformations

50

τ induces two natural transformations Kτ: KF→KG, and τH: FH→GH, respectively defined by

(Kτ)b = K(τb) : KF(b)→KG(b);

(τΗ)a = τH(a) : FH(a)→GH(a)

We have, for every f∈B[b,b'] and every g∈A[a,a'],

(Kτ)b'° KF(f) = K(τb) ° K(F(f)) = K(τb° F(f)) = K(G(f) ° τb) = KG(f) ° Kτb = KG(f) ° (Kτ)b
(τH)a'° FH(g) = τH(a') ° F(H(g)) = G(H(g)) ° τH(a) = GH(g) ° (τH)a

that proves the naturality of Kτ and τH .

Consider now categories, functors, and natural transformations as described in the following

diagram:

Then, for the naturality of σ with respect to the arrow τb, the following diagram (in D) commutes

for every b∈ObB:

3. Functors and Natural Transformations

51

The horizontal composition of σ and τ is the natural trasformation στ: HF→ΚG defined by,

for every b∈ObB, στb = σG(b) ° H(τb) = K(τb) ° σF(b).

We check the naturality of στ . Let f∈B[b,b'] , then

στb' ° HF(f) = σG(b') ° H(τb') ° HF(f)

= σG(b') ° H(τb' ° F(f))

= σG(b) ° H(G(f) ° τb) by the naturality of τ

= σG(b) ° H(G(f) ° τb) by the diagram

= Κ(G(f) ° τb) ° σF(b)
= ΚG(f) ° K(τb) ° σF(b)
= ΚG(f) ° στb

Note that if we identify the functors K and H with the identity natural transformation idK and

idH, Kτ and τH may be understood as particular cases of the horizontal application between natural

transformations (why?).

Exercise Prove the following equality among natural transformations (interchange law):

(ν ° µ)(τ ° σ) = (ντ) ° (µσ) .

3.3 Cartesian and Cartesian Closed Categories Revisited
By definition, a category C is Cartesian iff it contains a terminal object t , and for every a,b∈ObC
there is an object a×b together with two morphisms p1: a×b→a , p2: a×b→b, and for every object c

an isomorphism < , >c : C[c,a]×C[c,b]→C[c,a×b] such that for all morphisms f: c→a, g: c→b, h:

c→a×b, the following equations hold:

i. p1 ° <f,g>c = f

ii. p2 ° <f,g>c = g

We want now to show that < , >c is also “natural in c”, i.e. it satisfies the property:

(nat) for every k: c→c' <f,g>c' ° k = <f ° k, g ° k >c
Indeed, we have <f,g>c' ° k = <p1 ° <f,g>c' ° k, p2 ° <f,g>c' ° k >c by ii)

= < f ° k, g ° k >c by i)

The previous “naturality” property suggests that < , > is actually a natural isomorphism. Indeed, let

∆: C→C××××C the functor defined by ∆(c) = (c,c), ∆(f) = (f,f) (∆ is called the diagonal functor);

then < , > is a natural isomorphism from C××××C[_,(a,b)] ° ∆ to C[_,a×b]. Note that C××××C[_,(a,b)] °
∆ and C[_,a×b]: C→Set are contravariant functors. Conversely suppose to have for all objects a

and b an object a×b and a natural isomorphism τ : C××××C[_,(a,b)] ° ∆ ≅ C[_,a×b]. The naturality

of τ-1 is expressed by the following commutative diagram:

3. Functors and Natural Transformations

52

Let (q1,q2) = τ-1a×b(ida×b) . Note that q1: a×b→a, q2: a×b→b . We want to prove that a×b is a

product with projections q1 and q2. Indeed, let f = τc(h,g): c→a×b in the above diagram, then we

have (q1,q2) ° (τc(h,g), τc(h,g)) = τ-1c(ida×b ° τc(h,g)) = (h,g) and, in particular, q1 ° τc(h,g) =

h ; q2 ° τc(h,g) = g .

The previous considerations suggest another characterization of Cartesian Category:

3.3.1 Proposition A category C is Cartesian iff it contains a terminal object t, and for every

a,b∈ObC there is an object a×b and a natural isomorphism < , > : C××××C[_,(a,b)] ° ∆ → C[_,a×b].

The situation is quite similar, and perhaps even simpler, in the case of exponents. Remember that a

category C is a CCC iff it is Cartesian and has exponents for every pair of objects, i.e. for every a

and b in C there is an object ba together with a morphism evala,b: ba×a→b (evaluation map) and,

for every object c , a function Λc : C[c×a,b]→C[c,ba] such that, for all morphisms f: c×a→b, h:

c→ba, one has

β. evala,b ° (Λ(f)×ida) = f

η. Λ(eval°(h×id)) = h

It turns out that Λc is “natural in c”, in the sense that for any f∈C[c×a,b], g∈C[d,c]

Λc'(f) ° g = Λc(f ° g×id) ,

In order to check this, recall that (β) corresponds to:

Thus, by twice (Diag.Eval), the following diagram commutes

3. Functors and Natural Transformations

53

Moreover, set Λ-1 = eval°(_×id).

Then Λ-1°Λ = id by (β)

and Λ°Λ-1 = id by (η).

That is, for each c∈ObC, Λc: C[c×a,b]→C[c,ba] is an isomorphism. Thus Λ is a natural

isomorphism, by proposition 3.2.3.

Note that, formally, Λ is a natural transformation from the contravariant functor C[_,b] ° _×a

to the contravariant functor C[_,ba] (where _×a is the product functor defined in the obvious way).

We abbreviate C[_,b] ° _×a as C[_×a,b]. Note also that C[_×a,b], C[_,ba]: C→Set.

Conversely, suppose that, for all objects a and b, there is an object ba and a natural

isomorphism Λ: C[_×a,b] ≅ C[_,ba]. Then the naturality of Λ -1 is expressed by the following

commutative diagram:

Set now evala,b = Λ-1ba (idba) and note that evala,b: ba×a→b . We want to prove that ba is an

exponent with evala,b as evaluation map . Indeed, let f = Λc(g): c→ba in the above diagram. Then

we have:

evala,b ° (Λc(g)×id) = Λ-1c(idba ° Λc(g)) = g

This argument gives the following equivalent characterization of CCC:

3.3.2 Proposition C is a Cartesian closed category iff it is Cartesian and for every

a,b∈ObC there is an object ba and a natural isomorphism Λ : C[_×a,b] → C[_,ba] .

3. Functors and Natural Transformations

54

Observe that definitions 3.3.1 and 3.3.2 require that the category C be locally small, since they are

based on hom-functors. Thus, in a sense, the equational definition is more general.

3.3.3 Remark It is easy to prove that the following (natural) isomorphisms hold in all CCC’s, for

any object A, B, and C:

1. A ≅ A;

2. t×A ≅ A;

3. A×B ≅ B×A;

4. (A×B)×C ≅ A×(B×C);

5. (A×B)→C ≅ A→(B→C);

6. A→(B×C) ≅ (A→B)×(A→C);

7. t→A ≅A;

8. A→t ≅ t.

What is worth mentioning, though, is that these are exactly the isomorphisms that hold in all CCC’s,

i.e., no other isomorphism is valid in all CCC's. The proof of this fact is nontrivial and is a nice

application of lambda calculus to categories (an application in the other direction from what is meant

by the title of this book!). Its key idea will be mentioned in chapter 9.

3.4 More Examples of CCC’s
Both examples here derive from bordering areas of (generalized) computability and Proof Theory.

The first, in particular, like many aspects of these theories, is widely used in the type theoretical

understanding of programming languages constructs.

3.4.1 Partial Equivalence Relations
A very relevant example of CCC is suggested by a long story. It began with Kleene’s realizability

interpretation of intuitionistic logic and continued with the work of Kreisel, Girard and Troelstra in

Proof Theory. The idea is to look at functions as computable ones, as in the case of the category EN,

but by a simple and insightful way cartesian closedness is obtained. The approach is also used in the

“quotient-set” semantics of types, in functional programming. It will give us a paradigmatic structure

in the categorical semantics of polymorphism in PART II.

As usual, let ϕ: ω→PR an acceptable goedel numbering of the partial recursive functions. Let

K = (ω,.) be Kleene's applicative structure, where . : ω×ω→ω is the partial application

defined by: m.n = ϕm(n) . A partial equivalence relation R on a set V is a symmetric and

transitive relation, not necessarely reflexive, on V.

(Notation: n R m iff n relates to m in R; {p}R = {q | q R p} ; Q(R) = {{p}R | p R p }) .

3. Functors and Natural Transformations

55

3.4.1.1 Definition The category PER of partial equivalence relations on ω has as objects the

symmetric and transitive relations on ω. Morphisms are defined by

f∈PER[A,B] iff f : Q(A) → Q(B) and ∃n ∀p (pAp ⇒ f({p}A) = {n.p}B) .

Thus, the morphisms in PER are “computable” because they are fully described by partial

recursive functions, which are total on the domain of the source relation.

Let now < , >: ω×ω→ω be an effective and bijective pairing. For A,B∈ObPER , the product

A×B is defined by

∀m,n,m',n' <m,n> A×B <m',n'> ⇔ (m A m' and n B n').

It is easy to check that this actually defines a product functor in PER.

The exponent object BA is defined by

∀m,n, m (BA) n ⇔ ∀p,q (p A q ⇒ m.p B n.q) .

Cartesian closedness follows by giving a natural isomorphism Λ : PER[A×C,B] ≅ PER[A,BC].

Let s be the recursive function of the s-m-n (or iteration) theorem, i.e. ϕs(n,p)(q) = ϕn(p,q). Then

set Λ(f)({p}A) = {s(n,p)}C→B, where n is an index for f. In other words {n.<p,q>}B =

{s(n,p).q}B. Observe that Λ is a well-defined function from PER[A×C,B] to PER[A,BC], since

s is computable and, then, any index for the recursive function p |_ s(n,p), computes

Λ(f)∈PER[A,BC]. As for the naturality of Λ , one may prove it by the argument above, which also

gives some information on the evaluation map.

Let evalA,B: BA×A→B be defined by eval({<m,n>}BA×A) = {m.n}B.

In order to prove that evalA,B is a morphism in the category we must find eA,B∈ω such that

eval({<m,n>}BA×A) = {m.n}B = {eA,B.(<m,n>)}B
Let u be the “universal” function, i.e., the partial recursive function such that u(<m,n>) = m.n , and

let e be an index for it, i.e., u = ϕe. It is easy to observe that one can set eA,B = e for all A, B in

ObPER, since

{e.(<m,n>)}B = {u(<m,n>)}B = {m.n}B .

Then, (β) is simply

eval({<s(n,p),q>}BA×A) = {n.<p,q>}B, by definition of s .

Similarly for (η).

3.4.2 Limit and Filter Spaces
There is an elegant, unifying way to understand the various approaches to generalized computability

proposed in the 60’s and 70’s. The connecting point is the construction of categories of sets where a

suitable notion of limit gives an abstract notion of computability. The idea is to generalize the

technique used when defining the computable elements in Scott domains D (see 2.4.1), in the way

explained below (in short, the computable elements are the limits of recursively enumerable indexed

3. Functors and Natural Transformations

56

sequences.) This suggests several CCC's, such as limit spaces (L-spaces) and filter spaces (FIL)

with their relevant subcategories. They will be introduced here and discussed also in the examples in

section 5.3 and section 8.4, toghether with other ideas for higher type computations.

3.4.2.1 Definition A limit space (L-space) (X,↓) is a set X and a relation (convergence)

between countable sequences {xi}i∈ω ⊆ X and elements x∈X (notation: {xi}↓x) such that

1. if all but finitely many xi are x, i.e., {xi} is eventually x, then {xi}↓x;

2. if {xi}↓x and k(0) < k(l) < . . . < k(n) < . . . , then {xk(i)}↓x;

3. if not({xi}↓x), then there is k(0) < k(l) < . . . < k(n) < . . . such that for no subsequence

h(0) < h(l) < . . . < h(n) < . . . one has {x(i)}↓x.

An L-space (X,↓) has a countable basis (is separable) iff for some given countable Xo ⊆ X,

∀x∈X ∃{xi}⊆Xo {xi}↓x.

From now on we assume that each countably based L-spaces (X,↓) comes with a given

surjective enumeration e: ω→Xo of the base. An immediate example of separable L-spaces is the set

of real numbers endowed with the usual notion of sequence converge (Cauchy).

3.4.2.2 Definition The hom-set L[X,Y] between L-spaces (X,↓) and (Y,↓) consists of all

continuous functions, i.e.,

f∈L[X,Y] iff ∀x∈X ∀{xi}↓x {f (xi)}↓f (x),

where convergence is given in the intended spaces.

This category has exponents and products, as (L[X,Y],↓) also is an L-space by

{fi}↓f iff ∀x∈X, ∀{xi}↓x {fi(xi)}↓f(x) ,

while products are given by componentwise convergence.

Finally, eval: L[X,Y]×X→Y, with eval(f,x) = f(x), is continuous. As a matter of fact,

(L[X,Y],↓) is the coarsest limit structure (i.e., with more converging sequences) such that eval is

continuous.

One can also show that if (X,↓) and (Y,↓) are separable, then also (L[X,Y],↓) is separable.

Indeed, L-spaces and separable L-spaces, with continuous maps as morphisms, form Cartesian

closed categories.

Yet another CCC of limit spaces may be given by the Moore-Smith net-convergence or,

equivalently, by filter-convergence. Just recall that a filter Φ (on a given set X) is a set of (sub)sets

closed by intersection and such that A∈Φ and A ⊆ B imply B∈Φ (e.g., the collection of subsets

of A which contain a given x∈A is the (ultra)filter generated by x). A filter base is a non empty

collection of non empty subsets of X such that A∈Φ and B∈Φ imply ∃C∈Φ C ⊆ A∩B. A filter

base Φ generates a unique filter [Φ] = {Β ⊆ X | ∃A∈Φ A ⊆ B}. Define then

3. Functors and Natural Transformations

57

3.4.2.3 Definition (X, F) is a filter space iff ∀x∈X F(x) is a filter of filters such that the

ultrafilter generated by x is in F(x). Given a filter base Φ , we write Φ↓x iff [Φ]∈F(x) .

Exercise Prove that the category FIL of filter spaces with continuous maps (where f is

continuous iff Φ↓x implies f(Φ)↓x) is a CCC. Give a full and faithful functor F : FIL→L-

spaces. (Hint: a filter structure on FIL[X,Y] is given by Ξ↓f iff Φ↓x implies Ξ(Φ)↓f(x),

where Ξ(Φ) is the set of all W(U) with W∈Ξ and U∈Φ and W(U) = ∪{f(U) | f∈W};

moreover, given a filter Φ and a sequence {xi}, define Con(Φ,{xi}) iff ∀U∈Φ ∃k ∀n≥k xn∈U

and set {xi}↓x iff ∃Φ↓x Con(Φ,{xi})).

A notion of separable filter space is easily given, by taking a countable base of filters (i.e., a

countable collection of sets such that each converging filter is generated by elements of the base).

Clearly, each (separable) topological space (X, top) may be turned into a (separable) filter space:

just take, for each point x , the collection F(x) of all filters containing the filter of neighborhoods of

that point. The reader will have a better insight into the “injections”

Top → FIL → L-spaces

when looking at examples of adjunctions, in section 5.3. As for now, it may suffice to say that there

exist filter spaces whose limit structure is not topological. Some of these filter spaces are among those

needed for the study of the total computable functionals.

In the very general setting of L-spaces we can now hint a notion of computability which

specializes to the one given over Scott domains, when the intended limit structure is derived from the

Scott topology.

Let R be the total recursive functions and (X, X0, e, ↓) a separable L-space, where e is a

given enumeration of the base X0. Define then, in a slightly incomplete way (see the comment

below), the collection Xc ⊆ X of computable elements by x∈Xc iff ∃f∈R {ef(i)}↓x.

In other words, given a countably based limit structure, an element is computable (or recursive) when

it is the limit of a countable sequence indexed over an r.e. set.

Comment L-spaces actually carry too little structure to yield a good definition of “recursive” just by

taking arbitrary limits of recursively enumerable converging sequences. Their simplicity and

generality, though, should give an immediate intuition of what is going on. Indeed, the technique in

the definition of computability tidily borrows from similar methods in mathematics. Consider, say,

“smooth manifolds.” They are defined on the base of the familiar notion of differentiability in Rn,

which is extended by a system of local coordinates to abstract spaces. Similarly here, one takes for

granted the recursive functions and extends computability to an abstract setting (and higher types, in

3. Functors and Natural Transformations

58

particular) by “local” properties of convergence as in the equation above. As we shall see later, too,

the categorical language relates and unifies the various classes of structures where this is done.

L-spaces suggest how to express computability by limits very simply; however, the weakness of

these structures is that limits are far away from being uniquely determined and that there is no

obvious way to characterize “interesting” sequences and limit points.

The point then is to take only “some” limits. This is done by directed sets in Scott domains (see

2.4.1), which are particular converging sequences with a privileged limit, the least upper bound. It

will be described for FIL in the examples at the end of section 5.3.

3.5 Yoneda's Lemma
Let C be a Cartesian closed category. Let F = C××××C[_,(a,b)] ° ∆ : C→Set, G = C[_×a,b]: C→Set.

In §3.3 we proved that for both F and G there exists an object, respectively called a×b and ba,

such that F ≅ C[_,a×b] and G ≅ C[_,ba]. In general, functors which enjoy this property are

called (co-)representable. The formal definition, in case of covariant functors, is the following

(note that F and G are contravariant; we leave as an exercise for the reader to derive the dual

definition) :

3.5.1 Definition A functor K: C→Set is representable iff there exist an object r in C and a

natural isomorphism φ: K ≅ C[r,_].

Exercise Give another definition of CC and CCC by using the previous notion.

Note that, if K: C→Set, every natural transformation ϕ: C[r,_]→K is fully determined by the

image of the identity idr . Indeed, for every f∈C[r,d], ϕd(f) = ϕd(f ° idr) = K(f) ° ϕr(idr) , by the

following diagram:

3.5.2 Lemma (Yoneda) Let K: C→Set be a functor. The map ψr,K: Nat(C[r,_], K)→K(r)

that takes every natural transfomation ϕ: C[r,_]→K to ϕr(idr)∈K(r) is an isomorphism.

Moreover, it is natural in r and K , that is,

3. Functors and Natural Transformations

59

(where C[f,_] : C[d,_] → C[r,_] is the natural transformation defined by C[f,_]c = C[f,c] = _° f :

C[d,c]→C[r,c]; see example 3.3.2), and

Proof By the Yoneda diagram above and a routine verification of the commutativity of the diagrams

in the definition. ♦

If we take K in the previous lemma to be C[d,_], where d is a generic object in C, this results in

the statement that there is a natural bijection between arrows g∈C[d,r] (that is, elements in

C[d,_](r)) and natural transformations from C[r,_] to C[d,_].

3.5.3 Proposition (Yoneda embedding)

i. Let Y be the map which takes every r∈ObC to the hom-functor C[r,_], and every g∈C[d,r] to

the natural transformation C[g,_]: C[r,_]→C[d,_] defined by C[g,_]c = C[g,c] = _° g :

C[r,c]→C[d,c]. Then Y is a full embedding from Cop to Funct(C,Set) .

ii. Let Y be the map which takes every r∈ObC to the hom-functor C[_,r] , and every g∈C[d,r]

to the natural transformation C[_,g]: C[_,d]→C[_,r] defined by C[_,g] c = C[c,g] = g ° _ :

C[c,d]→C[c,r] . Then Y is a full and faithful covariant functor from C to Funct(Cop,Set).

Proof We prove only (i), since the other proof is dual.

Y(idr) = idC[r,_] is immediate. Given g∈C[d,r], f∈C[s,r], Y(f°g): C[s,_]→C[d,_] is defined

as follows: for every c∈ObC Y(g °f)c = _° f ° g : C[s,c]→C[d,c]. Y is a functor, as, for every

h∈C[s,c],

 Y(g ° f)c(h) = h ° f ° g

 = Y(g)c(f ° h)

= Y(g)c(Y(f)c(h))

3. Functors and Natural Transformations

60

= (Y(g)c ° Y(f)c)(h).

The fact that Y is full and faithful follows, as already observed, from the Yoneda lemma with

C[d,_] instead of K. ♦

3.6 Presheaves
In the last section we proved that every small category C is isomorphic to a full subcategory of

Funct (C op,Set) through the Yoneda embedding Y. For its relevance, the category

Funct(Cop,Set) has its own name: a functor F: Cop�→Set is called presheaf on C , and

Funct(Cop,Set) is the category of presheaves on C.

The category of presheaves inherits many interesting properties from Set, and in particular it is

itself a topos. For the moment, we only prove the following properties:

3.5.1 Theorem Given a category C, the category of presheaves on C has pullbacks for every pair

of morphisms and is Cartesian closed.

Proof. The terminal object is the functor T : Cop→Set, which takes every object c in ObC to the

single set {*} and every arrow to the identity on this set.

Given two natural transformations η: F→H and τ: G→H , their pullback is defined objectwise:

for every c in ObC let (π1,c: Xc→F(c), π2,c: Xc→G(c)) be the pullback in Set of ηc:

F(c)→H(c) and τc: G(c)→H(c) . Then define a functor X: Cop→Set where X(c) = Xc , and

for every f:c→d, X(f) is the only arrow that makes the following diagram commute:

In the same way we define two natural transformations π1: X→F, π2: X→F, where for every c in

ObC, π1(c) = π1,c and π2(c) = π2,c. Then it is easily verified that (π1: X→F, π2: X→F) is the

pullback of η: F→H and τ: G→H.

3. Functors and Natural Transformations

61

As always, the pullback of two functors F and G on the terminal T gives the product F×G. It

is easy to verify that F×G(c) = F(c)×G(c) and F×G(f) = F(f)×G(f).

Exponents are defined by using the Yoneda lemma.

If GF is the exponent of F and G, we must have an isomorphism Nat[H×F,G] ≅ Nat[H,GF]

for every H. In particular, if H is C[_,c], and since by the Yoneda lemma, Nat[C[_,c],K] ≅ K(c)

for every K, we have: Nat[C[_,c]×F,G] ≅ Nat[C[_,c],GF] ≅ GF(c). Thus, we define GF(c) =

Nat[C[_,c]×F,G].

Given an arrow f: c→d, we must now define GF(f): Nat[C[_,d]×F,G]→Nat[C[_,c]×F,G].

Let σ be a natural transformation from C[_,d]×F to G; then GF(f)(σ) must be a natural

transformation from C[_,c]×F to G. We define GF(f)(σ) = σ ° C[_,f]×idF (see example 3.2.2 for

the definition of the natural transformation C[_,f] : C[_,c]→C[_,d]).

GF is a functor, indeed GF(id)(σ) = σ. Moreover :

 GF(f ° g)(σ) = σ ° C[_, f ° g]×idF
= σ ° C[_,f]×idF ° C[_,g]×idF
= GF(g)(σ ° C[_,f]×idF)

= GF(g)(GF(f)(σ)).

Let us define the natural transformation of evaluation εF,G: GF×F→G. For every d in ObC,

εF,G(d): Nat[C[_,d]×F,G]×F(d)→G(d) is defined by εF,G(d)(σ,n) = σ(d)(idd,n).

We prove now that for any H: Cop→Set we have an isomorphism Θ: Nat[H×F,G] ≅ Nat[H,GF].

Let τ: H×F→G be a natural transformation. For any c in ObC, Θ(τ)(c) ought to be a function

from H(c) to GF(c) = Nat[C[_,c]×F,G]. By the Yoneda lemma, we have for every c in ObC an

isomorphism γc: Nat[C[_,c],H] ≅ H(c); thus, if m∈H(c),

γc-1(m)∈Nat[C[_,c],H]

τ ° (γ-1(m)×idF) ∈Nat[C[_,c]×F,G].

Define then Θ(τ)(c) = λm. τ ° (γc-1(m)×idF): H(c)→GF(c) = Nat[C[_,c]×F,G].

We must prove that, for every τ: H×F→G, µ: H→GF,

1. εF,G ° (Θ(τ)×idF) = τ

2. Θ(εF,G ° (σ×idF)) = σ

For (1) we have, for every d∈ObC, m∈H(d), n∈F(d), the following:

(εF,G(d) ° (Θ(τ)×idF)(d))(m,n) =

= εF,G(d) (Θ(τ)(d)(m),n)

= εF,G(d) (τ ° (γd-1(m)×idF),n) by def. of Θ

= (τ ° (γd-1(m)×idF))(d)(idd,n) by def. of εF,G
= τ (d)(m,n) as (γd-1(m))(d)(idd) = m

For (2) we have, for every d∈ObC, m∈H(d), c∈ObC, h∈C[c,d], n∈F(d), the following:

(Θ(εF,G ° (µ×idF))(d)(m)(c)(h,n) =

= (εF,G ° (µ×idF) ° (γd-1(m)×idF))(c)(h,n) by def. of Θ

3. Functors and Natural Transformations

62

= εF,G(c) ((µ×idF)(c)(γd-1(m)(c)(h), n))

= εF,G(c) ((µ×idF)(c)(H(h)(m), n) by def of γd-1

= εF,G(c) (µ(c)(H(h)(m)), n)

= µ(c)(H(h)(m))(c) (idc,n) by def. of εF,G(c)

= GF(h)(µ(d)(m))(c) (idc,n) by naturality of µ

= (µ(d)(m) ° C[_,h]×idF) (c)(idc,n) by def. of GF(h)

= (µ(d)(m)(c) ((C[c,h]×idF(c))(idc,n))

= (µ(d)(m)(c)(h,n). ♦

References We only give some references for the examples we mentioned, as they are not

usually presented in other books and are mostly endebted to the theory of computing. Partial

equivalence relations as a model for higher type computations were given in Kreisel (1959) and later

applied to the semantics of higher order intuitionistic logic in Girard (1972) and Troelstra (1973c).

They recently came again to the limelight as relevant structures for the semantics of polymorphism in

functional languages (see chapter 12). Limit spaces and their closure properties can be found in

Kuratowski (1952). With our perspective, filter spaces are used in Hyland (1979).

For (pre)sheaves and related notions, the reader should consult the previous references for Topos

Theory (as well as Fourman (1977) and Lambek and Scott (1986), among others). See also Scott

(1980) for an application of Yoneda’s embedding of arbitrary CCC’s (and their reflexive objects, if

any) into topoi of presheaves.

4. Categories Derived from Functors and Natural Transformations

63

Chapter 4

CATEGORIES DERIVED FROM FUNCTORS AND

NATURAL TRANSFORMATIONS

This chapter has two main motivations. One derives from the use of algebraic methods in computer

science, the other from recent developments in (applied) Proof Theory. The two research directions

are brought together nicely by the underlying categorical structures, which tidily generalize two

constructions crucial form the perspective of this book namely, products and exponents. Here, they

will be discussed in the context of monoidal and monoidal closed categories.

As already mentioned, geometry and algebra provided the background and motivations for the

early developments of Category Theory. In these areas, Category Theory often suggested both a

unified language and effective tools for an abstract description or specification of mathematical

structures. This method, which is typical of the categorical approach, has been widely explored in

computer science, in connection with ideas from universal algebra. The point is that, before

performing a complicated task, a programmer needs a clear specification of it. This may be given, for

example, by a set of equations, or by a logical system, or also by declarations of types (or sorts) and

operations on them. Inference rules may specify a theory.

This abstract approach, in computer science as well as in mathematics, is meant to simplify the

work for a concrete implementation, since only the essential or desired aspects of a task, a problem,

or a mathematical structure are focused on and dealt with. Unstructured lists of goals or properties are

hard to understand, are prone to errors, and may hide the core of the issue.

As we shall recall in section 4.1, algebras are usually described as sets with operations. Now

(binary) operations need some kind of “product” on the carrier sets to be specified or typed, e.g., a

group operation “.” is .: G×G→G. However, “×” does not need to be the familar Cartesian

product, as several relevant examples may be given by using (binary) functors that do not need to

possess projections. One may then ask whether these functors may relate to suitable exponents, in a

way that is similar for CCC’s. This further step will take us to the natural (and fruitful) generalization

of CCC’s as monoidal closed categories and will relate the algebraic perspective to the “functional”

one, which permeates this book.

4.1 Algebras Derived from Functors
An algebra is a set, or carrier, together with a family of functions, or operations, on the carrier.

One may define categories of algebras by taking, as morphisms, well-behaved functions, the

homomorphisms, between algebras of the same kind.

4. Categories Derived from Functors and Natural Transformations

64

More precisely, let Ω be a set of operator symbols indexed by their arities. Ωn , say, is the set

operators of arity n .

4.1.1 Definition The category AlgΩΩΩΩ , of ΩΩΩΩ-algebras, has as objects pairs (A,α), where A is a

carrier set and, for each n and each operator symbol ρn ∈Ωn, α yields a function αρ : An→A.

An morphism f from (A,α) to (A',α') is a function f: A→A such that

f(αρ(a1, . . . ,an)) = α'ρ(f(a1, . . . ,f(an))

for all n, ρn∈Ωn and a1, . . . ,an∈A .

For example, any monoid (A,.) is an Ω-algebra, with a binary operation on a carrier set A. As an

instance of this, take Kleene's (PR,°), i.e., the monoid of the partial recursive functions, is an Ω-

algebra over PR, as carrier, with the binary operation of composition, as operation.

Remark (Commutative) monoids provide the basic instances of linear and multilinear algebra. In

particular, there is a tensor product A⊗B of commutative monoids that can be characterized by a

universal bilinear map µ: A×B→A⊗B such that for each bilinear f: Α×Β→C, there is a unique

monoid homomorphism g: A⊗B→C such that f = g ° µ . This idea, as well as the generality of

monoids, provide the basic mathematical intuition for the categorical notions developed in this

chapter.

One may specify more, though. For example, over (PR,°) one may require the existence of

distinguished functions, such as constants for the identity, the successor and everywhere constant

functions. The behavior of these elements is specified by a set of well-known equations.

In general, this technique defines a class of Ω-algebras, called a variety. Varieties form full

subcategories of the intended category AlgΩΩΩΩ.

A well-known generalization of Ω-algebras is given by the many sorted, or heterogeneous, case.

That is, the operators are specified over more than one carrier. The applications of these notions are

nowadays a broadly construed area in computer science. However, until now, they have been more

indebted to universal algebra and Abstract Model Theory than to Category Theory (see the

References).

Example A stack is made out of finite words over a set el of elements A ∪ {error} . Let {tt, ff}

be the boolean values and A* the finite words on A . The following signature specifies a stack as a

many sorted algebra with sorts el, stack, bool, and operators:

push : stack el → stack;

pop : stack → stack;

top : stack → el;

4. Categories Derived from Functors and Natural Transformations

65

iserrel : el → bool;

iserrstack : stack → bool;

For variables x: stack and e: el, one has to set the following:

empty = λ

push(x,α) = “if x∈A and α∈A* then xα else error ”

pop(xα) = “if x∈A and α∈A* then α else error ”

top(xα) = “if x∈A and α∈A* then x else error ”

iserrel(error) = tt

iserrstack(error) = tt

A few more equations specify the behavior of “iserr . . . ” on elements and the stack, in the obvious

way.

Observe now that a set Ω of operators determines a functor T: Set→Set defined by

T(A) = {ρ(a1, . . . ,an) | n∈ω, ρ∈Ωn, a1, . . . ,an∈A}.

Then an ω-algebra (A,α) determines a set-theoretic function f : F(A)→A by

f(ρ(a1, . . . ,an)) = αρ(a1, . . . ,an).

This informal remark suggests another generalization of the notion of Ω-algebra. Ω-algebras are

based on carriers as sets; we may obtain a more category-theoretic description of the general concept

of algebra by taking endofunctors over arbitrary categories, instead of T: Set→Set .

4.1.2 Definition Let C be a category and T: C→C be an endofunctor. The category T-alg of

T-algebras is defined as follows: the objects of T-alg are the pairs (c,α) with c∈ObC and

α∈C[T(c),c]; the arrows between two objects (c,α) and (c',α') are all the arrows h∈C[c,c'] such

that α'° T(h) = h ° α . Graphically,

Identities and composition are both inherited from C.

Thus Ω-algebras are T-algebras for T: Set→Set, but T-algebras, in general, are defined over

categories of structured data, not just sets. One may take, for example, a collection of data types

which form a category C and include the type p of programs, over those data types, as object. Then

4. Categories Derived from Functors and Natural Transformations

66

T: C→C and α:T(c)→c, given by T(c) = p×c and α(i,x) = “apply program i to input x ” give a

T-algebra (c,α) , for each object c (see example 1, after definition 4.2.3).

Consider now a preorder (P,≤) as a category. A functor T: P→P is a monotone function. In

this setting, a T-algebra is a prefixed point for the functor T as the mere existence of α:T(e)→e

corresponds to T(e) ≤ e, which means exactly that e is a prefixed point for T. Recall also that the

least prefixed point of a monotonic function, if it exists, is always the least fixed point as well. This

property has the following correspondent in Category Theory:

4.1.3 Proposition Let C be a category and T: C→C. If (c,α) is an initial T-algebra, then α is

an isomorphism from T(c) to c in C.

Proof Consider the following commutative diagram

(T(c),T(α)) is a T-algebra, and α∈T-alg[(T(c),T(α)),(c,α)]. Let η∈T-alg[(c,α),(T(c),T(α))] be

the unique morphism given by initiality. Then α°η and idc are both morphisms in T-alg[(c,α),(c,α)]

and by initiality they must be equal. Moreover,

 η ° α = T(α) ° T(η) as η∈T-alg[(c,α), (T(c),T(α))]

= T(α ° η) since T is a functor

= T(idc)

= idc since T is a functor. ♦

We can now go a step further and extend T-algebras to a more general notion, based on functors that

share only the target category, instead of endofunctors. This further step may be understood in a very

abstract way. Look at the diagrams for definition 4.1.2 and generalize them by using, in the lower

line, new objects d, d', say, instead of c, c', and a different functor instead of the (implicit) identity

functor. This gives comma categories, which we denote by (F�↓G) instead of the frequently used

(F�,G).

4.1.4 Definition Let F: C→A , G: D→A be functors. The comma category (F�↓G) is

defined as follows: the objects of (F�↓G) are the triples (c,f,d) with c∈ObC , d∈ObD ,

f∈A[F(c),G(d)]; the arrows between two objects (c,f,d) and (c',f',d') are all the pairs (h: c→c',k:

d→d') such that f' ° F(h) = G(k) ° f . Graphically,

4. Categories Derived from Functors and Natural Transformations

67

The identity of (c,f,d) is (idc, idd); composition is defined componentwise, that is, (h',k') ° (h,k) =

(h'° h, k'° k).

Observe that by this further abstraction, we hit upun a notion examined in another context. Indeed, if

a is an object of C, and Ka: C→C is the constant functor taking every object to a, and every

morphism to ida, then (Ka↓idC) is just the category of objects over a, or slice category, mentioned

in definition 1.3.4.

4.1.5 Example A (possibly finite) graph G is a triple (T,∂,V), where T is a set of arcs (or

edges), V a set of nodes, and ∂: T→V×V a function that gives the source and target of each arc. A

morphism h from G to G' is a pair of functions <f,g >, f: T→T' and g: V→V' such that

g ° p0 ° ∂ = p0 ° ∂'° f and

g ° p1 ° ∂ = p1 ° ∂' ° f ,

where p0 and p1 are the projections.

This, with the obvious componentwise composition of morphisms, defines the category Graph.

Graph is a comma category (Id↓∆) defined by the identity and the diagonal functors Id, ∆:

(Fin)Set→(Fin)Set.

Exercises

1. Prove that Graph is cartesian.

2. Observe that a category is a graph with some extra structure: identities for each object (node) and

composition for morphisms (arcs) of the due types. Give a (forgetful) functor from Cat, the category

of small categories, to Graph. Is this functor full?

4.2 From monoids to monads
Consider again a monoid (A,.,e), i.e., a carrier A, a binary associative operation and a (specified) left

and right identity for “.”.

The monoid may be described as the set A together with two functions µ: Α×A→A and

η:1→A, where 1 is the singleton set (or terminal object in Set). The idea is that µ describes the

4. Categories Derived from Functors and Natural Transformations

68

internal operation “.” and η picks up the identity in A. Associativity of the application and the

properties of the identity are given by the following commutative diagrams:

A

A2

A2

A3 idx µ

µ µxid

A2

µ

A

xidη ηidx
Ax11xA

iso iso

The abstract specification of monoids above can be generalized in several ways. We consider here the

case where functors are used as carriers, instead of sets. To this purpose, recall that each endofunctor

T: C→C has composition Tn+1=Tn°Τ : C→C . Moreover, if µ: T2→Τ is a natural

transformation, whose components are µc: T2c→Τc for every c∈ObC, then Tµ: T3→Τ2 and

µΤ: T3→Τ2 are the natural transformations obtained by horizontal compositions, as in section 3.2.

Their components are (Tµ)c = T(µc): T3c → Τ2c and (µT)c = µTc: T3c → Τ2c , respectively.

The idea is that an endofunctor of a category forms a monoid when the product of sets above is

interpreted as a composition of functors.

4.2.1 Definition A monad over a category C is a triple (T, µ, η), where T: C→C is a functor,

µ: Τ2→Τ and η: Idc→T are natural transformations, and the following diagrams commute:

2

2

T 3
µ

µ µ

2

µ

η η

id id

T
T

T T

T

T T TT

T

T T

T

µ

As in the case of monoids over a set, η and µ give the identity and the internal operation. The

diagrams describe the behaviour of the (left and right) identity and associativity.

Remark Many other names have also been used in literature in place of “monad”: the most common

is “triple,” but sometimes, you will find “triad” or “standard construction.” See Barr and Wells

(1985) for an interesting account of the history of this name.

Examples

1. Let M be a monoid and define T: Set→Set by T(A)=M×A, T(f)=idM×f. Let ηA: A→M×A

and µA: M×M×A→M×A be, respectively, the functions that take a to (1M,a) and (m,n,a) to

(mn,a). Then the associative and unarity identities follows from those of M .

4. Categories Derived from Functors and Natural Transformations

69

2. Let T be the covariant power-set functor, i.e., T: Set→Set as given by T(A) = P(A), the

powerset of A , and T(f)(B) = {f(a) | a∈B ⊆ A} as the image of B along f . Then ηA is the

singleton map ηA(a) ={a} and µA is the union map µA(B) = ∪B. As for the next example, it is an

easy exercise to show that (T, µ, η) is a monad.

3. As mentioned below definition 4.1.2, a preorder (P,≤) yields a category where endofunctors are

monotone functions. If one has also a monad (T, µ, η), the natural transformations η and µ give

that, for any a∈P, a ≤ Ta and T(Ta) ≤ Ta, since ηa: a→Ta, and µa: T(Ta)→Ta. By putting

together these inequalities with the monotonicity of T, one has Ta ≤ T(Ta) ≤ Ta. Therefore, a monad

in a partial order is a closure operator, since, in this case, T(Ta) = Ta.

4.2.2 Definition A comonad over a category C is a triple (T, δ, ε), where T: C→C is a

functor, and δ: Τ→Τ2 and ε: T→idC are natural transformations, such that the following diagrams

commute:

In definition 4.1.2, we defined the notion of T-algebra over a generic endofunctor T: C→C. Thus,

one may have T-algebras, if any, over a monad (T, η, µ). In this case, though, it is sound to

impose some extra conditions and ask that the monad’s operation and identity, given by µ and η,

commute with the operation of T-algebra. That is, a T-algebra (c, α) is given by a monad (T, η,

µ) over a category C if it also satisfies the following commutative diagrams:

T 2

µ

TT h

T h

h

c

cc

 c

η
T

h

 c
c

1

c

c

c.

Or, equivalently, h ° T(h) = h ° µc ;

h ° ηc = idc .

4. Categories Derived from Functors and Natural Transformations

70

When T is the functor of a monad (T, η, µ), we shall simply say T-algebras with the intended

meaning to be derived by the monad. This collection of T-algebras can be organized in a category by

adopting the same notion of morphism as in definition 4.1.2.

2.3 Definition Let (T, η, µ) be a monad over a category C . The Eilenberg-Moore

Category CT associated with the monad has T-algebras for objects, and for morphisms from (c,

α) to (c',α') all the arrows h∈C[c,c'] such that α'° T(h) = h ° α.

Examples

1. Consider the monad (T, η, µ) associated with a monoid M as in example 1 above. Then a T-

algebra is a pair (A, α) where α: T(A) = M×A→A. Let us write m*a in place of α(m,a); then, for

every a∈A and m,n∈M, the equations of a T-algebra read:

1*a = a ;

(m n)*a = m*(n*a) .

In other words, an algebra for the monad associated with a monoid M is just what is usually called an

M-set. Moreover the equation for a morphism h of T-algebras gives, for every a∈A and m∈M,

h(ma) = m h(a), that is the usual notion of homomorphism of M-sets.

2. In connection with example 3 above, observe that if the category C is a preorder, then c ≤ T(c),

by ηc, and T(c) ≤ c, by α of the T-algebra. Thus, if C also happens to be a partial order, any T-

algebra given by a monad is a fixed point in the p.o.set.

Let (T, η, µ) be a monad over a category C. Then, for every c∈ObC, (T(c), µc) is a T-algebra.

Indeed,

µc ° T(µc) = µc ° µΤ(c) by the associative law of (T, η, µ)

µc ° ηΤ(c) = idc by the unity law of (T, η, µ)

The algebra (T(c), µc) is called the free algebra generated by c (with respect to T).

The computational significance of monads has been stressed recently in suggestions that they may

help in understanding programs “as functions from values to computations.” The approach we sketch

here, and which seems very promising, still belongs to a denotational view in program semantics;

however, it suggests an alternative to the conceptual gap between the intensional (operational) and the

extensional (denotational) approach to the semantics of programming languages. The idea, roughly,

is to give a denotational semantics to computations. The intuition we have been mostly referring to, in

the examples and in the presentation so far, is that objects are data types and morphisms are functions

or programs in extenso. However, one may need a better display of the intensional aspects of

computing and distinguish between values and computations. From this point of view, we can try to

look at programs not as transformations from values to values, but as transformations from values (or

4. Categories Derived from Functors and Natural Transformations

71

programs) to programs. This should be done by stressing the effectiveness and the intensional nature

of actual computations, without losing the insight and the elegance of the intended extensional

approach. That is one should preserve the conceptual unity of the mathematical view (e.g., by

categories and related structures), and without getting lost in the taxonomy and details of the

operational descriptions.

The idea of a monad (T, η, µ) as a model for computations is that, for each set of values of type

A, T(A) is the object of computations of “type A.” Then one may understand that ηA: A→ΤA

maps values to computations, and µA: Τ2A→ΤA flattens a computation of a computation into a

computation. If one also requires that ηA is a mono for every A∈C, then values form a “subset”

of computations (see section 1.5, for subobjects).

Examples

1. The above example of the power-set functor as a monad may give a description of nondeterministic

computations by looking at nondeterministic computations as sets of values. ηA picks up a specific

computation, as ηA(a)={a}, and µA says that a nondeterministic computation over non-

deterministic computations, yields a nondeterministic computation, as µA(B) = ∪B∈P(A).

2. Even more expressively, computations with side effects may be described by the functor T(A) =

(A×S)S, where S is a set of stores. Intuitively a computation takes a store and returns a value

together with the modified store. Then a monad is obtained by setting, for each type (or object) A,

ηA(a) = λs:S.(a, s) and µA(f) = λs:S.eval(fs)) .

The meaning of ηA should be clear; while for each f∈(A×S)S, µA(f) is the computation that, given

a store s, first computes the pair (computation,store) given by (f',s') = fs; then evaluates f'

applied to s' and returns a new pair (value,store).

In the application of monads the idea is to go from objects, or types, to the image by a functor of an

object. More specifically, in the examples, programs take values in A, say, to computations in TB .

Kleisli categories provide the right setting to describe this approach.

4.2.4 Definition Given a monad (T, µ, η) over C, the Kleisli category CT, is the category

whose objects are those of C ; the set CT[A,B] of morphisms from A to B in CT is C[A,TB];

the identity in CT[A,A] is η :A→ΤΑ . Moreover, the composition of f∈CT[A,B] and g∈

CT[B,C] in CT is g° f = µC ° Tg° f : A →ΤΒ → Τ2C→TC .

Exercises

1. Use the lifting functor (_)˚ after proposition 3.2.3 and observe that the Kleisli category is the

category of “total maps” over a given category of partial morphisms.

2. Give the notion of co-Kleisli category (see section 5.5).

4. Categories Derived from Functors and Natural Transformations

72

Eilenberg-Moore and Kleisli categories will be used in the next chapter when discussing adjunctions

and monads, and they will be applied in the semantics of linear logic.

4.3 Monoidal and monoidal closed categories
In section 4.2 we began by describing, with a diagram, the familiar notion of monoid. This motivated

the definition of monads, when Cartesian products in Set are substituted with composition of

functors, as in definition 4.2.1.

In both cases, we worked essentially “up to isomorphisms”. As for monoids, we identified

(A×A)×A with A×(A×A), in the upper left vertex of the first diagram in section 4.2, and called both

A3. Similarly for T3, which is short for T˚(T˚T) and (T˚T)˚T, we followed a similar procedure in

definition 4.2.1. This is perfectly sound as both Cartesian product and composition are associative.

The next step now is the explicit formalization of these (implicit) properties, including the behavior of

the terminal object 1, as a left and right unit, since they are needed in all categories where it may be

possible to define monoids and derived notions.

4.3.1 Definition A monoidal category is a category C with a bifunctor ⊗ :CxC → C, a (left

and right) identity e∈ObC and natural isomorphisms, for each a, b , c∈ObC,

αa,b,c : a⊗(b⊗c)→(a⊗b)⊗c ;

λa : e⊗a→a ;

ρa : a⊗e→a ;

such that the following diagrams commute:

⊗ ⊗ a ⊗ (b (c⊗ ⊗ d)) α ⊗ a(b) (c⊗ d) α)⊗ a(b(c ⊗ d

⊗ α 1⊗ α1

a⊗ c⊗ ⊗ d) da⊗ (b c⊗ ⊗))((b) α

)

(

⊗ ⊗a (c) α ⊗ (a) ⊗ c

a⊗ c

⊗ id⊗ id λ ρ

ee

Indexes for the natural transformations α, λ, and ρ will usually be skipped, when they are clear

from the context.

4. Categories Derived from Functors and Natural Transformations

73

Remarks 1 - The “tensor product” ⊗ in a monoidal category does not need to be unique, in

contrast with the Cartesian product (see the example below in the category Stab and Lin). Observe

also that the dual of a tensor product is, formally, just (another) tensor product, since isomorphisms

define the monoidal structure and the reverse of an isomorphism is still an isomorphism.

2 - The motivation for the two diagrams in definition 4.3.1 originate from a relevant fact, whose

treatment goes beyond our limited aims. In short, it may be shown that in momoidal categories, as

defined above, any two (natural) isomorphisms built out of α, λ, ρ and id, by using ⊗ and

composition, actually coincide (“coherence theorem”). For example, a⊗(b⊗c)⊗(a'⊗b') and

(a⊗b)⊗(c⊗a'⊗b') are isomorphic in just one way.

4.3.2 Definition A symmetric monoidal category (C, ⊗, e, α, λ, ρ) is a monoidal category

such that for all objects a,b there is a natural isomorphism γa,b: a⊗b→b⊗a and

γa,b ° γb,a = idb,a
ρb = λb ° γb,e : b⊗e→b

and moreover the following diagram commutes:

The diagram in 4.3.2 is motivated by an extension of the coherence theorem mentioned in the remark

above.

Example Every Cartesian category is a symmetric monoidal category, with respect to the categorical

product, and the obvious choice for the isomorphisms. Roughly, the tensor product, in the sense of

monoidal categories, differs from the Cartesian product in that it has no projections and pairing

functions.

Exercise Let C be a category with a coproduct for every pair of objects (i.e., C is co-Cartesian).

Prove that C is a symmetric monoidal category.

Example In section 2.4.2, we introduced the category Stab of coherent domains and stable

functions. Any coherent domain X is obtained from a set |X| of points and a binary relation ↑ ,

4. Categories Derived from Functors and Natural Transformations

74

coherence, on |X|. Stable maps are continuous functions which also preserve intersection of coherent

arguments. Stab is a CCC.

In the same example, we noticed that one could also consider the linear maps between coherent

domains. They are stable ones which also commute with respect to arbitrary unions (see exercise 4

below definition 2.4.2.6). Lin is the category of coherent domains and linear functions. Products in

Lin are defined as for Stab, as the projections happen to be linear maps; thus, Lin is also Cartesian.

However, there is another relevant functor from Lin×Lin to Lin. Given coherent domains X

and Y, let (|X|×|Y|,↑×) be given by (x,y)↑×(x',y') iff x↑x' and y↑y'. Let X⊗Y be the coherent

domain obtained from (|X|×|Y|,↑×). This is not a product in Lin, but the reader may easily check that

it turns Lin into a symmetric monoidal category.

We will mention again the categories Lin and Stab, and their interesting interplay, in section 4.4,

since they inspired Linear Logic.

Exercise Let S⊕ be the free commutative monoid generated by a set S. Prove then that, for

S⊕⊗S'⊕ = (S×S')⊕, the freely generated commutative monoids form a symmetric monoidal

category.

Example Our next example is borrowed from recent investigations of parallelism and concurrency,

based on a categorical description of well-known structures for those aspects of computations,

namely, Petri nets.

The category of graphs was defined in the example 4.1.5. For readability we write ∂0 = p0 ° ∂

and ∂1 = p1 ° ∂ and set (∂0,∂1: T→V) for the graph G = (T, ∂, V). Now, every graph G may

be turned into a category. Call C(G) the category whose objects are the nodes V of G, whose

arrows are generated from the arcs T of G by adding the identity arc for each node and closing

freely w.r.t. composition “˚”. Clearly, C is a functor from the category Graph in the example 4.1.5

to Cat (this method will be discussed when presenting adjunctions, see example 2 in section 5.3).

A (transition/place) Petri net is a graph N = (∂0,∂1: T→S⊕), where the arcs are called

transitions and whose nodes are the elements of the free commutative monoid S⊕, generated by a

(possibly finite) set S of labels, the places. Similarly for graphs, we may perform the free

construction of a category C(N), on top of a Petri net N. However, N has an extra structure: namely

the monoid structure of S⊕. Thus we may obtain a monoidal category as follows. Let C⊗(N) be the

category whose objects are the nodes of N, with u⊗v = u∪v in S⊕, and whose arrows are freely

generated from the transitions T of N with respect to composition “˚” and the monoidal operation

⊗ as well. In short, for each pair f: u→u' and g: v→v' one also has f⊗g: u⊗v→u'⊗v' in

C⊗(N). The functoriality of ⊗: C⊗(N)→C⊗(N) is expressed by

(1) (f⊗g)˚(f'⊗g') = (f˚f')⊗(g˚g') .

4. Categories Derived from Functors and Natural Transformations

75

The intended meaning of the monoidal operation -⊗- is the parallel composition of arrows, while “˚”

is the sequential composition. Thus, net computations are understood as the closure of the transitions

with respect to the parallel and the sequential composition. (Exercise: discuss the meaning of (1)

above).

Monoidal categories provide the right setting for a generalization of the notion of “monoid”.

4.3.3 Definition Let (C, ⊗, e, α, λ, ρ) a monoidal category. A monoid in C is an object c

together with two arrows µ: c⊗c→c and η: e→c such that the following diagrams commute:

A morphism between two monoids (c, µ, η) and (c', µ', η') is an arrow f: c→c' in C such that

f ° µ = µ' ° (f⊗f) : c⊗c→c'

f ° η = η' : e→c'.

It is easy to prove that with the previous definition of morphisms, monoids over a monoidal category

C form a category MonC.

Examples

1. Set, with a Cartesian product, is monoidal and the monoids in it are exactly the ordinary monoids.

2. Given an arbitrary category C, consider the category of endofunctors CC , with natural

transformations as morphisms. Then composition “°” of functors is a bifunctor from CC×CC to CC

which turns CC into a monoidal category. The reader may easily check for exercise that the monoids

in this category are exactly the monads in definition 4.2.1 and thus understand the elegant conceptual

frame provided by the categorical developments of the notion of monoid.

4. Categories Derived from Functors and Natural Transformations

76

Dually, we have the concept of “comonoid.”

4.3.4 Definition Let (C, ⊗, e, α, λ, ρ) be a monoidal category. A comonoid in C is an object

c together with two arrows δ: c→ c⊗c, ε: c→e such that the following diagrams commute:

A morphism between two comonoids (c, δ, ε) and (c', δ', ε') is an arrow f: c→c' in C such that

f° δ' = (f⊗f) ° δ : c→ c'⊗c'

ε' ° f = ε : c→e' .

As we have pointed out, monoidal categories are given by an abstract notion of “product,” described

only in terms of (natural) isomorphisms or, equivalently, in terms of collections of isomorphisms

between objects with no further properties (cartesian products also have projections).

Observe that, in the special case that C is Cartesian, each object is a comonoid: just set δ =

<id,id>, i.e.,

Similarly to the construction of cartesian closed categories from cartesian ones, one may extend the

abstract or “equational” approach for monoidal categories and give a notion of monoidal closed

categories.

4. Categories Derived from Functors and Natural Transformations

77

4.3.5 Definition Let C be a symmetric monoidal category, with respect to the bifunctor ⊗. Then

C is monoidal closed if there is also a bifunctor ⇒: C×C→C such that, for every object b, there

exists an isomorphism Λ : C[a⊗b,c] ≅ C[a,b⇒c] that is natural in a and c.

Clearly, any CCC is monoidal closed.

3.6 Exercise

1. (Important for the purposes of sections 4.4 and 5.5) Lin, with ⊗ as in the example below

definition 4.3.2, is symmetric monoidal closed (hint: see section 2.4.2 and use the coherent domain

of traces of linear maps as “⇒”; note that this is not an exponent for the Cartesian product in Lin).

2. Consider the tensor product ⊗ of monoids given in the remark below definition 4.1.1. There is a

natural isomorphism A⊗B ≅ B⊗A, and the monoid homomorphisms between two commutative

monoids A and B form a commutative monoid [A→B]. Prove then that there is a natural isomorphism

[(A⊗B)→C] ≅ [A→[B→C]], making the category cMon, of commutative monoids, a symmetric

monoidal closed category.

3. Let e be the identity of a monoidal closed category. Prove then that e⇒α ≅ α for any object α.

(Hint: use the diagram

in your proof.)

Example We already defined Petri nets and turned each individual net into a (monoidal) category.

We could thus view the relation between parallelism and sequentiality as a functorial notion (see the

example below definition 4.3.2). We consider now the collection of Petri nets as a category. The

category Petri, of (transition/place) Petri nets, has Petri nets (∂0,∂1: T→S⊕) as objects, where

S⊕ is the free commutative monoid generated by S. Morphisms are pairs <f,g >, f: T→T' and g:

S⊕→S'⊕ as for graphs (see the example 4.1.5), with the extra condition that g is monoid

homomorphism. (Exercise: describe Petri as a comma category). As the careful reader should

have checked, given two graphs G = (∂0,∂1: T→V) and G' = (∂'0, ∂'1: T'→V'), their cartesian

product is the graph G×G' = (∂0×∂'0,∂1×∂'1: T×T'→V×V'). When considering Petri nets N =

(∂0,∂1: T→S⊕) and N' = (∂'0,∂'1: T'→S'⊕), their product as graphs, that is

N×N' = (∂0×∂'0,∂1×∂'1 : T×T'→S⊕×S'⊕),

4. Categories Derived from Functors and Natural Transformations

78

is also a Petri net, since S⊕×S'⊕ ≅ (S+S')⊕, i.e., the product of two free commutative monoids

S⊕ and S'⊕ coincides with the monoid freely generated by (S+S'). The Petri net N×N' is called

the synchronous product of the nets N and N'. Intuitively, the sychronous product of two Petri nets

is the results of a composition operation with synchronization: the places of the result are the union of

the places of the factors, while the transition in the synchronous product are pairs (i.e.,

synchronization) of the given transitions. Since S⊕⊕S'⊕ ≅ (S+S')⊕ is valid as well, the category

Petri has also coproducts, namely,

N⊕N' = ([∂0,∂'0],[∂1,∂'1] : T+T '→(S+S')⊕),

where [∂i,∂'i] denotes the function induced on the coproduct T+T' by the functions ∂i and ∂'i.

Intuitively, the coproduct of two Petri nets is the result of a composition operation without

synchronization: the two nets laid aside without interaction. The choice is nondeterministic because of

the freedom of choosing an arbitrary initial state.

The initial net has no transition and no places, while the final net has one transition and no places.

As the reader has proved for exercise, the tensor product of free commutative monoids satisfies

S⊕⊗S'⊕ = (S×S')⊕. Thus, one may define - ⊗ - : Petri2→Petri, the tensor product N⊗N' of

two Petri nets N and N', by taking as transitions the Cartesian product of their transitions, as places

the cartesian product of their places, and using the equation S⊕⊗S'⊕ = (S×S')⊕ to define nodes

from places. The unit object I is the Petri net (∂0,∂1: [1]→[1]⊕), with ∂0 = ∂1 the inclusion of

[1] in [1]⊕. In conclusion Petri is cartesian, cocartesian and is a monoidal category with a tensor

product derived from that operation on monoids.

The next step is to discuss the monoidal closed structure. This is easy when considering finite
Petri nets since, whenever S = {a1, ..., an} is finite, we have

n

S ' x . . . x S ' . . . S ' S '

n

[S → S '] ≅ ≅ ≅

n

S ' + . . . +S ').(

Define then the “⇒” functor, on finite Petri nets, as follows. Given Petri nets N and N', N⇒N'

has as arrows the set of triples

{(h: T→T', g: S⊕→S'⊕, g': S⊕→S'⊕) / g,g' are monoid homomorphisms, ∂'0 ° h = g ° ∂'0
and ∂'1 ° h = g' ° ∂1 }.

For S = {a1, ..., an} the monoid of nodes is the free commutative monoid (S'+ ... +S')⊕, n

times, and ∂0 and ∂1 are the second and third projection. It is then clear that (finite) Petri is a

symmetric monoidal closed category.

Monoidal closed categories generalize Cartesian closed ones in that they also possess exponent

objects a⇒b, or ba, which “internalize” the hom-sets. One may then ask if there is a way to

describe “internally” the behavior of funtors on morphisms. That is, given a monoidal closed

category C and a functor F: C→C, consider, say, f∈C[a,b]. Then F(f)∈C[F(a),F(b)]. Since ba

4. Categories Derived from Functors and Natural Transformations

79

and F(b)F(a) represent C[a,b] and C[F(a),F(b)] in C, one may study the conditions under which

F is “represented” by a morphism in C[ba, F(b)F(a)], for each a and b.

4.3.7 Definition Let C be a monoidal closed category. A functor F: C→C is closed if, for

each a and b in C, there exists fab∈C[ba, F(b)F(a)] such that, for all g∈C[a,b],

fab˚ Λ(g˚λa) =Λ(F(g)˚λF(a))

where Λ : C[e⊗a,b] ≅ C[e,ba] and λa: e⊗a→a are as in 4.3.1.

The notion of a closed functor soundly formalizes our aim above, in view of proposition.4.3.8

below. This essentially says that, internally, fab takes the identity to the identity and behaves

correctly w.r.t. to composition. We will call fab the action of F on ba.

4.3.8 Proposition Let C be monoidal closed category and F: C→C a closed functor. Then the

collection {fab | a,b∈ObC} of its actions is natural in a and b. Moreover, let compabc:

ab⊗bc→ac be the natural transformation which internalizes composition, and IDa: e→aa be the

natural transformation which “picks up” the identity in aa, i.e., IDa = Λ(λa). Then the following

equations hold:

i. faa ˚ IDa = IDF(a)
ii. ∀g: b→a, ∀h: c→b, fac ˚ comp ˚ Λ(g˚λb)⊗Λ(h˚λc) = comp ˚ fab⊗fbc ˚ Λ(g˚λb)⊗Λ(h˚λc)

Proof Exercise. ♦

4.3.9 Remark By similar techniques for monoidal categories, one may define other classes of

categories. In particular, this can be done in order to study very weak frames dealing with a notion of

exponent object. Consider for example a category C, not necessarily monoidal, but with an

“exponent” functor which realizes the following natural isomorphism, C[a,cb] ≅ C[b,ca] satisfying

suitable identities. C is called symmetric closed. Clearly any symmetric monoidal closed category

is symmetric closed. This description of categories by (natural) isomorphisms may remind the reader

of remark 3.3.3, where we described the set of isomorphisms which hold in all CCC's. Those

equations do not characterize CCC's, as cartesian closure requires further structural properties, i.e.

projections. They may be used instead to define the larger class of symmetric monoidal closed

categories with a terminal object. (The reader may try to complete, as an exercise, the

definition of the classes of categories in this remark.)

4.4. Monoidal Categories and Linear Logic
The perspective of this book is to introduce and use Category Theory mainly in order to understand

“types as objects” of (Cartesian Closed) Categories. Indeed, this will be the focus of the chapters in

4. Categories Derived from Functors and Natural Transformations

80

Part II. In the literature, so far, the categorical semantics of types has been mostly applied to the

functional notion of type, in connection with proof theoretic investigations. The link to functional

languages is described by the motto “propositions as types,” which proved successful both in the

mathematical investigation and in concrete applications as the design of new functional languages with

powerful type systems. It seems promising to explore similar analogies for other approaches to

computing, where nonfunctional constructs, e.g., parallel features, are considered. These motivations

and the properties of relevant categories, namely Stab and Lin, the categories of stable and linear

maps widely discussed in section 2.3 and in the previous section, have suggested a new formal

system, linear logic.

The crucial difference between the old and new paradigms may be informally summarized as

follows. When looking at “propositions as objects” one understands “proofs as functions”, while one

of the possible perspectives suggested by linear logic is the description of “proofs as actions”. An

action is roughly an operation which modifies its premises, by a sort of “physical reaction.” In short,

a step of logical inference modifies the state of the premises: for example, when deducing B from

A, some resource in A is consumed. This is in contrast with classical and intuitionistic logic, which

deal with static situations: if A implies B and A holds, then we deduce B, but A holds as before,

also after the deductive process. Observe that, when ignoring the reaction, one obtains “proofs as

functions” again, and thus the new approach may be considered a refinement of the “propositions as

objects” analogy.

The proof theoretic description of this difference is based on a rewriting of the structural rules of

deduction. We present next the core of linear logic and refer the reader to references for further

readings or comparisons with other systems in Proof Theory.

Linear Logic is formally a Gentzen-like logic. The calculus of sequences of Gentzen seems a very

suitable formalism for the study of proofs as dynamic actions; indeed the relevance of the structural

rules, which instead play a quite obscure role in natural deduction, for example, allows a better

formalization of the handling of formulas during the inference process, if one wants to focus on its

dynamic aspects. The main difference between linear logic and Gentzen calculus of sequences is just

in these structural rules. In particular, linear logic drops weakening and contraction rules, i.e.,

 Γ |- ∆ Γ,Α,Α |- ∆
 and __________

Γ, Α |- ∆ Γ,Α |- ∆

Intuitively, formulas can be thought of as resources, and the interpretation of a sequent of the form

A1, . . . , An |- B is that of a process (action) which consumes the resourses A1, . . . , An and

produces B. Thus, resources cannot be freely duplicated or erased; at most, they can be reordered.

Moreover, this lack of structural rules suggests a duplication of the binary connectives of conjunction

and disjunction. Namely, ∧ and ∨ will be described as ⊗ and ∪ in the “multiplicative” case and

4. Categories Derived from Functors and Natural Transformations

81

as ∩ and ⊕ in the “additive” case below. The reason for this is clearly understood, say, in the

introduction and elimination rules for ∧ : in the presence of contraction and weakening, Gentzen

calculus does not distinguish between (⊗, r) and (∩, r), nor between (⊗, l) and (∩, l, 1) plus

(∩, l, 2). Similarly for ∨ , which is also described by two connectives, ∪ and ⊕ .

In this section, we define and give categorical meaning to the core of “classical” linear logic by

suggesting the basic structural properties of suitable categories where the reader may carry on the

details of the interpretation. Other connectives or modalities, essentially the exponential connective

“!” (of course), will be discussed in section 5.5.

4.4.1 Alphabet

1. atomic propositions, ranged over by A, B, C, . . .

2. logical symbol:

2.1. multiplicative symbols:

constants: 1 (mult. true), ⊥ (mult. false)

unary connective: ()⊥ (linear negation)

bynary connectives: ⊗ (mult. and), ∪ (mult. or), __o (mult. or linear implication).

2.2. additive symbols:

constants: T (add. true), 0 (add. false)

bynary connectives: ∩ (add. and), ⊕ (add. or).

The well-formed formulae are defined in the obvious way.

Greek capital letters Γ, ∆, . . . denote finite (possibly empty) sequences of formulas separated by

commas. The expression Γ |- ∆ is called sequent.

4.4.2 Axioms and rules

Each set of (nonstructural) axioms and rules below begins with axioms and rules which deal with the

identities relative to the specified connective: 1 for ⊗ , ⊥ for ∪ , T for ∩ , 0 for ⊕. The other

rules are introduction rules.

1. structural rules

(id) A |- A

Γ |- ∆

(exc, r) where Γ', ∆' are permutations of Γ, ∆.

Γ ' |- ∆ '

4. Categories Derived from Functors and Natural Transformations

82

Γ1|- A, ∆ Α, Γ2 |- ∆'
(cut) ___________________

 Γ1, Γ2 |- ∆, ∆'

2. multiplicative rules
 Γ |- ∆

(1, r) |- 1 (1, l) _______

Γ, 1 |- ∆

 Γ |- ∆

(⊥, l) ________ (⊥, l) ⊥ |-

Γ |- ⊥, ∆

Γ1|- A, ∆ Γ2 |- B, ∆' Γ, Α, Β |- ∆

(⊗, r) (⊗, l) ___________

Γ1, Γ2 |- A⊗B, ∆, ∆' Γ, A⊗B |- ∆

Γ |- Α, Β, ∆ Γ1, A |- ∆ Γ2, B |- ∆'

(∪, r) ___________ (∪, l) ___________________

Γ |- A∪B, ∆ Γ1, Γ2, A∪B |- ∆, ∆'

Γ, Α |- B, ∆ Γ1 |- A, ∆ Γ2, B |- ∆'
(o, r) ___________ (o, l) ___________________

Γ |- A__oB, ∆ Γ1, Γ2, A__oB |- ∆, ∆'

3. additive rules

(T, r) Γ |- T, ∆ (0, l) Γ, 0 |- ∆

Γ |- A, ∆ Γ |- B, ∆ Γ, Α |- ∆

(∩, r) _________________ (∩, l, 1) __________

 Γ |- A∩B, ∆ Γ, A∩B |- ∆

 Γ, Β |- ∆

(∩, l, 2) _________

Γ, A∩B |- ∆

4. Categories Derived from Functors and Natural Transformations

83

 Γ |- A, ∆

(⊕,r,1) __________

Γ |- A⊕B, ∆

 Γ |- B, ∆ Γ, A |- ∆ Γ, B |- ∆

(⊕,r,2) (⊕, l) ________________

Γ |- A⊕B, ∆ Γ, A⊕B |- ∆

3. linear negation

Γ,A |- ∆ Γ |- A, ∆

(⊥,r) _________ (⊥,l) ________

Γ |- A⊥,∆ Γ, A⊥ |- ∆

As suggested by the rule (⊗, l), the comma in the left hand side of a sequent has the same logical

meaning as ⊗, while the commas in the right hand side correspond to the tensor sum ∪, the

disjunction which is dual to ⊗.

Observe that the rules (⊥, r) and (⊥, l) are equivalent to

 Γ,A |- B,∆
(contrap) ____________

Γ, B⊥ |- A⊥,∆

(⊥, 1) 1 |- ⊥⊥ and (⊥, 2) 1⊥ |- ⊥

(Hint: 1,⊥ |- ⊥ gives both ⊥ |- 1⊥ and 1 |- ⊥⊥ , while 1 |- 1,⊥ gives both ⊥⊥ |- 1 and 1⊥ |- ⊥;

the rest is obvious).

From the rules one may easily derive the following sequents:

(µAB) A,B |- A⊗B by (⊗, r)

(evalAB) A, A__oB |- B by (__o, l)

In a few steps, one also obtains

(αABC) (A⊗B)⊗C |- A⊗(B⊗C) (α−1ABC) A⊗(B⊗C) |- (A⊗B)⊗C .

4. Categories Derived from Functors and Natural Transformations

84

Exercise Show the logical equivalence of (A⊗B)__oC and A__o(B__oC). Derive also that A |-

(A⊥)⊥ and (A⊥)⊥ |- A, i.e. ()⊥ is “dualizing”.

This may be enough to suggest that the categorical meaning of linear logic may be found in particular

symmetric monoidal closed categories, where ⊗ and __o are interpreted by the tensorial product

and the bifunctor ⇒ given in definition 4.3.5, respectively. Observe that the cartesian product is

needed too, so to provide an interpretation for ∩ and its identity T (see later). Negation and all dual

constructions are taken care of by a “dualizing” endofunctor (-)*, which is closed in the sense of

4.3.7. Indeed, theorem 4.4.6 below shows that this functor, given ⊗ and ∩ , immediately yields

their duals.

4.4.4 Definition A ∗∗∗∗-autonomous category K is a symmetric monoidal closed category and a

contravariant closed functor (-)*: K → ΚΚΚΚ such that:

- there exists a natural isomorphism d : Id ≅ (-)**

- the following diagram commutes (where (-)* is the action of the functor on exponents)

A ⇒ B B*⇒

(-)*

A** ⇒ B**

(-)*

d d-1
˚ _ ˚

A*

A ∗-autonomous category is linear if it is also cartesian.

In other words, a linear category has both a monoidal and a Cartesian structure, ⊗ and ∩ , plus a

dualizing functor (-)*.

4.4.5 Proposition Both the vertical and the horizontal arrows in the diagram in definition 4.4.4

are isomorphisms. Moreover,

i. A* ≅ B* iff A ≅ B;

ii. A* ≅ A⇒1*.

Proof By definition, the following diagram commutes and d ˚ _ ˚ d-1 is an isomorphism,

A**
f** B**

A B

d-1 d

f

4. Categories Derived from Functors and Natural Transformations

85

Then the horizontal (-)*, in the diagram in definition 4.4.4, is a split mono (see section 1.4) and the

vertical one is a split epi. Since the latter is an instance of the former, they are both split monos and

split epis as well and, thus, isomorphisms. In conclusion, Α⇒B ≅ Β*⇒A*. Finally, A* ≅ B*

implies A ≅ A** ≅ B** ≅ B and, by exercise 4.3.6.3, A* ≅ 1⇒A*. Thus, A* ≅ B* iff A ≅ B

and, moreover, A* ≅ Α ⇒ 1*. ♦

4.4.6 Theorem Let K be a linear category. Define

A∪B = (A*⊗B*)*

A⊕B = (A*∩B*)*.

Then ∪ is a dual to the tensor product and ⊕ is the coproduct in K. Their identies are ⊥ = 1* and

0 = T*, respectively.

Proof ∪ is a well-defined dual to ⊗ : just compare with definition 4.3.1 (and the remark

afterwards) and note that

- A∪⊥ = (A*⊗1)* ≅ A** ≅ A (similarly for the identity to the left),

- (A*⊗B*)⊗C* ≅ A*⊗(B*⊗C*) implies (A∪B)*⊗C* ≅ A*⊗(B∪C)* implies

 ((A∪B)*⊗C*)* ≅ (A*⊗(B∪C)*)* implies (A∪B)∪C ≅ A∪(B∪C) .

As for the Cartesian coproduct, note that, if pA* and pB* are the projections for A*∩B*, then

their images (pA*)* and (pB*)* via the (-)* functor are the injections for A⊕B. Finally, A∪⊥ =

(A*⊗1)* ≅ A and A⊕0 = (A*∩T)* ≅ A. ♦

The results in proposition 4.4.5 and theorem 4.4.6 prove the “dualizing” role of the (-)* functor and

of ⊥ = 1*. In particular, theorem 4.4.6 is a version of De Morgan rules in the semantic structures for

linear logic, when described in categorical terms. Note also that

 A*∪B ≅ (A⊗B*)*

≅ (A⊗B*)⇒⊥

≅ A⇒(B*⇒⊥)

≅ A⇒(1⇒Β)

≅ A⇒B

which gives the “classic” flavor of this fragment of Linear Logic.

The meaning of linear logic as a deductive system is then given by interpreting each entailment A

|- B as a morphism between the interpretation of the formulas. Linear categories yield such an

interpretation, which we sketch here, by induction on rules. Here are some of the basic cases. Some

crucial ones are simply the properties corresponding to (µAB), (evalAB), (αABC) and (α−1ABC),

given before definition 4.4.4, in monoidal closed categories. As for the others,

the rules are interpreted by the fact that

4. Categories Derived from Functors and Natural Transformations

86

for 1 and ⊥ 1 and ⊥ are (the unique) identies for ⊗ and ∪, which

are expressed by commas, on the left or right, respectively,

of |-.

(⊗,r) and (∪,l) ⊗ and ∪ are bifunctors

(∩,r) and (⊕,l) ∩ and ⊕ have pairing and sum of morphisms

(∩,l,1) and (∩,l,2) there exist projections for ∩

(⊕,r,1) and (⊕,r,2) there exist injections for ⊕

(contrap) (-)* is so defined in linear categories

(⊥,⊥) ⊥ = 1* and, thus, ⊥* ≅ 1 .

(By the argument before 4.4.4, (contrap) and (⊥,⊥) are equivalent to (⊥,r) and (⊥,l) .)

Example The category Lin of coherent domains and linear maps, in 2.4.2, not only provides an

example of linear category, but it has even been the source of inspiration for linear logic, since linear

functions depend on inputs “additively” as deductions from assumptions in this logic. (There is more

than that analogy, though, as this example and section 5.5 should clarify.)

We noticed that Lin is Cartesian in 2.3.7(II). Lin is also co-Cartesian. Indeed, let (|X|,↑) and

(|Y|,↑) be coherent structures. Define then the coproduct X⊕Y as the coherent domain associated

with the coherent structure ({(0,z) | z∈|X|}∪ {(1,z) | z∈|Y|},↑⊕), where (a,x)↑⊕(a',y) iff a = a'

and x↑y . (Note the difference with the product: the support is the same, but the coherence relation

changes. Give the embedding linear maps for exercise.)

The singleton coherent domain T = 0 = {∅} , associated with the empty coherent structure, is

both terminal and initial in the category. Indeed, it is the identity for both the product and the

coproduct.

In the previous section we turned Lin into a symmetric monoidal closed category (see exercise

4.3.6). Recall, in particular, that the tensor product A⊗B is the coherent domain associated with

the coherent structure (|A|×|B|, ↑⊗), where (x,y)↑⊗(x',y') iff x↑x' and y↑y'.

The dual of the tensor product, is ∪ given by the tensor sum A∪B, that is, the coherent

domain associated with the coherent structure (|A|×|B|, ↑�∪), where (x,y)↑∪(x',y') iff ((x,y) =

(x',y') or x↑↑x' or y↑↑y'). Also in this case, the tensor product and sum have the same support,

but the coherence relation changes.

Notice that the identity for both the tensor product and its dual is the coherent domain 1 = ⊥ =

{∅,{1}}, associated with ({1}, =).

4. Categories Derived from Functors and Natural Transformations

87

As for the contravariant functor (-)* , given a coherent structure (|A|, ↑), define A* as the

coherent domain associated with (|A|, ↑*), where x↑*y iff ~(x↑y) in A . On a linear function f:

A→B, f*: B*→A* is defined in the following way: (y,x)∈Tr(f*) iff (x,y)∈Tr(f) .

As one could expect (and easily compute), in coherent domains one has T* = 0 = T and 1* = ⊥

= 1 . Moreover, the equations in theorem 4.4.6 are realized in Lin.

Memo For the reader's convenience, we summarize the identities in linear logic (and linear

categories):

1 for ⊗ ; ⊥ for ∪ ; T for ∩ ; 0 for ⊕

which are interpreted in Lin as 1 = ⊥ = {∅,{1}} and T = 0 = {∅}, with the obvious coherent

structure.

References Textbooks, which stress the applications of Category Theory to computer science

with an algebraic perspective, are Arbib and Manes (1975) and Rydeheard and Burstall (1988).

Goguen and Burstall (1984) contains a survey and references to part of this area, broadly construed,

which ranges from the work in Elgot (1971), to the contributions of the ADJ group (see, at the end of

this volume, the many references which include the names of Goguen, Thatcher, Wagner, or

Wright).

Besides the references to general Category Theory, the reader may consult Barr (1979) and Barr

and Wells (1985) for monoidal categories, monads and their mathematical applications. Further

references, which also discuss Linear Logic, are Barr (1990) and Marti-Oliet and Meseguer (1990).

The recent applications of “monoidal notions” we described are borrowed from Moggi (1989), as for

the understanding of programs as “functions from values to computations”, and from Meseguer and

Montanari (1988) or Degano and al. (1989), as for the examples on Petri nets (see also Marti-Oliet

and Meseguer (1989)).

The main reference for linear logic is Girard (1987). Further work may be found, among others,

in Girard and Lafont (1987), Lafont (1988), DePavia (1987), and Seely (1987), where ∗-autonomous

categories are proposed for its semantics. Lambek (1968) contains early work on the categorical

significance of logical systems and discusses weakenings of the structural rules.

5. Universal Arrows and Adjunctions

88

Chapter 5

UNIVERSAL ARROWS AND ADJUNCTIONS

In chapter 3, we introduced the notion of functor as a uniform way to describe “acceptable”

constructions in Category Theory. The reader may have noticed that in some cases, for a given

construction F: C→D, there exists a particular object c in C and an arrow u: F(c)→d , which has

a “universal behaviour” with respect to d, in the sense that every other arrow f: F(c')→d uniquely

factorizes through u , i.e., there exists a unique f': c→c' such that f = u ° F(f') or the following

diagram commutes:

Consider for example the product functor _×a: C→C where C is a CCC and a∈ObC. The arrow

eval: ba×a→b is universal with respect to b, in the previous sense, since for every arrow f: c×a→b

there exists a unique arrow Λ(f): c→ba such that f = eval ° Λ(f), i.e.,

Also the product of two objects may be described in terms of universal arrows. Just take the diagonal

functor ∆: C→CxC , with ∆(c) = (c,c) and ∆(f) = (f,f) and observe that the following diagram

commutes:

5. Universal Arrows and Adjunctions

89

The aim of this chapter is to study the concept of universal arrow outlined above, and some of its

implications. In particular we prove that given a functor F: C→D, if for every d∈D there exists an

universal arrow ud: F(cd)→d, then the function g: ObD→ObC that takes d to cd may be

extended to a functor G: D→C. Such a functor G is called (right) adjoint to F. Remarkably, if G

is a (right) adjoint to F, then F is a (left) adjoint to G, in a dual sense, and each one describes the

other up to isomorphism. From another point of view, F and G can be seen as a pair of “mutually

representable” functors.

The notion of adjointness is probably the most profound and original contribution of Category

Theory to mathematics. The reader must not expect to understand its relevance upon first reading the

definition, or the few examples and applications in this chapter: only by a systematic use of

adjunctions will she or he become competent on the subject.

5.1 Universal arrows
In addition to the previous remarks, the careful reader has surely noticed that most of the definitions

of the constructions defined in chapter 2 (products, coproducts, terminal object, exponents . . .) have

the following common pattern:

for all . . . there exist a unique . . . such that

As a matter of fact, all those definitions can be seen as particular cases of a same notion (or its dual):

the universal arrow. For historical reasons, universal arrows are defined dually with respect to the

examples just mentioned (exponents, products . . .). Couniversal maps, to be defined next, will fit

the examples.

5.1.1 Definition. Let F: C→D be a functor and d∈ObD. Then <u,cd> is universal from d

to F iff u∈D[d,F(cd)], cd∈ObC, and ∀c'∈ObC, ∀f∈D[d,F(c')], ∃! f'∈C[cd,c'] f = F(f')° u .

As usual, this may be equivalently visualized by

5. Universal Arrows and Adjunctions

90

Example <(q1,q2),(a#b,a#b)> is universal from (a,b) to ∆∆∆∆, where ∆∆∆∆: C→C×C is the diagonal

functor.

5.1.2 Definition. Let F: C→D be a functor and d∈ObD. <u,cd> is (co)universal from F to

d iff u∈D[F(cd),d], cd∈ObC, and ∀c'∈ObC, ∀f∈D[F(c'),d] ∃! f'∈C[c',cd] f = u ° F(f').

The diagrams and examples in the introduction to this chapter refer this “dual” notion. Here are other

interesting examples:

5.1.3 Example Let !C be the unique functor from the category C to the category 1; if id1 = u ∈

1[!C(c),1] is universal, then c is terminal in C:

5.1.4 Example Let C be a category of partial morphisms, Ct be the associated category of total

morphisms, and Inc: Ct→C be the embedding functor (see section 2.6). Recall that, by definition,

the lifting of a∈ObC is an object a°∈ObC together with a morphism exa∈Ct[a°,a] such that for

every f∈C[c,a] , there exists one and only one f'∈Ct[c,a°] satisfying the equation exa ° f' = f .

This says exactly that exa: a°→a is an universal arrow from Inc to a :

5. Universal Arrows and Adjunctions

91

Exercise Define an initial object as a universal arrow from 1 to !C.

5.1.5 Proposition. Let F: C→D be a functor and d∈ObD . Assume that <u,c> is universal

from d to F . Then

1. <u',c'> is universal from d to F ⇒ c ≅ c' ;

2. c ≅ c' via (h,h-1) ⇒ <F(h)° u,c'> is universal from d to F.

Proof

1. ∃!h∈C[c,c'] ∃!h'∈C[c',c] u'= F(h)°u = F(h)°F(h')°u'= F(h°h')°u'. But u' = F(id) °u'.

By unicity, h°h' = id . Similarly, h'°h = id .

2. Exercise. ♦

By the proof of proposition 5.1.5, one even has that the isomorphism is unique. This is a strong

property of universal constructions as a very common tool in mathematics (see the examples below).

It is hard to think of a more suitable language than the categorical one for expressing properties like

this.

We next give two alternative characterizations of the notion of universal arrow: the first one, in

theorem 5.1.6, is of an equational nature; the second one, in theorem 5.1.7, makes use only of the

notion of a natural isomorphism. In a sense, the definition of universal arrow given in definition

5.1.1 is in the middle way: it is based on one equation and on the existence of an isomorphism (does

the reader see any analogy with the various characterizations of products and exponents we have

given?).

5.1.6 Theorem Let G: C→ D be a functor, d∈ObD and cd∈ObC . Then there exists

u∈D[d,G(cd)] such that <u,cd> is universal from d to G iff, for every c∈ObC there is an

operation τc: D[d,G(c)]→C[cd,c] such that, for every f∈D[d,G(c)] and every h∈C[cd,c] ,

1. G(τc(f)) ° u = f

2. τc(G(h) ° u) = h

5. Universal Arrows and Adjunctions

92

Proof

(⇐) let <u,cd> be universal from d to G. For every f∈D[d,G(c)] define τc(f) as the unique

arrow f' such that G(f') ° u = f. (1) is then immediate by definition, and (2) follows by unicity.

(⇒) let τc: D[d,G(c)]→C[cd,c] be an operation which satisfies (1) and (2) above. We must

only prove that it is an isomorphism. Define then, for every h∈C[cd,c] τc-1(h) = G(h) ° u ; thus,

we have:

τc-1(τc(f)) = G(τc(f)) ° u = f by (1)

τc(τc-1(h)) = τc(G(h) ° u) = h by (2). ♦

5.1.7 Theorem. Let C, D be locally small categories, G: C→D, d∈ObD and cd∈ObC. Then

there exists u∈D[d,G(cd)] such that <u,cd> is universal from d to G iff C[cd,_] ≅ D[d,G_] .

Proof

(⇐) For c'∈ObC and f'∈C[cd,c'], set τc'(f') = G(f') ° u ∈ D[d,Fc'] .

Then τ: C[cd,_]→D[d,G_] is a natural transformation, since τc'(g ° h) = G(g ° h) ° u = G(g) ° τc(h).

That is, for g∈C[c,c'], the following diagram commutes:

Moreover, ∀f∈D[d,Fc'] ∃!f'∈C[cd,c'] f = τc'(f') , by definition. Thus, by proposition 3.2.3, τ

is a natural isomorphism.

(⇒) Let τ : C[cd,_] ≅ D[d,G_] and set u = τcd(id). Then u∈D[d,G(cd)] . By the naturality of

τ, for all c,c'∈ObC , G(g) ° τc(_) = τc'(g°_) and, hence, ∀f∈D[d,G(c')]

G(τc'-1(f)) ° u = G(τc'-1(f))°τcd(id)

= τc'(τc'-1(f))

= f .

That is, ∀f∈D[d,G(c')] ∃!f'(= τc'-1(f))∈C[cd,c'] such that f = G(f')°u . ♦

Exercise: Give the dual version of theorems 5.1.6 and 5.1.7.

Recall now that a functor F : C→Set is representable if there exists a c∈C such that F ≅ C[c,_]

naturally.

5. Universal Arrows and Adjunctions

93

5.1.8 Corollary Let C, D be small categories, G: C→D, d∈ObD and cd∈ObC. Then there

exists u∈D[d,G(cd)] such that <u,cd> is universal from d to G iff the functor D[d,G_]:

C→Set is representable.

5.2 From Universal Arrows toward Adjunctions
The construction of a universal arrow ud: G(cd)→d from G: C→D to d usually depends on d.

If this construction can always be performed, the function d |_ cd can be extended to a functor F:

D→C. We shall see in the next section that such G and F relate in an important way called

adjunction; for the moment we concentrate on the construction of the functor F.

In this and in the following section, we assume that we are dealing with locally small categories.

5.2.1 Theorem. Let G: C→D be a functor such that ∀d∈ObD ∃<ud,cd> universal from d to

G Then there exists a functor F: D→C such that

i. F(d) = cd
ii. C[F_,_] ≅ D[_,G_].

(Note that C[F_,_], D[_,G_] : Dop×C→Set). Moreover, the functor F is unique, up to

isomorphism.

Proof: By assumption we know that, for all f∈D[d,d'] ,

Set then F(f) = g, that is, ud'°f = G(Ff))°ud . By the uniqueness property, G(id) = id.

Moreover, by twice the definition of F,

5. Universal Arrows and Adjunctions

94

And again by unicity of F(h ° f), one then has F(f°h) = F(f) ° F(h).

We need now to define a natural isomorphism ϕ: D[_,G_] ≅ C[F_,_]. Thus we first need to check,

for a suitable ϕ, that for all g∈D[d',d] and h∈C[c,c'] the following diagram commutes:

Equivalently,

1. ∀f∈D[d,Fc] ϕ(G(h)°f°g) = h°ϕ(f)°Fg .

Now write u (u') for ud (ud', respectively). We know then that ∀f∈D[d,G(c)] ∃!f'∈C[F(d),c]

f = G(f') ° u . Define ϕ(f) = f', that is, f = G(ϕ(f))°u (compare with the definition of F). ϕ is

clearly a set-theoretic isomorphism; thus, we have only to prove the naturality (1).

By the definition of the functors G and F, the following diagram commutes:

5. Universal Arrows and Adjunctions

95

That is, G(ϕ(f°g))°u' = G(ϕ(f)°F(g))°u' , since G is a functor. By unicity,

2. ϕ(f ° g) = ϕ(f) ° F(g) .

Moreover, for all f∈D[d,G(c)],

by the definition of G .

Therefore,

 (G(h) ° f ° g) = h ° ϕ(f ° g) by the diagram and unicity

= h ° ϕ(f) ° F(g) by (2).

This proves (1), i.e. the naturality of ϕ , and by proposition 3.2.3 the proof is completed. ♦

Dually, we have the following:

5.2.2 Theorem. Let F: D→C be a functor such that ∀c∈ObC ∃<uc,dc> universal from F to

c. Then there exists a (unique) functor G: C→D such that

i. G(c) = dc
ii. C[F_,_] ≅ D[_,G_] .

5. Universal Arrows and Adjunctions

96

Proof The result follows by duality; anyway we explicitly reprove it, but by using a different

technique from the one used above. As the reader will see, the difference is essentially notational, but

she or he is invited to study both proofs since they are good examples of two common proof styles in

Category Theory.

Let GOb: ObC→ObD be the function defined by GOb(c) = dc, where uc: F(dc)→c is the

universal arrow. We have

∀f∈C[F(d),c] ∃!g∈D[d,GOb(c)] f = uc ° F(g)

Now define, ∀g∈D[d,GOb(c)] τd,c(g) = uc ° F(g) .

For every d∈ObD and c∈ObC , τd,c:D[d,GOb(c)]→C[F(d),c] is clearly a set-theoretic

isomorphism. Note that, ∀h∈D[d',d],

1. τd',c(g ° h) = uc ° F(g ° h) = uc ° F(g) ° F(h) = τd,c(g) ° F(h)

By taking τd,c-1(f) for g in (1), we have τd',c(τd,c-1(f) ° h) = f ° F(h), or equivalently,

2. τd,c-1(f) ° h = τd,c-1(f ° F(h))

For simplicity, we now omit the indexes of τ and τ-1 .

Let GMor: MorC → MorD be the function defined by

∀k∈C[c,c'] GMor(k) = τ-1(k ° uc) ∈D[GOb(c), GOb(c')]

We want to prove that G = (GOb, GMor) is a functor:

 G(idc) = τ-1(uc)

= τ-1(uc ° idF(G(c)))

= τ-1(uc ° F(idG(c)))

= τ-1(τ(idG(c)))

= idG(c)
and, for every f: c'→c", k: c→c',

 G(f ° k) = τ-1(f ° k ° uc)

= τ-1(f ° uc' ° F(τ-1(k ° uc)))

= τ-1(f ° uc') ° τ-1(k ° uc) by (2)

= G(f) ° G(k)

(1) proves the naturality of τd,c in the component d . We have still to prove the naturality in c, that

is, ∀g∈D[d,GOb(c)], ∀k∈C[c,c']

3. τd,c'(G(k) ° g) = k ° τd,c(g)

We have:

 τ(G(k) ° g) = τ(τ-1(k ° uc) ° g)

= τ(τ-1(k ° uc ° F(g))) by (2)

= k ° uc ° F(g)

= k ° τ(g)

By taking τd,c-1(f) for g in (3) we obtain τd,c'(G(k) ° τd,c-1(f)) = k ° f , or equivalently:

4. G(k) ° τd,c-1(f) = τd,c'-1(k ° f).

5. Universal Arrows and Adjunctions

97

(2) and (4) state the naturality of τ-1.

Note that since G must satisfies (4) , then

G(k) = G(k) ° id = G(k) ° τ-1(uc) = τ-1(k ° uc)

which shows that the adopted definition for G was actually forced. This proves the unicity of the

functor G. ♦

5.2.3 Example An interesting example of application of theorem 5.2.2 refers to Cartesian closed

categories. By the previous section, we know that if C is a CCC, then for all a,b in ObC, (p:

a×b→a, p2: a×b→b) is universal from ∆ to (a,b), and evala,b: ba×a→b is universal from _×a

to b. Then the functions _×_: ObC××××C→ObC and _a : ObC→ObC which respectively take (a,b)

to a×b and b to ba, can be extended to two functors _×_: C××××C→C and _a : C→C. The explicit

definition is the following: for every f: a→c , g: b→d

(_×_)(f,g) = f×g = < f ° p1, g ° p2 > : a×b→c×d

(_a)(g) = Λ(evala,b ° g) : ba→da

For every object c in C, even the unique arrow !c: c→t may be seen as universal arrow from the

unique functor !C: C→1 to t. In this case, the extension of the function that takes 1∈Ob1 to t

to a functor T: 1→C is trivial, but it is interesting that the existence of the terminal object t in C

may be expressed by the natural isomorphism 1[!C(c)=1 ,1] ≅ C[c,T(1)=t].

5.2.4 Example Consider C, Ct and Inc as in example 5.1.4, and assume that for each object

a∈ObC there exists the lifting a°. By example 5.1.4 we know that exa: a°→a is an universal

arrow from the embedding functor Inc: Ct→Cp to a. By theorem 5.2.2 the function _°: ObC→ObC
which takes every object a to its lifting a°, may be extended to a functor _°: Cp→Ct. The explicit

definition of the functor _° on a partial arrow f: b→c is the following

(_°)(f) = f° = τ(f ° exb)∈Ct[b°,c°]

where τ(f°exa) is the only arrow such that exc ° τ(f°exb) = f°exb.

Note that nearly all the facts about partiality and extendability we proved depend directly on

properties of natural transformations and adjunctions. That is, it was not possible to derive the

properties of the lifting of b by assuming just a set-theoretic isomorphism between Cp[a,b] and

Ct[a,b°] for all a, as one may be tempted at first thought. The expressive categorical notion of

natural transformation turns out to be essential for these purposes.

5.3 Adjunctions
In this section we derive a general notion from the previous constructions and say that the functors F

and G in theorems 5.2.1 and 5.2.2 are “adjoint” to one another. The idea is that an adjunction

establishes a relation between two categories C and D through two functors F: D→C and G:

5. Universal Arrows and Adjunctions

98

C→D; this relation creates a bijective correspondence ϕ of arrows in the two categories of the kind

described by the following picture:

5.3.1 Definition Let F: D→C and G: C→D be functors. Then an adjunction from D to C is

a triple <F,G,ϕ> such that ϕ: C[F_,_] ≅ D[_,G_] is a natural isomorphism. F is called left

adjoint of G, and G is called right adjoint of F.

The naturality of the isomorphism ϕ deserves to be spelled out. For any f∈C[F(d),c], k∈C[c,c']

and h∈D[d',d], we have

1. ϕd,c'(k ° f) = G(k) ° ϕd,c(f)

2. ϕd',c(f °F(h)) = ϕd,c(f) ° h

5. Universal Arrows and Adjunctions

99

It is equivalent to require that ϕ-1 is natural, that is, for any g∈C[d,G(c)], k∈C[c,c'] and

h∈D[d',d],

3. ϕ−1d,c'(G(k) ° g) = k ° ϕ−1d,c(g)

4. ϕ−1d',c(g ° h) = ϕ−1d,c(g) ° F(h) .

Examples

1. Let D, C be partial order categories, and (ObD,≤D), (ObC,≤C) the associated p.o.sets. An

adjunction from D to C is a pair of monotone functions f: ObD→ObC, g: ObC→ObD such that,

for every d∈ObD , c∈ObC,

f(d) ≤C c ⇔ d ≤D g(d) .

Consider for example the partial order Z of relative numbers, and the partial order R of real

numbers. Let I: Z→R be the obvious inclusion, and _: R→Z be the function that takes a real

number r to its lower integer part r. Then I and _ define an adjunction from Z to R , since

 1. I(z) ≤R r ⇔ z ≤Z r

Conversely let _: R→Z be the function that takes a real number r to its upper integer part r.

Then _ and I define an adjunction from R to Z, since

2. r ≤Z z ⇔ r ≤R I(z)

Note that _ and _ are respectively the right and left adjoint to the same functor I. Note,

moreover, that _ and _ are the unique functions that respectively satisfy conditions (1) and (2)

for all r and z.

Another interesting example of adjunctions between partial orders as categories is the following:

consider the p.o.set of positive integers N. For every natural number n , let _ .n : N→N be the

function that takes a natural numbers m to the product m.n . The right adjoint to _ .n is the the

function div(_,n): N→N that takes q to (the lower integer part of) q divides n .

Indeed, for every m, q, m.n ≤ q ⇔ m ≤ div(q,n)

Analogously the “minus” operation is right adjoint to “plus.”

2. This further example uses familiar notions and applies the categorical understanding of a

fundamental technique in (universal) algebra. Given a category C of structures and a category D of

slightly more general ones, the right adjoint of the forgetful functor from C to D defines the “free

structures” over the objects in the category D. This technique is widely explained in several places

(see references), so that we just hint at it here.

The category Graph was defined in the example 4.1.5. Recall now that a graph G is given by:

- a set V of objects (nodes)

- a set T of arrows (edges)

- a function ∂1: T→O which assigns to each arrow f its range ∂1(f)

- a function ∂2: T→O which assigns to each arrow f its target ∂2(f) .

5. Universal Arrows and Adjunctions

100

Morphisms of graphs G, G' are pairs <f,g>, where f: T→T' and g: V→V' have the properties in

the example 4.1.5. We already mentioned (see the exercise following that example) that each small

category C may be regarded as a graph G = U(C), just forgetting identities and composition. Of

course, U takes objects to nodes and arrows to edges. Moreover, every functor F: C→D gives a

morphisms H = U(F): U(C)→U(D) between the associated graphs; the reader should have checked

that U: Cat →Graph is actually a (forgetful) functor. Conversely every graph G generates a

category C = C(G) with the same objects of G, and, for arrows, the finite strings (f1,...,fn) of

composable arrows of G, i.e., of arrows in the due types (the empty strings are the identities in

C(G)). Composition in C(G) is just string concatenation, that is,

(f1, . . . ,fn) ° (g1, . . . ,gm) = (f1, . . . ,fn,g1, . . . ,gm) .

Note that (f1,...,fn) = f1 ° . . . ° fn. The category C(G) is called the free category generated by

G .

This construction may be extended to morphisms of graphs: if H: G→G' then C(H):

C(G)→C(G') is the functor that coincides with H on objects, and that is defined on morphisms by:

C(H)(f1,...,fn) = (H(f1),... H(fn)).

It is easy to prove that C is a functor from Grph to Cat. Actually, we have an adjoint situation, since

there is an isomorphism Θ : Cat[C(G), C] ≅ Grph[G, U(C)] which is natural in G and C. The

isomorphism Θ takes every functor F: C(G)→C to the morphism Θ(F): G→C, which is the

“restriction” of F on G. For the nature of C(G), every functor F: C(G)→C is uniquely determined

by its behavior on the arrows of G, indeed if (f1,. . . ,fn) is an arrow in C(G), by definition of a

functor, F((f1,. . . ,fn)) = F(f1 ° . . . ° fn) = F(f1) ° . . . ° F(fn). This proves that Θ is injective. But

Θ is also surjective, since if H: G→U(C) , we can define a functor F: C(G)→C by F((f1,. . . fn))

= H(f1) ° ... ° H(fn), and clearly Θ(F) = H. We leave it to the reader to prove the naturality of the

isomorphism.

Exercise In section 4.3 we turned each Petri net N into a monoidal category C⊗(N) . Describe

C⊗(N) as a freely generated category.

Exercise Let C and D be discrete categories (i.e., the only morphisms of the categories are

identities). Prove that <G,F,τ>: C→D is an adjunction if and only if G and F define an

isomorphism between C and D.

In the previous section, we have actually shown how to construct an adjunction when one can

uniformly obtain a universal arrow <ud,cd> from each object d . Now we show how to obtain

universal arrows out of an adjunction, and put together the two results.

5.3.2 Theorem. If < F: D→C , G: C→D ,ϕ > is an adjunction from D to C, then

1. < u =ϕ(idF(d)) : d→G(F(d)) , F(d)> is universal from d to G

5. Universal Arrows and Adjunctions

101

u is called unit of the adjunction

2. <u'=ϕ−1(idG(c)): F(G(c))→c ,G(c) > is universal from F to c

u' is called counit of the adjunction.

Conversely, if G: C→D is a functor and (1) holds (or F: D→C is a functor and (2) holds), then

<F,G,ϕ > is an adjunction from D to C.

Proof. (1) is given by theorem 5.1.6 (⇐) and the definition of G. Note that (2) follows dually. The

converse is stated in theorems 5.2.1 and 5.2.2. ♦

Thus, if < F, G ,ϕ > is an adjunction, then the functor F of theorem 5.2.1 is the left adjoint of G

and, conversely, G in theorem 5.2.2 is the right adjoint of F. In view of the expressive power of the

notion of adjunction, we can now state in one line some of the concepts we introduced in the

previous chapters.

5.3.3 Corollary Let C be a category. Then

i. C has a terminal object iff the unique functor !C: C → 1 has a right adjoint;

ii. C has finite products iff the diagonal functor has a right adjoint;

iii. C is a CCC iff it is cartesian (i.e., !C: C→1 and ∆∆∆∆ : C→C×C have right adjoints) and, for

each a∈ObC, the functor _×a : C→C has a right adjoint.

Proof. Immediate by theorem 5.2.2 and the considerations in example 5.2.3. ♦

5.3.4 Corollary Let C be a category of partial morphisms. The lifting functor _° : C→Ct is the

right adjoint of the embedding functor Inc: Ct→C.

Proof Immediate by 5.2.2 and the considerations in example 5.2.4. ♦

As the reader probably expects, it is also possible to give a fully equational characterization of

adjunctions.

5.3.5 Theorem An adjunction <F, G,τ> : C→D is fully determined by the following data:

- the functor G: D→C

- a function f: ObC→ObD such that, for every object c of C, f(c) = F(c)

- for every object c of C, an arrow unitc∈C[c, G(f(c))]

- for every object c of C and d of D, a function τc,d-1: C[c,G(d)]→D[f(c),d]

such that, for every h∈C[c,G(d)] and k∈D[f(c),d],

1. G(τc,d-1(h)) ° unitc = h ;

2. τc,d-1(G(k) ° unitc) = k .

5. Universal Arrows and Adjunctions

102

Proof The theorem is an immediate consequence of theorems 5.3.2 and 5.1.6. A direct proof is not

difficult, and its study is a good exercise for the reader since it summarizes many of the previous

results. Here it is:

The function f may be extended to a functor F by setting, for k∈C[c,c'], F(k) = τc',d-1(unitc' ° k).

Note that

 F(idc) = τc,f(c)-1(unitc)

= τc,f(c)-1(idG(f(c)) ° unitc)

= τc,f(c)-1(G(idf(c)) ° unitc)

= idf(c) . by (2)

and moreover, omitting the indexes for notational convenience,

 F(h ° k) = τ-1(unit ° h ° k)

= τ-1(G(τ-1(unit ° h)) ° unit ° k) by (1)

= τ-1(G(τ-1(unit ° h)) ° G(τ-1(unit ° k)) ° unit) by (1)

= τ-1(G(τ-1(unit ° h) ° τ-1(unit ° k)) ° unit)

= τ-1(unit ° h) ° τ-1(unit ° k) by (2)

= F(h) ° F(k) .

Let now, for every object c of C and d of D, τc,d: D[f(c),d]→C[c,G(d)] be the function defined by

τc,d(k) = G(k) ° unitc . Equations (1) and (2) express exactly the fact that τc,d and τc,d-1 define an

isomorphism. We have still to prove their naturality. Let k∈D[d,d'], h∈C[c,G(d)], h'∈C[c',c],

and k'∈D[f(c),d] ; then

nat-1. τ-1(G(k) ° h) = τ-1(G(k) ° G(τ-1(h)) ° unitc)

= τ-1(G(k ° τ-1(h)) ° unitc)

= k ° τ-1(h) ;

nat-2. τ-1(h ° k) = τ-1(G(τ-1(h)) ° unit ° k) by (1)

= τ-1(h) ° τ-1(unit ° k) by (nat-1)

= τ-1(h) ° F(k) ;

nat-3. τ(k' ° F(h')) = τ (τ-1(τ(k')) ° F(k))

= τ (τ-1(τ(k') ° h') by (nat-2)

= τ(k') ° h' ;

nat-4. τ(k ° k') = G(k ° k') ° unit

= G(k) ° G(k') ° unit

= G(k) ° τ(k'). ♦

5.3.6 Proposition Let <F,G,τ>: C→D be an adjunction. Then there exist two natural

transformations η : IdC→GF and ε: FG→IdD such that, for every c in C and d in D, η(c) and

ε(d) are respectively the unit and counit of the adjunction.

Proof: exercise. ♦

5. Universal Arrows and Adjunctions

103

In other words, one may construct the unit and counit “uniformely” and naturally. Observe also

that, if η : IdC→GF and ε: FG→IdD are the natural transformations in proposition 5.3.6, then the

following diagram commutes:

The previous diagrams fully characterize an adjunction: as a matter of fact many authors prefer to

define an adjunction between two categories C and D as a quadruple (F, G, η , ε) where F:

C→D and G: D→C are functors, and η : IdC→GF , ε: FG→IdD are natural transformations

such that

(Gε) ° (ηG) = idG ;

(εF) ° (Fη) = idF .

We leave it as an exercise for the reader to prove the equivalence of this notion with the one we have

adopted. We shall use the definition of adjunction as a quadruple in the next section, since it

simplifies the investigation of the relation between adjunctions and monads.

Exercises

1. An adjointness (F, G, η , ε) from C to D is an adjoint equivalence if and only if η and ε

are natural isomorphisms. Prove that given two equivalent categories C and D (see section 3.2) it

is always possible to define an adjoint equivalence between them.

2. Given an adjointness (F, G, η, ε) from C to D, prove the equivalence of the following

statements:

i. ηGF = GFη;

ii. ηG is an isomorphism;

iii. εFG = FGε;

iv. εF is an isomorphism.

5.3.7 Example In section 3.4 we defined the CCCs of limit and filter spaces, L-spaces and FIL

respectively, which generalize topological spaces, Top. The functorial “embeddings” mentioned in

that example are actually adjunctions. Recall that H : Top → FIL is given by

H((X,top)) = (X,F) where F(x) = {Φ | Φ is a filter and ∀0∈top (x∈0 ⇒ 0∈Φ)}.

H(f) = f by the definition of continuity. H has a left adjoint T : FIL → Top defined by

T((X, F)) = (X,top) where 0∈top iff ∀x∈0 ∀Φ∈F(x) 0∈Φ .

Also in this case, filter continuity corresponds to topological continuity, i.e., T(f) = f . The reader

may easily define the natural isomorphism τ .

5. Universal Arrows and Adjunctions

104

In general, limits are not unique in filter spaces. A stronger notion of convergence, to be used for

computability (see the final remark in section 8.4), may be given as follows. For (X,F) in FIL

consider (X,top) = T((X, F)) and define

(s-conv.) Φ↓sx iff Φ∈F(x) and ∀0∈Φ∩top x∈0 .

Then top is T0 iff s-convergent filters have a unique limit.

Let N = (ω, F) be the natural numbers with the filter structure induced by the discrete topology

and M = NN. With some work (see references) one can show that MM is not topological, i.e. for

no (X,top) one has MM = H((X,top)). The idea is that each topological filter space has a least filter

for each F(x), the neighborhood filter at x; deduce from this that the associated adjointness

(T,H,η,ε) to (T,H,τ) is not an adjoint equivalence (which one of η and ε is not a natural

isomorphism?).

Exercises (based on the previous example and exercises)

1. Consider the full subcategory of FIL given by the filter spaces (X,F) such that, for each x, there

is a least Φ∈F(x). Give an adjoint equivalence between Top and this category.

2. Check that the functors between L-spaces and FIL defined in the exercise in section 3.4.2 yield

an adjunction, which is not an adjoint equivalence.

3. Give directly an adjunction between Top and FIL, and compare the definition with the adjunction

obtained by composition of functors. (Hint for the direct construction: given an L-space (X,↓),

define (X,top) by 0∈top iff ∀x∈0, ∀{xi}↓x, {xi}⊆ 0 eventually. Conversely, for (X, top)

topological space, define (X,↓) by {xi}↓x iff ∀0∈top (x∈0 ⇒ {xi}⊆ 0 eventually).

5.4 Adjunctions and Monads
In this section we study the relation between two seemingly distant concepts as adjunction and

monad. As a matter of fact, every adjunction immediately defines a monad, and conversely every

monad can be thought of as generated by an adjunction, called a resolution for the monad (see

5.4.2 below). Resolutions for a given monad can be build up in a category by introducing a natural

notion of morphism between them; it then happens that the Eilenberg-Moore and the Kleisli

Categories associated with the monad (see definitions 4.2.3 and 4.2.4) are respectively the terminal

and initial object of the category.

The presentation is rather technical; at first reading, the reader may just look at the first theorem,

which will be applied in the next section.

5.4.1 Proposition Let (F, G, η , ε) be an adjunction from C to D; then (T = GF, η , µ = GεF)

is a monad on C and (T = FG, δ = GηF, ε) is a comonad.

5. Universal Arrows and Adjunctions

105

Proof Note first that GF, η, and GεF have the correct types, i.e., T = GF: C→C, η: IdC→GF,

and µ = GεF: GFGF→GF. We must prove the unity and associative laws for the monad.

As for the unity laws we have

µ ° Tη = GεF ° GFη = G(εF ° Fη) = G(idF) = idGF
µ ° ηT = GεF ° ηGF = (Gε ° ηG)F = idG(F) = idGF

For the associative law, note first that

ε ° εFG = ε ° FGε .

Indeed, for any d∈ObD , and letting f = εd: FG(d)→d,

 εd ° εFG(d) = f ° εFG(d)
= εd ° FG(f) by naturality of ε

= εd ° FG(εd)

Then one has the following:

 µ ° µT = GεF ° GεFGF

= G(ε ° εFG)(F)

= G(ε ° FGε)(F)

= GεF ° GFGεF

= µ ° Tµ .

The rest is an exercise in duality. ♦

5.4.2 Definition Let (T, η , µ) be a monad over a category C. A resolution for (T, η , µ) is a

category D and an adjunction (F, G, η , ε) from C to D such that T = GF and µ = GεF. A

morphism between two resolutions (F, G, η , ε): C→D and (F', G', η , ε'): C→D ' (for the

same monad) is a functor H: D→D' such that F' = H ° F, G = G' ° H , and Hε = ε'H.

It is easily proved that resolutions with the associated morphisms form a category. Now we are going

to prove that the Eilenberg-Moore and Kleisli categories associated with a monad (T, η , µ) both give

rise to resolutions. In particular, they are respectively the terminal and initial objects in the category of

all resolutions for that monad.

5.4.3 Proposition Let (T, η , µ) be a monad over a category C , and let CT be the Eilenberg-

Moore category associated with the monad. Then there exists a resolution for (T, η , µ) which is an

adjunction from CT to C.

Proof Let UT: CT→C be the forgetful functor that takes every algebra (c,α) to c, and every

morphism of algebras h to the same h regarded as a morphism in C. Let FT: C→CT be the

functor which takes every object c to its free algebra (T(c),µc), and every morhism f: c→c' to

FT(f) = T(f). Let εΤ: FTUT→idCT be the natural transformation defined by εΤ(c,α) = α (note

that α: T(c)=FTUT(c,α)→c). We want to prove that (FT, UT, η , εT) is a resolution for (T, η , µ).

5. Universal Arrows and Adjunctions

106

Obviously UT ° FT = T . UT εT FT = µ, since for any object c one has

 (UT εT FT)(c) = UT(εT FT(c))

= UT(εT(T(c), µc)) by def. of FT

= UT(µc) by def. of εT

= µc by def. of UT

We still haveto prove that (FT, UT, η , εT) is an adjunction from CT to C, that is,

(UTεT) ° (ηUT) = idUT

(εTFT) ° (FTη) = idFT

One has, for every T-algebra (c,α),

 (UTεT ° ηUT) (c,α) = UT(εT(c,α)) ° ηUT(c,α)
= α ° ηc by def. of εT and UT

= idc by def. of T-algebra

And for every c∈ObC :

 (εTFT ° FTη) (c) = εTFT(c) ° FT(ηc)

= µc ° T(ηc) by def. of εT and FT

= idT(c) by the unity law of the monad.♦

We say that the resolution (FT, UT, η , εT) from C to the Eilenberg-Moore category CT, and given

by proposition 5.4.3, is associated with CT.

5.4.4 Proposition Let (T, η , µ) be a monad over a category C .Then the resolution (FT, UT,

η, εT): C→CT, associated with the Eilenberg-Moore Category CT, is a terminal object in the

category of all the resolution for the monad (T, η , µ).

Proof Let (F, G, η , ε): C→D be another resolution for (T, η , µ). We must prove that there

exists a unique arrow from (F, G, η , ε) to (FT, UT, η , εT). Remember (cf. definition 5.4.2) that

such an arrow is a functor H: D→CT , such that FT = H ° F, G = UT ° H , and Hε = εTH.

Define, for any object d, and any morphism f of D,

H(d) = (G(d), G(ε(d)))

H(f) = G(f).

Then one has, for any c∈ObC, any h∈MorC,

H(F(c)) = (G(F(c)), G(ε(F(c)))) = (T(c), µc) = FT(c)

H(F(h)) = G(F(h)) = T(h) = FT(h)

that proves the equality H ° F = FT.

Moreover, for any d∈ObD, and any f∈MorD,

UT(H(d)) = UT(G(d), G(ε(d))) = G(d)

UT(H(f)) = UT(G(f)) = G(f), as UT is the identity on morphisms.

That proves the equality G = UT ° H .

5. Universal Arrows and Adjunctions

107

Finally, for any d∈ObD,

εTH(d) = εT(G(d), G(ε(d))) = G(ε(d)) = H(ε(d))

that proves the equality Hε = εTH.

We have still to prove that H is the unique morphism from (F, G, η , ε) to (FT, UT, η , εT).

Let H' be another morphism; then, for any f∈MorD,

H'(f) = UT(H'(f) = G(f) = UT(H(f) = H(f)

and, for any d∈MorD,

 H'(d) = (UT(H'(d), εTH'(d)) by def. of UT and εT

= (G(d), H'(εT(d))) as G = UT ° H'

= (UT(H(d), H(εT(d))) as H'(f) = H(f)

= (UT(H'(d), εTH(d))

= H(d).

This completes the proof. ♦

The unique functor to (FT, UT, η , εT) in the category of all resolutions for a given monad (T, η ,

µ) is called comparison functor and it is usually denoted by KT.

The category of resolutions of a monad has also an initial object, which is based on the Kleisli

category associated with the monad.

5.4.5 Proposition Let (T, η , µ) be a monad over a category C, and let CT be the Kleisli

category associated with the monad. Then there exists a resolution for (T, η, µ) that is an adjunction

from CT to C.

Proof: Let UT: CT→C be the functor defined by the following:

for any object c of CT (i.e., of C), and any morphism h∈CT[c,c'] (and thus h∈C[c,Τ(c')])

UT(c) = T(c);

UT(h) = µc' ° T(h).

Let FT: C→CT be functor defined by the following:

for any object c of C, and any morphism f∈C[c,c']

FT(c) = c;

FT(f) = ηc' ° f (= T(f) ° ηc).

Let εΤ: FTUT→id be the natural transformation defined by the following:

for any object c of CT
εΤ(c) = idT(c) (in C).

We want to prove that (FT, UT, η , εT): C→CT is a resolution for (T, η , µ).

Obviously, UT ° FT = T .

Moreover, UT εT FT = µ, since for any object c one has

 (UT εT FT)(c) = UT(εT (c)) by def. of FT

5. Universal Arrows and Adjunctions

108

= UT(idT(c)) by def. of εT
= µc. by def. of UT

We have still to prove that (FT, UT, η , εT) is an adjunction from C to CT, that is,

(UTεT) ° (ηUT) = id: UT→UT
(εTFT) ° (FTη) = id: FT→FT

One has, for every object c of CT:

 (UTεT ° ηUT) (c) = UT(idT(c)) ° ηT(c) by def. of εT and UT
= µc ° T(idT(c)) ° ηT(c) by def. UT on morphisms

= µc ° ηT(c) as T is a functor

= idc. by the unity law of the monad

And, for every c∈ObC,

 (εTFT ° FTη) (c) = εT(c) ° (ηΤ(c) ° ηc) by def. of FT
= idT(c) ° (ηΤ(c) ° ηc) by def. of εT
= µC ° T(idT(c)) ° ηΤ(c) ° ηc by def. of composition ° in CT
= µC ° ηΤ(c) ° ηc
= ηc by the unity law of the monad

= idc by def. of the identity in CT. ♦

5.4.6 Proposition Let (T, η, µ) be a monad over a category C. The resolution (FT, UT, η , εT):

C→CT associated with the Kleisli Category CT is an initial object in the category of resolutions for

the monad (T, η , µ).

Proof Let (F, G, η , ε): C→D be another resolution for (T, η , µ). We must prove that there

exists a unique arrow from (FT, UT, η , εΤ) to (F, G, η , ε), that is a unique functor K: CT→D,

such that F = K ° FT, UT = G ° K , and KεΤ = εK.

Define, for any object c of CT, and any morphism f∈CT[c,c'],

K(c) = F(c);

K(f) = εF(c') ° F(f).

where c and f are regarded as object and morphism of C.

Then one has, for any c∈ObC, any h∈C[c,c'],

K(FT(c)) = K(c) = F(c)

 K(FT(h)) = K(ηc' ° h) by def. of FT
= εF(c') ° F(ηc' ° h) by def. of K

= εF(c') ° F(ηc') ° F(h) as F is a functor

= F(h) as (F, G, η , ε) is an adjunction

This proves the equality K ° FT = F .

Moreover, for any object c of CT, and any morphism f∈CT[c,c'],

G(K(c)) = G(F(c)) = T(c) = UT(c)

5. Universal Arrows and Adjunctions

109

 G(K(f)) = G(εF(c') ° F(f)) by def. of K

= G(εF(c')) ° G(F(f)) as G is a functor

= µc' ° T(f) as (F, G, η , ε) is a resolution

= UT(f) by def. of UT
that proves the equality UT = G ° K .

Finally, for any d∈ObD,

 K(εΤ(c)) = Κ(idT(c)) by def. of εΤ
= εF(c') ° F(idT(c)) by def. of K

= εF(c') as F is a functor

= εK(c') by def. of K

that proves the equality KεΤ = εK.

We have still to prove that K is the unique morphism from (FT, UT, η , εT) to (F, G, η , ε).

Let K': CT→D be another morphism; then, for every object c of CT,

 K'(c) = K'(FT(c)) by def. of FT
= F(c) as K' ° FT = F

= K(FT(c)) as K ° FT = F

= K(c) by def. of FT
and, for any f∈CT[c,c'],

 K'(f) = K'(idc' ° f)

= K'(µc' ° ηT(c') ° f) by the unitary law of the monad

= K'(µc' ° T(idT(c')) ° ηT(c') ° f)

= K'(idT(c') ° (ηT(c') ° f)) by def. of composition ° in CT
= K'(idT(c')) ° K'(ηT(c') ° f)) as K' is a functor

= K'(εΤ(c')) ° K'(FT(f))) by def. of εΤ and FT
= εK'(c') ° F(f) as K'εΤ=εK' and F=(K'°FT)

= εF(c') ° F(f) as K'(c) = K(c) = F(c)

= K(f). by def. of K

This completes the proof. ♦

For consistency with the terminology adopted for the comparison functor, we shall denote by KT
the unique arrow from the initial object (FT, UT, η , εT) in the category of all resolutions for a

monad (T, η , µ).

Consider now the comparison functor from the initial to the terminal object. Of course, it must be

KT = KT; let us check this explicitly.

For any object c in CT,

 KT(c) = (UT(c), UT(εΤ(c))) by def. of KT

= (T(c), µc ° T(idT(c))) by def. of UT and εΤ

5. Universal Arrows and Adjunctions

110

= (T(c), µc)

= FT(c) by def. of FT

= KT(c). by def. of KT
And for any morphism f∈CT[c,c'],

 KT(f) = UT(f) by def. of KT

= µc' ° T(f) by def. of UT
= εΤ(T(c'), µ(c')) ° T(f) by def. of εΤ

= εΤFT(c') ° FT(f) by def. of FT

= KT(f) . by def. of KT

Exercises

1. Prove that the comparison functor KT = KT : CT→CT is full and faithful.

2. Prove that the Kleisli Category is isomorphic to the full subcategory of CT consisting of all free

algebras.

5.5 More on Linear Logic
In this section, we complete an introductory presentation of linear logic and its categorical meaning,

initiated in section 4.4. As already mentioned, the leading idea of this system refers to the “linear” use

of “resources” or logical assumptions. From assuming A, one derives less than from assuming A, A,

i.e., twice A . The logic-oriented reader, mostly used to classical or intuitionistic reasoning, may find

this a little strange. Probably, though, this habit hides a nonconstructive view which may result in a

limitation of our understanding of effective processes. Indeed, the alternative approach proposed by

linear logic, which enriches and complements the traditional ones, seems to suggest formalizations

and understanding of processes, such as parallel ones, which have so far escaped to a description by

usual tools (see the examples on monoids and Petri nets in section 4.3 and the references, for recent

developments of this idea).

As the reader may recall, the changes in the structural rules motivate a duplication of the

connectives (see section 4.4). However, there is a way to recover the usual possibility, in classical as

well as in intuitionistic logic, of an iterated use of assumptions. The idea is to introduce a connective

“!” (read “of course”), which allows to assume as (finitely) many times one wishes a given

assumption. This connective has a categorical meaning, which may be given in the terms of

adjunctions and monads, following the previous section. The interesting categorical significance of

this relation to classical and intuitionistic logic, as well as the categorical understanding we described

in section 4.4, via structures such as the categories Stab and Lin, is probably what makes the

difference between linear logic and previous formal experiments with the structural rules in other

areas of logic.

5. Universal Arrows and Adjunctions

111

The rules below are meant to extend the system in section 4.4. Observe that the structural rules of

weakening and contractions apply with respect to the connective !. This is exactly what it is

introduced for: it is meant to allow copies of assumptions and observe that they lead to the same

consequences. This is expressed also by the rules (!,r) and (!,l) . Following Girard’s work, we

explicitly introduce the dual “?” (read “why not”), of the connective ! . Its operational behaviour is

described by the rules, which mimic those for ! on the other side of the entailment (cf. the duality of

(-)⊥ in 4.4.3), and by the equivalence of !A and (?(A⊥))⊥, proved below.

The exponential fragment of Linear Logic is as follows:

5.5.1 exponential unary connectives: ! (of course), ? (why not)

5.5.2 exponential rules

 Γ |- ∆ Γ |- ∆
(weak-l) ________ (weak-r) ________

Γ,!Α |- ∆ Γ |- ?A,∆

Γ,!Α,!Α |- ∆ Γ |- ?A,?A,∆
(contr-l) ___________ (contr-r) ___________

 Γ,!Α |- ∆ Γ |- ?A,∆

Γ, Α |- ∆ !Γ |- A,?∆
(!,l) ________ (!,r) ________

Γ,!Α |- ∆ !Γ |- !A,?∆

 !Γ, Α |- ?∆ Γ |- A,∆
(?,l) _________ (?,r) _______

!Γ,?Α |- ?∆ Γ |- ?A,∆

The duality between ! and ? is easily obtained by the following deductions:

 A |- A A |- A
(!,l) _______ (⊥,r) _______

 !A |- A |- A⊥, A

(⊥,l) _______ (?,r) _______

 !A, A⊥ |- |- ?A⊥, A

(?,l) _________ (!,r) ________

 !A, ?A⊥ |- |- !A,?A⊥

(⊥,r) __________ (⊥,l) __________

!A |- (?A⊥)⊥ (?A⊥)⊥ |- !A

5. Universal Arrows and Adjunctions

112

Exercise Prove that !(A∩B) |- !A ⊗!B and !A ⊗!B |-!(A∩B).

5.5.3 Remark The connective “!” is exactly what is needed to recover the intuitionistic calculus: it

is possible to prove that there is an embedding of intuitionistic (and classical) logic into linear logic.

The embedding maps every intuitionistic formula A to a linear formula A in the following way:

A = A if A is an atomic formula

A∧B = A ∩ B

A�∨B = !A ⊕ !B

A�⇒B = ! A __o B

(! is supposed to bind tighter than __o and ∪).

The absurdum F of intuitionistic is translated into 0, the identity for ⊕ . Thus ~A = !A__o0.

In other words, the iterated use of the premises, in a linear implication, gives exactly the intuitionistic

implication. Then, if, Γ |-i A, in intuitionistic Logic, then ! Γ |- A in Linear Logic.

Our aim now is to give categorical meaning to the connective !, of course. By duality, in linear

categories (see definition 4.4.4), we also obtain an interpretation for ?, why not.

We have already remarked that a resource such as !A can be duplicated and erased, and in a

sense these properties characterize the meaning of the connective ! . Thus, at the sematic level, we

expect to have two morphisms δ: !A→!A ⊗!A , and ε: !A→1 where 1 is the identity of the

monoidal category. (Commutative) comonoids in 4.3.4 seem the right structure for this, as they are

characterized by a sort of diagonal map, such as δ, and a map ε which dualizes the map η in

definitions 4.2.1 and 4.3.3.

We start then with a monoidal category C. By definition, C must satisfy certain natural

isomorphisms, given in 4.3.1, which we rebaptize in this section, for convenience, with more

suggestive names

1. assoc: X ⊗ (Y ⊗ Z) ≅ (X ⊗ Y) ⊗ Z

2. ins-l: X ≅ 1 ⊗ X

3. exch: X ⊗ Y ≅ Y ⊗ X

Let also:

4. ins-r = exch ° ins-l : X ≅ X ⊗ 1

As mentioned in section 4.4, the connective of linear implication __o is interpreted by the right

adjoint to the tensor product ⊗ , when C is a monoidal closed category, as defined in section 4.3.

Recall that the category CoMonC of commutative comonoids over a monoidal category C, has

as objects, for c in C, (c, δ: c→c⊗c, ε: c→1), and morphisms f: (c, δ, ε)→(c', δ', ε'), for each

arrow f: c→c' in C , such that

δ' ° f = (f⊗f) ° δ : c→c'⊗c',

ε' ° f = ε: c→1 .

5. Universal Arrows and Adjunctions

113

Given a commutative comonoid (c, δ: c→c⊗c, ε: c→1) observe that the following equations hold:

(ε⊗idc) ° δ = ins-l : c→1⊗c

exch ° δ = δ : c→c⊗c

assoc ° (idc⊗δ) ° δ = (δ⊗idc) ° δ : c→(c⊗c)⊗c .

Exercise As pointed out after definition 4.3.6, if C is Cartesian, in the sense that ⊗ is actually a

cartesian product ∩ and the isomorphisms are the canonical ones, then all the maps and

isomorphisms above can be constructed for each object in C (in particular, recall that δ and ε are

canonically given; namely, δ = <id,id> : c→c∩c is the diagonal and ε: c→t is the unique map to

the terminal object). Prove that, if C is Cartesian, then C is actually isomorphic to CoMonC. Does

the converse hold?

5.5.4 Definition A ! - model is a linear category C and a comonad (!,D,E) such that there

exist natural isomorphisms

I : !(A∩ B) ≅ !(A)⊗!(B)

J : !t ≅ 1

where t and 1 are the identities for ∩ and ⊗ , the Cartesian and tensor products in C.

Indeed, by definition, in a linear category one has both a monoidal and a Cartesian structure. The

relation established by the natural isomorphisms gives the monoids we need.

5.5.5 Lemma Let <C,(!,D,E)> be an !-model. Then, for each object c in C, there exist maps

δ':!c→!c⊗!c and ε': !c→1, such that (!c, δ', ε') is a comonoid.

Proof. Just set δ'= Ι˚!δ : !c →!(c∩c) →!c⊗!c

ε'= Ι˚!ε : !c → !t →1

where δ = <id,id> : c→c∩c and ε: c→t are the monoidal maps in the remark above, w.r.t. the

Cartesian product ∩. The rest is easy.♦

Thus, the comonad (!: C→C, D: !→!°!, Ε: !→IdC) associated with a !-model gives all the

ingredients for the interpretation of the connective !, of course. In view of the above lemma, we can

define the functor !: C → CoMonC by

!(c) = (!c, δ':!c →!c⊗!c, ε': !c →1) .

This gives the required monoids, while the natural transformations D and E uniformly yield maps

Dc : !c →!°!c and Εc : !c →c, which are needed to interpret the rules in (!,r) and (!,l).

We already mentioned in section 4.4 that the idea of the interpretation relies on viewing

entailments as morphisms. In short, observe that, with an informal blend of syntax and semantics,

5. Universal Arrows and Adjunctions

114

the rules are interpreted by the fact that

(weakenings) each morphism f: 1→∆

gives a morphism f˚εa: !a→∆

(contractions) each morphism f: !a⊗!a→∆

gives a morphism f˚δa: !a→∆

(!,l) each morphism f: a→∆

gives a morphism f˚Ea: !a→∆

(!,r) each morphism f: !c→a

gives a morphism !f˚Dc: !c→!a .

As for the rules which contain ?, their meaning is easily derivable by duality. The idea is to define a

functor ? : C→C by

 ? = * ˚ ! ˚ *

that is ?A = (!A*)*. Then the following theorem gives the categorical meaning of the modality ?,

why not.

5.5.6 Theorem Let <C,(!,D,E)> be an !-model. Then there exist a monad (?, D': ?˚ ?→?, E':

Id→?) and natural isomorphisms

I': ?(A⊕B) ≅ ?(A)∪?(B)

J': ?0 ≅ ⊥ ,

where 0 and ⊥ are the identities for ⊕ and ∪, the duals of the Cartesian and tensor products in

C .

Proof. Set ? = * ˚ ! ˚ * : C → C and, for each object A, D'A = (DA*)* and E'A = (EA*)*. As

D: !→!°!, one has

DA*: !A*→!°!A*

(DA*)*: (!°!A*)*→(!A*)* by def.of (-)*

(DA*)*: (!°*°*°!A*)*→(!A*)* by Id ≅ (-)**

D'A: ?°?A→?A

Each of these steps is an isomorphism, uniform in A, and gives a natural transformation D': ?˚?→?.

Similarly, from Ε: !→IdC one has EA*: !A*→A* and, thus, E'A = (EA*)*: A→?A. The

properties required for a monad follow by duality.

As for the natural isomorphisms, compute

 ?(A⊕B) = * ˚ ! ˚ *(A⊕B)

= * ˚ !(A*∩B*) by theorem 4.4.6

5. Universal Arrows and Adjunctions

115

≅ (!(A*)⊗!(B*))* by def. of !-model

= ?A∪?B by theorem 4.4.6.

Finally, ?0 = * ˚ ! ˚ *0 ≅ * ˚ ! t ≅ 1* ≅ ⊥ , by definition and theorem 4.4.6. ♦

Exercise Endow a structure of monoid over each object in a monoidal category whose tensor

product is actually a Cartesian coproduct. Then give the details of the interpretation of the rules for ?.

Next we find, within any categorical model of linear logic, an interpretation for the intuitionistic

connectives ∩ and ⇒, by using the comonad construction in the !-model. Namely, given an !-

model C, one may interpret intuitionistic “and” and “implication” by Cartesian product and

exponential in a suitable category derived from C. As the purpose of the iterator ! was to take us

back to intuitionistic logic, we use its categorical meaning to construct this new category.

As a matter of fact, in the remark 5.5.3, we hinted how to derive intuitionistic connectives from

linear ones, once the connective ! is available. The following result gives the categorical counterpart

of that construction.

Observe that in general, given a comonad (T, δ, ε) over C, the co-Kleisli category K is the

category whose objects are those of C, and the set K[A,B] of morphisms from A to B in K is

C[T(A),B]. The identity in K[A,A] is εΑ: T(A)→Α. The composition of f∈K[A,B] and g∈K[B,C]

in K is

gof = g ° T(f) ° δA : T(A)→Τ2(Α)→Τ(Β)→C

(see definition 4.2.4 where Kleisli categories over monads were defined).

5.5.7 Theorem If C be an !-model. Then the co-Kleisli category K associated with the comonad

(!,D,E) is Cartesian closed.

Proof (hint) The exponent of two objects B and C is (!B__oC). We then have the following

chain of isomorphisms:

 K[A∩B, C] ≅ C[!(A∩B), C] by definition of K

≅ C[!(A)⊗!(B), C] as !(A∩B) ≅ !(A)⊗!(B)

≅ C[!(A), !B__oC] as C is monoidal closed

≅ K[A, !B__oC] by definition of K. ♦

Example In section 2.4.2 we defined the category Stab of coherent domains and stable functions.

In that section (see exercise 4) the subcategory Lin, with linear maps, was also introduced and, later

(see section 4.4), it was given as an example of linear category. We also defined a function ! on

coherent domains as follows: if X is a coherent domain, then !X is the coherent domain defined by:

i. |!X| = {a / a∈X, a finite};

ii. a↑b [mod !X] iff a∪b∈X.

5. Universal Arrows and Adjunctions

116

We need now to extend it to a functor ! : Stab→Lin. Recall that a linear map g: Z→Z' is uniquely

determined by its behavior on the points of the coherent domain Z, i.e., on the elements of |Z|.

Moreover, any stable map may be equivalently described in terms of its trace. Set then, for each

stable map f : X→Y,

Tr(!f) = {({a}, b) | b∈Y, b finite, a∈X, a finite and least such b ⊆ f(a) }.

Next, we define an adjunction between ! and the obvious inclusion functor Inc from Lin into

Stab. This is given by a natural isomorphism

(iso) ϕ : Lin[!A,B] ≅ Stab[A,B]

where the inclusion functor is omitted.

Once more we use traces, that is, for each g∈Lin[!A,B] set

Tr(ϕ(g)) = {(a, y) | ({a}, y)∈Tr(g) } .

The reader may prove for exercise the naturality of ϕ. In particular, the unit and counit of the

adjunction are given, as usual, by

ηA = ϕ(id!A) : A→!A where Tr(ηA) = {(a, a) | a∈A finite }

εA = ϕ−1(idA) : !A→A where Tr(εA) = {({x}, x) | x∈|A| }.

Exercise Check, by actual computations in the structure, that !f = ϕ−1(ηA˚f) and f = ϕ(εA˚!f).

Following theorem 5.4.1, (!, Inc, η, ε) yields a comonad

(! = !˚Inc: Lin→Lin, D = !ηInc: !→!°!, Ε = ε: !→IdC)

as required to turn Lin into an !-model. Moreover, it is a matter of a simple observation on the

“hardware” of coherent domains to show that the isomorphisms needed to complete the definition

hold in Lin, namely, that !(A∩B) ≅ !(A)⊗!(B) and !t ≅ 1 are uniformly valid in this model (see

the example in section 4.4).

Interestingly enough, by (iso) above, Stab is the co-Kleisli category associated with the

comonad (!, D, Ε) on Lin.

We conclude this section by identifying a class of categories which yield an interesting interpretation

of the modality ! . The idea is to interpret !A as the commutative comonoid freely cogenerated by A,

not just as a comonoid in the intended linear category.

5.5.8 Definition Let C be a linear category and U: CoMonC→C be the forgetful functor which

takes (c, δ, ε) to c. Then C is a free !-model if there exists a right adjoint to U, that is a functor

! : C→CoMonC and a natural isomorphism Ω: C[c,a] ≅ CoMonC[(c,δ,ε), !(a)] .

We need to show that free !-models are indeed !-models. This follows from the simple, but

powerful, adjointness property stated in 5.5.8. As already recalled, by proposition 5.4.1, each

5. Universal Arrows and Adjunctions

117

adjunction yields a comonad. We explicitly reconstruct the units and counits as they bear some

information.

5.5.9 Lemma Let C be a free !-model and <U,!,ΩΩΩΩ> be the given adjunction. Then, for ! =

U°!, there exist natural transformations D: !→!°! and Ε: !→IdC such that

(!: C→C, D: !→!°!, Ε: !→IdC)

is the comonad associated with C, in the sense of proposition 5.4.1.

Proof By the definition of morphism in CoMonC, for every h∈C[c,a], the morphism Ω(h)∈

CoMonC[(c,δ,ε),!(a)] satisfies the following equations:

hom-1. δa ° Ω(h) = (Ω(h)⊗Ω(h)) ° δ : c→!a⊗!a ;

hom-2. εa ° Ω(h) = ε : c→1 .

Moreover, the naturality of Ω is expressed by the following equations:

for every h∈C[c,a] , f∈C[a,b] , g∈CoMonC[(c',δ',ε'), (c,δ,ε)] :

nat-1. Ω(f ° h) = !(f) ° Ω(h) ;

nat-2. Ω(h ° U(g)) = Ω(h) ° g .

The counits of the adjunction (Ω, U, !): CoMonC→C, are arrows Εc=Ω-1(id!(c)): !c→c. By

equation (nat-1) above, for h = Εc, we obtain !(f) = Ω(f ° Εc), and by equation (nat-2), Εc ° U(Ω(h))

= h . The family of arrows {Εc}c∈C defines a natural transformation Ε: (U ° !)→I. Dually the

units of the adjunction define a natural transformation Η : I→(! ° U), where: Η(c,δ,ε) = Ω(idc) :

(c,δ,ε)→ !c. The adjunction between CoMonC and C is thus equivalently expressed by the

parameters (U, ! , Η: I→(! ° U), Ε: (U ° !)→ I).

Remember now that a comonad over a category C is a comonoid in the category of endofunctors

from C to C (with composition as product, see 4.2.2).

By proposition 5.4.1, every adjunction (F, G, η: IdC→G°F, ε: F°G→IdC') from C to C'

determines a comonad (T = F°G, δ = FηG: T→ T°T, ε : T→IdC') over C'.

In particular the adjunction (U, ! , Η: I→(! ° U), Ε: (U ° !)→ I): CoMonC→C, defines a

comonad (! = U ° ! , D = UΗ! : ! → ! ° ! , Ε : ! →IdC) over the !-model C. ♦

Finally we derive the natural isomorphisms in definition 5.5.4.

5.5.10 Theorem Let C be a free !-model and (!: C→C, D: !→!°!, Ε: !→IdC) be the comonad

associated with it by the lemma. Then there exist natural isomorphisms

I: !(A∩B) ≅ !(A)⊗!(B)

J: !t ≅ 1

where t and 1 are the identities for ∩ and ⊗ , the Cartesian and tensor products in C.

Proof Consider the comonoid (!(A)⊗!(B),δ,ε) where

δ = mix ° (δA⊗δB) : !(A)⊗!(B) → (!(A)⊗!(B))⊗(!(A)⊗!(B))

5. Universal Arrows and Adjunctions

118

ε = ins-r-1 ° (εA⊗εB) : !(A)⊗!(B) → 1

and

mix : (!(A)⊗!(A))⊗(!(B)⊗!(B)) → (!(A)⊗!(B))⊗(!(A)⊗!(B))

is the obvious isomorphism.

Then, by hypothesis, we have an isomorphism

Ω: C[!(A)⊗!(B),A∩B] ≅ CoMonC[(!(A)⊗!(B),δ,ε), !(A∩B)]

The isomorphism IA,B from !(A∩B) to !(A)⊗!(B), which we write I for short, is given by

I = (!fst ⊗!snd) ° δA∩B : !(A∩B) → !(A)⊗!(B)

Note that I is a morphism of comonoids, that is, as it is easily verified,

δ ° I = (I⊗I) ° δA∩B
ε ° I = εA∩B

The inverse image of I is defined in the following way.

Let

k1 = ΕA ° ins-r-1 ° (id!A ⊗ εB): !(A)⊗!(B)→A

k2 = ΕB ° ins-l-1 ° (εA ⊗ idB): !(A)⊗!(B)→B

and

k = <k1, k2> : !(A)⊗!(B)→A∩B

Then the inverse image of I is U(Ω(k)) = Ω(k) : !(A)⊗!(B)→!(A∩B), indeed:

Ω(k) ° I =

= Ω(k ° I) by (nat-2)

= Ω(<k1, k2> ° I) by def. of k

= Ω(<k1 ° I, k2 ° I >)

= Ω(<ΕA°ins-r-1°(id!A⊗εB)°(!fst⊗!snd)°δA∩B, ΕB°ins-l-1°(εA⊗idB)°(!fst⊗!snd) ° δA∩B >)

by def. of k1, k2 and I

= Ω(<ΕA°ins-r-1°(id!A⊗εA)°(!fst⊗!fst)°δA∩B, ΕB°ins-l-1°(εB⊗idB)°(!snd⊗!snd) ° δA∩B >)

as εB°!snd = εA∩B = εA°!fst

= Ω(< ΕA ° ins-r-1 ° (id!A⊗εA) ° δA ° !fst, ΕB ° ins-l-1 ° (εB⊗idB) ° δB ° !snd >)

as !fst and !snd are comonoid morphisms

= Ω(< ΕA ° !fst, EB ° !snd >) by properties of comonoids

= Ω(< fst ° ΕA∩B, snd ° ΕA∩B >) by naturality of E

= Ω(ΕA∩B)

= id!(A∩B) . by def. of E

I ° Ω(k) =

= (!fst ⊗!snd) ° δA∩B ° Ω(k)

= (!fst ⊗!snd) ° (Ω(k)⊗Ω(k)) ° δ by (hom-1)

= (!fst ° Ω(k))⊗(!snd ° Ω(k)) ° δ

5. Universal Arrows and Adjunctions

119

= (Ω(fst ° k))⊗(Ω(fst ° k)) ° δ by (nat-1)

= (Ω(k1))⊗(Ω(k2)) ° δ by def. of k

= (Ω(ΕA ° ins-r-1 ° (id!A ⊗ εB))⊗(Ω(EB ° ins-l-1 ° (εA ⊗ idB)) ° δ

by def. of k1 and k2
= (ins-r-1 ° (id!A ⊗ εB))⊗(ins-l-1 ° (εA ⊗ idB)) ° δ

by (nat-2) and def. of Ε

= (ins-r-1 ° (id!A ⊗ εB))⊗(ins-l-1 ° (εA ⊗ idB)) ° mix ° (δA⊗δB)

by def. of δ

= (ins-r-1 ° (id!A ⊗ εA))⊗(ins-l-1 ° (εB ⊗ idB)) ° (δA⊗δB)

by application of mix

= (ins-r-1 ° (id!A ⊗ εA) ° δA)⊗(ins-l-1 ° (εB ⊗ idB) ° δB)

by properties of comonoids

= id!(A)⊗id!(B)
= id!(A)⊗!(B) .

The construction is clearly uniform in A and B.

As for the natural isomorphism J, note that !A ≅ !(A∩t) ≅ !A⊗!t , !A ≅ !(t∩A) ≅ !t⊗!A and

that the right and left identity, in a monoidal category, are unique. ♦

References Universal arrows and adjunctions are fundamental notions in Category Theory.

Their treatment, in various forms, and references to their origin may be found in all textbooks we

mentioned in the previous chapters. References for Linear Logic have been given in chapter 4.

6. Cones and Limits

120

Chapter 6

CONES AND LIMITS

In chapter 2, we learned how common constructions can be defined in the language of Category

Theory by means of equations between arrows of given objects. In chapter 4, we saw that those

definitions were based on the existence of an universal arrow to a given functor. The category-

theoretic notion of limit is merely a generalization of those particular constructions, as it stresses their

common universal character. From another point of view, the limit is a particular and important case

of universal arrow, where the involved functor is a “diagonal,” or “constant” functor, as we shall

see. To help the reader become confident with this new notion, we begin this chapter by looking back

at the constructions of chapter 2 and we regard them as particular instances of limits. Then we study

some relevant properties concerning existence, creation, and preservation of limits. As for computer

science, limits have been brought to the limelight mainly by the semantic investigation of recursive

definition of data types: this particular application of the material in this chapter will be discussed in

chapter 10.

6.1 Limits and Colimits
The concept of limit embodies the general idea of universal construction, that is, of an entity which

has a privileged behavior amongt a class of objects that satisfy a certain property. The only way to

define a property in the categorical language is by specifying the existence and equality of certain

arrows, that is, essentially by imposing the existence of a particular commutative diagram amongt

objects inside the category.

6.1.1 Definition A diagram D in a category C is a directed graph whose vertices i∈I are

labeled by objects di and whose edges e∈E are labeled by morphisms fe.

A diagram D in C is similar to a subcategory of C; however, it does not need to contain identities,

nor must it be closed under composition of morphisms.

More formally, a diagram in a category C should be defined as a graph homomorphism D

from an index graph I to the (graph underlyng the) category C . Such a diagram is called “of type

I”. For the adjunction between graphs and categories, this is exactly the same as a functor from the

category I freely generated by the graph I (the index category) to C. A graph is called small when

the index category is small.

6. Cones and Limits

121

6.1.2 Definition. Let C be a category and D a diagram with objects di, i∈I . Then a cone to

D is an object c and a family of morphisms {fi∈C[c,di] | i∈I } such that

∀i,j∈I ∀e∈E fe∈C[di,dj] �⇒ fe ° fi = fj .

A cone may be visualized by

Cocones are defined dually.

Example In a partial order P, cones correspond to lower bounds, cocones to upper bounds.

Note now that, given a diagram D, the cones to D form a category, call it ConesC,D . Just take

as morphisms from (c,{fi∈C[c,di] | i∈I}) to (c',{hi∈C[c',di] | i∈I}) any g∈C[c,c'] such that

∀i∈I hi ° g = fi. That is,

Clearly, ConesC,D is a category. Dually one defines the category CoconesC,D .

6.1.3 Definition. Let C be a category and D a diagram. Then a limit for D is a terminal object
in ConesC,D . Colimits are defined dually.

(c,{fi∈C[di,c] | i∈I}) is the initial object in CoconesC,D, it may be visualized by the following

commutative diagram:

6. Cones and Limits

122

Limits are also called universal cones, as any other cone uniquely factorizes via them. Dually,

colimits are called universal cocones.

Examples

1. Let P be a partial order. Then limits correspond to greater lower bounds, while colimits

correspond to least upper bounds.
2. Let D = ({di}i∈ω, {fi∈Set[di, di+1]}i∈ω) be a diagram in Set such that di ⊆ di+1, and fi =

incl (the set-theoretic inclusion). Then the colimit of d0 →di → di+1 → is ∪{di}

(exercise: what is the limit of the same diagram?) .

Exercise Prove that the colimits in C are the limits in Cop of the dual diagram.

Consider now a diagram as a functor from an index category I to C. Note first that any object c
of the category C is the image of a constant functor Kc: I→C, and so Kc can be regarded as a

degenerate diagram of type I in C. Once diagrams are defined as functors, it makes sense to

consider natural transformations between diagrams. If D and D' are two diagrams of type I, a
natural transformation from D to D' is a family of arrows fi indexed on objects in I such that for

each arrow e in I (each edge of the graph of type I)

A cone for a diagram D of type I from an object c is then a natural transformation from the
constant diagram Kc to D

6. Cones and Limits

123

Dually, a cocone for a diagram D of type I to an object c is a natural transformation from D to
the constant diagram Kc .

6.2 Some Constructions Revisited
Let D be an empty diagram, that is a diagram with no objects and no arrows. By definition, a cone

in C to D is then just an object c of C, with no other structure (and every object of C can be seen

as a cone). A limit for the empty diagram is then an object t such that for any other object c there is

exactly one arrow from c to t, i.e., it is a terminal object. Dually, the initial object is the colimit

of the empty diagram.

A graph is called discrete if it has no arrows. For example the set {1,2} can be regarded as a
discrete graph. A diagram of type {1,2} in a category C is an ordered pair of objects, (c1,c2). A

limit for such a diagram is an object d, together with two arrows f1: d→c1 and f2: d→c2, such

that for any other cone (d',{gi∈C[d',ci] | i∈{1,2} }) there exists exactly one arrow h: d'→d, with

fi ° h = gi for i∈{1,2}.

But this is just the definition of product d of c1 and c2 with f1: d→c1 and f2: d→c2 as

projections.
Dually, the coproduct ci#cj, if it exists, is just the the colimit of the diagram {ci,cj}.

The product of any indexed collection of objects in a category is defined analogously as the limit

of the diagram D: I→C where I is the index set considered as a discrete graph. This product is

usually denoted by Πi∈IDi, although explicit mention of the index set is often omitted.

Consider the graph I with two vertices and two edges

A diagram of type I in a category C is a pair of objects, a and b, and a pair of parallel arrows

f,g∈C[a,b]. A cone for this diagram consists of an object d, and two arrows h∈C[d,a] and

k∈C[d,b] such that g ° h = k and f ° h = k. A limit is a cone (d,{h,k}) that is universal, that is,

for any other cone (d',{h',k'}) there exists exactly one arrow l: d'→d such that h ° l = h', and k °

l = k'.

6. Cones and Limits

124

Note now that the existence of two arrows, h and k, such that g ° h = k and f ° h = k, is

equivalent to the existence of an arrow h such that g ° h = f ° h. Moreover, h ° l = h' implies k ° l =

k', since k ° l = f ° h ° l = f ° h' = k', thus the above limit is just the equalizer of f and g .

Dually, coequalizers are the colimits for the same diagram.

Consider now the following graph:

A diagram of this type in a category C is a given by three objects, a, c, and b, and two morphisms,

f∈C[a,c] and g∈C[b,c]. A cone to this diagram is an object d, together with three morphisms

ha∈C[d,a], hc∈C[d,c] and hb∈C[d,b], such that the following diagram commutes:

A cone (d, {ha, hb, hc}) is a limit, if for any other cone (d', {h'a, h'b, h'c}) there exists a unique

arrow k: d'→d such that h'i = hi ° k, for i∈{a,b,c}.

The commutativity of the previous diagram implies that f ° ha = g ° hb; conversely, given two

arrows ha and hb such that f ° ha = g ° hb, one obtains a cone by defining hc = f ° ha = g ° hb.

Thus, the diagram for the cone (d, {ha, hb, hc}) is equivalently expressed by giving only the outer

commutative “square”, i.e., by giving (d, {ha, hb}). In conclusion, a universal cone for a diagram

of this type turns out to be just a pullback.

As usual, by taking the colimit of the same diagram we obtain the dual notion of pushout.

6. Cones and Limits

125

6.3 Existence of limits
In this secton, we study the important question about the existence of limits in a given category.

Starting with the familiar category of sets, we generalise a common construction that allows the

existence of complex limits to be states, provided that simpler ones exist.

Note first that every diagram D has limit in Set. It is obtained as follows.
Let {Di}i∈I be a family of objects in D and consider the object Πi∈IDi, i.e., the product

indexed by I. The elements of Πi∈IDi are tuples {x0, x1, x2, ...} such that xi∈Di, for all i∈I,

or equivalently functions f : I�→∪i∈IDi, such that f(i)∈Di .

Πi∈IDi has projections pi : Πi∈IDi→Di for all i∈I, defined by pi({x0,x1,x2, ...}) = xi. In

general these projections do not form a cone on D, that is, if fe: Di→Dj is an edge of D, one may

have pj ≠ fe°pi . The idea is to take the subset L of Πi∈IDi of all the tuples that satisfy the

condition pj = fe°pi. That is, {x0, x1, x2, ...}∈L if and only if, for all edges fe: Di→Dj, one has

xj = fe(xi). Let then γi be the projection pi restricted to L. Then (L,{ γi ∈ C[L,Di] | i ∈ I}) is

the limit (prove it as an exercise).

This set-theoretic construction is better formalized in Category Theory in the following way.
Let Π(Dj / ∃i∈I ∃e∈E fe: Di→Dj) be the product of all codomains of edges in D, with

projections πj: Π(Dj / ∃i∈I ∃e∈E fe: Di→Dj) → Dj. By definition of product, there is a unique

function
ψ1: Πi∈IDi→ Π(Dj / ∃i∈I ∃e∈E fe: Di→Dj)

such that pj = πj°ψ1 for any edge fe: Di→Dj of D. Analogously there is a unique function

ψ2: Πi∈IDi→ Π(Dj / ∃i∈I ∃e∈E fe: Di→Dj)

such that fe°pi = πj°ψ2 for any edge fe: Di→Dj of D.

This is visualized in the following diagram:

Note now that, in set-theoretic terms, for all the tuples {x0, x1, x2, ...} in Πi∈IDi the following

properties are equivalent:
1. for all edges fe: Di→Dj, xj = fe(xi)

2. ψ1({x0, x1, x2, ...}) = ψ2({x0, x1, x2, ...})

6. Cones and Limits

126

Then, what we are looking for is the maximal subset L of Πi∈IDi whose elements satisfy (2), but

we aleady know that this is none other than the equalizer of ψ1 and ψ2. By a diagram,

We are now ready to generalize to every category C the previous construction of limits in Set.

6.3.1 Theorem Let D be a diagram in C with sets I of vertices and E of edges. If every I-

indexed family and every E-indexed family of objects has a product, and every pair of morphisms

has an equalizer, then D has a limit.

Proof Exercise (use the previous diagrams). ♦

6.3.2 Corollary If a category C has arbitrary products, and equalizers for every pair of

morphisms, then every diagram has a limit.

6.3.3 Corollary If a category C has all finite products, and coequalizers for every pair of

morphisms, then every finite diagram has a limit.

The relevance of theorem 6.3.1 is that, in general, it is simpler to check the existence of products and

equalizers than to prove directly the existence of limits.

Example Corollary 6.3.2 may be used to prove that every diagram has a limit in CPO. If {Ci}i∈I
is a family of c.p.o.’s, let Πi∈ICi be the product indexed by I . Πi∈ICi may be given a c.p.o.

structure by the componentwise order, that is, (ci)i∈I ≤ (di)i∈I iff ∀ i∈I ci ≤ di. The projections

pi: Πi∈I(Ci)→Ci are defined by pi((ci)i∈I) = ci . It is easy to prove that Πi∈I(Ci) is indeed a

cpo, that the projections are continuous, and that Πi∈I(Ci) satisfies the universal property of the

product.

Given f,g : A→B , their equalizer is h: A'→A, where A' = {a∈A / f(a) = g(a)} with the

ordering inherited by A, and h is the injection. A' is a c.p.o. Indeed, let D be a direct subset of

6. Cones and Limits

127

A'; then D is also a direct subset of A, and thus f(∪D)= ∪a∈Df(a) = ∪a∈Dg(a) = g(∪D). By

this, ∪D∈A'. The continuity of h and the universal property for equalizers are easy to prove.

In propositions 2.5.5 and 2.5.6 we showed how to define products and equalizers from terminal

objects and pullbacks. This suggests an even simpler sufficient (and necessary) condition for the

existence of all finite limits.

6.3.4 Corollary If C has a terminal objects and pullbacks for every pair of morphisms, then it has

all finite limits.

Exercise State the dual versions of theorem 6.3.1 and corollaries 6.3.1 to 6.3.4.

6.4 Preservation and Creation of Limits
In this section we study some cases of functors which “preserve” the property of objects to be limits

of a diagram.

6.4.1 Definition Let G: A→X be a functor, and let (a,{τi ∈ A[a,di] | i∈I}) be an universal cone

from a on the diagram D in A. We then say that G preserves the limit (a,{τi ∈ A[a,di] |

i∈I}) if and only if (Ga,{Gτi ∈ X[Ga,Gdi] | i∈I}) is an universal cone from Ga on the diagram

G(D) in X . Preservation of colimits is defined dually.

6.4.2 Theorem If the functor G: A→X has a left adjoint F: X→A, and the diagram D =

({di}i∈I, {fe}e∈E) in A has limit (a, {τi∈A[a,di] | i∈I}), then G(D) = ({Gdi}i∈I, {Gfe}e∈E)

has a limit in X, and the limit is (Ga,{Gτi∈X[Ga,Gdi] | i∈I}).

Proof By the properties of functors, ({Gdi}i∈I, {Gfe}e∈E) is a cone; we only need to prove that

it is universal. Let (x,{σi∈X[x,Gdi] | i∈I}) be another cone, and let ϕ: A[Fx,di] ≅ X[x,Gdi] be

the isomorphism of the adjunction. Then (Fx, {ϕ−1(σi)∈A[Fx,di] | i∈I}) is a cone. Indeed, for all

fe: di→dj one has

 fe°ϕ−1(σi) = ϕ−1(G(fe)°σi) by naturality

= ϕ−1(σj) because (σi) is a cone on G(D) .

By the universality of (a, {τi∈A[a,di] | i∈I}) there exists a unique arrow h: Fx→a such that

∀i∈I τi°h = ϕ−1(σi). Take then ϕ(h): x→Ga. Since Gτi°ϕ(h) = ϕ(τi°h) = σi, one has that ϕ(h) is

a mediating morphism between the cones (x, {σi∈X[x,Gdi] | i∈I}) and (Ga, {Gτi∈X[Ga,Gdi] |

i∈I}).

6. Cones and Limits

128

Moreover, ϕ(h) is unique, for, if ϕ(h') is another mediating morphism, then h' is a mediating

morphism between (Fx,{ϕ−1(σi)∈A[Fx,di] | i∈I}) and (a, {τi∈A[a,di] | i∈I}). By universality,

h' = h (see the diagram below). ♦

The proof of theorem 6.4.2 may be visualized by the following commutative diagrams:

Exercise Give the dual statement of theorem 6.4.2 .

An example of application of (the dual of) theorem 6.4.2 is the following.

6.4.3 Theorem In every Cartesian closed category C, products distribute over colimits.

Proof Just note that by definition of CCC the functor -×a: C→C has a right adjoint for each

a∈ObC, and apply the dual of theorem 6.4.2. ♦

6.4.4 Corollary Let C be a CCC. Suppose, moreover, that it contains an initial object 0, and
coproducts for each pair of objects. Then, for all X,Y,Z∈ObC, one has

i. 0 x Z ≅ Z

ii. (X + Y) x Z ≅ (X x Z) + (Y x Z)

Exercises (Huwig-Poigné) A category C has fixpoints if for every morphism f: X×X'→X'

there exists a morphism Y(f): X→X' such that f ° <idX,Y(f)> = Y(f). Prove then the following

facts:

1. CPO has fixpoints.

2. If C is a CCC and it has an initial object 0 and fixpoints, then it is inconsistent , i.e. all objects
are isomorphic. (Hint: let t the terminal object, and consider the projection p2: tx0→0. Then

Y(p2): t→0. Deduce from this an isomorhism between 0 and t ...) .

3. (difficult) If C is a CCC and it has fixpoints and binary coproducts, then C is inconsistent. Hint:

consider the object 2=t+t and interpret the injection tt: t→2 and ff: t→2 as denoting “truth” and

6. Cones and Limits

129

“falsehood.” Then all finitary truth tables can be expressed by morphisms in 2×2×....×2 →2. The

existence of a fixpoint for “not” induces the following identities:

tt = Y(not) or not(Y(not)) = Y(not) or Y(not) = Y(not)

ff = Y(not) and not(Y(not)) = Y(not) and Y(not) = Y(not)
Hence the injections tt , ff : t→2 are identified. As, for all objects X in C, X+X = (t×X) + (t×X)

= (t+t)×X , one may deduce the equality of the coproduct injections u,v: X→X×X for all X . By

this it is easy to obtain the inconsistency.

Fixed points will be widely discussed in chapter 8. The reader may already understand, though,

that from the point of view of denotational semantics, this is a negative result: coproducts (i.e.

disjoint sums) are incompatible with fixed point operators. As is well known, both constructions are

rather relevant in semantic domains.

Another important case of limit-preserving functor is the hom-functor.

6.4.5 Theorem Let C be a small category. For any object c∈ObC, the hom-functor hom[c,_]:

C→Set preserves limits.

Proof: Consider the diagram D = ({di}i∈I, {fe}e∈E) in C, and let (a, {τi∈A[a,di] | i∈I}) be a

limit. We must prove that the diagram S = ({hom[c,di]}i∈I, {fe ° _}e∈E) has a limit in Set.

Take L = (hom[c,a],{τi ° _ : hom[c,a]→hom[c,di] | i∈I}) as a limit.

Since hom[c,_] is a functor, L is a cone for S. We have only to prove that it is universal.
Suppose then that L' = (X, {γi : X→hom[c,di] | i∈I}) is another cone for S. This means that for

any fe: di→dj, and any x∈X, fe ° γi(x) = γj(x). For any x∈X, (c, {γi(x): c→di | i∈I}) is then a

cone for D, and by universality of (a, {τi∈A[a,di] | i∈I}), there exists a unique morphism hx:

c→a in C such that γi(x) = τi ° hx for all i. Define then h: X→hom[c,a] by h(x) = hx. We have

(τi ° _) ° h = γi, since for every x∈X , τi ° h(x) = τi ° hx = γi(x). Unicity follows by unicity of hx
for any x. ♦

Exercise Use theorem 6.4.5 and prove theorem 6.4.2 in case the categories considered are small.

4.6 Definition A functor F: A→X creates limits for a given diagram D if, whenever (x,

{σi∈X[x,F(di)] | i∈I}) is a limit for F(D) in X, then there exists a unique cone (a, {τi ∈A[a,di] |

i∈I}) over D in A, such that F(a) = x and F(τi) = σi for every i∈I, and (a,{τi ∈ A[a,di] |

i∈I}) is a limit.

Example The forgetful functor U from Grp to Set creates all limits. For instance, the fact that it

creates products is another way of stating that, given two groups G and G', there is a unique

group structure on U(G)×U(G'), which gives their product in Grp.

6. Cones and Limits

130

6.5 ωωωω -limits
An important case of diagrams in a category C is that of infinite chains of objects. These diagrams,

and the associated limits, are particularly relevant for the denotational semantics of programming

languages, since they provide the base for the solution of recursive domain equations with the so-

called least fixed point technique (see chapter 10)

6.5.1 Definition
i) An ωωωω-diagram in a category C is a diagram with the following structure:

(dually, one defines ωωωωOP-diagrams by just reversing the arrows).

ii. A category C is ωωωω-complete (ωωωω-cocomplete) iff it has limits (colimits) for all ω-diagrams.

iii. A functor F: C→C is ωωωω-continuous iff it preserves all colimits of ω-diagrams.

If C is a partial order then,

i. an ω-diagram in C is an ω-chain

ii. C is ω-cocomplete if and only if C is a cpo

iii. a functor F: C→C is ω-continuous iff the associated function on object of C is continuous.

6.5.2 Theorem Let C be a category with initial object 0. Let F: C→C be an ω-continuos

(covariant) functor and z∈C[0,F(0)] be the unique arrows defined by the initiality of 0. Assume

also that (c, {τi∈C[Fi(0),c]i∈ω}) is a colimit for the ω-diagram ({Fi(0)}i∈ω , Fi(z)}i∈ω),

where F0(0) = 0 and F0(z) = z. Then c ≅ Fc .

Proof By the hypothesis, one has that (Fc, {Fτ i∈C [Fi+1(0),Fc]i∈ω}) is a limit for

({Fi+1(0)}i∈ω, {Fi+1(z)}i∈ω) and (c, {τi+1∈C[Fi+1(0),c]i∈ω}) is a cone for the same diagram.

Thus, by universality, there exists a unique arrow h: Fc→c such that ∀i∈ω h ° Fτi = τi+1. Now

add to (Fc, {Fτi∈C[Fi+1(0),Fc]i∈ω}) the unique arrow zFc∈C[0,Fc]. This gives a cone for

({Fi(0)}i∈ω, {Fi(z)}i∈ω) and, by the universality of (c,{τi ∈ C[Fi(0),c]i∈ω}), there exists a

unique arrow k: c→Fc such that ∀i∈ω k ° τi+1 = Fτi (of course k ° τ0 = zFc). But, then, ∀i∈ω

h ° k ° τi+1 = h ° Fτi =τi+1 (and h ° k ° τ0 = τ0), thus h°k is a mediating morphism between (c,

{τi∈C[Fi(0),c]i∈ω}) and itself. Thus, by unicity, h°k = id.

In the same way, one proves that k ° h = id. ♦

This is all summarized by the following diagram:

6. Cones and Limits

131

Theorem 6.5.2 tells us how to give meaning to recursive definitions of data types under certain

circumstances. Very informally, assume that types are interpreted as objects of a category. Then in a

recursive definition X = [...X...] of a data type of data X, the transformation [... _ ...] may be

understood as an endofunctor F(_) for which we are seeking a fixed point. Indeed, if F satisfies

the properties in theorem 6.5.2, then the theorem “solves” the equation (or recursive definition) X =

[...X...]. In a sense, this construction gives meaning to X = [...X...], over a suitable categorical

structure, in the same way that the equation x = x2+7 is “given meaning” over the complex numbers

by finding a solution for it.

However, the assumptions on F are too strong and leave out several significant cases (e.g.,

hom-functors or exponents). Chapter 10 is entirely devoted to a nontrivial extension of this technique

in order to handle a more relevant class of recursive definitions of data types.

References Main textbooks.

7. Indexed and Internal Categories

132

Chapter 7

INDEXED AND INTERNAL CATEGORIES

7.1 Indexed Categories
In this section we introduce the basic notions of the Theory of Indexed Categories. In order to

improve readability, the following exposition is an (over)simplification of the usual, and more

general, approach. In particular, many of the concepts we define up to equality can be defined up to a

fixed collection of canonical isomorphisms. In this case, the indexed notions introduced in the theory

are required to satisfy a suitable set of coherence conditions, which play a quite marginal role, but

conversely can easily puzzle the reader who is approaching the Theory of Indexed Categories for the

first time. The reader who is interested in more notions in this branch of Category Theory should

consult the References.

7.1.1 Definition Let CAT be the (meta)category of all categories, and S be a category. An S-

indexed category is a functor A: Sop→CAT .

More explicitly, an S-indexed category A is defined by the following data:

i. for every object s of S, a category A(s), called the category of s-indexed families of objects of A;

ii. for every morphism f: s→s' of S, a functor A(f): F(s')→F(s), called the substitution functor

determined by f, and frequently denoted as f*.

Example A simple but important example is the S-indexing S/: Sop→CAT of S itself. S/ takes

every object r of S to the comma category S/r. Remember that the objects of S/s are arrows h: s→r

with codomain r. These arrows should be intuitively thought of as families {h-1(i)/ i∈r}. If f:

s→s' is an arrow of S, then f*: S/s'→S/s is the pulling back functor. Note that pullbacks are

usually defined only up to isomorphism, while we are here implicitly supposing a canonical choice.

As a matter of fact, the pullback and the associated “functor” are the basic examples of notions

profitably defined up to isomorphism, which we mentioned in the introduction.

7.1.2 Definition Let A, B: Sop→CAT be two S-indexed categories.

1. The product category A×B: Sop→CAT is defined by

A×B(s) = A(s)×B(s)

A×B(f) = A(f)×B(f);

2. The dual category Aop: Sop→CAT is defined by

Aop(s) = A(s)op

7. Indexed and Internal Categories

133

Aop(f) = A(f)op

where A(f)op : A(s')op→A(s)op is the defined in the obvious way;

3. If r is an object of S, the S-indexed category Ar is defined by

Ar(s) = A(r×s)

A(f) = A(idr×f).

7.1.3 Definition Let A, B be two S-indexed categories. An S-indexed functor H: A→B is a

natural transformation from A: Sop→CAT to B: Sop→CAT.

Thus, an S-indexed functor H: A→B is a collection of functors H(s): A(s)→B(s), for s object of

S, such that for any f: s→s' in S, H(s) ° A(f) = B(f) ° H(s') (H(s) ° f* = f* ° H(s').

Given two indexed functors H: A→B and K: B→C, their composition K ° H : A→C is defined

component-wise (being the composition of natural transformations), i.e., (K ° H)(s) = K(s) ° H(s).

The identity idA: A→A, is the identity natural transformation from A to A.

7.1.4 Definition Let H: A→B, K: A→B, be two S-indexed functors. An S-indexed natural

transformation τ: H→K consists of a natural transformation τ(s): H(s)→K(s) for any object s

of S such that, for any f: s→s' in S,

(†) τ(s) ° A(f) = B(f) ° τ(s') (τ(s) ° f* = f* ° τ(s')) .

The previous definition is more complex than it seems at first sight. Note that τ(s): H(s)→K(s),

τ(s'): H(s')→K(s') are natural transformations, while A(f): A(s')→A(s) and B(f): B(s')→B(s) are

functors. We are thus composing natural transformations and functors in the way described at the end

of section 3.2. τ(s) ° A(f) and B(f) ° τ(s') are natural transformations of the following type:

τ(s) ° A(f) : H(s) ° A(f) → K(s) ° A(f)

B(f) ° τ(s') : B(f) ° H(s') → B(f) ° K(s').

But, according to the definition of S-indexed functors, for any f: s→s', one has H(s) ° A(f) = B(f) °
H(s') and K(s) ° A(f) = B(f) ° K(s'), thus equation (†) is well typed.

Spelling out the composition of natural transformations and functors in (†), we have for any f:

s→s' in S and any object a in A(s'),

τ(s)A(f)(a) = B(f)(τ(s')a)

where the previous equation holds in the category B(s).

The previous situation can be summarized in the following diagram:

7. Indexed and Internal Categories

134

(Vertical) composition of S-indexed natural transformations is defined componentwise, that is, given

H, K, L : A→B,τ: H→K and ρ: K→L, ρ ° τ: H→L is given by (ρ ° τ)(s) = ρ(s) ° τ(s). This is a

good definition since, for any f: s→s' in S and any object a in A(s'),

 (ρ ° τ)(s)A(f)(a) = (ρ(s) ° τ(s))A(f)(a)
= ρ(s)A(f)(a) ° τ(s)A(f)(a)
= B(f)(ρ(s')a) ° B(f)(τ(s')a)

= B(f)(ρ(s')a ° τ(s')a)

= B(f)((ρ ° τ)(s')a).

7.1.5 Definition Let A, B be S-indexed categories, H: A→B, K: B→A be S-indexed functors,

and η: idA→K°H, ε: Η°K→idB be S-indexed natural transformations. <H, K, η, ε> : A→B is an

S-indexed adjunction if and only if

(Kε) ° (ηK) = idK
(εH) ° (Hη) = idH .

The notion of indexed adjunction is the obvious generalization of the usual notion of adjunction. In

particular it is easy to check that for any object s of S, <H(s), K(s), η(s), ε(s)> : A(s)→B(s) is an

adjunction in the usual sense.

The main problem with the definition of adjunction as a quadruple <H, K, η, ε> : A→B is in its

generalization of the case with parameters (remember that the definition of exponents requires an

adjunction of this kind). As a triple, an indexed adjunction can be defined in the following, somewhat

informal, way:

7.1.6 Definition Let A, B be S-indexed categories, and H: A→B, K: B→A be S-indexed

functors. <H, K, φ> : A→B is an S-indexed adjunction if and only if, for every f: s→s' in S,

7. Indexed and Internal Categories

135

i. <H(s), K(s), φ(s)> : A(s)→B(s) is an adjunction

ii. φ(s) ° B(f) = A(f) ° φ(s') (φ(s) ° f* = f* ° φ(s'))

Equation ii expresses the naturality of the isomorphism φ with respect to the index s. Spelling out

the composition in ii, we can say that for any f: s→s', a in A(s'), b in B(s'), and g: H(s')(a)→b in

B(s'),

φ(s)A(f)(a),B(f)(b) (B(f)(g)) = A(f) (φ(s')a,b(g))

Suppose we have an adjunction <H, K, η, ε> : A→B. Then we obtain φ in definition 7.1.6 by

letting, for any a in A(s), b in B(s), and g: H(s)(a)→b in B(s),

 φ(s)a,b(g) = ε(s)b ° H(s)(g)

As we know from chapter 5, for any s in S, φ(s)a,b: B(s)[H(s)(a),b]→A(s)[a,K(s)(b)] is an

isomorphism. We now prove that the previous definition of φ(s) satisfies equation ii in definition

7.1.6. For any f: s→s', a in A(s'), b in B(s'), and g: H(s')(a)→b in B(s'), we have

 A(f) (φ(s')a,b(g)) = A(f) (ε(s')b ° H(s)(g)) by def. of φ(s')

= A(f) (ε(s')b) ° A(f) (H(s)(g)) since A(f) is a functor

= ε(s)B(f)(b) ° H(s)(B(f)(g)) by naturality of ε and H

= φ(s)A(f)(a),B(f)(b) (B(f)(g)) by def. of φ(s)

Conversely, given an adjunction <H, K, φ> : A→B, we obviously obtain η, ε by the following:

η(s)a = φ(s)a,H(s)(a)(idH(s)(a)) : a→K(s)H(s)a

ε(s)b = φ(s)−1K(s)(b),b(idK(s)(b)) : H(s)K(s)b→b.

Definition 7.1.6 has a straightforward generalization to the case with parameters.

7.1.7 Definition Let A, B, D be S-indexed categories, and H: A×D→B, K: Dop×B→A be S-

indexed functors. <H, K, φ> : A→B is an S-indexed adjunction with parameters in D if

and only if, for every f: s→s' in S,

i. <H(s), K(s), φ(s)> : A(s)→B(s) is an adjunction with parameters in D(s);

ii. φ(s) ° B(f) = A(f) ° φ(s') (φ(s) ° f* = f* ° φ(s')).

7. Indexed and Internal Categories

136

7.2 Internal Category Theory
A category C is small when the collection MorC of its morphisms is a set. Clearly, then, the

collection ObC of objects of C is also a set. Moreover, there are set-theoretic functions DOM,COD:

MorC→ObC that specify source and target of every morphism, a function ID: ObC→MorC that

defines the identity morphism for every object, and a partial function COMP: MorC×MorC→MorC
for the composition. Given two morphisms f and g, their composition is defined if and only if

DOM(f) = COD(g); the domain of COMP is thus the set {(f,g) | DOM(f) = COD(g)}, that is, the

pullback of the two functions DOM,COD: MorC→ObC. All these functions must also satisfy the

obvious equations stating the behavior of the identity morphism with respect to composition, the

associativity law for compositition, and the rules which specify domain and target for the identity

morphism and for the result of a composition. Thus every small category may be completely

described internally to the category Set, which becomes a sort of “universe of discourse.” The

previous discussion, however, has made very little use of the specific structure of Set; we only

needed the existence of pullbacks in order to define the correct domain of the function COMP. In this

section, we will show that most of the basic definitions of Category Theory, such as category,

functor, natural transformation and so on, can be recasted inside any category with all finite limits.

This means that any such a category may be considered a fairly big universe inside which we can

carry out constructions with almost the same confidence as we do in Set. This branch of Category

Theory is known as “internal,” since it describes notions of Category Theory by using the categorical

language as a metalanguage.

For many fields of mathematics, from Set Theory to Algebra and Geometry, treatments in the

language of Category Theory, even of well-known results, have never been worthless since most of

the time they created a new, sometimes unexpected, sense of explanation. The same holds for

Category Theory itself: in a sense, Internal Category Theory plays with respect to the general theory

the same role that Category Theory plays with respect to Set Theory. If a notion of Category Theory

cannot be described internally in a simple way, then there is surely something in that notion that is

worth spelling out. As we shall see, this is, for example, the case of the hom-functor and, more

generally, of every presheaf.

Internal Category Theory allows us to work in different universes than Set. This possibility

turns out to be very relevant in several cases, and in particular for the application we aim at in chapter

11, where Internal Category Theory will be applied to the study of categorical models for the

polymorphic lambda calculus. In that case, the possibility of working in more constructive categories

than Set turns out to be essential, as it is known that the standard set-theoretic interpretation of the

first order typed lambda calculus cannot be extended to a model of the second order typed lambda

calculus.

7. Indexed and Internal Categories

137

In the following, E will always denote a category with all finite limits. Our first step is to mimic

within E the presentation, within Set, of a small category. Thus the collections of objects and

morphisms will be viewed as objects of E.

Notation We write X×0Y (instead of X×ZY) for the pullback of X and Y along morphisms with

common target Z; <,>0 will be used as a “pullback pairing” map, that is, given (suitable) h:W→X

and k:W→Y, we have <h,k>0:W→X×0Y; the pullback projections will be usually (but not

always) denoted by the upper case Greek letter Π, indexed with a number or some other symbol.

7.2.1 Definition c = (c0,c1,DOM,COD,COMP, ID) is an internal category of E (c∈Cat(E))

iff:

c0, c1∈ObE
DOM, COD : c1 → c0
COMP : c1 ×0 c1 → c1 where c1 ×0 c1 is the pullback of DOM, COD : c1→c0
ID : c0 → c1

and moreover

7. Indexed and Internal Categories

138

Note that in the diagram expressing the associativity of composition there is an implicit isomorphism

between c1×0 (c1×0 c1) and (c1×0 c1) ×0 c1. Indeed,

COMP ˚ (COMP ×0 id) : (c1 ×0 c1) ×0 c1 → c1
COMP ˚ (id ×0 COMP) : c1 ×0 (c1 ×0 c1) → c1.

In the following, this isomorphism will be always skipped in order to maintain the notation at a

simpler level.

7.2.2 Examples 1. Given an object e in E, the internal discrete category associated with e

is (e,e,ide,ide,ide,ide).

2. Let E be a CCC with all finite limits, and let A be an object of E. It is possible to define

internally to E a category that plays the role of the category of retractions over A.

Let m = Λ(eval ˚ (id×eval)) : AA×AA →AA the internal composition map, that is let m

=λ(f,g).g ˚ f. Since E has all finite limits, it has equalizers for every pair of morphisms. Let then

(X, ξ) be the equalizer of

id : AA → AA

m ˚ <id,id> : AA →AA

The function m ˚ <id,id> : AA →AA is λf. f ˚ f; thus the object X represents the subset of AA of

all those functions f such that f = f ˚ f , i.e., X is an internalization for the set of retractions in AA.

X plays the role of c0 in the internal category we are defining.

Intuitively, a morphism between two retractions g and h is a triple (f,g,h), where f is a

function from A to A such that f = h ˚ f ˚ g.

In order to internalize this definition we use the equalizer (Y,ψ) of

p1 : AA×X×X → AA

m ˚ (m×id) ˚ < ξ ˚ p3 , p1, ξ ˚ p2 > : AA×X×X → AA

Note that m ˚ (m×id) ˚ < ξ ˚ p3 , p1, ξ ˚ p2 > is just λfgh. ξ(h) ˚ f ˚ ξ(g).

7. Indexed and Internal Categories

139

COD and DOM are obviously defined by the following equations:

DOM = p2 ˚ ψ

COD = p3 ˚ ψ

For ID, note first that by definition of ξ , m ˚ < ξ, ξ > = id ˚ ξ = ξ and, therefore,

(λfgh. ξ(h) ˚ f ˚ ξ(g)) ˚ < ξ, id, id > = ξ.

Thus < ξ, id, id >: X →AA×X×X equalizes p1 and λfgh. ξ(h) ˚ f ˚ ξ(g), and ID: X →Y is the

unique arrow such that ψ ˚ ID = < ξ, id, id >. Note that

DOM ˚ ID = p2 ˚ ψ ˚ ID = p2 ˚ < ξ, id, id > = id

COD ˚ ID = p3 ˚ ψ ˚ ID = p3 ˚ < ξ, id, id > = id.

Finally, we must define COMP: Y×0Y→Y. The idea is that (f,g,h) ˚ (f',k,g) = (f ˚ f', k, h). We

start defining an arrow M: Y×0Y→ AA×X×X such that M((f,g,h), (f',k,g)) = (f ˚ f', k, h); next

we prove that M equalizes p1 and λfgh. ξ(h) ˚ f ˚ ξ(g). Then COMP is the unique arrow from

Y×0Y to Y such that ψ ˚ COMP = M.

3. Given a function f: U→C, consider the C-indexed collection of sets {G(c) = f-1(c)}c∈C. We can

form a small category C , which has C as set of objects, and with hom-sets C [c,c'] =

Set[G(c),G(c')]. Composition and identities are inherited from Set. The previous construction can

be generalized to a generic topos E: given f: U→C in E, there is an internal category Full(f) that

plays the role of the full subcategory generated by the fibers of f. Full(f)0 is C; Full(f)1, together

with the map <DOM,COD>: Full(f)1→C×C, is defined as the exponent p1*(f)p2*(f) in the slice

category E/C×C, where

p1*(f) = f×id: U×C→C×C

p2*(f) = id×f: C×U→C×C

are respectively the pullbaks of f along the first and second projections. Composition is obtained from

the internal composition map m: p2*(f)p1*(f)×p3*(f)p2*(f)→p3*(f)p1*(f) in the slice category

E/C×C×C. Similarly, the identity morphism ID: C→Full(f)1 is obtained from the “inclusion of

identities” Λ(idf): idC→ff in the slice category E/C.

Our exposition of Internal Category Theory proceeds with the definition of “internal functor.” Again,

the intuition of a standard functor helps in the understanding of the following definition; a functor F

between two small categories C and D is a pair of functions in Set, F = (F0, F1), where F0:

ObC→ObD, F1: MorC→MorD; moreover F1 distributes with respect to composition and

preserves identity.

7.2.3 Definition Let c,d∈Cat(E). F is an internal functor from c to d (F: c→d) iff F =

(f0, f1) with f0∈E[c0,d0], f1∈E[c1, d1], and F satisfies

7. Indexed and Internal Categories

140

7.2.4 Definition The category Cat(E) has as objects the internal categories of E and as

morphisms the internal functors. Composition of functors is defined in the obvious way; that is,

given F = (f0,f1) and G = (g0,g1), F ˚ G = (f0 ˚ g0, f1 ˚ g1).

For example, Cat(Set) is the category Cat of all small categories, i.e., of all those categories

whose class of morphisms is a set.

It is easy to carry out the usual constructions on categories inside Cat(E). For example, given c

= (c0, c1, DOM, COD, COMP, ID), we can define the dual category cop = (c0, c1, COD, DOM,

COMP˚α, ID), where α = <Π2,Π1>0 : c1×0 c1 ↔ c1×0'c1. _op : Cat(E) → Cat(E) is a

functor.

The product of two internal categories c and d is the category c×d = (c0×d0, c1×d1,

DOMc×DOMd, CODc×CODd, (COMPc×COMPd) ˚ β, IDc×IDd) where β is the isomorphism

(c1×0c1)×(d1×0d1) ↔ (c1×d1)×0(c1×d1). Clearly, _×_ : Cat(E)×Cat(E) → Cat(E) is a

functor.

7.2.5 Definition Let F = (f0,f1) and G = (g0,g1) be two internal functors from c to d. τ is

an internal natural transformation from F to G (τ: F→G) iff τ∈E[c0, d1] and satisfies

7. Indexed and Internal Categories

141

7.2.6 Definition Given two internal categories c and d, Nat(c,d) is the category that has

internal functors from c to d as objects, and internal natural transformations as arrows. Given σ:

F → G and τ: G→H, τ ˚ σ = COMPd ˚ <τ,σ>0 : F → H

7.2.7 Example In this example we define PER as an internal category of ω-Set. PER is the

category of partial equivalence relations constructed over Kleene’s applicative structure (ω,.).

Remember that the partial application . : ω×ω→ω is defined by m.n = ϕm(n), where ϕ: ω→PR is

an acceptable gödel numbering of the partial recursive functions. We will use the following notation:

n A m iff n is related to m by A ,

{n}A = {m | m A n } the equivalence class of n with respect to A,

Q(A) = {{n}A | n ∈ dom(A)} where dom(A) = {n/ nAn} .

The morphisms of the category are defined by

f∈PER[A,B] iff f : Q(A)→Q(B) and ∃n ∀p (pAp ⇒ f({p}A) = {n.p}B) .

Thus the morphisms in PER are “computable” in the sense that they are fully described by partial

recursive functions, which are total on the domain of the source relation.

Note that PER is a small category, as the partial equivalence relations (p.e.r.’s) form a set as

well as their morphisms; thus Set contains PER as an internal category. Though, since a crucial

property of PER is that its morphisms are “computable,” we are interested in introducing a similar

notion in the category of sets by a realizability relation “|_” with respect to numbers.

The category ωωωω−−−−Set is defined as follows:

objects: (A,|_)∈ωωωω−−−−Set iff

A is a set and |_ ⊆ ω×Α, such that ∀a∈A ∃n |_ a .

morphisms : f∈ωωωω−−−−Set[A,B] iff

7. Indexed and Internal Categories

142

f : A→B and ∃n ∀a∈A ∀p |_A a n.p |_B f(a)

(notation : n |_A→B f and we say that n realizes f).

Similarly as for PER, each morphism in ωωωω−−−−Set is “computed” by a partial recursive function,

which is total on { p | p |_Aa } for each a∈A .

It is not difficult to prove that ωωωω−−−−Set is a CCC with all finite limits. The terminal object is

simply (1, |_1) , where 1 is the singleton set and |_1 = ω×1. If [,] is a coding of pairs of

numbers, then (A×B, |_A×B) is given by [n,m] |_A×B (a,b) iff n |_A a and m |_B b . As for

exponents, let [A→B] = ({f: A → B | f∈ωωωω-Set [A,B] }, |_A→B), where |_A→B is given as

above.

There is a simple way to embed Set into ωωωω-Set. Let Σ : Set→ωωωω-Set be given by

Σ(S) = (S, |_S) with |_S = ω×S , the “full” relation.

Σ is defined as the identity on morphisms, since by the definition of |_S , all functions are realized

by all numbers for total recursive functions. Σ is a full and faithful functor, which preserves all finite

limits and exponents.

This embedding suggests how to turn PER into an internal category of ωωωω-Set (recall that the

exponent of A and B in PER is given by m (A→B) n ⇔ ∀p,q (p A q ⇒ m.p B n.q)).

Indeed, M = (Mo,M1,domM,codM,idM,compM) is defined by

1. Mo = (PER, |_M) where |_M = ω× PER;

2. M1 = ({<{n}A→B,A,B)> | A,B∈M, n (A→B) n }, |_1)

where m |_1 < {n}A→B,A,B> iff m (A→B) n ;

3. domM(<{n}A→B,A,B)>) = A;

4. codM(<{n}A→B,A,B)>) = B;

5. idM(A) = <{i}A→A,A,A)> where i = λx.x is a number for the identity function;

6. compM(<{n}A→B,A,B)>,<{m}B→C,B,C>) = <{b.m.n}A→C,A,C)>

where b = λxyz.x(yz).

We have to check that M is an internal category of ωωωω-Set. It will be easy, in view of the set-theoretic

nature of its morphisms. Essentially, one has to prove that the required morphisms are functions that

happen to be realized.

Note first that ωωωω-Set[A,Σ(S)] = Set[A,S] for any A = (A, |_A) in ωωωω-Set and any set S, since

|_S is the full relation and, hence, any function is realized by any index. Thus, the set-theoretic

functions domM, codM are also morphisms in ωωωω-Set.

M1 is a set of triples: equivalence class, domain, and codomain. The realizability relation in M1
is nontrivial and, hence, one needs to give explicitly the realizers of idM and compM. Indeed, idM

is realized by λx.i, the constant function equal to an index i for the identity function. As for

compM, it is defined as usual only on a subset of M1×M1, namely, where the target of the first

morphism coincides with the source of the second. In the general setting, this is expressed by the use

7. Indexed and Internal Categories

143

of a pullback as a source object for COMP. In this specific case, that pullback becomes simply the

set of pairs such as (<{n}A→B,A,B)>,<{m}B→C,B,C>). Then the realizer for compM is b', for

b'[n,m] = bnm, where b is an index for the composition of functions, an operation that may be

uniformly and effectively given over (ω,.) .

7.3 Internal Presheaves
We have already remarked that every small category may be regarded as an internal category in Set.

However, in Set we are accustomed to considering not only functors from one small category to

another, but also, for example, functors from a small category to a large one and in particular to Set

itself. A significant example is hom-functor from a small category to Set. Surprisingly, it is possible

to cope at the internal level also with this problem, by means of the notion of internal presheaf.

If F is a functor from Cop to Set, then the component FOb of F is a collection {F(c)} of sets

indexed on objects of C. Such a collection can be regarded as a function ρ0: X→ObC, where X =

{(c,m)/ m∈F(c)} and ρ0(c,m) = c. Then FOb(c) ≅ ρ0-1(c). Now, given an arrow f: d→c, and

an object (c,m)∈ρ0-1(c), define a function ρ1 by ρ1((c,m),f) = (d,F(f)(m)). The function ρ1
describes the behavior of F on morphisms. Note that ρ1((c,m),f) is defined if and only if cod(f) =

ρ0(c,m) = c; thus, the domain of ρ1 is the pullback Z (in Set) of cod: MorC→ObC and ρ0:

X→ObC. Let Π2: Z→MorC and Π1: Z→X, be the associated projections. Note that

1. ρ0(ρ1((c,m), f)) = ρ0((d,F(f)(m))) = d = dom(f) = dom(Π2(f,(c,m))) ;

2. ρ1((c,m),f°f') = (d,F(f°f')(m)) = (d,F(f')(F(f)(m))) = ρ1((d',F(f)(m)),f') =

 = ρ1(ρ1(f,(c,m)),f');

3. ρ1((c,m), idc) = (c,F(idc)(m)) = (c, m).

That is, more concisely:

i. ρ0 ° ρ1 = dom ° Π2 : Z→ObC;

ii. ρ1 ° (idX ×0 comp) = ρ1 ° (ρ1 ×0 idMorC) : X×0MorC×0MorC → MorC;

iii. ρ1 ° <idX, ID ° ρ0>0 = idX,

where ×0 denotes pullback product and ID: ObC→MorC is the function that takes an object c to

idc. Conversely, given a small category C, and a triple (X, ρ0: X→ObC, ρ1: X×0ObC→MorC)

that satisfies equations i-iii above, it is possible to define a presheaf F: Cop→Set by letting

∀c∈ObC F(c) = ρ0-1(c)

∀f∈C[c',c], ∀(c,m)∈F(c) F(f)(c,m) = ρ1((c,m),f).

Equation i states that ρ1((c,m),f) is in F(c'), indeed c' = dom(f) = dom(Π2((c,m),f)) =

ρ0(ρ1((c,m),f)), and thus, by definition of F, F(f)(c,m)=ρ1((c,m),f)∈F(c').

Equations ii and iii express the fact that F is a contravariant functor. Indeed,

F(f˚g)(c,m) = ρ1((c,m),comp(f,g)) by def. of F

= ρ1(ρ1((c,m),f), g) by (ii)

7. Indexed and Internal Categories

144

= F(g)(ρ1((c,m),f)) by def. of F

= F(g)(F(f)((c,m))) by def. of F

and

F(idc)(c,m) = ρ1((c,m), idc) by def. of F

= (c,m) by (iii)

7.3.1 Definition X is an internal presheaf on c∈Cat(E) iff X = (X, ρ0, ρ1) with,

ρ0: X→c0
ρ1: X×0c1→X where X×0c1 is the pullback of ρ0: X→c0 and COD: c1→c0,

and X satisfies the following:

Example Let c∈Cat(E), and e an object of E. The constant-e diagram is the internal presheaves

(e×c0, snd: e×c0→c0, ide×DOM: e×c1→e×c0). Note that e×c1 is the pullback of snd: e×c0→c0
and COD: c1→c0. Moreover, the previous morphism satisfies the requested conditions of definition

7.3.1, since

i. snd ° ide×DOM = DOM ° snd : e×c1→c0 ;

ii. ide×DOM ° (ide×COMP) =

= ide×(DOM ° COMP)

= ide×(DOM ° Π2)

7. Indexed and Internal Categories

145

= ide×DOM ° (ide×Π2)

= ide×DOM ° (ide×DOM ×0 id) : e×c1×0c1→e×c0 ;

iii. ide×DOM ° (ide×ID) = ide×c0 : e×c0→e×c0 .

The intuition behind the previous definition is that of a collection, indexed by c, of objects e.

Indeed, consider the case of an internal category C in Set (i.e., a small category) and let E be a set.

By applying the above “externalization,” we obtain

∀c∈ObC F(c) = ρ0-1(c) = E×{c}

∀f∈C[c',c], ∀(e,c)∈F(c) F(f)(e,c) = ρ1((e,c),f) = (e,DOM(f)) = (e,c') .

Another major example of a presheaf is given by the hom-functor.

7.3.2 Definition Let c∈Cat(E). The internal hom-functor homc is the presheaf (c1, ρ0,

ρ1) on c×cop, where

ρ0 = <DOM,COD> : c1→c0×c0
ρ1 = COMP ˚ < p2 ˚ Π1, COMP ˚ (id ×0 p1) >0 : c1×0(c1×c1)→c1
(Informally, ρ1 = λfgh. h ˚ f ˚ g), and

7.3.3 Definition Let X = (X, ρ0 ,ρ1), Y = (Y, σ0 ,σ1) be two presheaves on c∈Cat(E). η is

a morphism of presheaves from X to Y (η : X→Y) iff η∈E[X,Y] and the following

diagrams commute:

The following definition allows to compose an internal presheaf on c with an internal functor F:

d→c, yielding a new presheaf on d.

7.3.4 Definition Let X = (X, ρ0, ρ1) be an internal presheaf on c∈Cat(E), and F: d→c be an

internal functor. The pullback of X along F is the presheaf F*(X) = (Y, σ0, σ1) on d defined

by the following commutative diagrams, where the squares are pullbacks:

7. Indexed and Internal Categories

146

Suppose that the internal presheaf X “internalizes” the functor G: Cop→Set (and F: d→c is an

“internalization” for F: D→C). Then, G(F(a)) = {x∈X | ρ0(x)=f0(a)} = {y∈Y | σ0(y)=a} by

definition of the pullback for Y, and, if h: a→b, one has G(F(h)) = λx∈F(b).ρ1(x,f1(h)) =

λx∈F(b).σ1(x,h) by definition of σ1.

All the definitions given so far were directed towards the following crucial notion, which will enable

us to define the concept of internal Cartesian closed category.

7.3.5 Definition < F, G, φ > : c→d is an internal adjunction from c to d iff F is an

internal functor from c to d, G is an internal functor from d to c and

φ : (F×Iddop)*(homd) → (Idc×Gop)*(homc)

is an isomorphism between presheaves on c×dop.

The definition of adjunction in 7.3.5 is now easily generalized to the case with parameters.

7.3.6 Definition < F, G, φ > : c→ d is an internal adjunction from c to d w i t h

parameters in a iff F is an internal functor from c×a in d, G is an internal functor from aop×d

in c and

φ : (F×Iddop)*(homd) → (Idc×Gop)*(homc)

is an isomorphism between presheaves on c×a×dop.

7. Indexed and Internal Categories

147

We can also give an “equational” characterization of internal adjunctions, in the spirit of theorem

5.3.5.

7.3.7 Theorem Every internal adjunction < F, G, φ > : c → d is fully determined by the

following data in (i) or (ii):

i. - the functor G: d→c

- an arrow f0: c0→d0
- an arrow Unit: c0→c1 such that DOM ˚ Unit = id , COD ˚ Unit = g0 ˚ f0
- an arrow φ−1: Y→X, where X and Y are respectively the pullbacks of

<DOM,COD> : d1→d0×d0 , f0×id: c0×d0→d0×d0
<DOM,COD> : c1→c0×c0 , id×g0: c0×d0→c0×c0

and, moreover, the previous functions satisfy the following equations:

a. < ρ0, COMP ˚ < g1 ˚ ΠX, Unit ˚ p1˚ ρ0 >0 >0 ˚ φ−1= idY
b. φ−1˚ < ρ0, COMP ˚ < g1 ˚ ΠX, Unit ˚ p1˚ ρ0 >0 >0 = idX

ii. - the functor F: c→d,

- an arrow g0: d0→c0,

- an arrow Counit: d0→d1 such that DOM ˚ Counit = f0 ˚ g0 , COD ˚ Counit = id

- an arrow φ: X→Y, where X and Y are respectively the pullbacks of

<DOM,COD> : d1→d0×d0 , f0×id : c0×d0→d0×d0
<DOM,COD> : c1→c0×c0 , id×g0 : c0×d0→c0×c0

and moreover the previous functions satisfy the following equations:

a. < ρ0', COMP ˚ < Counit ˚ p2˚ ρ0', f1 ˚ ΠY>0 >0 ˚ φ = idX
b. φ ˚ < ρ0', COMP ˚ < Counit ˚ p2˚ ρ0', f1 ˚ ΠY>0 >0 = idY

Proof See the appendix to this chapter.

We are finally ready to define internal Cartesian closed categories.

7.3.8 Definition An internal Cartesian closed category is a category c∈Cat(E) with three

adjunctions, the third one with parameter in c:

1. < O, T, 0 > : c→1 , where 1 is the internal terminal category.

2. < ∆, x, <,> > : c→c×c , where ∆ is the internal diagonal functor.

3. < x, [,] , Λ > : c→c , where this adjunction has parameters in c.

7.3.9 Examples 1. In example 2 in 7.2.2, we defined the internal category RetA∈Cat(E) of

retractions on a generic object A of E, where E is a CCC with all finite limits. We now prove that if A

is a reflexive object, that is, if AA < A, then RetA is Cartesian closed.

7. Indexed and Internal Categories

148

Let AA < A via (in,out). By theorem 2.3.6 we know that t < A and A×A < A. Call these

retractions (in',out') and (in",out"), respectively.

Let us begin with the internal terminal object in RetA. The idea is that every constant function is

a terminal object in a category of retractions. Since t < A via (in',out'), in': t → A is a point of A

and, thus, we can take in'˚ out': A→A as the constant function we are looking for; moreover, c =

Λ(in'˚ out'˚ p2) : t → AA is the point in AA that represent it. Then the internal terminal object t0: t

→ X is defined by the following:

We leave it to the reader to check the soundness of the previous definition, as well as the definition of

internal products, and we move on to exponents.

The first notion we must define is the arrow [,]0: X×X→X. The idea is that, given two

retractions f, g, their exponent is the retraction [f,g]0=λa.in(ξ(g)˚out(a)˚ξ(f)). Let

H = λ(f,g)λa. in(ξ(g)˚out(a)˚ξ(f)) : (X×X)×A→A .

Then [,]0: X×X→X is formally defined by the following diagram:

The function EVAL: X×X→Y is the internal Counit of the adjunction; it takes two retractions f

and g, and gives a morphism EVALf,g from the retraction [f,g]0x0f to the retraction g (where

x0 is the internal product on objects). More specifically, if

E = λ(f,g)λa:[f,g]0x0f. out(FST(a))(SND(a)): X×X×A→A

(where λa:h.M is shorthand for λa.[h(a)/a]M, and FST, SND are the internal projections)

E1 = Λ(E): X×X→AA

E2 = x0˚<[,]0,p1>: X×X→X.

Then EVAL: X×X→Y is defined by the following commutative diagram:

7. Indexed and Internal Categories

149

We must now define ΛΛΛΛ: U → W, where U and W are the pullbacks in the following diagram:

Informally ΛΛΛΛ works on tuples of the kind (f,g,h, (r, fx0g, h)) where f,g,h are retractions and r

is a morphism from fx0g to h, that is r: A→A such that r = h ˚ r ˚ fx0g.

Now, let Curry(r) = λy.in(λz.(r ˚ in")(z,y)): A→A. Then Curry(r) is a morphism from g to

[f,h]0: indeed, by omitting for simplicity the function ξ: X→AA, we have

[f,h]0 ˚ λy.in(λz.(r ˚ in")(z,y)) ˚ g =

= λa.in(h ˚ out(a) ˚ f) ˚ λy.in(λz.(r ˚ in")(z,g(y)))

= λy.in(h ˚ λz.(r ˚ in")(z,g(y)) ˚ f)

= λy.in(λz.(h ˚ r ˚ in")(f(z),g(y)))

= λy.in(λz.(h ˚ r ˚ fx0g ˚ in")(z,y))

= λy.in(λz.(r ˚ in")(z,y))

Let Curry = λr.λy.in(λz.(r ˚ in")(z,y)): AA →AA.

Then F = < Curry ˚ p1 ˚ ψ ˚ ΠU, id×[,]0 ˚ σ > : U→AA×X×X .

But we have already verified that

p1 ˚ F = (λfgh. ξ(h) ˚ f ˚ ξ(g)) ˚ F

and, thus, there exists a unique morphism F: U→Y such that F = ψ ˚ F.

Finally ΛΛΛΛ= <s, F>0 : U → W.

2. This example continues example 7.2.7, where we defined PER as an internal category of the

category ωωωω-Set. We still need to check that the internal category PER of ωωωω-Set is an internal CCC.

In general, observe that in order to “internalize” a categorical construction, as we did for the category

7. Indexed and Internal Categories

150

of retractions, say, one has to turn implicit set-theoretic functional dependencies into morphisms of

the intended global category E. For example, consider the map ΛΛΛΛ that gives the internal natural

isomorphism for Cartesian closure. Externally, ΛΛΛΛ is implicitly indexed by objects a, b, for

instance, and the map a,b |_ ΛΛΛΛa,b is simply a function in Set. The internal version, requires only

that the map ΛΛΛΛ, depending also on a and b, is a morphism in E.

The result, that M is an internal CCC of ωωωω-Set, then follows by the uniformity and effectiveness

of the argument for the Cartesian closure of PER. Namely, one only has to observe that evalA,B is

realized by any index e of the partial recursive universal function (and hence we could set eA,B = e

in the example). Thus, not only evalA,B is realized, but the construction is internal to ωωωω-Set as it

depends on A,B by a constant function (or e is independent of A, B). Thuis is also the case for

ΛΛΛΛA,B , since it is uniformly realized by any index of the function s of the s-m-n iteration theorem,

independently of A, B.

7.4 Externalization
In this section, we define the process of externalization of an internal category via hom-functors that

correspond, essentially, to the Yoneda embedding. Since for any object e of E the hom functor

[e,_]: E→Set preserves pullbacks, it transforms an internal category c = (c0, c1, DOM, COD,

COMP, ID)∈Cat(E) into a small category [e,c] = ([e,c0], [e,c1], [e,DOM], [e,COD], [e,COMP],

[e,ID]).

More generally, if c∈Cat(E), then [_,c]∈Cat(Eop→Set), and, for the uniform behavior with

respect to the indexes in E, [_,c] can be also regarded as an E-indexed category, that is, a functor

Eop→Cat. In the next section we show that, conversely, every E-indexed category can be regarded

as an internal category in Eop→Set.

7.4.1 Definition Let c = (c0, c1, DOM, COD, COMP, ID) ∈ Cat(E), then [e,c] = ([e,c0],

[e,c1], [e,DOM], [e,COD], [e,COMP], [e,ID]).

The objects of [e,c] are the arrows σ∈ E[e, c0]. Given two objects σ, τ, a morphism f: σ→τ

in [e,c] is an arrow f∈E[e, c1] such that DOM ˚ f = σ, COD ˚ f = τ . The identity of σ is idσ =

ID ˚ σ. Let c2 be the object of composable maps of c, that is the pullback c1×0c1 of COD and

DOM. Since the hom-functor [e,_]: E→Set preserves pullbacks, [e,c2] is the pullback of

[e,COD] and [e,DOM], and [e,COMP]: [e,c2]→[e,c1] has the expected type. Given two arrows

f: σ→τ, g: τ→γ in [e,c], their composition by [e,COMP] is g o f = COMP ˚ <g,f>0. In case the

ambient category E has small hom-sets, the category [e,c] is obviously small.

Note that, if c,d∈Cat(E), then [e,c×d] ≅ [e,c]×[e,d] and [e,cop] ≅ [e,c]op.

7. Indexed and Internal Categories

151

In the previous definition, e can be regarded as a parameter, yielding a functor [_,c] :

Eop→Cat, that is, an E-indexed category.

7.4.2 Definition Let c∈Cat(E). The functor [_,c] : Eop→Cat is defined in the following way:

on objects e∈E [_,c] = [e,c]

on arrows σ: e'→e [_,c](σ) = [σ,c] is the functor from [e,c] in [e',c] that is defined as

[σ,c0] on objects and as [σ,c1] on arrows.

More explicitly, the functor [σ,c] takes every τ∈[e,c] (i.e., τ: e→c0) to τ ˚ σ, and every g: τ→τ'

to g ˚ σ.

We have to prove as follows that the previous definition makes sense:

1. ∀σ: e'→e, [σ,c]: [e,c] → [e',c] is a functor, for

1.1. ∀τ: e→c0 [σ,c](idτ) = [σ,c](ID ˚ τ) = ID ˚ τ ˚ σ = idτ o σ
1.2. ∀f: δ→γ , ∀g: ρ→δ in [e,c]

 [σ,c](f o g) = COMP ˚ < f, g > ˚ σ = COMP ˚ < f ˚ σ, g ˚ σ > = [σ,c](f) o [σ,c](g)

2. [_,c] : Eop → Cat is a functor, for

2.1. ∀e [_,c] (ide) = I : [e,c] → [e,c] (immediate by definition of [_,c])

2.2. ∀σ: e→e' , ∀τ: e'→e", [_,c](τ ˚ σ) = [_,c](σ) ˚ [_,c](τ) : [e,c] → [e",c]; indeed,

2.2.1. on objects γ∈[e,c]: [_,c](τ ˚ σ)(γ) = γ ˚ τ ˚ σ = [_,c](σ)([_,c](τ)(γ))

2.2.1. on arrows g τ→τ' in [_,c]: [_,c](τ ˚ σ)(g) = g ˚ τ ˚ σ = [_,c](σ)([_,c](τ)(g))

Note that if c = (c0, c1, DOM, COD, COMP, ID) is an internal category in E, then ([_,c0], [_,c1],

[_,DOM], [_,COD], [_,COMP], [_,ID]) is an internal category in Eop→Set.

Definitions 7.4.3 and 7.4.4 show how to externalize, respectively, an internal functor, an internal

natural transformation, and an internal presheaf. Again these definitions, as well as others in the

sequel, are parametric with respect to the object e of E .

7.4.3 Definition Let c,d∈Cat(E), F = (f0,f1): c→d be an internal functor, and let e be an

object of E. The functor [e,F]: [e,c]→ [e,d] is defined as [e,f0] on objects, and as [e,f1] on

arrows.

That is, the functor [e,F]: [e,c] → [e,d] takes every object σ in [e,c] to f0 ˚ σ in [e,d], and

every arrow g: σ→τ in [e,c] to f1˚ g: (f0 ˚ σ)→(f0 ˚ τ) in [e,d].

7. Indexed and Internal Categories

152

7.4.4 Definition Let c,d∈Cat(E) and let F = (f0,f1): c→d be an internal functor. The E-

indexed functor [_,F]: [_,c]→[_,d] is the natural transformation defined by [_,F](e) = [e,F], for

every object e of E.

We must prove the naturality in e of the previous definition; that is, for any σ: e'→e,

[e',F] ˚ [σ,c] = [σ,d] ˚ [e,F] .

We have, for any object τ of [e,c] (i.e, τ: e→c0),

[e,F][σ,c](τ) = [e',F](τ ˚ σ) by def. of [σ,c]

= f0 ˚ τ ˚ σ by def. of [e',F]

= [σ,d] ˚ f0 ˚ τ by def. of [σ,d]

= [σ,d] ˚ [e,F] by def. of [e,F].

7.4.5 Definition Let τ: F→G be an internal natural transformation, where F,G: c→d. The

natural transformation [e,τ]: [e,F]→[e,G] is defined as the homonimous function [e,τ]:

[e,c0]→[e,d1]; that is, it takes every object σ of [e,c] to [e,τ](σ) = τ ˚ σ : (f0 ˚ σ)→(g0 ˚ σ)

(where the last “typing” is in [e,c]).

Exercise Prove that the previous definition makes sense, that is:

1. [e,τ](σ) : [e,F](σ) → [e,G](σ)

2. for every h: σ→γ in [e,c], [e,G](h) o[e,τ](σ) = [e,τ](γ) o[e,F](h).

7.4.6 Definition Let τ: F→G be an internal natural transformation, where F,G: c→d. The E-

indexed natural transformation [_,τ]: [_,F]→[_,G] is defined by the following: for any object e of E,

[e,τ]: [e,F]→[e,G].

Now we will show how to externalize the notion of morphism of presheaves.

7.4.7 Definition Let X=(X, ρ0, ρ1) be an internal presheaf on c∈Cat(E). The functor [e,X]:

[e,c]op→Set is defined by:

∀σ∈[e,c] , [e,X](σ) = { f∈E[e,X] / ρ0 ˚ f = σ }

∀g: τ→σ in [e,c], [e,X](g) : [e,X](σ)→[e,X](τ) is given by:

∀f∈[e,X](σ) [e,X](g)(f) = ρ1˚ <f, g>0 ∈[e,X](τ)

(note that ρ0 ˚ [e,X](g) (f) = ρ0 ˚ ρ1˚ <f,g>0 = DOM ˚ Π2˚ <f,g>0 = DOM ˚ g = τ)

We have chosen the name [e,X] as an analogy for the previous constructions, but in this case it

no longer has a direct relation with the Yoneda embedding. The same holds below for the

externalization [e,η] of a morphism of presheaves η.

7. Indexed and Internal Categories

153

Next we check that by externalizing an internal homc on c×cop we just obtain the hom-functor

from [e,c]op×[e,c] to Set.

7.4.8 Proposition Let c∈Cat(E) and let homc = (c1, ρ0, ρ1) be the internal hom-functor on

c×cop. Then, for every e∈ObE, [e,homc] = hom[e,c]: [e,c]op×[e,c]→Set (to within the implicit

isomorphism [e,c]op×[e,c] ≅ [e,cop×c]).

Proof

- on objects: let <σ,τ>: e → c0×c0
 [e,homc](<σ,τ>) = {f: e→c1 / ρ0 ˚ f = <σ,τ> }

= {f: e→c1 / <DOM,COD> ˚ f = <σ,τ> }

= hom[e,c](σ,τ);

- on morphisms: let <f,g> : <σ,τ>→ <γ,δ> in [e,cop×c]. ∀h∈[e,homc](<γ,δ>), i.e., for all

h: e→c1 such that <DOM,COD> ˚ h = <γ,δ>, we have

[e,homc](<f,g>)(h) = ρ1 ˚ <h, <f,g>>0
= COMP ˚ < p2 ˚ Π2, COMP ˚ (id ×0 p1) >0 ˚ <h, <f,g>>0
= COMP ˚ < g, COMP ˚ <h, f>0 >0
= g o h o f . ♦

The next definition finally externalizes the notion of morphism of presheaf that simply becomes a

natural transformation. Proposition 7.4.10 states that the composition of an internal functor with a

morphism of presheaf, given by the pulling back construction of definition 7.3.3, externalizes to the

composition of the two associated external functors.

7.4.9 Definition Let η be a morphism of presheaves from X = (X, ρ0 ,ρ1) to Y = (Y,

σ0,σ1), where X an Y are internal presheaves on c. The natural transformation [e,η]: [e,X]→[e,Y]

(where [e,X], [e,Y]: [e,c]op→Set) is defined in the following way: ∀γ∈[e,c], ∀f∈[e,X](γ),

[e,η](γ)(f) = η ˚ f (note that [e,η](γ)(f) ∈[e,Y](γ), since σ0 ˚ η ˚ f = ρ0 ˚ f = γ).

[e,η] is indeed a natural transformation, since, ∀g: τ→γ in [e,c], ∀f∈[e,X](γ)

 [e,Y](g) ([e,η](γ)(f)) = [e,Y](g) (η ˚ f) by def. of [e,η]

= σ1 ˚ <η ˚ f, g>0 by def. of [e,Y](g)

= σ1 ˚ η×0id ˚ <f, g>0
= η ˚ ρ1 ˚ <f, g>0 by the “naturality” of η

= η ˚ ([e,X](g)(f)) by def. of [e,X](g)

= [e,η](τ) ([e,X](g)(f)) by def. of [e,η]

7. Indexed and Internal Categories

154

7.4.10 Proposition Let F: d→c be an internal functor, X = (X, ρ0, ρ1) an internal presheaf

on c, and F*(X) = (Y, σ0, σ1). For every object e of E, the functors [e,F*(X)] and

[e,X]˚[e,F]op: [e,d]op→Set are naturally isomorphic. The isomorphism is

ητ = λg. ΠX ˚ g : [e,F*(X)](τ) → [e,X]([e,F]op(τ))

ητ-1 = λh.<τ, h>0 : [e,X]([e,F]op(τ)) → [e,F*(X)](τ)

Proof Let us check first that ητ and ητ-1 have the correct types.

By definition [e,F*(X)](τ) = {g∈E[e,Y] / σ0 ˚ g = τ }. Let g∈[e,F*(X)](τ). Then the following

diagram commutes:

Thus ΠX ˚ g ∈ [e,X](f0 ˚ τ) = [e,X]([e,F]op(τ))

Conversely, let h∈[e,X]([e,F]op(τ)). Then the arrow <τ, h>0: e→Y is well defined, because ρ0

˚ h = f0 ˚ τ . By definition of σ0, σ0 ˚ <τ, h>0 = τ which implies <τ, h>0∈[e,F*(X)](τ).

We now prove the naturality of ητ and ητ-1. Let k: γ→τ in [e,d]op; for every g∈[e,F*(X)](τ)

 [e,X]([e,F]op(k))(ητ(g)) = [e,X](f1 ˚ k) (ΠX ˚ g) by def. of [e,F]op

= ρ1˚ <ΠX ˚ g, f1 ˚ k >0 by def. of [e,X]

= ρ1˚ ΠX×0f1 ˚ < g, k >0
= ΠX ˚ σ1 ˚ < g, k >0 by def. of ρ1
= ΠX ˚ ([e,F*(X)](k) (g)) by def. of [e,F*(X)]

 = ηγ([e,F*(X)](k) (g)) by def. of η

Conversely, for every k: γ→τ in [e,d]op and every h∈[e,X]([e,F]op(τ)):

[e,F*(X)](k) (ητ-1(h)) = σ1 ˚ < ητ-1(h) , k >0 = σ1 ˚ < <τ, h >0 , k >0
Thus: ΠX ˚ ([e,F*(X)](k) (ητ-1(h))) = ΠX ˚ σ1 ˚ < <τ, h >0 , k >0

= ΠX ˚ σ1 ˚ < <τ, h >0 , k >0
= ρ1˚ ΠX×0f1˚ < <τ, h >0 , k >0
= ρ1˚ < ΠX ˚ <τ, h >0, f1˚ k >0
= ρ1˚ < h, f1 ˚ k >0

and σ0 ˚ ([e,F*(X)](k) (ητ-1(h))) = σ0 ˚ σ1 ˚ < <τ, h >0 , k >0
= DOM ˚ Π2 ˚ < <τ, h >0 , k >0
= DOM ˚ k

= γ

And since f = <σ0 ˚ f, ΠX ˚ f >, then for every f : e→Y,

7. Indexed and Internal Categories

155

[e,F*(X)](k) (ητ-1(h)) = <γ, ρ1˚ < h, f1 ˚ k >0 >0
= <γ, [e,X]([e,F]op(k)) (h) >0
= ηγ-1([e,X]([e,F]op(k)) (h)). ♦

7.4.11 Proposition Let < F, G, φ > : c→d be an internal adjunction. For every e in E, define

Θe = η'˚ [e,φ] ˚ η−1, where

η : [e,(F×Iddop)*(homd)] → [e, homd] ˚ [e,Fop×Id]

η': [e,(Idc×Gop)*(homc)] → [e, homc] ˚ [e,Id×Gop]

are the isomorphisms of proposition 7.4.10 .

Then <[_,F], [_,G], Θ > : [_,c]→[_,d] is an E-indexed adjunction.

Proof For every object e of E, we have

hom[e,d][[e,F](_), _] = [e, homd] ˚ [e,Fop×Id]

≅ [e,(F×Iddop)*(homd)] via η−1

≅ [e,(Idc×Gop)*(homc)] via [e,φ]

≅ [e, homc] ˚ [e,Id×Gop] via η'

= hom[e,c][_, Ee,G(_)].

Moreover, the previous adjunction is “natural in e,” that is,

∀f∈E[e',e] Θe' ˚ [_,d](f) = [_,c](f) ˚ Θe .

More explicitly, we must check that, for every f∈E[e',e], σ object of [e,c], τ object of [e,d], and

g: (f0 ˚ σ)→τ in [e,d], one has

Θe' <σ ˚ f, τ ˚ f> ([_,d](f)) (g) = ([_,c](f)) Θe<σ,τ> (g)

We have

Θe' <σ ˚ f, τ ˚ f> ([_,d](f)) (g) = Θe' <σ ˚ f, τ ˚ f> (g ˚ f) by def. of [_,d]

= Θe' <σ ˚ f, τ ˚ f> (g ˚ f)

= ΠX ˚ φ ˚ <<σ ˚ f,τ ˚ f >, g ˚ f >0 by def. of Θe'
= ΠX ˚ φ ˚ <<σ,τ>, g >0 ˚ f

= (Θe<σ,τ> (g)) ˚ f by def. of Θe
= ([_,c](f)) Θe<σ,τ> (g) by def of [_,c]. ♦

7.4.12 Exercise Prove that if <F, G, φ > : c→d is an internal adjunction, and Unit and Counit

are the arrows in theorem 7.3.7, than for every object σ: e→d0 in [e,d], Unit ˚ σ, Counit ˚ σ are

respectively unit and counit for σ in the associated external adjunction <[e,F], [e,G], Θe >:

[e,c]→[e,d].

7. Indexed and Internal Categories

156

7.5 Internalization
In this section we show how to translate (small) E-indexed notions to internal ones in the topos of

presheaves Eop→Set.

7.5.1 Definition Let A: Eop→Cat be an E-indexed category, where all the indexed categories

are small. The internal category A = (A0, A1, DOM, COD, COMP, ID)∈Cat(Eop→Set) is defined

as follows: for all objects e, e' and arrows f: e'→e in E,

- A0: Eop→Set is the functor defined by

A0(e) = ObA(e)
A0(f) = A(f)ob : ObA(e)→ObA(e')

- A1: Eop→Set is the functor defined by

A1(e) = MorA(e)
A1(f) = A(f)mor : MorA(e)→MorA(e')

- DOM: A1→A0 is the natural transformation whose components are the domain maps in the

local categories, i.e., for e∈ObE, DOMe: MorA(e)→ObA(e) is defined by DOMe(h:σ→τ)

= σ.

- COD, ID and COMP are defined analogously, “fiberwise”.

The claimed naturality for DOM, COD, ID, COMP is immediate, since A is a functor. For

instance, let f∈E[e',e] and h∈A(e)[σ,τ]; then DOMe'(A(f)mor(h)) = A(f)ob ˚ DOMe(h). The

reader can check the other cases as an exercise.

7.5.2 Definition Let A, B be two E-indexed categories, and let H: A→B be an E-indexed

functor.The associated internal functor H = (H0,H1): A→B in Eop→Set, is defined in the

following way:

- H0: A0→B0 is the natural transformation given by H0(e) = H(e)ob
- H1: A1→B1 is the natural transformation given by H1(e) = H(e)mor

The naturality of H0 and H1 is an immediate consequence of the “naturality” of H: A→B, that is

H(s) ° A(f) = B(f) ° H(s'). The equations in definition 7.2.3 easily follow from the fact that for every

e, H(e) is a functor.

7.5.3 Definition Let H: A→B, K: A→B be two E-indexed functors, and let τ: H→K be an E-

indexed natural transformation. Then the associated internal natural transformation τ: H→K in

Eop→Set is the natural transformation τ: A0→B1 such that, for any e in E, and any a in A(e),

τe(a) = τ(e)a.

7. Indexed and Internal Categories

157

Recall that τ: H→K consists of a natural transformation τ(e): H(s)→K(e) for any object e of

E, such that, for any f: e→e' in E, and any object a in A(e'), τ(e)A(f)(a) = B(f)(τ(e')a) .

As a consequence, τe(A0(f)(a)) = B1(f)(τe'(a)), which gives the naturality of τ .

7.5.4 Proposition Let A, B be E-indexed categories, H: A→B, K: B→A be E-indexed

functors, and <H, K, φ> : A→B be an E-indexed adjunction. Then <H, K, φ = φ> : A→B is an

internal adjunction in Eop→Set .

Proof Exercise.

The picture is finally completed by the following result, which shows that by applying the

externalization process of section 7.4 to an internal category A, derived from an E-indexed category

A, we obtain an indexed category equivalent to A. However, when we externalize A, we do not

want a category indexed over all functors from E into Set. Since we are interested in a category

indexed over E, we must externalize only with respect to a full subcategory of Eop→Set equivalent

to E. The obvious choice is to consider the image Y(E) of E under the Yoneda embedding Y(e) =

E[_, e] (recall that Y(E) is a full subcategory of Eop→Set). We will then obtain an indexed

category A# : Eop→Cat. Recall though that the “internalization” can take place only if the indexed

category takes small categories as values, while internal categoies do not need to live in small ambient

categories. Thus, the circle is closed by the following theorem, provided that the assumption is made

that E is small.

7.5.5 Theorem Let A: Eop→ Cat be an E-indexed category, with E small, and let

A∈Cat(Eop→Set) be its associated internal category. Then the indexed categories A# = [Y(_), A] :

Eop→Cat and A are equivalent.

Proof Let e∈ObE. Then A#(e) = [Y(e), A] is, by definition, the category with

Objects: Nat[E[_,e], A0]

Morphisms: g: σ→τ in [Y(e), A] iff

g∈Nat[E[_,e], A1] , DOM ˚ g = σ, COD ˚ g = τ

Now let f∈E[e',e]; by definition one has

A#(f) = [Y(f), A] : A#(e)→ A#(e')

A#(f)(σ) = σ ˚ Y(f) for σ∈Nat[E[_,e], A0]

A#(f)(g) = g ˚ Y(f) for g∈Nat[E[_,e], A1]

The natural isomorphism between A and A# is given by the Yoneda lemma: for every e in E, we

have natural isomorphisms Ψ0(e): Nat[E[_,e], A0]→A0(e) and Ψ1(e): Nat[E[_,e], A0]→A1(e).

Ψ0 and Ψ1 define the components on objects and morphisms of an indexed functor Ψ(e):

A#(e)→A(e). Explicitly,

Ψ(e)(σ) = σe(ide) for σ∈Nat[E[_,e], A0]

Ψ(e)(g) = ge(ide) for g∈Nat[E[_,e], A1].

7. Indexed and Internal Categories

158

Then the due diagrams commute, by the usual Yoneda argument.

Our final result shows that, by following the other path (from internal to internal, via external),

one obtains equivalent categories:

7.5.6 Theorem Let c∈Cat(E) be an internal category, C = [_,c]: Eop→Cat be as in definition

7.4.2, and Y: E→Y(E) be the Yoneda embedding. Then C∈Cat(Y(E)).

Proof Let c = (c0, c1, DOM, COD, COMP, ID); note first that, by definition of C, for the internal

category C = (d0, d1, DOM', COD', COMP', ID')∈Cat(Eop→Set) we have

d0 = E[_, c0] = Y(c0)

d1 = E[_, c1] = Y(c1)

and hence C∈Cat(Y(E)), since Y is full. That C is an internal category, follows by the fact that Y

preserves pullbacks. ♦

Appendix
We now study in more details the notions of internal adjunction and internal CCC. The details are

rather complex and this appendix may be skipped at first reading.

By definition, an internal adjunction < F, G, φ > : c→d is given by two internal functors F:

c→d, G: d→c, and an isomorphism

φ : (F×Iddop)*(homd) → (Idc×Gop)*(homc)

between presheaves on c×dop.

Graphically, the notion of internal adjunction is represented by the following complex diagram:

7. Indexed and Internal Categories

159

where (d1,σ0,σ1) is the internal hom-functor of d, and (c1,σ0',σ1') is the internal hom-functor of

c. In particular,

σ0 = <DOM,COD> : d1 → d0×d0 and

σ0' = <DOM,COD> : c1 → c0×c0
respectively represent d1 and c1 as indexed collections of morphisms over d0×d0 and c0×c0.

The formal definition of σ1 and σ1' is:

σ1 = COMP ˚ < p2 ˚ Π2, COMP ˚ (id ×0 p1) >0 : d1×0(d1×d1) → d1
σ1' = COMP ˚ < p2 ˚ Π2, COMP ˚ (id ×0 p1) >0 : c1×0(c1×c1) → c1

More intuitively, they are both described by the lambda term λfgh. h ˚ f ˚ g (recall that hom[f,g](h)

= h ˚ f ˚ g).

Note also that DOM: c1×d1→ c0×d0 = DOMc×CODd because we are working in c×dop.

X and Y are respectively the pullbacks of

σ0 = <DOM,COD> : d1 → d0×d0 , f0×id : c0×d0 → d0×d0 and

σ0' = <DOM,COD> : c1 → c0×c0 , id×g0 : c0×d0 → d0×d0
Thus, informally,

X = { (a,b,h) ∈ c0×d0×d1 | h : f0(a) → b } = d[f0(a), b]

Y = { (a,b,k) ∈ c0×d0×c1 | k : a → g0(b) } = c[a, g0(b)].

φ : X → Y is the natural isomorphism of the adjunction.

φ works on triples of the kind (a,b,h)∈c0×d0×d1 where h: f0(a)→b. The first two

components a and b are the indexes of the natural trasformation: since ρ0'˚ φ = ρ0, these indexes are

left unchanged by φ, and an “external-like” writing for φ(a,b,h) would be φa,b(h). At the external

level, it is common practice to omit these indexes; the formal complexity of the internal theory is

mostly due to the necessity of coping with these details.

The naturality of φ is expressed by the property,

(†) φ ˚ ρ1 = ρ1'˚ φ×0id .

Still using our informal notation, by (†), for all (a,b,h) in X, k in c1 and l in d1, such that :

cod(k) = a (that implies cod(f0(k)) = f0(a) = dom(h))

dom(l) = b = cod(h)

cod(l) = b'

we have

(∗) φa',b'(l ˚ h ˚ f1(k)) = g1(l) ˚ φa,b(h) ˚ k,

that is the familiar way the naturality of φ is expressed at the external level. Let us show, in this

informal notation, that (†) implies (*)

φa',b'(l ˚ h ˚ f1(k)) =

= (ΠY ˚ φ)(a', b' , l ˚ h ˚ f1(k))

7. Indexed and Internal Categories

160

= (ΠY ˚ φ)(a', b' , σ1(h, f1(k), l)) by def. of σ1
= (ΠY ˚ φ ˚ ρ1) ((a,b,h), k, l) by the diagram for the adjunction

= (ΠY ˚ ρ1'˚ φ×0id) ((a,b,h), k, l) by (†)

= (σ1'˚ ΠY×0(id×g1) ˚ φ×0id) ((a,b,h), k, l) by the diagram for the adjunction

= σ1'((ΠY˚φ)(a,b,h), k, g1(l))

= σ1'(φa,b(h), k, g1(l))

= g1(l) ˚ φa,b(h) ˚ k by def. of σ1'.

Given an adjunction < F, G, φ > : C→D, the arrows φa,F(a)(idF(a)) and φG(b),b-1(idG(b)) are

respectively called Unit and Counit of the adjunction (for a and b). Units and Counits fully specify

the behaviour of φ and φ−1 since:

φ(l) = φ(l ˚ id) = g1(l) ˚ φ(id) = g1(l) ˚ Unit

φ−1(k) = φ−1(id ˚ k) = φ−1(id) ˚ F(k) = Counit ˚ F(k) .

These properties allow to give at the external level the well-known equational characterization of the

notion of adjunction. In particular, the definition of Cartesian closed category based on the counits of

the adjunctions, plays a central role in the semantic investigation of the lambda calculus, since it

provides the underlying applicative structure needed for the interpretation. Remember that the counits

of the adjunctions defining products and exponents are respectively the projections associated with

the products and the evaluation functions associated with the function spaces.

Now we show how to mimic the same work at the internal level.

7.A.1 Definition Let < F, G, φ > : c→d be an internal adjunction from c to d. Define then:

IDF = <<id,f0>, ID ˚ f0 >0 : c0→X;

IDG = <<g0,id>, ID ˚ g0 >0 : d0→Y;

Unit = ΠY ˚ φ ˚ IDF : c0→c1;

Counit = ΠX ˚ φ−1 ˚ IDG : d0→d1.

Where X and Y are as in the diagram for the definition of adjunction.

Note that IDF takes an element a in c0 and gives the associated identity idF(a) as an element in X.

The definition of Unit, is then clear. As one expects, Unit is an internal natural transformation from I

= (id,id) to G ˚ F, and Counit : d0→d1 is an internal natural transformation from F ˚ G to I =

(id,id). The proof is left as an exercise for the reader.

It is now not difficult to prove that every internal adjunction < F, G, φ > : c→d is fully

determined by the following data:

the functor G: d→c;

an arrow f0: c0→d0;

an arrow Unit: c0→c1 such that DOM ˚ Unit = id , COD ˚ Unit = g0 ˚ f0;

7. Indexed and Internal Categories

161

an arrow φ−1: Y→X, where X and Y are respectively the pullbacks of

<DOM,COD> : d1→d0×d0, f0×id: c0×d0→d0×d0, and

<DOM,COD> : c1→c0×c0, id×g0: c0×d0→c0×c0;

and, moreover, the previous functions satisfy the following equations:

a. < ρ0, COMP ˚ < g1 ˚ ΠX, Unit ˚ p1˚ ρ0 >0 >0 ˚ φ−1= idY;

b. φ−1˚ < ρ0, COMP ˚ < g1 ˚ ΠX, Unit ˚ p1˚ ρ0 >0 >0 = idX.

Indeed the arrow f0: c0→d0 can be extended to a functor F = (f0, f1): c→d by

f1 = ΠX ˚ φ−1˚ << DOM, f0 ˚ COD >, COMP ˚ < Unit ˚ COD, id >0 >0: c1→d1.

The inverse of φ−1 is

φ = < ρ0, COMP ˚ < g1 ˚ ΠX, Unit ˚ p1˚ ρ0 >0 >0.

Note that, by (a) and (b), φ and φ−1 define an isomorphism. The non trivial fact is to prove that

they are morphisms of presheaves (i.e., to prove their naturality), but again the prof is a mere internal

rewriting of the corresponding “external” result.

Dually, if we have the following data:

a functor F: c→d;

an arrow g0: d0→c;

an arrow Counit: d0→d1 such that DOM ˚ Counit = f0 ˚ g0 , COD ˚ Counit = id;

an arrow φ: X→Y, where X and Y are respectively the pullbacks of

<DOM,COD> : d1→d0×d0, f0×id: c0×d0→d0×d0, and

<DOM,COD> : c1→c0×c0, id×g0: c0×d0→c0×c0;

and, moreover, the previous functions satisfy the following equations:

a. < ρ0', COMP ˚ < Counit ˚ p2˚ ρ0', f1 ˚ ΠY>0 >0 ˚ φ = idX,

b. φ ˚ < ρ0', COMP ˚ < Counit ˚ p2˚ ρ0', f1 ˚ ΠY>0 >0 = idY,

then we define an adjunction < F, G, φ > : c→d, in the following way.

The arrow g0: d0→c0 can be extended to a functor G = (g0,g1): c→d, by

g1 = ΠY˚ φ ˚ << g0 ˚ DOM, COD >, COMP ˚ < id, Counit ˚ DOM >0 >0: d1→c1 .

The inverse of φ is

φ−1 = < ρ0', COMP ˚ < Counit ˚ p2 ˚ ρ0' , f1˚ ΠY >0 >0 : Y→X.

We are now in a position to study internal Cartesian closed categories from an “equational” point of

view. This work is needed to exploit the applicative structure underlying the notion of an internal

CCC. Recall that an internal Cartesian closed category is a category c∈Cat(E) with three adjunctions

1. < O, T, 0 > : c→1, where 1 is the internal terminal category;

2. < ∆, x, <,> > : c→c×c, where ∆ is the internal diagonal functor;

3. < x, [,] , Λ > : c→c, where this adjunction has parameters in c.

7. Indexed and Internal Categories

162

By the previous results, we can explicitate the three adjunctions of these definitions by means of their

counits:

7.A.2 Definition An internal terminal object in c∈Cat(E) is specified by:

an arrow t0: t → c0;

an arrow 0: c0 → Z, where Z is the pullback of

<DOM,COD> : c1 → c0×c0 ,

id×t0 : c0×t → c0×c0;

and, moreover,

a. 0 ˚ <γ',!Z >0 = 0 ˚ p1˚ γ' = idZ;

b. < γ',!Z >0 ˚ 0 = p1˚ γ'˚ 0 = idc0;

where !Z is the unique morphism in E from Z to the terminal object t .

Intuitively t0: t → c0 points to that element in c0 that is the terminal object. Z is the subset of

c1 of all those morphisms that have the terminal object as target; Z must then be in a bijective

relation 0 with c0; 0 takes an object a in c0 to the unique morphism !a in Z from a to the

terminal object.

The previous diagram can be greatly simplified. As a matter of fact, it amounts to say that there is

an arrow t0: t→c0 such that the following diagram is a pullback (prove it as an exercise):

The arrow in: c0→c1 is the operation that takes every element a in c0 to the unique arrow !a in c1
whose target is the terminal object; in terms of the previous diagram, in = ΠZ ° 0 .

7. Indexed and Internal Categories

163

7.A.3 Definition An internal category c has products, iff there exist

an arrow x0: c0×c0 → c0;

two arrows FST: c0×c0 → c1, SND: c0×c0 → c1 such that

DOM˚ FST = DOM ˚ SND = x0,

COD˚ FST = p1; COD˚ SND = p2,

(Notation: FSTa,b = FST˚ <a,b>; SNDa,b = SND˚ <a,b>);

an arrow <,> : X→Y, where X and Y are the pullbacks in the following diagram (∆0 =

<id,id>):

and, moreover,

c0. ρ' ˚ <,> = ρ;

c1. (FST˚ p2 ˚ ρ) o(ΠY ˚ <,>) = p1 ˚ ΠX;

c2. (SND ˚ p2 ˚ ρ) o (ΠY ˚ <,>) = p2 ˚ ΠX;

d. <,> ˚ < ρ', < (FST˚ p2˚ ρ') o ΠY , (SND˚ p2˚ ρ') o ΠY > >0 = idY ,

 where f o g = COMP ˚ < f, g >0.

7.A.4 Definition An internal category is Cartesian iff it has a terminal object and products.

As the definition f×g = <f ˚ p1, g ˚ p2> extends × to a functor from C×C to C for any Cartesian C,

also the internal x0 can also be extended to morphisms.

7.A.5 Proposition Let x1 : c1×c1 → c1 be defined by the following:

x1 = ΠY ˚ <,>˚ < <x0˚ DOMc×c, CODc×c >, <id o (FST˚ DOMc×c),id o (SND˚ DOMc×c) >0
where as above, f o g = COMP ˚ <f,g>0 . Then x = (x0, x1): c×c→c is an internal functor.

Proof: Exercise.

Note that, if f,g: e→c1, DOM ˚ f = a, COD ˚ f = c, DOM ˚ g = b, COD ˚ g = d, then: x1˚ <f,g> =

ΠY ˚ <,> ˚ < < x0˚<a,b>,<c,d>>,< f o FSTa,b , g o SNDa,b > >0.

7. Indexed and Internal Categories

164

7.A.6 Definition An internal Cartesian category has exponents iff there exist :

an arrow [,]0: c0×c0 → c0;

an arrow EVAL: c0×c0 → c1 such that

DOM˚ EVAL = ×0 ˚ <[,]0, p1>,

COD˚ EVAL = p2 ,

(Notation: EVALa,b = EVAL ˚ <a,b>);

an arrow Λ: X'→ Y', where X' and Y' are the pullbacks in the following diagram:

and, moreover,

e0. σ' ˚ Λ = σ (to within the isomorphism (a×b)×c ≅ a×(b×c));

e1. (eval ˚ p1˚ σ) o (x1˚ < ΠY' ˚ Λ, ID ˚ p2 ˚ p1 ˚ σ>) = ΠX';

f. Λ ˚ < σ', (eval ˚ p2 ˚ σ') o (x1˚ < ΠY', ID ˚ p1˚ p2 ˚ σ'>) >0 = idY',

 where f o g = COMP ˚ < f, g >0 , and x1 is the morphism in proposition A.5.

7.A.7 Definition An internal Cartesian closed category is an internal Cartesian category

with exponents.

References The introduction of indexed notions in Category Theory has been a slow process,

which started to develop into a detailed theory around the beginning of the 1970s, with the

independent work of F. W. Lawvere, J. Penon, J. Bénabou. The Theory of Indexed Category owes

much of its actual settlement to R. Paré and D. Schumacher (1978), and to their introductory book,

written in collaboration with P. T. Johnstone, R. D. Rosebrugh, R. J. Wood and G. C. Wraith.

The first significant study of the Theory of Internal categories is due to R. Diaconescu. Further

developments were made by J. Bénabou, though, most of the time, they never appeared as published

works. Notions of Internal Category Theory can be found in many books of topos theory, for

instance, in those of Johnstone (1977) and Barr and Wells (1985).

7. Indexed and Internal Categories

165

Our development of the arguments in this chapter has been essentially inspired by Paré and

Schumacher (1978), Johnstone (1977), and some private communications of E. Moggi. The

definition of the internal category in definition 7.5.1 has been pointed out to us by B. Jacobs.

8. Formulae, Types, and Objects

166

Chapter 8

FORMULAE, TYPES, AND OBJECTS

During the last two decades, computer science has turned the Proof Theory of mathematical logic

from a philosophical investigation of the foundations of human reasoning into an applied sector of

mathematics. Many important logical systems of the beginning of the 1970s, which “fifteen years

later” proved of great relevance for computer science, were invented by logicians such as Girard,

Martin-Löf and Troelstra, who were mostly interested in constructive approaches to mathematics and

foundational problems. Still in 1975, in the first pages of his book on Proof Theory, Takeuti

introduced “the formalization of the proofs of mathematics, and the investigation of the structure of

these proofs” as a mere “fruitful method in investigating mathematics.” Moreover, he himself

remarked that “while set theory has already contributed essentially to the development of modern

mathematics, it remains to be seen what influence proof theory will have on mathematics”.

If not on mathematics, Proof Theory has surely proved since that time his influence on theoretical

computer science. The modern theory of functional languages and lambda calculus owes much of his

actual settlement to mathematical logic, and what until a few years ago was known as the

“denotational semantics of programming languages” has grown under the direct influence of Proof

Theory, and together with the understanding of the logical aspects of Category Theory. But far from

being only a rich field for applications, computer science has also been for mathematical logic an

inexhaustible source of mutual enrichment. The leading theme of this stimulating relation, as for the

topic presented in this chapter, has been the so called Curry-Howard correspondence, which exploits

the connections between Proof Theory and Type Theory. This correspondence, also known by the

suggestive name of “formulae-as-types analogy”, has been a main methodological tool both for

understanding the relations between intuitionistic logic and typed lambda calculus, and for the design

of new functional languages with powerful type systems. The main idea of the Curry-Howard

correspondence, is that logical formulae can be interpreted as types in a suitable type theory; a proof

of a formula is then associated with a λ-term of the proper type, and the reduction of a proof by cut-

elimination corresponds to the normalization of the associated λ-term. As a consequence, if a formula

is derivable in a certain logical system, then the corresponding type is inhabited in the associated type

theory. The Curry-Howard correspondence works only for logical systems of Intuitionistic Logic.

This restriction should be clear, since the constructive, procedural interpretation of the notion of proof

was the very basis of Brower's approach to mathematics, which inspired Heyting's formalization of

intuitionistic logic. Moreover, although the formulae-as-types analogy can also be applied to logical

systems based on axioms and inference rules, such as that of Hilbert, just switching from λ-terms to

combinators in the associated type theory, it has a more elegant application to systems of Natural

Deduction. Indeed the procedural understanding of a logical proof is more clear in a system like

8. Formulae, Types, and Objects

167

Natural Deduction, where one proceeds by the method of drawing inferences from assumptions, than

in Hilbert's system, where one draw inferences from axioms. Furthermore, especially in Gentzen's

variant of Natural Deduction, the inference rules of the calculus are closely related to the intuitive

“operational” interpretation of the logical signs, and this fact allows one to proceed in the construction

of the proof in a certain direct fashion, affording an interesting normal form for deductions which has

no clear counterpart in Hilbert's system.

8.1 λλλλ -Notation
Consider the following mathematical definition of the function f: N→N :

f(x) = 5∗x + 3 .

Note that it is not “f” that has been actually defined, but “f(x),” that is the result of the application of

f to a formal parameter x which is supposed to range over the integers.

f(x) is not a function: it is a polynomial, that is, an operational description of the behavior of f

when applied to x. The mechanism that allows us to “abstract” from the formal parameter x, and

thus to pass from the knowledge of “how the function works” to the knowledge of “what the function

is,” is called lambda abstraction (λλλλ-abstraction). The function f in the example above is

defined by the lambda abstraction of 5x + 3 with respect to x, and is denoted by λx. 5∗x+3.

The complementary action to λ-abstraction is called application. The application of two terms M

and N is usually represented by their justaposition (MN). From the computational point of view, λ-

abstraction and application are related by the following rule, known as β-reduction:

(λx.M)N → [N/x]M

where [N/x]M means the substitution of N instead of x in the term M.

For example,

(λx. 5∗x+3)4 → 5∗4+3 = 23

The lambda notation was explicitly introduced by the logician Alonzo Church in the lambda

calculus (λ-calculus), a formalism invented to develop a general theory of computable functions,

and to extend that theory with logical notions providing a foundation for (part of) mathematics.

In computer science, the lambda notation made its first appearance in the programming language

LISP; this was also the first language to use procedures as objects of the language. Like the early

lambda calculus, LISP is an untyped language; that is, programs and data are not distinguished, but

they are all elements of a unique untyped universe: the universe of λ-terms for the λ-calculus, the

universe of S-expressions for LISP (see next chapter). Anyway, as every computer scientist knows

from his or her own programming practice, types arise naturally, even starting from untyped

universes, when objects are categorized according to their usage and behavior. The ultimate question

is whether it wouldn't be better to consider types as an a priori schema of human knowledge, instead

of an attempt to organize subsets of objects with uniform properties out of an untyped universe. In

8. Formulae, Types, and Objects

168

computer science, the debate about typed and untyped languages is very lively today, since it reflects

the unresolvable conflict between reliability and flexibility of the language. Nowadays, the practical

success of a language is often due to the the more or less successful attempt to compromise security

and freedom; in this respect, the language ML is probably one of the most interesting examples.

Anyway, since the first appearance of types in Algol 60, when typing of variables was introduced to

check at compile time the connections of instances of use with associated declarations, typing has

been considered more and more an essential discipline that must not only help, but guide the

programmer in the design of code.

8.2 The Typed λλλλ-Calculus with Explicit Pairs (λλλλββββηηηηππππt)
The collection Tp of type labels, over a ground set At of atomic type symbols, is inductively defined

by

i. At ⊆ Tp;

ii. if A,B∈Tp, then A→B∈Tp;

iii. if A,B∈Tp, then A×B∈Tp.

For every type A there exists a denumerable number of variables, ranged over by lower case

letters near the end of the alphabet. We use upper case letters M, N, P, . . . , as metavariables for

terms. The fact that a term M has type A will be denoted with the expression “M: A.”

The well typed (λλλλ-)terms (w.t.t.) and their associated types, are defined according to the

following formation rules:

1. every variable x: A is a w.t.t.;

2. if x: A is a variable, and M: B is a w.t.t, then λx:A.M: A→B is a w.t.t.;

3. if M: A→B is a w.t.t and N: A is a w.t.t, then MN: B is a w.t.t.;

4. if M: A is a w.t.t and N: B is a w.t.t, then <M,N>: A×B is a w.t.t.;

5. if M: A×B is a w.t.t, then fst(M): A is a w.t.t.;

6. if M: A×B is a w.t.t, then snd(M): B is a w.t.t.

Given a w.t.t M: B, the set FV(M) of the free variables of M, is defined as follows:

1. if M ≡ x, then FV(M) = {x};

2. if M ≡ λx:A.N, then FV(M) = FV(N)-{x};

3. if M ≡ NP, then FV(M) = FV(N)∪FV(P);

4. if M ≡ <N,P>, then FV(M) = FV(N)∪FV(P);

5. if M ≡ fst(N), then FV(M) = FV(N);

6. if M ≡ snd(N), then FV(M) = FV(N).

The substitution [M/x]N: B of a proof M: A for a generic x: A in a proof N: B is defined in

the following way:

8. Formulae, Types, and Objects

169

1. if N: B ≡ x: A then [M/x]N: B ≡ M: A;

2. if N: B ≡ y: A , x≠y , then [M/x]N: B ≡ N: B;

3. if N: B ≡ λx:C.P : B, then [M/x]N: B ≡ λx:C.P : B;

4. if N: B ≡ λy:C.P : B, x≠y, y∉FV(M), then [M/x]N: B ≡ λy:C.[M/x]P : B;

5. if N: B ≡ PQ : B, then [M/x]N: B ≡ [M/x]P[M/x]Q : B;

6. if N: B ≡ <P,Q> : B, then [M/x]N: B ≡ <[M/x]P,[M/x]Q> : B;

7. if N: B ≡ fst(P) : B, then [M/x]N: B ≡ fst([M/x]P) : B;

8. if N: B ≡ snd(P) : B, then [M/x]N: B ≡ snd([M/x]P) : B.

As an easy consequence of the definition above, it follows that if x∉FV(N), then [M/x]N: B ≡ N:

B. Note also that, if x∉FV(N), then [P/x][M/y]N: B ≡ [([P/x]M)/y]N: B .

Given a sequence M = M1,..., Mn of terms, and sequence x = x1, . . . , xn of variables,

[M/x]N denotes the simultaneous substitution of every term Mi for the variable xi in the term N.

We also use the notation [M/x]N to express the simultaneous substitution of the term M for all the

variables in x.

We consider an equational theory of proofs, defined as the minimal congruence relation “=” which

satisfies the following axiom schemas:

(α) λx:A.M = λy:A.[y/x]M

(→β) (λx:A.M)N = [N/x]M

(→η) λx:A.(Mx) = M, if x∉FV(M)

(× β1) fst(<M,N>) = M

(× β2) snd(<M,N>) = N

(× η) <fst(P),snd(P)> = P.

The previous equations may be read from left to right : then one obtains a rewriting system, which

defines the operational semantics of lambda calculus as a programming language. Explicitly, we

define a reduction relation ⇒ as the minimal relation between with respect to terms such that

(→β) (λx:A.M)N ⇒ [N/x]M

(× β1) fst(<M,N>) ⇒ M

(× β2) snd(<M,N>) ⇒ N

Μ ⇒ M' implies ΜΝ ⇒ M'N

Μ ⇒ M' implies ΝΜ ⇒ NM'

Μ ⇒ M' implies λx:A.M⇒λx:A.M'

Μ ⇒ M' implies fst(Μ) ⇒ fst(M')

Μ ⇒ M' implies snd(Μ) ⇒ snd(M')

(→η) λx:A.(Mx) ⇒ M, if x∉FV(M)

(× η) <fst(P),snd(P)> ⇒ P.

8. Formulae, Types, and Objects

170

The rewriting rules associated with (→β), (× β1) and (× β2) are called β-reductions, and those

associated with (→η) and (× η) are called η-reductions. We put the η-reductions aside, because of

their lesser computational interest. In the following section we shall see that from the point of view of

the Curry-Howard correspondence both β− and η-reductions have an interpretation in terms of proof

normalization. Also in this context, however, the β-rules play a major role.

A term is in normal form (respectively β-normal form), if it is no more reducible (respectively

β-reducible). The (β-)reduction relation is confluent and noetherian.

Let us now look at some simple examples of programs written in the typed lambda calculus. As

usual, when considering the formal expressiveness of a calculus, we compare it with the problem of

representing integers and arithmetic functions.

Given a type σ, we call Nσσσσ= (σ→σ)→(σ→σ) the type of σσσσ-iterators (σσσσ-numerals). The

reason for the name is that in the type (σ→σ)→(σ→σ) we have all the terms with the following

structure:

0σ ≡ λxσ→σ λyσ.y

1σ ≡ λxσ→σ λyσ.xy

. . .

nσ ≡ λxσ→σ λyσ.xny, where xny = x(...(xy)) “n times”.

The effect of the term nσ is to take a function x of type σ→σ, a term y of type σ, and iterate the

application of x to y n times. It is possible to show that if σ is an atomic type, then the terms of the

form nσ, together with the identity λxσ→σ.xσ→σ are the only closed terms in normal form of

type σ.

We can now define the function succσ ≡ λn: Nσ λxσ→σ λyσ. x(nxy).

The term succσ has type Nσ→Nσ and its effect is to increase the iteration of one unit. For example,

 succσ 0σ = (λn: Nσ λxσ→σ λyσ. x(nxy)) 0σ
= λxσ→σ λyσ. x(0σxy)

= λxσ→σ λyσ. x(y)

= 1σ
Define now addσ: Nσ×Nσ→Nσ by addσ ≡ λz: Nσ×Nσ λfσ→σ λyσ. fst z f (snd z f y)

For example, we have:

 addσ <1σ,1σ> = (λz: Nσ×Nσ λfσ→σ λyσ. fst z f (snd z f y)) <1σ,1σ>

= λfσ→σ λyσ. fst <1σ,1σ> f (snd <1σ,1σ> f y)

= λfσ→σ λyσ. 1σ f (1σ f y)

= λfσ→σ λyσ. f (f y)

= 2σ.

Analogously, multσ: Nσ×Nσ→Nσ is given by

multσ ≡ λz: Nσ×Nσ λfσ→σλyσ. fst z (snd z f) y.

As an example of computation, we have

8. Formulae, Types, and Objects

171

 multσ <2σ,2σ> = (λz: Nσ×Nσ λfσ→σ λyσ. fst z (snd z f) y) <2σ,2σ>

= λfσ→σ λyσ. fst <2σ,2σ> (snd <2σ,2σ> f) y

= λfσ→σ λyσ. 2σ (2σ f) y

= λfσ→σ λyσ. (2σ f)(2σ f y)

= λfσ→σ λyσ. f (f(f (f y))))

= 4σ.

As a final example, we present a test to 0σ. That is, we want to define a term test 0σ that takes

two terms M and N of type σ and a σ-numeral n; if n = 0σ then the function yields M as

result; otherwise, it outputs N. Here it is: test 0σ ≡ λz: σ×σ λn: Nσ. n(λyσ.(snd z))(fst z).

It is possible to prove (see references) that these are essentially all the arithmetic functions we can

compute by the (pure!) simply typed λ-calculus, that is, all the functions that are defined by

composition of the previous ones. For example the predecessor function is not representable.

The simply typed λ-calculus cannot be considered as a real programming language, but only as a

paradigm for strongly typed (functional) languages, which allow us to point out their main common

properties. In the last section of this chapter we shall consider an extension of the language by

fixpoint operators. The combined use of these operators with a reasonable set of arithmetic primitives

gives to the language its full computational power.

8.3 The Intuitionistic Calculus of Sequents
Among the many variants of intuitionistic logic expressed in systems of Natural Deduction, Gentzen's

calculi of cequents has recently gained much popularity among the computer science community. In

the first place, one of the main aspects of the procedural interpretations of proofs is that of making

explicit the assumptions on which a formula occurrence in a deduction depends, and this is just what

the notion of sequent is meant for. Moreover, since the calculi of sequents can be understood as

metacalculi for the deducibility relation in the corresponding system of natural deduction, it seems to

be the best instrument for the investigation of the structure and the properties of proofs. Note,

however, that even when handling sequents, the dependencies of a formula by its premises can be

quite hard to understand, if one adopts some common choices on the structure of the sequent, such as

avoiding repetitions of formulae in the antecedent, or fixing a certain alphabetic order for them. This

is very clear if we consider a sequent as an effective process for transforming proofs of the premises

into a proof of the consequence. It seems not only reasonable, but fair to guarantee the ability of

handling two or more different proofs for a same formula. In particular, this means allowing

repetitions for a formula in the antecedent of a sequent, each one with an associated hypothetical

distinct proof. From the same point of view, even the idea of an ordering among the formulae does

not make any sense; what one really needs, are rather some explicit rules in the calculus which allow

us “to move formulae around” (exchange rules). The presence of repetitions of formulae requires a

8. Formulae, Types, and Objects

172

new rule too, stating that two proofs of a formula can actually be assumed to be the same, and thus

affording to discharge one of them (contraction rule). These rules, together with the so-called

weakening rule, that allows for adding new assumptions to a sequent, are usually referred to as

“structural rules.” The reason for this name should be clear, since these rules have nothing to do with

logical signs and their meanings, but only with the structures of the derivations in the calculi. This

property of the structural rules has been often misunderstood, and regarded as a sign of their lesser

logical interest: Takeuti called them “weak inferences,” with respect to the “strong inferences” of

introduction of the logical connectives. The very recent revival of the structural rules, and the analysis

of their impact on the logical systems is mostly due to Girard, and to the invention of linear logic (see

chapter 4).

The calculi of sequents for classical and intuitionistic logic were introduced by Gentzen at the

beginning of the 1930s, who called them L systems. In these systems the elementary statements are

statements of deducibility. Each statement Γ |- B (called a sequent) has a conclusion B and a

collection Γ, possibly void, of premises, and it is interpreted as stating the existence of a proof

leading to the stated conclusion and having no uncanceled premises other than some of those stated.

We consider only the subcalculus that deals with the two connectives of conjunction and

implication, and that will be referred to as “positive calculus.” The principal connective of the system

is implication; the role of conjunction is rather minor, but its analysis will help in clarifying some

issues we will be concerned with in the rest of this chapter.

The following presentation of the positive intuitionistic calculus of sequents is slightly different

from the usual one. In particular, every formula A will be equipped with an associated proof,

formally represented by a lambda term M: A. This association between proofs (λ-terms) and

formulae is defined in the inference rules of the calculus. If there is a derivation of the sequnt Γ |- M:

B, the proof M keeps a trace of the derivation tree. On the other hand, the so-modified inference

rules can be understood as metarules for proof manipulation. This understanding of the calculus of

sequents as a metacalculus for the deducibility relation is one of the most peculiar aspect of this formal

system.

8.3.1 Logical Alphabet

1. atomic propositions, ranged over by A, B, C, . . .;

2. logical symbols: ×, → .

8.3.2 W.F.Formulae (Types)

1. every atomic proposition is a formula;

2. if A, B are formulae, then A×B is a formula;

3. if A, B are formulae, then A→B is a formula.

8. Formulae, Types, and Objects

173

There is a bijective correspondence between formulae and types of the typed lambda calculus with

explicit pairs. We can go further, and associate every formula B with a λ-term M of the respective

type, which intuitively represents its proofs. In particular, if x1: A1,..., xn: An are the free variables

in M, then M: B is a proof of M depending on the hypothesis A1,..., An. The previous approach

is sound with the intuitionistic interpretation of the notion of proof as an effective procedure that

shows the validity of the conclusion B, as soon as one has a proof of the validity of the premises.

Thus, if M is a proof of B, possibly depending on a generic proof x: A, one gets a proof of A→B

by “abstraction on x: A,” that is λx:A.M: A→B. Juxtaposition of proofs corresponds intuitively to

their sequential application. In particular, if we have a proof M: A→B, and we apply it to a proof N:

A, then we obtain a proof MN of B. A proof of A×B is given by a pair of distinct proofs for A

and B. Moreover, having a proof of A×B, one can select the two proofs of A and B by means of

the projections fst and snd .

The inference rules of the calculus exactly formalize this process of constructiing complex proofs

by means of simpler ones.

A (well-typed) term M: A, will be called a proof when it is regarded from a logical viewpoint. A

variable x: A, will be called a generic proof of A.

An intuitionistic sequent has the following syntactic structure:

x1: A1, . . . , xn: An |- M: B

where x1: A1, . . . , xn: An is a finite (possibly empty) list of distinct generic proofs, and M: B is a

proof of B whose free variables are among x1, . . . , xn. Every formula in the left-hand-side

(l.h.s.) has an associated distinct variable; thus no confusion can arise between formulae, even if they

have the same name.

The intuitive interpretation of the sequent x1: A1, . . . , xn: An |- M: B is that of a process which

builds a proof M of B, as soon as it has proofs for A1, . . . , An, that is, a function f of type

A1× . . . ×An→B, or equivalently, A1→(. . . (An→B) . . .), which can be obtained by functional

completeness from the polynomial M.

Since the name of a generic proof is not relevant, we assume that sequents which differ only by a

renaming of variables are syntactically identified. This is consistent with the α-conversion rule of

proofs, in view of the intuitive interpretation of sequents sketched above.

We use Greek capital letters Γ, ∆, . . . to denote finite sequences of generic proofs in the left hand

side of a sequent. A sequent thus has the form Γ |- M: B.

An inference is an expression

 S1 S1 S2
____ __________

 S S

8. Formulae, Types, and Objects

174

where S1, S2, and S are sequents. S1 and S2 are called the upper sequents and S is called the

lower sequent of the inference. Intuitively, this means that when S1 (S1 and S2) is (are) asserted,

one can infer S from it (them).

We always suppose that the variables in the l.h.s. of the upper sequents are distinct. This is not a

problem, since the variables of the upper sequents S1 and S2 that contribute to form the l.h.s. of the

lower sequent S can be conveniently renamed.

The logical system restricts the legal inferences to those obtained from the following rules.

8.3.3 Axioms and Rules

(axiom) x: A |- x: A

Γ, x: A, y: B, Γ1 |- M: C
(exchange) ____________________

Γ, y: B, x: A, Γ1 |- M: C

 Γ |- M: B

(weakening) ____________

Γ, x: Α |- M: B

 Γ, x: Α, y: Α |- M: B

(contraction) ____________________

 Γ, z: Α |- [z/x][z/y]M: B

Γ|- M: A Γ1, x: Α, Γ2 |- N: B
(cut) __________________________

 Γ1, Γ, Γ2 |- [M/x]N: B

 Γ, x: Α |- M: B Γ1 |- M: A Γ2, x: B |- N: C

(→, r) _______________ (→, l) _________________________

Γ |- λx:A.M: A→B Γ1, Γ2, y: A→B |- [yM/x]N: C

Γ |- M: Α Γ |- N: B Γ, x: Α |- M: C

(×, r) _________________ (×, l, 1) _____________________

Γ |- <M,N> : A×B Γ, z: A×B |- [fst(z)/x]M: C

 Γ, y: Β |- M: C

(×, l, 2) ______________________

Γ, z: A×B |- [snd(z)/x]M: C

Remark Note the identification of the premises of the upper sequents in the rule (×, r).

8. Formulae, Types, and Objects

175

The formula Α in the weakening rule is called the weakening formula (of the inference).

Similarly, we define the cut formula. In the case of the contraction rule we distinguish between the

contracting formulae x: A, y: A and the contracted formula z: A. The formulae A→B and

A×B in the logical rules of introduction of the respective connectives, are called the principal

formulae of the inference; A and B are called the auxiliary formulae.

Unlike the usual approach, we intend the previous definition to refer only to the specific

occurrences of the formulae pointed out in the inference rules. For instance, consider the following

application of the rule (→, l):

Γ1 |- M: A w: A→B, x: B |- N: C

(→, l) ______________________________

Γ1, w: A→B, y: A→B |- [yM/x]N: C

The (occurrence of the) formula A→B associated with the proof y is a principal formula of this

inference, but that associated with w is not.

It is easy to check that, for every rule of inference, the proof in the right-hand side of the lower

sequents is well formed, if those of the upper sequents are as well. A derivation D is a tree of

sequents satisfying the following conditions:

1. the topmost sequents of D are axioms;

2. every sequent in D except the lowest one (the root) is an upper sequent of an inference whose

lower sequent is also in D.

The lower sequent in a derivation D is called the end-sequent of D. A path in a derivation D

from a leaf to the root is called a thread. A derivation without the cut rule is called cut-free.

Examples The following is a derivation:

 x: Α |- x: Α y: Β |- y: Β
______________ _______________

z: Α×Β |- fst(z): Α z: Α×Β |- snd(z): Β

 z: Α×Β |- <fst(z),snd(z)>: Α×Β

The sequence

x: Α |- x: Α

z: Α×Β |- fst(z): Α

z: Α×Β |- <fst(z),snd(z)>: Α×Β

is a thread.

8. Formulae, Types, and Objects

176

The tidy display of the introduction of new formulae during a derivation in Gentzen’s calculus of

sequent, allows us to follow the entire “life” of a formula, from the moment it is “created” (by an

axiom, a weakening, or as a principal formula of a logical rule) to the moment it is “consumed” (by a

cut, or as an auxiliary formula in a logical rule). Note in particular that a step of contraction must not

be regarded as a consumption, but as an identification of a formula A in the lower sequent, with two

formulae of the same name in the upper sequent.

Given a thread T and an occurrence of a formula A in the final sequent of T, we call rank of

A in T the number of consecutive sequents in T, counting upward, that contain the same

occurrence of the formula A (or a formula which has been contracted to it).

For instance, consider again the thread

x: Α |- x: Α

z: Α×Β |- fst(z): Α

z: Α×Β |- <fst(z),snd(z)>: Α×Β

of the previous example. The rank of the formula Α×Β in the l.h.s. of the end sequent is 2, while

the rank of the formula Α×Β in the r.h.s. is 1.

8.4 The Cut-Elimination Theorem
One of the more interesting properties of Gentzen’s calculus of sequent is the cut-elimination theorem,

also known as Gentzen’s Hauptsatz. This result proves that every derivation in the calculus can be

effectively transformed in a “natural normal form” which does not contain any application of the cut

rule. Moreover we show that this process of reduction of the derivations toward a normal form is in

parallel to the β-reduction of the associated proofs.

The identification of the derivations reducible to a same normal form is the base of the so-called

“semantics of proofs,” and, a posteriori, it provides a justification for the equational theory we have

introduced over the language of proofs (at least for the β-conversions).

The following presentation of the cut-elimination theorem is meant to study the relations between a

derivation ending in the sequent Γ |- M: A and the proof M: A. Indeed, it should be clear that given

a proof M: A, with FV(M) ⊆ Γ, it is possible to obtain a derivation of the sequent Γ |- M: A by

building a sort of “parse tree” for the term M: A . Anyway, this correspondence between derivations

and proofs is not a bijection: the problems arise with the structural rules, since their application is not

reflected in the terms. In particular, it is not possible to recover the order in which the structural rules

have been applied during the derivation.

The exact formalization of the equivalence of derivations that differ only in “structural details” is

not at all trivial, and it is the main goal of Girard’s research of “a geometry of interaction”. From this

respect, the language of proofs is a very handy formalism that allows us to abstract from such

structural details.

8. Formulae, Types, and Objects

177

Before the cut-elimination theorem, we state a first, simple result that relates cut-free derivations

and proofs in β-normal form.

8.4.1 Proposition Let Γ |- M: A be the end sequent of a cut-free derivation. Then the proof M:

A is in β-normal form.

Proof Exercise. Hint: Show, by induction on the length of the derivation, that the proof M: A

cannot contain any of the following subterms:

1. (λx:B.N)P: C

2. fst(<N,P>)

3. snd(<N,P>). ♦

One of the aims of this chapter is to put in evidence the logical aspects underlying functional type

theories. For this reason we state and prove Gentzen’s Hauptsatz and stress the equivalence of the

normalization of a derivation D ending in a sequent Γ |- M: A and the β-reduction of M.

8.4.2 Theorem (The Cut-Elimination Theorem) Let D be a derivation of the sequent Γ |-

M: A . Then there exists a cut-free derivation D' of the sequent Γ |- N: A, where N is the β-normal

form of M.

It is difficult to appreciate at first sight the cut-elimination theorem in its whole meaning. Indeed, it

looks like a mere result about the redundancy of one of the inference rules in the calculus, and one

would expect, as a next step, to drop the cut rule from the logical system. This is not at all the case.

The fact is that the cut rule is a very relevant and deep attempt to express one of the crucial

methodological aspects of reasoning, that is, the decomposition of a complex problem in simpler

subproblems: in order to prove Γ |- B , we can prove two lemmas Γ |- A and Α |- B. This is very

clear from the computer science point of view, where the emphasis is not on the results - that is, the

terms in normal form - but on the program’s synthesis, and its reduction (computation) when applied

to data.

An important consequence of the cut-elimination theorem is the following. One can easily see that

in any rule of inference except a cut, the lower sequent is no less complicated than the upper

sequent(s). More precisely, every formula occurring in an upper sequent is a subformula of some

formula occurring in the lower sequent. Hence a proof without a cut contains only subformulae of the

formulae occurring in the end sequent (subformula property). From this observation, the

consistency of the logical system immediately follows. Suppose indeed that the empty sequent |-

were provable. Then by the cut-elimination theorem, it would be provable without a cut; but this is

impossible, by the subformula property of cut-free proofs.

8. Formulae, Types, and Objects

178

In order to prove theorem 8.4.2, it is convenient to introduce a new rule of inference called a mix.

The mix rule is logically equivalent to the cut rule, but it helps deal with the contraction rules, whose

behavior during the cut elimination is rather annoying. We shall discuss again this problem at the end

of the proof.

A mix is an inference of the following form:

Γ|- M: A Γ1 |- N: B

 Γ, Γ1* |- [M/x]N: B

where x is a vector of variables in Γ1, Γ1* is obtained from Γ1 by erasing all the assumption x:

A with x∈x, and [M/x]N denotes the simultaneous substitution of M for all variables in x,

inside the term N.

The previous notion of mix rule is slightly different from the usual one. In particular the formula

A can still appear in the lower sequent Γ1*.

An occurrence of A in the upper sequents of a mix rule is called a mix formula (of the

inference) if and only if it satisfies one of the two following conditions:

1. it is in the r.h.s. of the left upper sequent;

2. it is in the l.h.s. of the right upper sequent, and it is associated with a proof x:A , with x∈x.

Clearly a cut is a particular case of mix, where the vector x contains only one variable. Moreover,

every mix can be simply obtained by a sequence of exchanges and contractions, a cut, and another

series of exchanges.

Since a proof without a mix is also a proof without a cut, theorem 8.4.2 is proved if we prove the

following:

8.4.3 Theorem (The Mix-Elimination Theorem) Let D be a derivation of the sequent Γ |-

M: A. Then there exists a mix-free derivation D' of the sequent Γ |- N: A, where N is the β-

normal form of M.

Theorem 8.4.3 is easily obtained from the following lemma, by induction on the number of the mix

rules occurring in the derivation D.

8.4.4 Lemma Let D be a derivation of the sequent Γ |- M: A that contains only one cut rule

occurring as the last inference. Then there exists a cut-free derivation D' of the sequent Γ |- N: A,

where N is the β-normal form of M.

The rest of this section is devoted to the proof of this lemma.

8. Formulae, Types, and Objects

179

We define two scales for measuring the complexity of a proof. The grade of a formula A

(denoted by g(A)) is the number of logical symbols contained in A. The grade of a mix is the grade

of the mix formula. When a derivation D has only one cut as the last inference, we define the grade

of D (denoted by g(D)) to be the grade of this mix.

Let D be a derivation which contains a mix

Γ|- M: A Γ1 |- N: B

 Γ, Γ1* |- [M/x]N: B

as the last inference. We call a thread in D a left (right) thread if it contains the left (right) upper

sequent of the mix. The rank of a thread is the number of consecutive sequents in D (counting

upward from the upper sequents of the cut rule) that contain the mix formula or a formula which has

been contracted to it. The rank of every thread is at least 1. The left (right) rank of a derivation D is

the maximum among the ranks of the left (right) threads in D. The rank of a derivation D is the sum

of its left and right ranks. The rank of a derivation is at least 2.

We prove the lemma by double induction on the grade g and rank r of the derivation D. The

proof is subdivided into two main cases, namely r = 2 and r > 2.

Case 1 : r = 2

We distinguish cases according to the forms of the proofs of the upper sequents of the cut rule.

1.1. The left upper sequent S1 is an initial sequent. In this case D is of the form

y: A |- y: A Γ |- N: B

 Γ1* |- [y/x]N: B

And we obtain the same proof by a series of contractions starting from the sequent Γ |- N: B.

1.2. The right upper sequent S2 is an initial sequent. Similarly.

1.3. Neither S1 nor S2 is an initial sequent, and S1 is the lower sequent of a structural inference.

It is easy to check that, in case r = 2, this is not possible.

1.4. Neither S1 nor S2 is an initial sequent, and S2 is the lower sequent of a structural inference.

The structural inference must be a weakening, whose weakening formula is A. The derivation D

has the structure

8. Formulae, Types, and Objects

180

Γ1 |- N: B

Γ |- M: A x: Α, Γ1 |- N: B

 Γ, Γ1 |- [M/x]N: B

Since x∉FV(N), [M/x]N ≡ N, and we obtain the same proof N: B as follows:

Γ1 |- N: B

some weakenings

 Γ, Γ1 |- N: B

1.5. Both S1 and S2 are the lower sequents of logical inferences. Since the left and right ranks of

D are 1, the cut formulae on each side are the principal formulae of the logical inferences, and the mix

is actually a cut between these two formulae.

We use induction on the grade and distinguish two cases according to the outermost logical

symbol of A.

(→) the derivation D has the structure

 Γ, x: Α |- M: B Γ1 |- N: A Γ2, y: B |- P: C
_______________ ________________________

Γ |- λx:A.M: A→B Γ1, Γ2, z: A→B |- [zN/y]P: C

Γ, Γ1, Γ2 |- [λx:A.M/z][zN/y]P: C

where, by assumption, the proofs ending with Γ, x: Α |- M: B, Γ1 |- N: A or Γ2, y: B |- P: C do

not contain any cut. Note now that

[λx:A.M/z][zN/x]P: C ≡ [(λx:A.M)N/y]P: C = [([N/x]M) /y]P: C,

which also suggests how to build the new derivation.

First consider the derivation

Γ1 |- N: A Γ, x: Α |- M: B

Γ1, Γ |- [N/x]M: B

This proof contains only one mix as its last inference. Furthermore, the grade of the mix formula is

less than g(A→B). By induction hypothesis, there exists a derivation D' of the sequent Γ1, Γ |-

M': B, where M' is the β-normal form of [N/x]M. Then, with another mix we get

8. Formulae, Types, and Objects

181

Γ1, Γ |- M': B Γ2, y: B |- P: C

Γ, Γ1, Γ2 |- [M'/z]P: C

Again we can apply the induction hypothesis, obtaining the requested derivation.

(×) we only consider the case in which the right upper sequent is obtained by a (×,r,1), the other case

being completely analogous. The derivation has the structure

Γ |- M: Α Γ |- N: B Γ1, x: Α |- P: C
_________________ _____________________

 Γ |- <M,N> : A×B Γ1, z: A×B |- [fst(z)/x]P: C

Γ, Γ1 |- [<M,N>/z][fst(z)/x]P: C

where by assumption the proofs ending with Γ |- M: Α , Γ |- N: B or Γ1, x: Α |- P: C do not

contain any mix. We have

[<M,N>/z][fst(z)/x]P: C ≡ [fst(<M,N>)/x]P: C = [M/x]P: C.

Consider the derivation:

Γ |- M: Α Γ1, x: Α |- P: C

 Γ, Γ1, z: A×B |- [M/x]P: C

This proof contains only one mix as its last inference. Furthermore the grade of the cut formula is less

than g(A×B). By induction hypothesis, we have the requested cut-free derivation D'.

Case 2 : r > 2

The induction hypothesis is that we can eliminate the cut from every derivation D' that contains only

one cut as the last inference, and that satisfies either g(D') < g(D), or g(D') = g(D) and rank(D') <

rank(D).

There are two main cases, namely, rankr(D) > 1 and rankl(D) > 1 (with rankr(D) = 1).

2.1. rankr(D) > 1: we distinguish several subcases according to the logical inference whose lower

sequent is S2.

2.1.1. The sequent S2 is the lower sequent of a weakening rule, whose weakening formula is not

the cut formula. The derivation D has the structure

8. Formulae, Types, and Objects

182

 Γ1 |- N: B

Γ |- M: A y: C, Γ1 |- N: B

Γ, y: C, Γ1* |- [M/x]N: B

Consider the derivation D'

Γ |- M: A Γ1 |- N: B

Γ, Γ1* |- [M/x]N: B

where the grade of D' is the same of D, namely g(A). Moreover, the two derivations have the

same left rank, while rankr(D') = rankr(D) - 1; thus we can apply the induction hypothesis. With a

weakening and some exchanges we obtain the requested mix-free derivation.

2.1.2. The sequent S2 is the lower sequent of an exchange rule. Similarly.

2.1.3. The sequent S2 is the lower sequent of a contraction rule. This is the main source of problems

with the cut rule (see discussion at the end of the proof). With the mix rule, everything is instead very

easy. For instance, let us consider the case when the contracted formula is a cut formula (the other

case is even simpler). The derivation has the structure

 Γ1, x: Α, y: A |- N: B

Γ |- M: A Γ1, z: Α |- [z/x][z/y]N: B

Γ, Γ1* |- [M/x][z/x][z/y]N: B

where z∈x .

Consider the derivation D'

Γ |- M: A Γ1, x: Α, y: A |- N: B

Γ, Γ1* |- [M/x']N: B

where x' is obtained from x by erasing z and adding x, y.

The grade of D' is the same of D, namely g(A). Moreover, the two derivations have the same

left rank, while rankr(D') = rankr(D) - 1; thus we can apply the induction hypothesis, and we obtain

a cut-free derivation D" of Γ, Γ1* |- N': B, where N' is the β-normal form of [M/x']N: B. Since

[M/x][z/x][z/y]N: B ≡ [M/x']N: B, the proof is completed.

2.1.4. The sequent S2 is the lower sequent of a logical inference J, whose principal formula is not

a cut formula.

8. Formulae, Types, and Objects

183

The last part of the derivation D looks like

Γ1 |- N: B
________ J

Γ |- M: A Γ2 |- P: C

 Γ, Γ2* |- [M/x]P: C

where the derivations of Γ |- M: A and Γ1 |- N: B contains no mixes, and Γ1 contains all the cut

formulae of Γ2. Consider the following derivation D':

Γ |- M: A Γ1 |- N: B

 Γ, Γ1* |- [M/x]N: B

The grade of D' is the same as that of D, namely g(A). Moreover, the two derivations have the

same left rank, while rankr(D') = rankr(D) - 1; thus we can apply the induction hypothesis, and we

obtain a cut-free derivation D" of Γ, Γ1* |- N': B, where N' is the β-normal form of [M/x]N: B.

Now we can apply the J rule to get:

Γ, Γ1* |- N': B
_____________ J
Γ, Γ2* |- P': C

and clearly P' is the β-normal form of [M/x]P: C (the inference rules are sound w.r.t. equality of

proofs).

2.1.5. The sequent S2 is the lower sequent of a logical inference J, whose principal formula is a cut

formula. We treat only the case of the arrow.

(→) the derivation D has the structure

Γ1 |- N: A Γ2, y: B |- P: C

Γ |- M: A→B Γ1, Γ2, z: A→B |- [zN/y]P: C

Γ, Γ1*, Γ2* |- [M/x][zN/y]P: C

where z∈x.

Let v1, v2 be the variables of x, which are respectively in Γ1 and Γ2. Note that v1 and v2
cannot be both empty by the hypothesis about rank.

If v1, v2 are both nonempty, consider the following derivations D1 and D2:

8. Formulae, Types, and Objects

184

D1: D2:

Γ |- M: A→B Γ1 |- N: A Γ |- M: A→B Γ2, y: B |- P: C
_____________________ _____________________________

 Γ, Γ1* |- [M/v1]N: A Γ, Γ2*, y: B |- [M/v2]P: C

If v1 (v2) is empty, and thus Γ1 = Γ1* (Γ2 = Γ2*), let D1 (D2) be as follows:

D1: D2:
 Γ1 |- N: A Γ2, y: B |- P: C
 __________ ____________

 weakenings weakenings
___________ _______________

Γ, Γ1* |- N: A Γ, Γ2*, y: B |- P: C

The grade of D1 and D2 is the same as that of D, namely g(A→B). Moreover, rankl(D1) =

rankl(D1) = rankl(D), and rankr(D1) = rankr(D1) = rankr(D) - 1. Hence, by induction hypothesis,

there exist two derivations D1' and D2' respectively ending in the sequents

Γ, Γ1* |- N1: A with N1 β-normal form of [M/v1]N: A

Γ, Γ2*, y: B |- P1: C with P1 β-normal form of [M/v2]P: C.

Let w be the vector of variables in Γ, and let w', w" be two vectors of fresh variables of the

same length. Let Γ' = [w'/w]Γ, Γ" =[w"/w]Γ be the sequences of assumptions obtained by

renaming the variables in Γ. Let also N1' ≡ [w'/w]N1 and P1' ≡ [w'/w]P1 be the results of the

same operation on the two terms N1 and P1.

Consider the derivation D'

Γ', Γ1* |- N1': A Γ", Γ2*, y: B |- P1': C

Γ |- M: A→B Γ', Γ1*, Γ", Γ2*, z: A→B |- [z(N1')/y](P1'): C

Γ, Γ', Γ1*, Γ", Γ2* |- [M/z][zN1'/y]P1': C.

The grade of D' is the same of D, namely, g(A→B). Moreover, rankl(D') = rankl(D), and

rankr(D') = 1, since z: A→B is the only cut formula. We can apply again the induction hypothesis,

getting a mix-free derivation of the final sequent

Γ, Γ', Γ1*, Γ", Γ2* |- P2: C with P2 β-normal form of [M/z][zN1'/y]P1'.

Identifying by means of contractions (and exchanges) the variables in Γ, Γ', Γ", we get a mix-free

derivation of Γ, Γ1*, Γ2* |- P3: C , where P3 is a β-normal form of [w/w'][w/w"]P2.

Note now that:

 [w/w'][w/w"]P2 = [w/w'][w/w"][M/z][zN1'/y]P1'

≡ [M/z][z([w/w']N1')/y]([w/w"]P1')

8. Formulae, Types, and Objects

185

≡ [M/z][zN1/y]P1
= [M/z][z([M/v1]N)/y]([M/v2]P)

≡ [M/z][M/v1][M/v2][zN/y]P

≡ [M/x][zN/y]P: C.

2.2. rankl(D) > 1 (and rankr(D) = 1)

This case is proved in the same way as is 2.1 above.

This completes the proof of lemma 8.4.4 and, hence, of the cut-elimination theorem. ♦

8.5 Categorical Semantics of Derivations
In this section we will study the categorical semantics of the intuitionistic proof theory developed in

the last section. The main idea is that a formula A is interpreted as an object I(A) in a category C.

A provable sequent B1,..., Bn |- A is then associated with a morphism f: I(B1)⊗...⊗I(Bn)→I(A),

where ⊗: C×C→C is a suitable bifunctor that gives meaning to the comma in the l.h.s. of the

sequent. Since the comma is associative and commutative, ⊗ is a symmetric tensor product.

Moreover, we need some sort of projections for the weakening rule, and a diagonal map in the

contraction rule. Actually, all these morphisms, together with a few reasonable equations, turn ⊗

into a categorical product.

Since C |- A⇒B iff C, A |- B, it is natural to interpret the implication ⇒ as the right adjoint to

the functor ⊗.

Also the binary connective × is bifunctor of the category. In particular, the fact that C |- A×B iff

(C |- A and C |- B) suggests that × should be interpreted as a categorical product. As a

consequence ⊗ and × coincide to within isomorphism, that is consistent with the well-known fact

that the comma in the l.h.s. of a sequent has the same logical meaning of a conjunction. Anyway,

since they are different concept, we prefer to maintain the distinction at the semantical level.

8.5.1 Definition A categorical model of the positive intuitionistic calculus is a pair (C,IAt),

where C is a Cartesian closed category (possibly with two specified products ⊗ and ×), and IAt is

a map that takes every atomic formula to an object of C.

Notation In the rest of this chapter, we shall use the same symbols ⇒ and × for indicating both

the connectives of the calculus and the associated functors of the category: the intended meaning is

clear from the context.

8. Formulae, Types, and Objects

186

The analysis of the cut-elimination theorem will provide a more convincing justification for the

previous notion of model. Now we concentrate on the interpretation.

I is extended to all the formulae in the following way:

I(A) = IAt(A) if A is atomic

I(A⇒C) = I(A)⇒I(C)

I(A×C) = I(A)×I(C)

The categorical interpretation does not give meanings to sequents, but to derivations. Every derivation

D whose final sequent is B1, . . . , Bn |- A is interpreted by a morphism

I(D) = f: I(B1)⊗ . . . ⊗I(Bn) → I(A)

Before giving the details of the interpretation, we recall a few results about Cartesian closed

categories, and fix the notation.

We call weak-lA,B: A⊗B→B, weak-rA,B: A⊗B→A the projections associated with the product

⊗, and fstA,B: A×B→B, sndA,B: A×B→A the projections associated with the product ×.

We have the natural isomorphisms assocA,B,C: (A⊗B)⊗C→A⊗(B⊗C) and exchA,B:

A⊗B→B⊗A, given by the symmetric monoidal structure associated with ⊗. Moreover, we have a

diagonal map ∆A = <idA,idA>: A→A⊗A and an the evaluation map evalA,C: (A⇒C)⊗A→C.

The interpretation is given by induction on the length of the derivation. We define it in a somewhat

informal but suggestive (and concise) way, associating with every inference rule of the calculus in

8.3.4 a respective semantic rule. This will be enough as for the categorical meaning of the

intuitionistic system in section 8.3.

8.5.2 Interpretation

(axiom) idA : A → A

 f: A⊗(B⊗C) → D
(associativity) _________________________

f ° assocA,B,C: (A⊗B)⊗C → D

 f: B⊗A → C
(exchange) ___________________

f ° exchA,B: A⊗B → C

 f: B → C

(weakening) _____________________

f ° weak-lA,B: A⊗B → C

8. Formulae, Types, and Objects

187

 f: (Α⊗Α)⊗B → C

(contraction) ____________________

f ° ∆A⊗idB: A⊗B → C

f: B → A g: Α⊗D → C
(cut) ______________________

 g ° f⊗idD : B⊗D → C

 f: B⊗Α → C f: E → A g: C → D

(→, r) _____________ (→, l) _____________________________

Λ(f): B → A⇒C g ° evalA,C ° id⊗f: (A⇒C)⊗E → D

f: C → Α g: C → B f: A⊗C → D

(×, r) __________________ (×, l, 1) _________________________

 <f,g>: C → A×B f ° fstA,B⊗idC: (A×B)⊗C → D

 f: B⊗C → D

(×, l, 2) __________________________

f ° sndA,B⊗idC: (A×B)⊗C → D.

8.6 The Cut-Elimination Theorem Revisited
In this section, we look at the cut elimination theorem from the categorical point of view. Our goal is

to provide a more convincing justification of the categorical notion of model, not a further proof of

cut-elimination. Indeed the notion of CCC imposes some identifications between derivations that are

not evident at the logical level of the inference rules. The fact is that we are not interested in giving

semantics to the provability relation among formulae, but more generally to the whole proof system,

with its associated normalization procedures. The point is that the equalities, which define CCC's,

reflect the identity of derivations up to normalization. In particular, we have the following result.

8.6.1 Theorem (The Cut-Elimination Theorem) Let D be a derivation of the sequent A |-

B. Then there exists a cut-free derivation D' whose final sequent is A |- B, and such that in every

model I(D) = I(D').

We do not prove the previous result, but instead analyze in detail some examples of derivations

identified by the cut-elimination process. Our aim is to show that the Cartesian closed structure is

imposed by this identification of proofs up to normalization. The examples are instrumental to this.

8. Formulae, Types, and Objects

188

8.6.2 Example If in the following derivation the left upper sequent A |- A is an initial sequent,

the cut is eliminated by taking the derivation of the right upper sequent

A |- A A |- B

A |- B

At the semantic level, we have the situation:

idA: A → A f: A → B

f ° idA: A → B

thus a model must satisfy the equation f ° idA = f . Analogously, when the right upper sequent is an

axiom, we derive the equation idA ° f = f

8.6.3 Example Consider a derivation whose final part looks like

 B |- C

D |- A A, B |- C

D, B |- C

the cut is eliminated in the following way:

 B |- C

D, B |- C

At the semantic level we have the following situation:

f: B → C

g: D → A f ° weak-lA,B: A⊗B → C

 f ° weak-lA,B ° g⊗idB: D⊗B → C

and
f: B → C

f ° weak-lD,B: D⊗B → C

thus, for every g: D→A, we must have

weak-lD,B = weak-lA,B ° g⊗idB : D⊗B→C (*)

8. Formulae, Types, and Objects

189

The previous equation is clearly true if ⊗ is a categorical product, and weak-lD,B is the associated

right projection.

8.6.4 Example Consider a derivation whose final part looks like

A, A |- B

D |- A A |- B

D |- B

This is the annoying case of the contraction. With the help of a mix rule, the derivation reduces to

D |- A A, A |- B

D |- B

Regarding the mix as a simple abbreviation of a series of cuts and structural inferences, the previous

derivation is logically equivalent to

D |- A A, A |- B

D |- A D, A |- B

D, D |- B

D |- B

At the semantic level we have

 f: A⊗A → B

g: D → A f ° ∆A : A → B

f ° ∆A ° g: D→ B

which reduces to

g: D → A f: A⊗A → B

g: D → A f ° g⊗idA : D⊗A → B

f ° g⊗idA ° idA⊗g : D⊗D → B

 f ° g⊗g ° ∆D : D⊗D → B

8. Formulae, Types, and Objects

190

This implies that in a model we expect

∆A ° g = g⊗g ° ∆D (+)

that is the naturality of ∆ .

8.6.5 Example Consider the derivation

B, Α |- C E |- A C |- D
________ _____________

B |- A⇒C (A⇒C), E |- D

B, E |- D

The last cut is eliminated by introducing two other cuts of lesser grade, namely

B, Α |- C C |- D

E |- A B, A |- D

 B, E |- D

At the semantic level this gives

 h: B⊗Α → C f: E → A g: C → D
_____________ _____________________________

Λ(h): B → A⇒C g ° evalA,C ° id⊗f: (A⇒C)⊗E → D
__

g ° evalA,C ° id⊗f ° Λ(h)⊗id: B⊗E → D

that reduces to
h: B⊗Α → C g: C → D

 f: E → A g ° h : B⊗Α → D

g ° h ° id⊗f : B, E → D

Note that in a Cartesian closed category, by the β-axiom of exponents, one has

g ° evalA,C ° id⊗f ° Λ(h)⊗id = g ° evalA,C ° Λ(h)⊗id ° id⊗f = g ° h ° id⊗f.

This completes the observation that the Cartesian closure may be described in terms of equivalence of

proofs, up to normalization.

8. Formulae, Types, and Objects

191

8.7 Categorical Semantics of the Simply Typed Lambda Calculus
In sections 8.3 and 8.4, we have investigated the relation between typed lambda calculus and

intuitionistic logic, and in sections 8.5 and 8.6 we have established the connection between

intuitionistic logic and Cartesian closed categories. In this section we want now to “fill the triangle”

among typed lambda calculus, intuitionistic logic and Cartesian closed categories, studying the

missing edge - namely the categorical semantics of the Typed Lambda Calculus, over CCC's.

The main idea of the categorical semantics of the typed lambda calculus is to interpret types as

objects and terms as morphisms of a category C. In particular, the reader has probably noted some

analogy between the axioms of λβηπt and the axioms defining products and exponents in Cartesian

closed categories. The relation is quite evident in the case of products: fstσ×τ→σ and sndσ×τ→τ

are easily understood as the projections associated with the categorical product of σ and τ. Apart

from the problem of switching from “application” to “composition,” the axioms of λβηπt regarding

the product are essentially identical to the axioms in definition 1.3.3 of categorical product. Less

immediate is the connection between β (and η) and the rules defining the exponents of a CCC: the

main problem is that the definition in the calculus is based on the process of substitution, for which

we do not have any immediate equivalent in Category Theory. Let us look a little closer at our

tentative interpretation: the intuitive idea is that a term Mτ with free variables among x1σ1, ...,xnσn

should be interpreted as a morphism Mτ from ∆ = σ1×...×σn to τ. Suppose now that we have

two terms Mτ and Nγ, such that the free variables of [Nγ/ xγ]Mτ are in ∆= σ1×...×σn. Then

look at Mτ like an arrow from ∆×γ to τ, and at Nγ like an arrow from ∆ to γ. The effect of

substituting Nγ for xγ in Mτ is simply achieved by composing Mτ with < id∆, Nγ >.

These considerations are formalized in substitution lemma 8.7.6 below, which plays a central role in

the semantics of functional languages. Note now that in every CCC, one has

(βcat) eval ° <Λ(f),g> = eval ° Λ(f)×id ° <id,g> = f ° <id,g>

which, by our interpretation of substitution, is just the categorical equivalent of β-conversion in λ-

calculus.

8. Formulae, Types, and Objects

192

We now begin a formal discussion on the categorical interpetation of typed λ-calculus, by

outlining a simple and very intuitive, set-theoretic definition of model for λβηπt. This is just a

definition and will be instrumental to the categorical characterization below. In particular, it will allow

us to relate the category-theoretic approach to the Tarskian view in semantics. For a more direct

connection between λβηπt and CCC's, see the references.

The collection Tp of types over a set At of ground types has been defined in section 8.2. As

types will be largely used as indexes (of terms), in this section we go back to the use of small greek

letters σ,τ.... as metavariables for types.

8.7.1 Definition Let C = {Ci | i∈At} be a collection of sets. Then TSC = {Cσ}σ∈Tp is a

type structure over C iff, for all σ,τ∈Tp,

Cσ→τ ⊆ Cσ → Cτ (= Set[Cσ,Cτ])

Cσ×τ = Cσ×Cτ .

8.7.2 Definition A type structure TSA = ({Aσ}σ∈Tp, []) is a model of typed λ-calculus (with

products) iff [] yields an interpretation for λβη(π)t. That is, for any environment h: Var →

Uσ∈Tp (Aσ} with h(xσ)∈Aσ, one has [Mρ]]]]h∈Aρ, for each ρ∈Tp and for [] defined by

Var. [xσ]]]]h = h(xσ)

App. [Mσ→τNσ]h = [Mσ→τ]h ([Nσ]h)

β . [λxσ.Mτ]h(a) = [Mτ]]]]h[a/xσ] for a ∈ Aσ
π . [fstσ×τ→στ]h = p1 , [sndσ×τ→στ]h = �p2

where p1, p2 are the set-theoretic projections (of proper types).

This is a good definition of model, i.e., the axioms and rules are realized and, given a model TSA
λβη(π)t, one actually has

λβη(π)t | Mσ = Nσ ⇒ TSA |= Mσ = Nσ.

Indeed, the reader will be asked to check the validity of axiom (β) in the exercise before 8.7.7.

Note also that, in a model, axiom (η) and rule (ξ) trivially hold, since λ-terms are interpreted as

functions in extenso and, hence, one has

η. ∀a [λyσ.Mσ→τyσ]]]]h(a) = [Mσ→τ]]]]h(a) , for yσ∉FV(Mσ→τ), and

ξ. ∀a [Mτ]]]]h[a/xσ] = [Nτ]]]]h[a/xσ] ⇒ [λxσ.Mτ]]]]h = [[[[λxσ.Nτ]]]]h ,

by (β) and by [λxσ.Pτ]h∈Aσ→τ ⊆ Aσ→Aτ.

The properties of projections and pairing, in case one considers λβηπt, are trivially realized by

the definition of product.

Thus a type-structure TSA is a model of λβη(π)t iff

λβη(π)t | Mσ = Nσ ⇒ TSA |= Mσ = Nσ.

8. Formulae, Types, and Objects

193

Since the previous definition of model is set-theoretic, a suitable notion of “concreteness” for

categories can help in studying categories as models. The minor loss of generality, in this case, is

balanced by the gain in intuition.

In general, concrete categories are widely used in denotational semantics; they are (usually)

defined by an “enough points” requirement.

8.7.3 Definition. Let C be a category. t∈ObC is a generator iff for all a,b∈ObC and all

f,g∈C[a,b], f ≠ g ⇒ ∃h∈C[t,a] f°h ≠ g°h .

C has enough points if there exists a generator t that is terminal in the given category.

The terminology derives from the idea that the arrows in C[t,a], when t is terminal, may be

understood as the points (or elements) of a. Indeed, we can associate with each category C having

enough points a category of sets Cset as follows. For a,b∈ObC and t terminal

objects: |a| = C[t,a]

morphisms: f∈Cset[|a|,|b|] iff ∃f'∈C[a,b] f = f'° _ .

Observe that f' is unique once f is given.

8.7.4 Proposition. If C is a CCC with enough points, then Cset is also a CCC with enough

points.

Proof If cσ→τ and cσ×τ are the exponent and product objects, in C, of cσ and cτ, then |cσ→τ|

and |cσ×τ| are the exponent and product objects, in Cset, of |cσ| and |cτ|. As for the exponent, just

set evalset = eval°_ , and Λset(f) = Λ(f')°_ , where f' defines f as above. The rest is easy. ♦

Note that one obtains type structures from all categories with enough points That is, let K be a CCC

with enough points and C = {ki | i∈At} ⊆ ObK. Let also kσ→τ and kσ×τ be the exponent and

product objects, in K, of kσ and kτ. Then KC = {K[T,kσ] | σ∈Tp } is the type structure

generated by K and C.

Examples. The simplest type structures are the “full” type-structures and the “term model” of

λβη(π)t . That is, SetC, where C is a collection of sets, and Term = ({Termσ}σ∈Tp, []), where

Termσ is the set of terms of type σ modulo βη convertibility.

8.7.5 Definition Let C be a CCC, with terminal object t and projections fst, snd. Suppose one

has a map I associating every atomic type A with an object of C . Then the categorical

interpretation is as follows:

- Types: [σ] = I(σ) if σ is atomic

[σ→τ] = [τ][σ]

8. Formulae, Types, and Objects

194

[σ×τ] = [σ] × [τ]

- Terms: let Mσ be a term of λβηπt, with FV(Mσ) ⊆ ∆ = {xσ1,…,xσn}, and assume that

A, A1,…,An interpret σ, σ1,…,σn (we omit typing, when unambiguous, and write

pi∈C[t×A1×...×An ,Ai] for the projection pi : t×A1×...×An → Ai). Then [Mσ]∆ is the

morphism in C[t×A1×...×An,A] defined by

[xσi]∆ = pi
[MN]∆ = eval ° <[M]∆, [N]∆>

[λxτ.M]∆ = Λ([M]∆∪{xτ})

[<M, N>]∆ = <[M]∆, [N]∆ >

[fst (M)]∆ = fst ° [M]∆
[snd (M)]∆ = snd ° [M]∆ .

8.7.6 Substitution Lemma

i. If yσ∉FV(N) , then [N]∆∪{yσ} = [N]∆ ° fst

ii. [[N/xσ]M]∆ = [M]∆∪{xσ} ° <id,[N]∆> (types are omitted when unambiguous).

Proof

i. By induction on M. The following is the typical case:

[λxτ.P]∆∪{yσ} = Λ([P]∆∪{yσ, xτ})

= Λ([P]∆∪{xτ,yσ}°ξ) for ξ: (a∆×aσ)×aτ ≅ (a∆×aτ)×aσ
= Λ([P]∆∪{xτ}°fst°ξ) by induction

= Λ([P]∆∪{xτ}°fst×id) as fst°ξ = fst×id

= Λ([P]∆∪{xτ}) ° fst by the naturality of Λ.

ii. By induction on M:

M ≡ xσ

[xσ]∆∪{xσ} ° <id,[N]∆> = snd ° <id,[N]∆>

= [N]∆
= [[N/ xσ] xσ]∆

M ≡ xσi

[xσi]∆∪{xσ} ° <id,[N]∆> = pi ° fstT×A1×...×An ,A ° <id, [N]∆> (σi≠σ)

= pi
= [xσi]∆

M ≡ QP

[QP]∆∪{xσ} ° <id,[N]∆> = eval ° <[Q]∆∪{xσ},[P]∆∪{xσ} > ° <id,[N]∆>

= eval ° <[Q]∆∪{xσ}°<id,[N]∆>,[P]∆∪{xσ}>°<id,[N]∆>

= eval ° <[[N/xσ] Q]∆,[[N/xσ]P]∆>

= [[N/xσ] PQ]∆

8. Formulae, Types, and Objects

195

M ≡ λyτ.P

 [[N/xσ] λyτ.P]∆ = Λ([[N/xσ]P]∆∪{yτ})

= Λ([P]∆∪{yτ,xσ}° <id,[N]∆∪{yτ}>) by induction

= Λ([P]∆∪{yτ,xσ}° <id,[N]∆°fst>) by (i)

= Λ([P]∆∪{xσ,yτ}) ° <id,[N]∆> by naturality (as in (i))

= [λyτ.P]∆∪{xσ} ° <id,[N]∆>.

As for pairing and projection, the computation is easy and is left for exercise. ♦

The lemma may suffice to give an interpretation of λβηπt over an arbitrary CCC. Indeed, nothing

else is required from a purely categorical perspective, i.e., adopting a more suitable notion of model.

In particular, it is worth noting that the previous categorical semantics of the typed lambda calculus

really “fills the triangle” we talked about at the beginning of this section. We leave it as an exercise for

the reader to verify that a term and its categorical interpretation with respect to the previous definition

are actually associated with the same derivation in intuitionistic logic.

However, as many, since Tarski, are used to interpreting formal systems into mathematical

structures by first assigning values to variables by means of environments as set-theoretic maps, we

complete the construction of models (as defined at the beginning of the section) with the following

exercise and theorem.

Exercise Prove a version of lemma 8.7.6 in the style of definition 8.7.2. That is, show that in any

model and for any environment h, one has (we omit types for simplicity)

[M]h[[N]h/xσ] = [[N/xσ]M]h .

This gives axiom (β) in the model.

8.7.7 Theorem Any CCC with enough points C and any collection {ai}i∈At of objects in C

yield a model of λβηπt .

Proof Let C be the given category and let A = {|ai| / i∈At} be the collection of sets in Cset that

interpret the atomic types. Then the model is given by the type structure TSA = CsetA, i.e., the

higher types are interpreted by |cσ×τ| and |cσ→τ| . As a matter of fact, let h : Var → Uσ∈Tp{|cσ|}

be an environment. Fix Mσ and let FV(Mσ) ⊆ ∆ = {xσ1,…,xσn} . By definition, h(xσi)∈|cσi|,

then set h∆ = <id,h(xσ1),...,h(xσn)>∈C[t,t×cσ1×...×cσn] and define

[Mσ]h = [Mσ]∆°h∆∈ |cσ|.

It is now easy to check that the map Fh, defined by Fh(e) = h[e/x]∆ , for e∈ |cσ |, is in

Cset[|cσ|,|cσ1×...×cσn|]. Thus, there exists h'∈C[cσ,cσ1×...×cσn] such that Fh = h'°_ and,

hence, h[e/x]∆ = h'° e. This fact and the substitution lemma guarantee that [_] is a well-defined

interpretation map and, thus, that CsetA is a model. ♦

8. Formulae, Types, and Objects

196

We now need to prove the converse and construct a CCC out of every model of λβηπt. Observe first

that by functional application, over a type structure, one may define algebraic functions as follows.

8.7.8 Definition Given a type-structure TSC = {Cσ}σ∈Tp, the typed monomials over TSC
are defined by

constants aσ∈Cσ, ... are typed monomials, for all σ∈Tp

variables xσ, yσ,.... are typed monomials, for all σ∈Tp

application Mσ→τ(Nσ) is a typed monomial, when Mσ→τ and Nσ are typed monomials.

A function f : Cσ→Cτ is algebraic if f(aσ) = [aσ/xσ]Mτ for some typed monomial Mτ .

The intuition is that algebraic functions will give the morphisms of a “rich enough” category as to

interpret typed λ-terms. It is clear, for example, that projections are algebraic functions: just set

send((xσ, yτ)) = xσ, then snd : Cσ×τ →Cτ is the second projection.

8.7.9 Lemma Given a type-structure TSA = {Aσ}σ∈Tp , one obtains a category with enough

points by taking the singleton set, the Aσ 's as objects and the algebraic functions as morphisms.

Call this category CTSA.

Proof Exercise. ♦

8.7.10 Theorem Let TSA = {Aσ}σ∈Tp x be a model of λβηπt and let CTSA be as in the

lemma. Then CTSA is a CCC.

Proof Products are defined by taking Aσ×Aτ = Aσ×τ. Then, if the typed monomial M defines f

and N defines g, <M,N> defines <f,g>, as the formal pairing and projections behave as required

in Cartesian categories.

As for exponents, set AτAσ = Aσ→τ . Then

eval : Aτ→ρ×Aτ→Aρ is defined by x |_ fst xτ→ρ×τ(snd xτ→ρ×τ).

Moreover, if f : Aσ×Aτ→Aρ is defined by M,

Λ(f) : Aσ→AρAτ is defined by λxτ.M.

Finally observe that axiom (β) gives (βcat) in definition 2.3.1, while (η) gives (ηcat). ♦

By the following exercise we let the careful reader relate the two interpretations of λ-terms given so

far.

Exercise Compare in detail the categorical and set-theoretic meanings of terms. Namely, start with

a TSA, which is a model, and construct a CTSA as in 8.7.9. (Note that in this construction, lots of

- irrelevant - morphisms may be lost). Then construct a new TS'A as in 8.7.7 (this will be a

“substructure” of TSA, up to an obvious identification). Consider now an interpretation [-]]]]h over

8. Formulae, Types, and Objects

197

TSA, where the range of h, though, is restricted to TS'A. Define [-]∆ as in 8.7.5 over CTSA
and, finally, give [-]]]]'h over TS'A by using h and [-]∆ as in 8.7.7. Prove then that [-]]]]h
and [-]]]]'h coincide. Thus, we moved from TSA to CTSA and to TS'A, preserving the meaning

of terms.

Conversely, by an even longer and more tedious proof, go from an interpretation [-]∆ over a

Cartesian closed category C, to a model TSA, where the interpretation [-]]]]h is given by 8.7.7.

Construct then a CTSA as in 8.7.9 and observe that it may be faithfully embedded into C. Relate by

this [-]∆, over C, and the interpretation [-]'∆, given as in 8.7.5, over CTSA. (The connection

between set-theoretic and categorical meaning of terms will be more closely investigated for the type-

free case in the next chapter).

8.8 Fixpoint Operators and CCCs
The typed lambda calculus is strongly normalizable, that is:

1. every computation terminates, and

2. the computation is independent from the evaluation strategy.

The latter property is surely very attractive for a computational language since it greatly simplifies its

semantics: the programmer, in the design of the code, does not have to fuss over the operational

evolution of reduction, but can concentrate on the denotation of the program in its strongest meaning.

Considered by itself, the first property also seems to be quite interesting, but it has the rather

annoying corollary that not all “computable” functions (e.g., Turing-computable) will be computable

in the language. The problem is not only related to the abstract expressiveness of the language; in

today’s computer science, the idea of “general purpose” language is no longer considered as central as

it was twenty years ago, and the loss of the ability to compute, for example, the Ackermann function,

does not worry anybody: primitive recursive functions are surely enough for most interesting

applications. What makes the general recursive formalism more attractive than the primitive recursive

one, is that it is much easier to write code in the general formalism (also for computing a primitive

recursive function).

Coming back to the typed lambda calculus, it is otherwise too poor for any application, so we face

the problem of extending the language with more powerful constructs. In chapter 11, we shall study

the “second order” or “polymorphic” extension, which still has the nice property of strong

normalization together with a great formal expressiveness (although, as a programming language, it

imposes on the programmer a completely new approach to the design of the code). We study for the

moment a simple extension by means of fixpoint operators, which enables us to write recursive

definitions of functions.

The reader should be aware, though, that a price must be paid when extending typed languages by

fixpoint operators. The problem is related to the Curry-Howard analogy (see section 8.3). Remember

8. Formulae, Types, and Objects

198

that a (constructive) proof of a formula A corresponds with a closed λ-term of type A in type

theory, and, thus, a formula is provable in the logic if and only if the corresponding type is

“inhabited” in type theory. The existence of fixpoint operators has as a consequence that all types are

inhabited, or, from the logical point of view, that all formulae are provable (see later). Thus fixpoint

operators have no logical correspondent; nevertheless, the calculus they originate is not inconsistent

from the point of view of the equational theory of programs (that is, not all terms happen to be

provably equal). This is shown by the models below.

In conclusion, the programmer, in the present context, must decide whether to acquire the full

expressive power and the elegance of programming by “recursive definitions” or to preserve the

advantages of the “types as formulae” paradigm. This choice depends on the specific applications he

or she has in mind.

8.8.1 Definition A fixpoint operator of type σ is a term Θσ of type (σ→σ)→σ such that , for

every term Mσ→σ one has

Mσ→σ (Θσ Mσ→σ) = Θσ Mσ→σ.

By fixpoint operators one can simulate recursive definitions in the following way:

letrec fσ be Mσ[f] in Nγ[f]

becomes

(λhσ.Nγ) (Θσ(λ fσ.Mσ))

Note that for every type σ we have at least an object of that type, obtained as a fixpoint of the

identity

Θσ (λxσ.xσ).

We consider next the problem of giving an interpretation to fixpoint operators. As we need to

interpret typed λ-calculi, this will be done in suitable CCC's.

8.8.2 Definition Let b be an object of a CCC C. A fixpoint operator for b is a morphism

Fixb: bb→b such that Fixb = evalb,b° <id,Fixb>. A category has fixpoint operators if each

object b has a fixpoint operator Fixb .

In every CCC with fixpoint operators, it is easy to give meaning to the axiom

fix. Mσ→σ (Θσ Mσ→σ) = Θσ Mσ→σ

by letting

{Θσ}∆ = Λ(Fixσ ° snd) ° !∆,

where snd: t×σσ→σσ, and !∆ is the unique arrow from ∆ to the terminal object t.

Indeed, one has the following:

8. Formulae, Types, and Objects

199

{ M(Θσ M) }∆ = eval ° <{M}∆, { (Θσ M) }∆>

= eval ° <{M}∆, eval ° < Λ(Fixσ ° snd) ° !∆, {M}∆> >

= eval ° <{M}∆, Fixσ ° {M}∆ >

= eval ° < id, Fixσ > ° {M}∆
= Fixσ ° {M}∆
= eval ° < Λ(Fixσ ° snd) ° !∆, {M}∆>

= { (Θσ M) }∆.

It is not difficult to find CCC’s with fixpoint operators. The most well-known example is

probably the category CPO, with complete partial order for objects and continuous functions for

morphisms (remember that, in CPO, f: A→B is continuous if and only if f is monotonic and for

every directed subset D of A, f(∪(D)) = ∪f(D); every c.p.o.has a least element, ⊥ = ∪∅).

Observe that, given a c.p.o. C and a continuous function f , we can form a chain

{fn(⊥C)}n∈ω = ⊥C ≤ f(⊥C) ≤ f(f(⊥C)) ≤ ≤ fn(⊥C) ≤

starting from the bottom element ⊥C. The next two results develop this example.

8.8.3 Theorem Let C be a CPO, let ⊥C be its least element, and let f: C→C be a continuous

function. Then ∪{fn(⊥C)}n∈ω is the least fixed point of f .

Proof: Note that ∪{fn(⊥C)}n∈ω = ∪{fn+1(⊥C)}n∈ω . Then

 f(∪{fn(⊥C)}n∈ω) = ∪f{fn(⊥C)}n∈ω)

= ∪{fn+1(⊥C)}n∈ω).

Moreover, if c is another fixed point, then we prove by induction that, for all n, fn(⊥C) ≤ c.

Indeed,

⊥C ≤ c

fn(⊥C) ≤ c �⇒ fn+1(⊥C) ≤ f(c) = c.

Then, by definition of least upper bound, ∪{fn(⊥C)}n∈ω ≤ c. ♦

8.8.4 Definition Let C be a c.p.o. Define then FixC: CC→C the function that takes every

continuous function f: C→C to ∪{fn(⊥C)}n∈ω .

8.8.5 Proposition FIXC: CC→C is continuous.

Proof Exercise. ♦

In a more general setting, the existence of exponents, in CCC's, suggests the investigation of

those “paradoxical” objects that “contain,” as a retract, their own function space; namely, the reflexive

objects of section 2.3 (see also below). They will turn out to be rather relevant in the next chapter,

where examples are given, and in chapter 10, where the idea will be generalized to fixpoint

constructions over types, namely to the categorical counterpart of recursive definitions of data types.

8. Formulae, Types, and Objects

200

Remember (see definition 1.4.2) that in a category C, a < b via the retraction (i,j) iff j ˚ i = ida.

In these assumptions, i turns out to be mono and j epic. Thus a retract a of b is a subobject of

b, up to isomorphisms. An object V is reflexive iff VV < V (see definition 2.3.5). We next show

how to construct another simple model of the typed lambda calculus with fixpoint operators, by using

the category RetV of retracts over a reflexive object V. Recall that, given an object V in a category

C, the category RetV is defined as follows (see definition 1.4.4):

ObRetV = { f∈C[V,V] | f ° f = f }

MorRetV = { (f, k, g) | f, g∈ObRetV , k∈C[V,V] , k = g ° k ° f }

dom((f, k, g)) = f , cod((f, k, g)) = g

idf = (f, f, f)

(f, k, g) ° (g', k', f) = (g', k ° k', g)

Proposition 8.8.6 below proves that, if V is a reflexive object in a CCC C, then RetV is Cartesian

closed too. In theorem 8.8.8 we will prove that, given a reflexive object V in an arbitrary CCC,

every object f in RetV has a fixpoint operator Fixf .

8.8.6 Proposition If C is a CCC and V is a reflexive object in C, then RetV is a CCC.

Proof By proposition 2.3.6, we know that the terminal object t and V×V are both retracts of V

(by definition of reflexive object also VV<V). Suppose the following:

t < V via in, out

V×V < V via in', out'

VV < V via in", out".

Let 1= in ° out : V→�V. 1 ° 1= in ° out ° in ° out = in ° out = 1. 1 is the terminal object of RetV . If

f is an object in RetV, then !f: f→1 is (f,1,1). Note that (f,1,1) is a well-defined morphism, since

1= 1 ° 1 ° f for the terminality of t. Moreover, if (f,g,1) is another morphism, then g = 1 ° g ° f =

1, again for the terminality of t .

Given two objects f and g in RetV, their product is f⊗g = in' ° f×g ° out': V→V. (In the

present proof only, ⊗ has this meaning)

Note that

f⊗g ° f⊗g = in' ° f×g ° out'° in' ° f×g ° out'

= in' ° f×g ° f×g ° out'

= in' ° f×g ° out'

= f⊗g.

The projections are (f⊗g, fst, f), (f⊗g, snd, g) where

fst = p1 ° out' ° f⊗g : V→V

snd = p2 ° out'° f⊗g : V→V

and p1, p2 are the projections associated in C to the product V×V.

The pairing operation <,>ret is defined as follows: given two morphisms (c,h,f) and (c,k,g) set

8. Formulae, Types, and Objects

201

< (c,h,f), (c,k,g) >ret = (c, in'° <h,k>,f⊗g)

where <,> is the pairing in C.

This is a good definition, since

 f⊗g ° in'° <h,k> ° c = in' ° f×g ° out' ° in'° <h ° c, k ° c > by def. of f⊗g

= in' ° f×g ° <h ° c, k ° c >

= in'° <f ° h ° c, g° k ° c >

= in'° <h, k >.

We have still to prove the equations associated with the product; we only prove that

(f⊗g, fst, f) ° < (c,h,f), (c,k,g) >ret = (c,h,f)

and leave the other proofs as an exercise for the reader. We have the following:

(f⊗g, fst, f) ° < (c,h,f), (c,k,g) >ret =

= (f⊗g, fst, f) ° (c, in'° <h,k>,f⊗g)

= (c, fst ° in'° <h,k>, f) by composition in RetV
= (c, p1 ° out' ° f⊗g ° in'° <h,k>, f) by def. of fst

= (c, p1 ° out' ° in' ° f×g ° out' ° in'° <h,k>, f) by def. of f⊗g

= (c, p1 ° f×g ° <h,k>, f) = (c,h,f).

The functor ⊗ is defined on morphisms in the usual way (namely, f×g = <p1 ° f, p2 ° g>).

Specifically, given two morphisms (c,h,f) and (d,k,g):

(c,h,f) ⊗ (d,k,g) = < (c,h,f) ° (c⊗d, fst , c), (d,k,g) ° (c⊗d, snd, d) >ret
= < (c⊗d, h ° fst , f), (c⊗d, k° snd, g) >ret by composition in RetV
= (c⊗d, in' ° < h ° fst, k° snd >, f⊗g) by def. of <,>ret
= (c⊗d, in' ° < h ° p1 ° out' ° c⊗d, k ° p2 ° out'° c⊗d >, f⊗g) by def. of fst, snd

= (c⊗d, in' ° < h ° p1, k ° p2> ° out' ° c⊗d, f⊗g)

= (c⊗d, in' ° h×k ° out' ° c⊗d, f⊗g).

We are now in a position to define the exponents. If h, k : V→V, let [h,k] = Λ(k ° evalV,V °
(id×h)) : VV→VV. Given two objects f and g in RetV, their exponent is:

gf = in" ° [f,g] ° out": V→V.

This is a good definition, since

 gf ° gf = in" ° [f,g] ° out" ° in" ° [f,g] ° out" by def. of gf

= in" ° [f,g] ° [f,g] ° out"

= in" ° Λ(g ° evalV,V ° (id×f)) ° Λ(g ° evalV,V ° (id×f)) ° out" by def. of [f,g]

= in" ° Λ(g ° evalV,V ° (id×f) ° Λ(g ° evalV,V ° (id×f))×id) ° out"

= in" ° Λ(g ° evalV,V ° Λ(g ° evalV,V ° (id×f))×id ° (id×f)) ° out"

= in" ° Λ(g ° g ° evalV,V ° (id×f) ° (id×f)) ° out" by (β)

= in" ° Λ(g ° evalV,V ° (id×f)) ° out" since g, f are retractions

= in" ° [f,g] ° out" by def. of [f,g]

= gf by def. of gf.

8. Formulae, Types, and Objects

202

The evaluation function is (gf⊗f, ev, g) where

ev = evalV,V ° (out"×id) ° out' ° gf⊗f

The currying operation ΛΛΛΛret is so defined: given a morphism (c⊗f,h,g),

ΛΛΛΛret(c⊗f,h,g) = (c, in"° Λ(h ° in'), gf).

This is a good definition of morphism in RetV; indeed

gf ° in"° Λ(h ° in') ° c =

= in" ° Λ(g ° evalV,V ° (id×f)) ° out" ° in"° Λ(h ° in') ° c by def. of gf

= in" ° Λ(g ° evalV,V ° (id×f)) ° Λ(h ° in' ° c×id)out" ° in" = id

= in" ° Λ(g ° evalV,V ° (id×f) ° Λ(h ° in' ° c×id)×id)

= in" ° Λ(g ° evalV,V ° Λ(h ° in' ° c×id)×id ° (id×f))

= in" ° Λ(g ° h ° in' ° c×id ° id×f) by (β)

= in" ° Λ(g ° h ° in' ° c×f)

= in"° Λ(g ° h ° c⊗f ° in') by def. of c⊗f

= in"° Λ(h ° in').

We only prove the axiom β, and leave as an exercise for the reader to prove η .

(gf⊗f, ev, g) ° (ΛΛΛΛret(c⊗f,h,g) ⊗ (f, f, f)) =

= (gf⊗f, ev, g) ° ((c, in"° Λ(h ° in'), gf) ⊗ (f, f, f)) by def. of ΛΛΛΛret
= (gf⊗f, ev, g) ° (c⊗f, in' ° (in"° Λ(h ° in'))×f ° out' ° c⊗f , gf⊗f) by def. of ⊗ on arrows

= (c⊗f, ev ° in' ° (in"° Λ(h ° in'))×f ° out' ° c⊗f , g) by composition in RetV
= (c⊗f, evalV,V ° (out"×id) ° out' ° gf⊗f ° in' ° (in"° Λ(h ° in'))×f ° out' ° c⊗f, g)

by def. of ev

= (c⊗f, evalV,V ° (out"×id) ° gf×f ° (in"° Λ(h ° in'))×f ° out' ° c⊗f , g) by def. of gf⊗f

= (c⊗f, evalV,V ° (out" ° gf ° in"° Λ(h ° in'))×f ° out' ° c⊗f , g) as f ° f = f

= (c⊗f, evalV,V ° (Λ(g ° evalV,V ° (id×f)) ° Λ(h ° in'))×f ° out' ° c⊗f , g) by def. of gf

= (c⊗f, evalV,V ° (Λ(g ° evalV,V ° Λ(h ° in')×id ° (id×f))×f ° out' ° c⊗f , g)

= (c⊗f, evalV,V ° Λ(g ° h ° in'° id×f)×f ° out' ° c⊗f , g) by β

= (c⊗f, g ° h ° in'° id×f ° c×f ° out' , g) by β

= (c⊗f, g ° h ° c⊗f , g)

= (c⊗f,h,g).

This completes the proof that RetV is a CCC. ♦

8.8.7 Lemma If V is a reflexive object in a CCC C, then there is a fixpoint operator Fix:

VV→V.

Proof Let

F = eval ° <id, in"> : VV→V

H = Λ(eval ° (id×(F°out"))) : VV→VV

Fix = F°H is a fixpoint operator for V; indeed,

8. Formulae, Types, and Objects

203

F°H = eval ° <id, in"> ° Λ(eval ° (id×(F°out")))

= eval ° Λ(eval ° (id×(F°out")))×id ° <id, in" ° Λ(eval ° (id×(F°out"))) >

= eval ° id×(F°out") ° <id, in" ° Λ(eval ° (id×(F°out"))) >

= eval ° <id, F ° Λ(eval ° (id×(F°out"))) >

= eval ° <id, F°H >. ♦

8.8.8 Theorem Every object f in RetV has a fixpoint operator Fixf .

Proof Let Fix: VV→V be a fixpoint operator for V. Define

Fixf = (ff, Fix ° out" ° ff , f).

We leave it to the reader to prove that this is a good definition, that is:

(*) Fix ° out" ° ff = f ° Fix ° out" ° ff ° ff.

We must prove that

Fixf = (ff⊗f, ev, f) ° < (ff, ff, ff), Fixf>,

where ev = evalV,V ° (out"×id) ° out' ° ff⊗f.

Compute then

Fixf = (ff, evalV,V° <id,Fix> ° out" ° ff, f) by def. of Fixf
= (ff, evalV,V ° < out" ° ff, f ° Fix ° out" ° ff>, f) by (*)

= (ff, evalV,V ° (out"×id) ° ff×f ° < ff, Fix ° out" ° ff>, f)

= (ff, evalV,V ° (out"×id) ° out' ° ff⊗f ° in' ° < ff, Fix ° out" ° ff>, f −) by def. of ff⊗f

= (ff, ev ° in' ° < ff, Fix ° out" ° ff>, f) by def. of ev

= (ff⊗f, ev, f) ° (ff, in' ° < ff, Fix ° out" ° ff>, ff⊗f) by composition in RetV
= (ff⊗f, ev, f) ° < (ff, ff, ff), (ff, Fix ° out" ° ff, f) > by pairing <,> in RetV
= (ff⊗f, ev, f) ° < (ff, ff, ff), Fixf >. ♦

References. For an introduction to Proof Theory, natural deduction, and intuitionisitic logic, the

reader can consult Prawitz (1965) and Takeuti (1975). In particular, the latter inspired our

presentation of the cut-elimination theorem. The “formulae as types” analogy is explained in Howard

(1980), but the main ideas go back to work of Curry. The connections between λ-calculus and

CCC’s were first explored by Lambek. The equivalence is shown in Lambek (1980) and Scott

(1980). A full account of the relation between λ-calculus, CCC’s, and Proof Theory may be found in

Lambek and Scott (1986). We tried here to complement that work by relating it to Tarskian semantics

and emphasizing the role of “structures,” for the convenience of the reader who may begin with our

approach and continue with further, more abstract readings. In section 8.7, we dealt only with

CCC's, i.e., with the models of λλλλββββηηηηππππt. Weaker calculi, that is, typed combinatory logic and λλλλββββππππt,

are discussed in Hayashi (1985) and Martini (1988), which introduce various notions of “weak

Cartesian closedness” for this purpose.

9. Reflexive Objects and the Type-Free Lambda Calculus

204

Chapter 9

REFLEXIVE OBJECTS AND

THE TYPE-FREE LAMBDA CALCULUS

The main aim of this book is to present category theoretic tools for the understanding of some

common constructions in computer science. This is largely done in the perspective of denotational

semantics, in particular in this second part of the book. It is commonly agreed that a fruitful area of

application of denotational semantics has been the understanding and, in some cases, the design of

functional languages. This is exactly because the theory of the intended structures is a “theory of

functions,” indeed Category Theory.

Functional languages are based on the notion of application and functional abstraction. That is

programs are “applied,” like functions, to data and, given the formal, algebraic definition of a

function, it may be turned into an applicative program by “functional completeness” or “lambda

abstraction.” Observe that the expressive power is mostly based on recursive definitions, even though

a different approach is suggested by the higher order calculi discussed in chapter 11.

The aim of this chapter is to clarify the categorical significance of the quoted expressions in the

previous paragraph, e.g., “applied”, “functional completeness”, “lambda abstraction”, “uniform”,

“recursive definition”, in the context of a “type-free” programming style. In the previous chapter we

dealt with the typed λ-calculus, and we discussed typed functional “application” and “abstraction”

which have an immediate interpretation in CCC's. As already mentioned, it is easy to conceive a

variant of the previous calculus by just erasing all type restrictions in the term formation rules. This

defines the (type-free or un(i)typed) λλλλ-calculus, where there is no distinction between functions

and data. (In remark 9.5.12 we will suggest some good reasons by which one may better like to

consider the type-free λ-calculus as a typed calculus with just one type: a unityped calculus). The set

Λ of terms of the λ-calculus is thus defined by means of the following rules, starting by a given set

of (type-free) variables V:

Variables if x∈V, then x∈Λ;

Application if M∈Λ, and N∈Λ then MN∈Λ;

Abstraction if M∈Λ, then λx.M∈Λ.

Free and bound occurences of a variable in a term, and the substitution [N/x]M of a term N for a

variable x in M, are defined as for the typed calculus. As usual, we identify terms that differ from

each other only for the names of bound variables (α-conversion).

The λλλλ-theory deals with the convertibility M = N of two terms M and N. It is axiomatized

by the rules

β. (λx.M)N = [N/x]M , for x free for N in M

η. λy.My = M , for y not free in M (write y∈FV(M))

9. Reflexive Objects and the Type-Free Lambda Calculus

205

toghether with the axioms and rules needed for turning “=” into a congruence relation.

The λ-calculus is the prototype of every untyped functional programming language. Many

functional languages were directly derived from the λ-calculus, from Landin's ISWIM (a notational

variant of λ-calculus with an explicit recursive operator) to Edinburgh ML. Even McCarthy’s

language LISP, the first running functional programming language, and still one of the most used in

several applications of computer science, is greatly endebted to the λ-calculus. Besides the λ-

notation, LISP inherits from λ-calculus both the formal elegance and the concise syntax, essentially

adding only a few primitives for list manipulation. The main difference is in the binding strategy for

variables, which is static for λ-calculus and dynamic for LISP. For example, without taking into

account the inessential syntactic differences between the two formalisms, let us see how the following

expression is evaluated in the two languages:

(λz. (λy. (λz.yM)N) (λx.xz))P

In λ-calculus, we have the following reduction sequence of reductions:

(λz. (λy. (λz.yM)N) (λx.xz))P → λy. (λz.yM)N) (λx.xP)

→ λz. (λx.xP)M)N

→ (λx.xP)M

→ MP

In contrast to this, LISP will first bind z to P, then bind y to λx.xz; next z will be rebound to

N, and finally yM will be evaluated. This means that x will be bound to M, and then Mz is

evaluated. Since LISP uses dynamic binding, the latest active bindings of the variable z is used,

i.e., the evaluation of (λz. (λy. (λz.yM)N) (λx.xz))P is reduced to the evaluation of MN.

This has been often considered as an anomaly of LISP: in many LISP dialects, there are syntactic

constructs for defining functions that guarantee a static binding for their formal parameters and,

moreover, some recent LISP-like languages have completely converted to static binding (e.g.,

Scheme). A first consequence of dynamic binding is that the rule of α-conversion does not hold any

more: in the example above, if we replace z with another variable in λz.yM, we obtain a different

behavior. LISP violates referential transparency, while λ-calculus does satisfy it. This is not only a

merely theoretical property: in programming terms, referential transparency means that, in order to

understand a structured program, we need only to understand the denotation of the subprograms, and

not their connotations (for example, we do not need to be concerned with the naming of variables

used within the programs). These ideas are expressed in the philosophy of modular programming,

that is of the programming style that requires the construction of program segments as self-contained

boxes, or modules, with well-defined interfaces. We shall discuss in the last chapters of this book

how this philosophy applies so well to strongly typed polymorphic languages.

The current treatment of both programming concepts of referential transparency and modularity

provides a relevant example of an area that is greatly indebted to twenty-odd years work of in

denotational semantics. We present in this chapter the categorical understanding of the semantics of

9. Reflexive Objects and the Type-Free Lambda Calculus

206

type-free Combinatory Logic and λ-calculus, whose challenging mathematical meaning actually

started that work. In section 9.4, we hint at how the categorical approach suggested a new set of

combinators and a simple abstract machine for implementig head reduction (CAM).

9.1 Combinatory Logic
Combinatory Logic (CL) is based on an even simpler language than λ-calculus: it just contains

variables and two constant symbols K and S. Their operational behaviour is axiomatized by the

rules for equality and

k. Kxy = x

s. Sxyz = xz(yz)

where, as for the λ-calculus, M1M2...Mn stands for (...(M1M2)...Mn).

The expressive power of λ-calculus and CL is due to their combinatorial completeness. That is,

for any variable x and term M in their languages, there exists <x>M such that

abs. (<x>M)N = [N/x]M , and x∉FV(<x>M).

For the λ-calculus, this comes with the definition: just set <x>M = λx.M. As for CL, define

inductively

<x>x = Ι ≡ SKK;

<x>M = KM, if M does not contain x;

<x>MN = S(<x>M)(<x>N).

(In general, for x = x1, ...,xn, set <x>M = <x1>...(<xn>M)).

As a matter of fact, CL is the simplest type-free language which is functionally complete;

moreover, and surprisingly enough, in 1936 Kleene proved that CL is powerful enough to compute

all partial recursive functions.

Note that in type-free universes, there is no distinction between data and functions. In set-

theoretic terms, this means that it is possible to apply one to the other in an undistinguished

applicative structure (X,.), i.e., a set X with a binary operation . .

9.1.1 Definition A model (X,., K, S) of CL, called Combinatory Algebra, is an applicative

structure (X,.) with two distinguished elements K, S∈X such that

∀x,y (K.x).y = x

∀x,y,z ((S.x).y).z = (x.z).(y.z) .

As usual, we suppose that the operation . of the applicative structure associate to the left; moreover

we shall usually omit it when writing terms. For instance, (K.x).y will be simply written as Kxy.

9. Reflexive Objects and the Type-Free Lambda Calculus

207

9.1.2 Definition Given an environment ξ , that is a map from the set of variables of CL to X, the

interpretation [M]ξ of a combinatory term M in ξ, is inductively defined as follows:

[K]ξ = K
[S]ξ = S
[x]ξ = ξ(x)

[MN]ξ = [M]ξ[N]ξ .

An interesting semantic consequence of (abs) is the following lemma which will be used later on.

9.1.3 Lemma Let (X,., K, S) be a Combinatory Algebra. For any combinatory term M, any

environment ξ and any a∈X,

[<x>M]ξ .a = [M]ξ(x=a)
where ξ(x=a) is the environment defined by : ξ(x=a)(z) = if x=z then a else ξ(z) .

Proof [<x>M]ξ . a = [<x>M]ξ .[x]ξ(x=a)
= [<x>M]ξ(x=a) .[x]ξ(x=a) since x do not occur in <x>M

= [(<x>M)x]ξ(x=a)
= [M]ξ(x=a) by (abs). ♦

Clearly, the λ-calculus is at least as expressive as CL, since Kλ ≡ λxy.x and Sλ ≡ λxyz.xz(yz)

represent K and S in λ-calculus (and do the same job). By this definition of K and S we obtain a

sound translation form CL to λ-calculus, i.e., a translation which preserves term equalities. In the

other direction, the abstraction mechanism <x>M described above naturally suggests the following

translation.

9.1.4 Definition Given a λ-term M, the associated term M CL in Combinatory Logic is

inductively defined by

xCL = x

(MN)CL = MCLNCL
(λx.M)CL = <x>MCL.

Unfortunately, this translation is not sound, that is, not all the equations provable in the λ-theory still

hold after the translation. Consider for example the two equal terms M ≡ λy.x and N ≡ λy.(λz.z)x.

Their translation by means of combinators is, respectively:

 MCL = (λy.x)CL
= <y>xCL
= <y>x

= Kx

9. Reflexive Objects and the Type-Free Lambda Calculus

208

 NCL = (λy.(λz.z)x)CL
= <y>((λz.z)x)CL
= <y>((λz.z)CLxCL)

= <y>((SKK)x)

= S((<y>(SKK)) <y>x)

= S((Κ(SKK))Kx)

and Kx ≠ S((Κ(SKK))Kx).

The problem derives from the fact that in Combinatory Logic M = N does not imply <x>M =

<x>N. This fact is independent from the particular abstraction mechanism adopted and it is actually

related to the absence of a “canonical” choice for <x>M (see references).

From the point of view of computer science, the interest in Combinatory Logic derives more from

implementation then from semantics. Indeed, β-conversion, as it is formulated in the λ-calculus, give

rise to the well-known, conceptually simple, but syntactically fastidious problem of name clashes.

For instance, M ≡ (λxy.x)y does not reduce to λy.y, but to λz.y. This kind of problems does not

sussist in Cominatory Logic, which thus provides a convenient intermediate code where the λ-

calculus can be compiled before execution. For example, the previous term M is compiled as:

 MCL = ((λxy.x)y)CL
= (λxy.x)CL (y)CL
= (<x>Kx)y

= S(KK)(SKK)y

and its reduction, using, say, an innermost-leftmost strategy, yields:

 S(KK)(SKK)y = (KKy)(SKKy)

= K(SKKy)

= K((Ky(Ky))

= Ky .

9.2 From Categories to Functionally Complete Applicative Structures
In this section, we suggest how to understand, in categorical terms, the difference between

“functional completeness” and “lambda abstraction” and, later, characterize both notions, in absence

of type constraints. As mentioned in the introduction, CL is the simplest type-free language that is

functionally complete, since, for every term M, there exists <x>M that satisfies (abs). In case the

choice of <x>M is “uniform in M”, one has lambda abstraction and λ-calculus: i.e., <x>M is

canonically given by λx.M.

In order to give categorical meaning to this complex situation, we proceed as follows: we start

with recovering applicative structures, in particular functionally complete ones, in Cartesian

9. Reflexive Objects and the Type-Free Lambda Calculus

209

categories (see 9.2.1-9.2.5); then we shift to the realm of Cartesian closed categories, where the

existence of function spaces (exponents) allows a better understanding of the notion of functional

completeness (9.2.6-9.2.7) and lambda-abstraction (9.2.8-9.2.12). In section 5, we will give a fully

categorical characterization of models of these type-free calculi.

9.2.1 Definition Let C be a Cartesian category, T its terminal object, and U an object in C,

with T < U and u∈C[U×U,U]. The applicative structure associated to u, A(u), is given

by A(u) = (C[T,U],.), where a.b = u° <a,b>.

In a category with a terminal object T, T < U simply generalizes the set-theoretic notion that U is

“not empty”. Clearly, A(u) is nontrivial (i.e., it contains at least two elements) iff T < U is strict,

i.e., is not an isomorphism.

9.2.2 Definition Let C be a cartesian category. Then u∈C[X×Y,Z] is Kleene-universal (K-

universal) if ∀f∈C[X×Y,Z] ∃s∈C[X,X] f = u° (s×id) , i.e.,

Kleene-universality is a weak (co)universality property, since no unicity of s is required. It has an

obvious recursion-theoretic meaning: indeed K-universality generalizes the s-m-n (iteration) theorem,

with X = Y = Z = ω and with f a (total) recursive function, i.e., a morphism from (ω,id)×(ω,id)

to (ω,id), in the category EN of numbered sets.

9.2.3 Definition Let C be Cartesian and u∈C[X×X,X]. Then u(n)∈C[X×Xn,X] is inductively

defined by u(0) = id, u(n+1) = u(n)° (u×idn), that is,

u×idn u(n)

u(n+1): X×X×Xn _______> X×Xn ______> X , where Xn+1 = X×Xn.

It is easy to observe that u(n) corresponds exactly to the application of n+1 arguments, from left to

right, e.g. u(2)°<a,b,c> = u°(u×id)°<a,b,c,> = u°<u°<a.b>,c>. We write a.b.c for (a.b).c .

9.2.4 Lemma Let C be Cartesian. Assume that, for some U in C, U×U < U and there is a K-

universal u∈C[U×U,U]. Then ∀n u(n)∈C[U×Un,U] is K-universal.

9. Reflexive Objects and the Type-Free Lambda Calculus

210

Proof By assumption, this is true for n = 1. Let U×U < U via (i,j) and f∈C[U×Un+1,U].

Then, by the inductive hypotesis, for some s(n)∈C[U,U] the following diagram commutes:

By assumption, for some s∈C[U,U] one also has

Then compute f = f ° (j × idn) ° (i × idn)

= u(n) ° (s(n) × idn) ° (i × idn) by (1)

= u(n) ° (u × idn) ° (s × idn+1) by (2)

= u(n+1) ° (s × idn+1). ♦

9.2.5 Theorem Let C be a Cartesian category. Assume that, for some object U, one has T < U,

U×U < U and there exists a K-universal u∈C[U×U,U]. Then A(u) is a combinatory algebra.
Proof Let T < U via (iT,jT). Then, by lemma 9.2.4, ∀n, ∀f∈C[Un,U] ∃s∈C[U,U] such that

the following diagram commutes, with [f] = s ° iT (we write i and j for iT and jT):

Thus, u(n)°[f]×dn = idT×f = f. Since u(n) is the application, from left to right, of its n+1 arguments,

[f] “represents” f, with respect to application. By 9.2.1, we only need to define f∈C[U2,U] and

g∈C[U3,U] such that [f] and [g] represent K and S, respectively. For this purpose, take f =

pr21∈C[U2,U] and g = u°<u°<pr31,pr33>,u°<pr32,pr33>>∈C[U3,U]. ♦

Theorem 9.2.5 provides sufficient conditions in order to construct “functionally complete” objects.

Theorem 9.5.6 will show that these conditions are also necessary.

9. Reflexive Objects and the Type-Free Lambda Calculus

211

A further insight, though, into functional completeness may be given in CCC's. The advantage of

dealing with CCC's is that for any object X one may consider its “function space” or exponent XX,

as an object. As a matter of fact, functional completeness, in its various forms of increasing strength

(combinatory algebras, λ-algebras, λ-models (see below)), expresses some sort of privileged relation

between an object in a category and its “function space”: its representability, say, in the sense

expressed in the proof of theorem 9.2.5. In CCC's K-universal morphisms and principal morphisms

are related as follows:

9.2.6 Proposition Let C be a CCC and Λ be the isomorphism C[X×Y,Z] ≅ C[X,ZY]. Then

u∈C[X×Y,Z] is K-universal iff Λ(u)∈C[X,ZY] is principal.

Proof The isomorphism Λ implies, by definition, the equivalence of the following diagrams:

and we are done. ♦

The connection between K-universal and principal morphisms should remind the reader that the latter

correspond to (acceptable) Gödel numberings from ω to PR, the partial recursive functions, when

these are viewed as objects in the category EN of numbered sets (see section 2.2). Note though that

Kleene’s (ω, .) is a partial combinatory algebra and does not yield a model of Combinatory Logic.

Total combinatory algebras turn out to be nontrivial constructions and may be obtained, for instance,

in higher types, as it will be shown later. The categorical description, in terms of K-universal maps or

principal morphisms, sheds some light on the connections between Gödel numberings and

combinatory completeness. As a matter of fact, by proposition 9.2.6 one may then restate theorem

9.2.5 in terms of CCC's and principal morphisms.

9.2.7 Proposition Let C be a CCC. Assume that, for some U in C, T < U, U×U < U and

there exists a principal p∈C[U,UU]. Then A(Λ-1(p)) is a combinatory algebra.

The previous proposition suggests more explicitly the connection between the definition of

application and the morphism eval in CCC's. Just observe that, by definition of “.”, one has in a

CCC
a.b = Λ-1(p)°<a,b> = eval°(p×id)°<a,b> = eval°((p°a)×b).

9. Reflexive Objects and the Type-Free Lambda Calculus

212

Informally, the equation above means “transform a into a morphism, by p, then apply it to b.”

This process generalizes the way Gödel numberings associate functions to numbers. Similarly as

for the partial recursive functions, there is in general no “canonical” way to go backwards, that is to

choose uniformely and effectively a representative for each representable function. That is, this

representative does not need to be unique and it is not possible to choose a representative for each

representable function in a “uniform” way, i.e., by a morphism in the category. This is, though,

possible in λ-models. We define them here in a first order manner, as particular combinatory

algebras, with a suitable “choice” operator.

9.2.8 Definition Let A = (X, .) be an applicative structure. Then

i. A is a λλλλ-model if for some k,s,ε∈X one has:

k . ∀x,y kxy = x ;

s . ∀x,y,z sxyz = xz(yz) ;

ε1. ∀x,y εxy = xy ;

ε2. ∀x,y (∀z xz = yz) ⇒ εx = εy ;

ε3. εε = ε .

ii. A is an extensional λ-model if one also has ∀x εx = x .

ε has to be understood as a choice operator that picks up a canonical representative for each

representable function. ε coincides with the canonical representative of the function it represents, by

axiom (ε3). In extensional λ-models, there is just one representative and (�ε1), (�ε3) are derived.

Note that A = (X, .) is an extensional λ-model iff A is a combinatory algebra and ∀x,y (∀z xz =

yz) ⇒ x = y .

There exists an obvious formal system of combinators K, S, ε associated to the previous notion

of λ-model, which we shall call CLεεεε (we gave priority to the notion of model because we mainly

focus here on semantical aspects). The interpretation of CLε in λ-models is straighforward. Note

also that CLε may be easily and soundly translated into λ-calculus, by taking ε to λxy.xy.

Conversely, the combinator ε can be used to “clean” the translation of a lambda term by means of

combinators described in definition 9.1.4 :

9.2.9 Definition Given a λ-term M, the associated term MCLεεεε in CLε is inductively defined by

xCLε = x

(MN)CLε = MCLεNCLε
(λx.M)CLε = ε .<x>MCLε.

This “refinement” is completely worthless from an implementative point of view, since the reduction

process is essentially unaffected by the combinator ε, as it is stated by equation (ε1). On the contrary,

9. Reflexive Objects and the Type-Free Lambda Calculus

213

it is relevant in semantics, since it allows a simple definition of a sound interpretation of λ−terms in

λ-models, as follows:

9.2.10 Definition Let A = (X, .,k,s,ε) be a λ-model. The interpretation [M]ξ of a λ-term M

in A with respect to an environment ξ is the semantics of the associated combinatorial term MCLε,

i.e.,

[M]ξ = [MCLε]ξ.

We omit the soundness proof, which is technically straightforward and almoust evident from the

previous discussions.

In the next two results we show how to derive λ-models from reflexive objects in categories with

enough points.

9.2.11 Theorem Let C be a CCC with enough points. Assume that, for some U in C, one

has UU < U via (ψ, φ). Then, for ε = ψ°Λ(ψ°φ°snd) , Α = (Α(Λ-1(φ)),ε) is a λ-model.

Proof φ∈C[U,UU] is principal; moreover by 2.3.6, T < U and U×U < U. Thus, for a.b =

eval°<(φ°a),b> = eval°(φ×id)°<a,b>) and some suitable K and S, (Α(Λ-1(φ)),.,K,S) is a

combinatory algebra, i.e. (k) and (s) in 9.2.8 hold. Define now ε = ψ°Λ(ψ°φ°snd) : Τ→U (that is,

informally, ε = ψ(ψ°φ)). Note first that, for any a,

(†) ε . a = ψ ° φ ° a

indeed:

 ε.a = (ψ°Λ(ψ°φ°snd)).a by def. of ε

= eval°<(φ°ψ°Λ(ψ°φ°snd)),a> by def. of “.”

= eval°<(Λ(ψ°φ°snd)),a> since φ°ψ = id

= eval°(Λ(ψ°φ°snd)×id)°<id×a>

= ψ°φ°snd°<id×a>

= ψ°φ°a

Then one has:

ε1. ε.a.b = (ψ°φ°a).b by (†)

= eval°<(φ°ψ°φ°a),b> by def. of “.”

= eval°<(φ°a),b> since φ°ψ = id

= a.b by def. of “.”

ε2. Suppose that ∀z az = bz. Then, since

a.z = eval°<(φ°a),z> = eval°((φ°a)×id)°<id,z>,

b.z = eval°<(φ°b),z> = eval°((φ°b)×id)°<id,z>,

and since C has enough points, we have eval°((φ°a)×id) = eval°((φ°b)×id), and thus φ°a = φ°b.

Then ε.a = ψ°φ°a = ψ°φ°b = ε.b.

9. Reflexive Objects and the Type-Free Lambda Calculus

214

ε3. ε.ε = ψ°φ°ψ°Λ(ψ°φ°snd) =ψ°Λ(ψ°φ°snd) = ε. ♦

The definition of ε should be clear. Just note that ψ°φ : U→UU→U, i.e., φ gives a morphism for

each point a in U and ψ chooses a “canonical” one, representing φ(a), as φ°ψ = id. Then ε =

ψ°Λ(ψ°φ°snd): Τ→U , internalizes ψ°φ as a point in U.

9.2.12 Corollary Let C be a CCC with enough points.

i. If, for some U in C, UU < U via (i,j) and there exists u∈C[U×U,U] K-universal, then also

A(u) can be turned into a λ-model.

ii. If UU ≅ U via (ψ,φ), then A(u) is an extensional λ-model.

Proof

i. By theorems 9.2.6 and 9.2.11 and the definiton of principal morphism.

ii. ε.a =ψ°φ°a = a. ♦

9.3 Categorical Semantics of the λλλλ-Calculus
In theorem 9.2.11 we proved that if C is a CCC with enough points, and U∈ObC is a reflexive

object (i.e., UU<U via (ψ, φ)) then, for ε=ψ°Λ(ψ°φ°snd) : Τ→U, (Α(Λ-1(φ)),ε) is a λ-model.

We can thus give an interpretation of the lambda calculus as in definition 9.2.10.

In this section we define a more direct interpretation of the lambda calculus over such an object

U, and relate the two interpretations.

9.3.1 Definition Let C be a CCC with terminal object T. Let U∈ObC be a reflexive object via

the retraction pair (ψ: UU→U, φ: U→UU) . Let M be a λ-term with FV(M) ⊆ ∆ = {x1,…,xn}.

Define then [M]∆∈C[Un,U], where Un = (...(T×U)×...)×U with n copies of U, as follows

(we use the two projections fst and snd in a polymorphic fashion, and we omit the indexes):

[xi]∆ = snd ° fstn-i = prni
[MN]∆ = eval ° < φ ° [M]∆, [N]∆>

[λx.M]∆ = ψ ° Λ([M]∆∪{x}).

We do not prove the soundness of the interpretation; the reader interested in this result may consult

the references.

Examples

1. Let M = λx.xx.

 [λx.xx] = ψ ° Λ([xx]{x})

9. Reflexive Objects and the Type-Free Lambda Calculus

215

= ψ ° Λ(eval ° < φ ° [x]{x}, [x]{x}>)

= ψ ° Λ(eval ° < φ ° snd, snd >) : T→U .

2. Consider the term Y = λx.(λy.x(yy)(λy.x(yy)). This is a fixpoint operator, since for every M,

 YM = (λx.(λy.x(yy)(λy.x(yy)))M

= (λy.M(yy)(λy.M(yy))

= M((λy.M(yy))(λy.M(yy)))

= M(YM)

Let us interpret Y. We proceed by stages

 [λy.x(yy)]{x} = ψ ° Λ([x(yy)]{x,y})

= ψ ° Λ(eval ° < φ ° [x]{x,y}, [yy]{x,y}>)

= ψ ° Λ(eval ° < φ ° snd ° fst, eval ° < φ ° [y]{x,y}, [y]{x,y} > >

= ψ ° Λ(eval ° < φ ° snd ° fst, eval ° < φ ° snd, snd > >

Let P = ψ ° Λ(eval ° < φ ° snd ° fst, eval ° < φ ° snd, snd > > .

Then we have

 [Y] = [λx.(λy.x(yy)(λy.x(yy))]

= ψ ° Λ([(λy.x(yy)(λy.x(yy)))]{x})

= ψ ° Λ(eval ° < φ ° P ° snd, P ° snd >): T→U

It is not difficult to prove that Λ -1(φ ° [Y]) ° <!UU, ψ> = eval ° < φ ° P ° ψ, P ° ψ > : UU→U is

a categorical fixpoint operator (see definition 8.8.2).

We now relate the two notions of categorical semantics given in 9.2.10 and 9.3.1. As a matter of fact

they are essentially equivalent, the only difference being that the one in definition 9.3.1 does not need

the concept of environment.

9.3.2 Definition Let ξ: Var→ Α(Λ-1(φ)) be an environment . Let ∆ = {x1,…,xn} be a finite

set of variables. Then
ξ'∆ = <...<idT, ξ(x1)>… ,ξ(xn)> : T → T×U...×U

We shall usually omit the subscript ∆ in ξ'∆ when it will be clear from the context.

9.3.3 Theorem Let C be a CCC with enough points, UU < U via (ψ, φ)), and A be the

associated λ-model as in proposition 9.2.11. Let [] and [] be the interpretations respectively

defined in 9.2.10 and 9.3.1. Then, for any term M with free variables in ∆ = {x1,…,xn} and any

environment ξ: Var→ Α(Λ-1(φ)) , one has

[M]∆ ° ξ'∆ = [M]ξ.

Proof The proof is by induction on the structure of M.

- case M = x. Suppose ξ(x) = a : T→U. Then ξ'∆ = < idT, a >. We have:

 [x]{x} ° ξ '∆ = snd ° < idT, a >

9. Reflexive Objects and the Type-Free Lambda Calculus

216

= a

= ξ(x)

= [x]ξ

- case M = PQ

 [PQ]∆ ° ξ'∆ = eval ° < φ ° [P]∆, [Q]∆> ° ξ'∆
= eval ° < φ ° [P]∆ ° ξ'∆, [Q]∆ ° ξ'∆>

= eval ° < φ ° [P]ξ, [Q]ξ > by induction hypothesis

= [P]ξ [Q]ξ by def. of application

= [PQ]ξ
- case M = λxn+1.Ν

Note first that, for any a : T→U,

 (*) [<xn+1>NCLε]ξ . a = [N]∆∪{xn+1}° < ξ'∆, a >.

Indeed:

 [<xn+1>NCLε]ξ . a = [NCLε]ξ(xn+1=a) by lemma 14.1.3

= [N]ξ(xn+1=a) by definition of []

= [N]∆∪{xn+1}° < ξ'∆, a > by induction hypothesis.

Note now that:

 [<xn+1>NCLε]ξ . a = eval ° < φ ° [<xn+1>NCLε]ξ, a >

= eval ° ((φ ° [<xn+1>NCLε]ξ)×id) ° < idT, a >,

and

 [N]∆∪{xn+1}° < ξ'∆, a > = [N]∆∪{xn+1}° ξ'∆×id ° < idT, a >.

Since C has enough points, and all the points in T×U are of the kind < idT, a >, from (*) we have:

 [N]∆∪{xn+1}° ξ'∆×id = eval ° ((φ ° [<xn+1>NCLε]ξ)×id).

Applyng Λ to both the members, and composing with ψ, we get:

 ψ ° Λ([N]∆∪{xn+1}° ξ'∆ = ψ ° φ ° [<xn+1>NCLε]ξ.
By definition, ψ ° Λ([N]∆∪{xn+1}° ξ'∆ = [λx.N]∆° ξ'∆
Moreover,

 [λx.N]ξ = [(λxn+1.N)CLε]ξ

= [ε . <xn+1>NCLε]ξ
= ε . [<xn+1>NCLε]ξ
= ψ ° φ ° [<xn+1>NCLε]ξ.

This conludes the proof. ♦

9. Reflexive Objects and the Type-Free Lambda Calculus

217

9.4 The Categorical Abstract Machine
The categorical interpretation in definition 9.3.1 suggests a very simple and nevertheless efficient

implementation of the lambda calculus. The implementation is based on a call-by-value, leftmost

strategy of evaluation, and it is performed by an abstract environment machine called CAM (see

refernces). The first step toward the implementation is the compilation of lambda calculus in a

language of categorical combinators.

Note that [MN]∆ = eval ° < φ ° [M]∆, [N]∆> = Λ−1(φ) ° < [M]∆, [N]∆>. Λ−1(φ): U×U→U is

just the application u of the underlyng combinatory algebra. We shall write app instead Λ−1(φ).

Moreover, let cur(f) = ψ ° Λ(f), and write f ; g instead of g ° f. Then the equations which define

the semantic interpretation of the lambda calculus are rewritten as follows:

[xi]∆ = fst; . . . ; fst; snd where fst appears n-i times

[MN]∆ = < [M]∆, [N]∆> ; app

[λx.M]∆ = cur([M]∆∪{x}).

This provides a “compilation” of the λ−calculus in a language where all the variables have been

replaced with “access paths” to the information they refer to (note the use of the “dummy” enviroment

∆ during the compilation).

One of the main characteristic of the categorical semantical approach is that we can essentially use

the same language for representing both the code and the environment. An evaluation of the code C

in an environment ξ is then the process of reduction of the term ξ ; C. The reduction is defined by a

set of rewriting rules. The general idea is that the environment should correspond to a categorical term

in some normal form (typically, a weak head normal form). The reductions preserve this property of

the environment, executing one instruction (i.e. one categorical combinator) of the code, and updating

at the same time the program pointer to the following instruction.

For fst and snd we have the following rules, whose meaning is clear:
<α,β> ; (fst ; C1) � ⇒ α ; C1
<α,β> ; (snd ; C1) ⇒ β ; C1

In the left hand side of the previous rules, <α,β> is the environment and the rest is the code. We

shall use parenthesis in such a way that the main semicolon in the expression will distinguish between

the environment at its left, and the code at its right.
For cur(C1) we use the associative law of composition and delay the evaluation to another time:

ξ ; (cur(C1); C2) ⇒ (ξ ; cur(C1)) ; C2
The structure (ξ ; cur(C1)) corresponds to what is usually called a closure.

The right time for evaluating a term of the kind cur(C) is when it is applied to an actual parameter α.

We then have:
<(ξ ; cur(C1)), α > ; (app; C2) ⇒ <ξ, α> ; (C1; C2)

The previous rule is just a rewriting of the equation

Λ−1(φ) ° <ψ ° Λ(C1) ° ξ, α > = eval ° <Λ(C1) ° ξ, α > = C1 ° <ξ, α>

9. Reflexive Objects and the Type-Free Lambda Calculus

218

that proves the semantical soundness of the previous rule.
Finally, we must consider the evaluation of a term of the kind <C1,C2>; C3. We have the formal

equation:
ξ ; (<C1,C2>; C3) = < ξ ; C1, ξ ; C2> ; C3

but we cannot simply use it for defining a reduction, since we want also to reduce ξ ; C1 and ξ ;

C2. We must first carry out independently the reductions of ξ ; C1 and ξ ; C2 , and then put them

together again building the new environment.

A simple solution on a sequential machine may be given by using a stack and working as follows:
first save the actual environment ξ by a push operation, then evaluate ξ ; C1 (that yields a new

environment ξ1); next swap the environment ξ1 with the head of the stack (i.e. with ξ); now we

can evaluate ξ ; C2 obtaining ξ2; finally build a pair <ξ1,ξ2> with the head of the stack ξ1 and

the actual environment ξ2 (that is a cons operation). An interesting and elegant property is that, if

we just write at compile time <C1,C2> as “push; C1; swap; C2; cons”, then the above behaviour is

obtained by a sequential execution of this code.

9.4.1 Definition The compilation by means of categorical combinators of a λ-term M in a

“dummy” environment ∆ = (...(nil, x1),…), xn) is inductively defined as follows:

[x](∆,x) = snd

[y](∆,x) = fst; [y]∆
[MN]∆ = push; [M]∆; swap; [N]∆; cons; app

[λx.M]∆ = cur([M](∆,x)) .

Examples

1. The closed term M = λx.xx has the following compilation:

 [λx.xx]nil = cur([xx](nil,x))

= cur(push; [x](nil,x); swap; [x](nil,x); cons; app)

= cur(push; snd; swap; snd; cons; app).

2. The term (λx.x)(λx.x) is so compiled:

 [(λx.x)(λx.x)]nil = push; [λx.x]nil; swap; [λx.x]nil; cons; app

= push; cur([x](nil,x)); swap; cur([x](nil,x)); cons; app

= push; cur(snd); swap; cur(snd); cons; app.

9.4.2 Definition The reduction of the compiled code is summarized by the following table:

9. Reflexive Objects and the Type-Free Lambda Calculus

219

BEFORE AFTER

Environment Code Stack Environment Code Stack

<α,β> fst; C S α C S

<α,β> snd; C S β C S

ξ cur(C1); C2 S ξ; cur(C1) C2 S

<ξ;cur(C1),α> app; C2 S <ξ,α> C1;C2 S

ξ push; C S ξ C ξ.S

ξ1 swap; C ξ2.S ξ2 C ξ1.S

ξ1 cons; C ξ2.S <ξ2, ξ1> C S.

Example The code “push; cur(snd); swap; cur(snd); cons; app” corresponding to the λ-term

(λx.x)(λx.x) gives rise to the following computation:

ENV. = nil

CODE = push; cur(snd); swap; cur(snd); cons; app

STACK = nil

ENV. = nil

CODE = cur(snd); swap; cur(snd); cons; app

STACK = nil . nil

ENV. = nil; cur(snd)

CODE = swap; cur(snd); cons; app

STACK = nil . nil

ENV. = nil

CODE = cur(snd); cons; app

STACK = nil; cur(snd) . nil

ENV. = nil; cur(snd)

CODE = cons; app

STACK = nil; cur(snd) . nil

ENV. = <nil; cur(snd), nil; cur(snd) >

CODE = app

STACK = nil

9. Reflexive Objects and the Type-Free Lambda Calculus

220

ENV. = <nil, nil; cur(snd) >

CODE = snd

STACK = nil

ENV. = nil; cur(snd)

CODE =

STACK = nil

Note that “cur(snd)” is the compilation of λx.x.

9.5 From Applicative Structures to Categories
We want now to “go backwards”, with respect to section 9.2, where we described how to find

models of a type-free language within type structures, i.e., within CCC. Namely, we will see how to

construct typed models, in particular a CCC, out of type-free structures. This has an important

motivation from Programming Language Theory, since it is the semantic counterpart of the following

relevant methodology in functional languages.

We already mentioned, as an example, that one of the main features of Edinburgh ML is its

automatic treatment of type assignment. That is, the programmer may write programs without taking

care of the tedious details of assigning types. The type checker decides whether the given program is

typable and, if so, assigns a type to it (actually, the “most general type”).

This effective interactive feature of ML provides a partial check for correctness, as one may

automatically control whether type errors occur. This is similar to what physicists call “dimensional

analysis” for equations when they verify, say, whether a force faces a force, etc. Of course, a lot

must be settled. For example, the actual decidability of the type assignment and the existence of “type

schemes” such that all types of a given program are instances of these. The identity function, for

example, has type A → A for all instances of A.

As for the semantics, one must first be able to interpret the type-free language, as handled by the

programmer, and then interpret types as objects of suitable CCC constructed over the type-free

model. In other words, one must be able to obtain an interpretation of types out of a model for the

type-free calculus. “Soundness” then means that a program, once it is assigned a type, is actually

interpreted as an “element” of the interpretation of its type. Decidability and soundness have been

positively clarified by a mathematical investigation of computability and programming, which goes

beyond the scope of this book (see references).

9. Reflexive Objects and the Type-Free Lambda Calculus

221

Our present purpose is to survey the main “type structures” (categories) one may construct out of

type-free models and to complete, in this way, the categorical understanding of typed versus type-free

calculi, as required for the semantics of the type assignment process. Most of the work may be done

over an arbitrary combinatory algebra (X, .), i.e., over an arbitrary model of Combinatory Logic.

Indeed, it is even not required that "." , the application in X, is a total operation. As already

mentioned, if “.” is not always defined, (X, .) is no longer a model of CL. However, the

categories constructed below still have the same properties (products, exponents, whenever

possible...), which the reader should check as an exercise.

9.5.1 Definition Let Α = (X,.) be an applicative structure.

i. The set of monomials over A is inductively defined by

x,y....x1,x2...(variables)...are monomials

a,b....a1,a2....(constants from X)... are monomials

MN is a monomial if M and N are monomials.

Substitution of constants for variables, i.e. M[a/x], in monomials is defined by induction in the usual

way. M1M2...Mn stands for (...(M1M2)...Mn) .

ii. f: Xn→X is algebraic if f(a) = M[a/x] for some monomial M and any a = (a1,... ,an)∈Xn

and x of length n. (That is, the set Pn(A) = P[Xn,X] of algebraic functions of n-arguments is

defined by the monomials over X, with at most n variables, modulo extensional equality.)

iii. Given (X,.), call f : Xn→ X representable if ∃a∈X ∀b∈Xn f(b)= a.b1.....bn.

By using algebraic functions, one may define a simple category over an arbitrary applicative

structure.

9.5.2 Definition Let A = (X, .) be an applicative structure. The category PA of polynomials

over A, has as

objects: Xn∈PA, for all n ∈ ω;

morphisms: f∈PA[Xn,Xm] iff f: Xn→Xm and ∀i<m prmi°f∈Pn, with prmi i-th projection.

(If there is no ambiguity write P[Xn,Xm] for PA[Xn,Xm]).

For example, f(x,y) = (xb(xax),yxa) for a,b∈X, is in P[X2,X2]. By substitution, one may easily

show that morphisms are closed under composition; moreover, prni∈P[Xn,X] = Pn and, thus, PA
is a category.

Exercise (Curry-Shoenfinkel) Prove that exactly in combinatory algebras every algebraic function

is representable (hint: use the argument which translates a λ-term λx.M into an S-K-term <x>M in

the introduction).

9. Reflexive Objects and the Type-Free Lambda Calculus

222

If Α is a combinatory algebra, then, by the exercise, PA may be considered the category of

representable morphisms.

9.5.3 Lemma Let A = (X,.) be an applicative structure. Then PA is a cartesian category with

enough points. Moreover, if C is a CC with enough points and C, U and A(u) are as in definition

9.2.1, then PA(u) is a full sub-cartesian category of C.

Proof. Set Xn×Xm = Xn+m and T = X0 (= a singleton set) for the terminal object. The

projections pri 's are given above. Clearly, PA has enough points. The rest easily follows from

definition 9.2.1 and the assumption that C has enough points. The reader may complete the proof as

an exercise. ♦

Given a category C, U and A(u) as in lemma 9.5.3, we say that g∈C[Un,U] induces f :

A(u)→A(u) if f(h) = g°h for all h∈C[T,U]. It is straightforward to prove that all algebraic

functions defined by a monomial in n variables over A(u), and no constants, are induced by

morphisms in C[Un,U]. One only has to interpret variables as projections (see section 9.3) and

argue by induction on the structure of the “algebraic term” defining the function. For example, for

f(x1,x2,x3) = (x3.x1).x2 write

u°<pr3,pr1> : U3 → U×U → U , which is x3.x1 , and then

u°<u°<pr3, pr1>,pr2> : U3 → UxU → U, which induces f.

Next, we generalize a definition of category given over a specific applicative structure in example

3.4.1. The definition is slightly different (besides being more general). Since it is an important

construction, it is worth seeing it again, under a different and more general viewpoint.

9.5.4 Definition Let A = (X,.) be an applicative structure. Define then:

1. The category PERA of partial equivalence relations given by:

objects: R∈PERA iff R is an equivalence relation on a subset XR of X, i.e., XR = dom R

= range R.
morphisms: for R∈PERA let πR(n) = {m | nRm }; then f∈PER[R,S] iff ∃f'∈P[X,X] f ° πR

= πS ° f' on XR, i.e., the following diagram commutes:

(we then say that f' computes f).

9. Reflexive Objects and the Type-Free Lambda Calculus

223

2. The category ERA of (total) equivalence relations is given as above by using equivalence

relations on X (i.e., XR = X in 1.).

PERA and ERA are clearly categories. Similarly as for PA we write (P)ER[R,S] for (P)ERA[R,S]

when unambiguous.

Exercise Let A be an applicative structure. Give a terminal object for PERA and ERA, and prove

that they have enough points. (Hint: recall that the constant functions are algebraic).

9.5.5 Proposition Let A = (X,.) be an applicative structure. Then, if X×X < X in PA, ERA
and PERA are CCs (with enough points). Moreover, PA and ERA are full sub-CC's of PERA.

Proof Let X×X < X via ([-,-],<p1,p2>). Then R×S may be defined componentwise, by

a(R×S)b iff (p1(a))R(p1(b)) and (p2(a))S(p2(b)).

This turns ERA and PERA into CC's.

Observe now that ∀n Xn < X via ([-,...,-],<p1,...,pn>) in PA, by iterating X×X < X. Thus

PA may be faithfully embedded in PERA by taking, for each Xn, the identity relation restricted to

the image of Xn in X via [-,...,-]. Call this restricted identity idn. Moreover, PA is full in

PERA, since P[Xn,Xm] ≅ PER[idn, idm], as sets, by the following isomorphism G (take m =

1, for the sake of simplicity). Let g∈P[Xn,X], then, for x = [x1,...,xn], define G(g)∈PER[idn,

id] by G(g)(x) = g(p1(x),...,pn(x)) = g(x1,...,xn). G(g) is computed, in the sense of 9.5.4, by

g°<p1,... ,pn> : X → Xn → X.

G is an isomorphism, whose reverse map is given as follows: if h∈PER[idn, id] is computed

by h'∈P[X,X], then G-1(h) = h'°[-,... ,-] : Xn → X → X. By definition, ERA is a full sub-CC

of PERA, and both categories have enough points, by the exercise. ♦

The next theorem proves the converse of theorem 9.2.5 and, moreover, it shows that, by applying

the construction in definition 9.2.1 and theorem 9.2.5 to a combinatory algebra, one gets back to the

given combinatory algebra.

9.5.6 Theorem Let A = (X,.) be a combinatory algebra and PA be the category of polynomials

over A. Then T < X, XxX < X in PA and, for u(x,y) = x.y, u∈P[X2,X] is K-universal in the

category PA. Moreover, A(u) = A.

Proof T < X trivially holds, for X≠∅. Clearly, XxX exists in PA, by lemma 9.5.3. Let then

c,c1,c2∈X represent λxyz.zxy, λxy.x, λxy.y, respectively, in the sense of definition 9.5.1(iii). c

is the element that codes pairs (they are commonly coded in this way in λ-calculus), while c1, c2
will be used to define projections. Thus, for [x,y] = cxy and pi(x) = xci, one has [-,-] ∈P[X2,X],

pi∈P[X,X] and X×X < X via ([-,-],<p1,p2>). Finally, assume that f∈P[X2,X] and that a∈X

9. Reflexive Objects and the Type-Free Lambda Calculus

224

represents f. Then f = u°((λx.ax)×id) and, hence, u is K-universal. It is easy to check from the

definition that A(u) = A. ♦

9.5.7 Corollary Let A = (X,.) be an applicative structure. Then A is a combinatory algebra iff,

in PA, one has T < X, X×X < X and, for u(x,y) = x.y, u is K-universal.

Proof (⇒) by theorem 9.5.6; (⇐) by theorem 9.2.6. ♦

As already pointed out, one needs CCC's in order to take care of λ−models. However, also

combinatory algebras are tidely characterized within CCC's. The following immediate consequence

of theorem 9.5.6 and proposition 9.2.6, plus proposition 9.2.7, fully characterizes the least

requirement for functional completeness in CCC's.

9.5.8 Corollary Let A = (X,.) be a combinatory algebra. Then PERA is a CCC, where T < X,

X×X < X and, for u(x,y) = x.y, Λ(u)∈PER[X,XX] is principal. Moreover A(u) = A.

Proof. In view of theorem 9.5.6 and proposition 9.5.5, we only need to define the object SR in

PERA, which represents PER[R,S]. Set then

aSRb iff ∀x,y∈X (xRy ⇒ (ax)S(by)).

Recall now that, by assumption, each function in P[X,X] is representable. The rest of the proof that

PERA is a CCC is an obvious generalization of example 3.4.1. ♦

9.5.9 Remark While completing the proof that PERA is a CCC, in corollary 9.5.8, one may

notice that it is only required, for all R, S and all f∈PER[R,S], that f has a representative in X.

This is the point which allows the generalization to the partial case (see section 9.6, besides PERω in

example 3.4.1).

The next result proves the converse of corollary 9.1.12 and completes our categorical understanding

of λ-models.

9.5.10 Theorem Let A = (X, ., ε) be a λ-model. Then, in the CCC PERA, there exist

ψ∈PER[XX,X] and φ∈PER[X, XX] such that XX < X via (ψ, φ). Moreover, (X,.) ≅ Α(Λ-

1(φ)), and ε = ψ(ψ°φ). If A is extensional, then XX ≅ X .

Proof Let f∈PER[X,X] and a∈X be a representative for f. Define then ψ(f) = εa. By (ε2), ψ

is well defined. Recall also that XX is the exponent representing PER[X,X] in PERA, hence

ψ∈PER[XX,X].

As for φ, define φ(a) = λx.ax for any a∈X. Clearly φ∈PER[X,XX]. Compute then

 φ(ψ(f)) = λx.εax if a represents f

= f by (ε1).

9. Reflexive Objects and the Type-Free Lambda Calculus

225

Thus XX < X, via (ψ, φ).

Finally, (X,.) ≅ A(Λ-1(φ)), since φ(a)(b) = ab. Moreover ψ(φ(a)) = εa and, hence, ε

represents ψ°φ. Thus

 ψ(ψ°φ) = εε by definition of ψ

= ε by (ε3).

Finally, if a = εa = ψ(φ(a)) for all a , then ψ°φ = id and, hence, XX ≅ X. ♦

We conclude this part by summarizing the connections between type-free λ-calculus and categories

with enough points obtained so far. This provides a unified framework for the topic.

9.5.11 Theorem Let C be a CCC and A an object of C. Then

1. AA ≅ A ⇒ Α is an extensional λ-model;

2. AA < A ⇒ A is a λ-model;

3. ∃p∈C[A, A A] principal, T < A and A×A < A ⇒ Α is a combinatory algebra.

 Conversely,

1. Α is an extensional λ-model ⇒ AA ≅ A in PERA;

2. A is a λ-model ⇒ AA < Α in PERA;

3. Α is a combinatory algebra ⇒ ∃p∈PERA[A,A A] principal, T < A and A×A < A in PERA.

9.5.12 Remark In the categorical semantics of lambda calculus, we have to deal with Cartesian

(closed) categories, and thus with products and projections. Without much increasing the complexity

of the semantics, it is thus possible to consider also a type-free λ-calculus with explicit pairing,

λβηπ, in analogy to the typed case, see section 8.2. We leave to the reader the task of defining, as an

exercise, this calculus and giving its semantics on a reflexive object U in a CCC C. As a matter of

fact, one only needs to add A×A ≅ A to (1) and (2) in theorem 9.5.11 in order to obtain

characterizations of the models of λβ(η)π.

In conclusion, the diligent reader will notice that the models of λβηπ are exactly the CCC with

e.p. and with a unique object nonisomorphic to the terminal one. It may be fair, then, to call λβηπ

the “unityped” λ-calculus.

9.6 Typed and Applicative Structures: Applications and Examples
In the first part of this section, we sketch a recent application of the typed and type-free λ−calculus to

category theory. In a sense, this application goes in the other direction with respect to our prevailing

perspective, as, so far, we mostly applied categorical tools to the understanding of deductive systems

and their calculus of proofs (λ−calculus).

9. Reflexive Objects and the Type-Free Lambda Calculus

226

The question we answer here may be simply stated, in categorical terms:

 (1) which isomorphisms hold in all CCC's ?

The motivation is clear, as a simple and decidable equational theory of types will allow us to detect

provably isomorphic types or, equivalently, valid isomorphisms in all models. In functional

programming, for example, when retrieving programs from a library where they are collected

according to their types, the search should be done “up to provable isomorphisms”, as the same

program may have been coded under isomorphic types; for example, a search program for lists of a

given length, may be typed by INT×LISTS → LISTS or, equivalently, by LISTS→ (INT →

LISTS) (see references). The result turns out to be an application of λ−calculus to categories, as we

look at the problem from a proof-theoretic view point and, by the work done in chapter 8, we actually

answer to the following equivalent question.

Consider the intuitionistic calculus of sequents, in section 8.3, and suppose that proofs of A

B and of A B are given. Then one may ask

 (2) in which cases the composition of A B and B A (and of B A and A B)

reduce, by cut-elimination, to the axiom A A (and B B, respectively) ?

Clearly, (2) corresponds to (1) when types are understood as objects. The point is that the

deductions in (2) are coded by λ-terms, M and N, say, as described in section 8.3. By this, and

by a lot of (hinted) hacking on λ-terms, we will characterize valid isomorphisms by looking at the

structure of M and N such that M°N = IA and N°M = IB, by β−conversion.

The second part develops little general Category Theory since it essentially gives more examples of

CCC's and of λ−models. The structures presented will be combinatory algebras and models of type-

free λβ, since models of λβη may be derived from the general results in chapter 10. In particular,

we introduce a few relevant categories of complete partial orders as well as their “effective” versions

and hint how they relate to the various categories of quotients or PER's that we largely used in the

previous sections.

Part 1: Provable isomorphisms of types

Consider the following equational theory of types. It is given by axiom schemata plus the obvious

inference rules that turn “=” into a congruence relation.

9.6.1 Definition Th is axiomatized as follows, where T is a constant symbol:

1. A × T = A

2. A × B = B × A

3. A × (B × C) = (A × B) × C

4. (A × B)→ C = A → (B → C)

9. Reflexive Objects and the Type-Free Lambda Calculus

227

5. A→ (B × C) = (A → B) × (A → C)

6. A→T = T

7. T→A = A.

In remark 3.3.3, we already asked the reader to prove that, when → and × are interpreted as

cartesian product and exponent, the provable equations of Th hold as isomorphisms in any CCC.

Note, though, that there are categorical models which realize Th, but are not CCC's. Take, say, a

cartesian category and a bifunctor “→” that is constant in the second argument.

We next hint how to prove the non trivial fact that Th characterizes exactly the valid

isomorphisms in all CCC's, by using λ-calculus.

As pointed out in section 8, the typed λ-calculus is, at the same time:

a - the “theory” of CCC's;

b - the calculus of proofs of the intuitionistic calculus of sequents.

Thus the theorem is shown by observing that the isomorphic types in the (closed) term model of

typed λ-calculus are provably equal in Th . This answers to (2) in the introduction above and, thus,

to (1).

A term model is closed, when terms in it contain no free variables.

9.6.2 Definition Given (an extension of) the typed λ-calculus, λλλλ, the (closed) term model is the

type structure

|λλλλ| = {| M: A| / M is a (closed) term of type A}

where |M: A| = { N / λλλλ M = N }.

Clearly, the type structure is non trivial, if a collection of ground or atomic types is given. The (pure)

λ-calculus may be extended by adding fresh types and constants as well as consistent sets of

equations. Consider now the extension of λβηπt in section 8.3 by adding:

1 - a special atomic type T (the terminal object);

2 - an axiom schema

*A: A → T

which gives a constant of that type;

3 - a rule

M: A → T

 M = *A

that gives the unicity of *A.

9. Reflexive Objects and the Type-Free Lambda Calculus

228

Call λλλλββββηηηηππππ*t this extended calculus and Tp* its collection of types. The point is that the closed

term model of λβηπ*t (and its extensions) forms a CCC, as the reader may check as an exercise.

Then the provable equations of Th are realized in |λβηπ*t|, as isomorphisms. We give an explicit

name to these isomorphisms, as λ-terms provide the basic working tools.

9.6.3 Definition Let A,B∈Tp*. Then A and B are provably isomorphic (A ≅p B) iff

there exist closed λ-terms M : A → B and N : B → A such that λβηπ*t |– M ˚ N = IB and

λβηπ*t |– N ˚ M = IA, where IA and IB are the identities of type A and B. We then say that

M and N are invertible terms in λβηπ*t .

9.6.4 Remark By general categorical facts, we then have the easy implication of the equivalence

we want to show; namely, Th |− A = Β ⇒ A ≅p B. It may be worth for the reader to work out

the details and construct the λ-terms which actually give the isomorphisms. Indeed, they include the

“abstract” verification of cartesian closure; for example, “currying” is realized by λz.λx.λy.z<x,y>

with inverse λz.λx.z(p1 x)(p2 x), that prove (A × B)→ C ≅p A → (B → C); the term λz.<λx.(p1

(zx)),λx.(p2 (zx))> with inverse λz.λx.<(p1 z)x,(p2 z) x> prove A→ (B × C) ≅p (A → B) × (A

→ C). The others are easily derived.

The proof of the other implication, i.e., A ≅p B ⇒ Th |− A = Β, roughly goes as follows. As a

first step, types are reduced to “type normal forms”, in a “type rewrite” system. This will eliminate

terminal types and bring products at the outermost level. Then one needs to show that isomorphisms

between type normal forms yield componentwise isomorphisms. This takes us to the pure typed λ-

calculus (i.e., no products nor T's). Then a characterization of the invertible terms of the pure type-

free calculus is easily applied in the typed case, as the invertible type-free terms happen to be typable.

The syntactique structure of the invertible terms gives the result.

The axioms of Th suggest the following rewrite system R for types (essentially Th “from left to

right ”, with no commutativity):

9.6.5 Definition (Type rewriting R) Let ">" be the transitive and substitutive type-reduction

relation given by:

1. A × T > A

1' . T × A > A

3. A × (B × C) > (A × B) × C

4. (A × B)→ C > A → (B → C)

5. A→ (B × C) > (A → B) × (A → C)

6. A→T > T

7. T→A > A .

9. Reflexive Objects and the Type-Free Lambda Calculus

229

The system R yields an obvious notion of normal form for types (type normal form), i.e.,

when no type reduction can be applied. Note that 1, 1', 6 and 7 “eliminate the T's”, while 4 and 5

“bring outside ×”. It is then easy to observe that each type normal form is identical to T or has the

structure S1× ... ×Sn where each Si does not contain T nor "×". We write nf(S) for the

normal form of S (there is exactly one, see 1.6) and say that a normal form is non trivial if it is not

T.

9.6.6 Proposition R is Church-Rosser and each type has a unique type normal form in R .

Proof Easy exercise. ♦

By the implication discussed in remark 9.6.4, since R |− S > R implies Th |− S = R , it is clear that

any reduction R |− S > R is wittnessed by an invertible term of type S→R.

9.6.7 Corollary Given types S and R, one has:

1 - Th |− S = nf(S) and, thus,

2 - Th |− S = R ⇔ Th |− nf(S) = nf(R).

In conclusion, when Th |− S = R, either we have nf(S) ≡ T ≡ nf(R), or Th |− nf(S) ≡ (S1× ...

×Sn) = (R1× ... ×Rm) ≡ nf(R). A crucial lemma below shows that, in this case, one also has n =

m.

The assertion in the corollary can be reformulated for invertible terms in a very convenient way:

9.6.8 Proposition (commuting diagram) Given types A and B, assume that F: A→nf(A) and

G: Β→nf(Β) prove the reductions to type n.f.. Then a term M: A→Β is invertible iff there exist an

invertible term M': nf(A)→nf(Β), such that M = G-1
°M'°F.

Proof. ⇐) Set M-1 ≡ (G-1
°M'°F)-1 ≡ F-1

°M'-1°G, then M is invertible.

⇒) Just set M' = G°M°F-1. Then M'-1 ≡ F°M-1
°G-1 and M' is invertible. ♦

A diagram easily represents the situation in the proposition:

9. Reflexive Objects and the Type-Free Lambda Calculus

230

A B

A1

nA

×

×
:

B1

m
B

×

×
:

M

M'

F G

We now state a few lemmas that should guide the reader through the basic ideas of this application of

λ-calculus to category theory. Most technical proofs, indeed λ-calculus proofs, are omitted (and the

reader should consult the references).

Recall first that, when Th |− S = R, one has

nf(S) ≡ T ≡ nf(R), or Th |− nf(S) ≡ (S1× ... ×Sn) = (R1× ... ×Rm) ≡ nf(R).

Notice that, in the latter case, there cannot be any occurrence of T in either type. Indeed, a non

trivial type normal form cannot be provably equated to T, as it can be easily pointed out by taking a

non trivial model. Thus it may suffice to look at equations such as (S1× ... ×Sn) = (R1× ... ×Rm)

with no occurrences of T and, hence, to invertible terms with no occurrences of the type constant T

in their types. We can show that these terms do not contain any occurrence of *Α either, for no type

Α, via the following lemma.

9.6.9 Lemma Let M be a term of λβηπ*t in n.f..

1 - (Terms of a product type) If M: A×B, then either M ≡ <M1, M2>, or there is x:C such that

x∈FV(M) and A×B is a type subexpression of C.

2 - (Every term, whose type contains no T, has no occurrence of *Α constants) Assume that in M

there is an occurrence of *Α, for some type Α. Then there is some occurrence of the type constant

T in the type of M or in the type of some free variable of M.

Proof. By induction on the structure of M. ♦

Note now that (the equational theory of) λβηπ*t is a conservative extension of (the equational

theory of) λβηπt. Similarly for λβηπt w.r.t. λβηt. Thus, invertibility in the extended theory,

given by terms of a purer one, holds in the latter.

9.6.10 Proposition (Isomorphisms between type normal forms are given by terms in λβηπt)

Assume that S and R are non trivial type normal forms. If the closed terms M and N prove S

≅p R in λβηπ*t, then their normal forms contain no occurrences of the constants *Α. (Thus, M

and N are actually in λβηπt).

9. Reflexive Objects and the Type-Free Lambda Calculus

231

Proof By the previous lemma, as the terms are closed and no T occurs in their type. ♦

So we have factored out the class of constants *Α, and we restricted the attention to λβηπt. By the

next step, we reduce the problem to the pure calculus, i.e., we eliminate pairing as well, in a sense.

9.6.11 Proposition (Isomorphic type normal forms have equal lenght) Let S ≡ S1× ... ×Sm
and R ≡ R1× ... ×Rn be type normal forms. Then S ≅p R iff

n = m and there exist M1,...,Mn ; N1,...,Nn such that

x1: S1, ..xn: Sn |- <M1,...,Mn>: (R1× ... ×Rn)

y1: R1, ..yn : Rn |- <N1,...,Nn>: (S1× ... ×Sn)

with Mi[x := N] =βη yi , for 1 ≤ i ≤ n

Nj[y := M] =βη xj , for 1 ≤ j ≤ n

and there exist permutations σ, π over n such that

Mi = λui.xσi Pi and Nj = λvj.yπj Qj
(M is a vector of terms; substitution of vectors of equal lenght is meant componentwise).

Proof (Not obvious, see references). ♦

By induction, one may easily observe that terms of λβηπt whose type is arrow-only belong to λβηt.

Thus, one may look componentwise at terms that prove an isomorphism. The next point is to show

that each component, indeed a term of λβηt, yields an isomorphism. This will be done by using a

characterization of invertible terms in the pure calculus. The same result will be applied once more in

order to obtain the result we aim at.

The characterization below has been given in the type-free calculus, as an answer to an old

question of Church on the group of type-free terms. We follow the type-free notation, also for

notational convenience.

9.6.12 Definition Let M be a type-free term. Then M is a finite hereditary permutation

(f.h.p.) iff either

(i) λβη |–u M = λx.x , or

(ii) λβη |–u M = λz. λx.zNσ , where if |x| = n then σ is a permutation over n and zNσ =

zNσ1Nσ2… Nσn , such that, for 1 ≤ i ≤ n, λxi.Ni is a finite hereditary permutation.

For example, λz.λx1.λx2.zx2x1 and λz.λx1.λx2.zx2(λx3.λx4.x1x4x3) are f.h.p.'s. The

structure of f.h.p.'s is tidily desplayed by Böhm-trees. The Böhm-tree of a term M is

(informally) given by:

 BT(M) = Ω if M has no head normal form

 BT(M) = λx1 ... xn. y if M =β λx1...xn. y M1 ... Mp

9. Reflexive Objects and the Type-Free Lambda Calculus

232

 / ... \

 BT(M1) BT(Mp)

(see references).

It is easy to observe that a BT(M) is finite and Ω-free iff M has a normal form. Then one may

look at f.h.p.'s as Böhm-trees, as follows:

 λz x. z

λy1. xσ1 . . . λyn. xσn
: :

and so on, up to a finite depth (note that yi may be an empty string of variables). Clearly, the

f.h.p.'s are closed terms and possess a normal form. In particular, exactly the abstracted variables at

level n+1 appear at level n+2, modulo some permutation of the order (note the special case of z at

level 0). The importance of f.h.p.'s arises from the following classic theorem of λ-calculus.

(Clearly, the notion of invertible term given in 9.6.3 easily translates to type-free λ-calculi).

9.6.13 Theorem Let M be an untyped term possessing normal form. Then M is λβη-invertible

iff M is a f.h.p..

Recall now that all typed terms possess a (unique) normal form (see references). Let then M be a

typed λ-term and write e(M) for the erasure of M, i.e. for M with all type labels erased.

Remark Observe that the erasures of all axioms and rules of the typed lambda calculus are

themselves axioms and rules of the type-free lambda calculus. Then, if M and N are terms of

λβηt and λβηt |– M = N, one has λβη |– e(M) = e(N). Thus, in particular, if M : σ → τ and N :

τ → σ are invertible terms in λβηt, e(M) and e(N) are f.h.p.'s.

Exercise Show that the f.h.p.'s are typable terms (Hint: Just follow the inductive definition and

give z, for instance, type A1 → (A2..... → B), where the Ai's are the types of the Nσi.) Then,

by the a small abuse of language, we may talk also of typed f.h.p.'s. Observe that these are exactly

the typed invertible terms in definition 9.6.3.

The first application of 9.6.13 we need is the following.

9. Reflexive Objects and the Type-Free Lambda Calculus

233

9.6.14 Proposition Let M1, ... Mn , N1, ... ,Nn and permutation σ be as in lemma 9.6.11.

Then, for all i, λxσi.Mi : Sσi→Ri and λyi.Nσi : Ri→Sσi are invertible terms.

Proof. For a suitable typing of the variables it is possible to build the following terms of λβηt (we

erase types for convenience):

M = λzx1...xn.zM1 ... Mn
N = λzy1...yn.z N1 ... Nn .

It is an easy computation to check, by the definition of the Mi's and of the Ni's, that M and N are

invertible. Moreover, they are (by construction) in normal form, thus, by theorem 9.6.13, M and N

are f.h.p.'s. This is enough to show that every Mi has only one occurrence of the xi's (namely

xσi); similarly for the Ni's.

Thus we obtain

Mi[x := N] ≡ Mi[xσ(i) := Nσ(i)] =βη yi, for 1 ≤ i ≤ n

Ni[y := M] ≡ Ni[yπ(i) := Mπ(i)] =βη xi, for 1 ≤ i ≤ n

and, hence, for each i, λxσ(i).Mi : Sσ(i)→Ri and λyi.Nσ(i) : Ri→Sσ(i) are invertible. ♦

As a result of the work done so far, we can then focus on invertible terms whose types contain only

“→” i.e., investigate componentwise the isomorphisms of type normal forms. Of course, these

isomorphisms will be given just by a fragment of theory Th.
Call S the subtheory of Th given by just one proper axiom (plus the usual axioms and rules for

“=”), namely

(swap) A→(B→C) = (B→(A→C)) .

S is a subtheory of Th by axioms 2 and 4 of Th.

9.6.15 Proposition Let Α, Β be type expressions with no occurences of T nor ×. Then

Α ≅p Β ⇒ S |–Α = Β.

Proof Suppose Α ≅p Β via M and N. As usual, we may assume without loss of generality that

M and N are in normal form. By lemma 9.6.9 and the remark after 9.6.11, M and N actually

live in λβηt and, by theorem 9.6.13, they are f.h.p.'s. We prove S |– Α = Β by induction on the

depth of the Böhm-tree of M.

Depth 1: M ≡ λz : C. z. Thus M : C → C, and S |– C = C by reflexivity.

Depth n+1: M ≡ λz : E. λx : D. zNσ. Recall zNσ = zNσ1 ... Nσn where if the ith abstraction in

λx : D is λxi : Di then the erasure of λxi : Di.Nσi is a f.h.p.. Thus λxi : Di.Nσi gives (half of) a

provable isomorphism from Di to some Fi. Hence the type of Nσi is Fi. In order to type check,

we must have E = (Fσ1 → ... → Fσn → Β) for some Β. Thus the type of M is (Fσ1 → ... →

Fσn → Β) → (D1 → ... → Dn → Β). By induction, since the height of the Böhm tree of (the

erasure of) each λxi : Di. Nσi is less than the height of the Böhm tree of M, ona has S |– Di =

Fi for 1 ≤ i ≤ n. By a repeated use of the rules for "=", we get

9. Reflexive Objects and the Type-Free Lambda Calculus

234

 S |– (Fσ1 → ... → Fσn → Β) = (Dσ1 → ... → Dσn → Β).

Hence it suffices to show

 S |– (Dσ1 → ... → Dσn → Β) = (D1 → ... → Dn → Β).

This is quite simple to show by a repeated use of axiom (swap) above in conjunction with the rules.

♦

Clearly, also the converse of proposition 9.6.15 holds, since the "⇐" part in 9.6.15 is provable by

a fragment of the proof hinted in 9.6.4. Thus one has:

S |– Α = Β ⇔ Α ≅p Β by terms in λβηt.

The result we aim at, is just the extension of this fact to Th and λβηπ∗t.

9.6.16 Main Theorem S ≅p R ⇔ Th|- S = R

Proof. In view of 9.6.4, we only need to prove S ≅p R ⇒ Th |- S = R. As we know, this is

equivalent to proving nf(S) ≅ nf(R) ⇒ Th |- nf(S) = nf(R).

Now, by proposition 9.6.11, for nf(S) ≡ (S1× ... ×Sn) and (R1× ... ×Rm) ≡ nf(R), we have

 nf(S) ≅ nf(R) ⇒ n = m and there exist M1, ..., Mn , N1, ..., Nn
and a permutation σ such that λxσi.Mi : Sσi→Ri and λyi.Nσi : Ri→Sσi .

By 9.6.14, these terms are invertible, for each i. Thus, by 9.6.15, S |- Ri = Sσi and, hence, by

the rules, Th |- S = R. ♦

This concludes the proof of the main theorem of this part.

9.6.17 Corollary Given types A and B, it is decidable whether they are (their interpretation

yields) isomorphic (objects) in all CCC's.

Proof (Hint) Reduce A and B to type normal form. Check that these have an equal number of

factors. If so, observe that theory S does not change the lenght of types and perfom the required

swaps to check the equality, in that theory, of each component. ♦

Exercise Check the complexity of the theory of provable isomorphisms.

Part 2: Higher type objects as models of the type-free λλλλ-calculus

We give here some examples of categories and objects with the properties mentioned in the previous

sections and discuss connections to Higher Type Recursion Theory, a highly developed topic to

which denotational semantics of programming languages is greatly indebted. This theory suggested

the early structures for a “generalized theory of computation,” stressed the role of CCC's and, jointly

9. Reflexive Objects and the Type-Free Lambda Calculus

235

with category theory, set the basis for the construction of the early models of (type-free) λ-calculus

and, thus, of functional programming languages.

We first mention a simple way to obtain lots of type-free models in CCC's with reflexive objects.

Then we apply this construction to the main type structures for higher type recursion: the partial

continuous and computable functionals in all finite higher types. Well-established results allow to

recover from those structures the various hierarchies of total functionals, which actually started the

topic (see references).

In section 2.4 we already gave two examples of reflexive objects in different CCC and, thus, of

λ-models. When presenting the first, Pω, in 2.4.1, we promised to show the reflexivity of another

very familiar Scott domain: the collection P(R) of the partial (recursive) functions from ω to ω . Its

reflexivity, see theorem 9.5.2, will be a consequence of a stronger property, with respect to a suitable

category.

Exercise Let C be a CCC and T be a terminal object. Then ∀X,Y∈ObC, if T < Y, one has X

< XY.

(Solution: The retraction (i,j) is given by i = Λ(pr1)∈C[X,XY] and j = eval°(id×t)∈C[XY,X]

for some fixed t∈C[T, X]. Indeed, j°i = j°(i×dT) = eval°(id×t)°(i×dT) = eval°(i×id)°(id×t) =

eval°(Λ(pr1)×id)°(id×t) = pr1°id×t = id .)

Let the set of type symbols, Tp, contain at least the atomic type 1. Then, for X in a CCC C, set

X1 = X, and, for A = Xσ and B = Xτ, set Xσ→τ = BA and Xσ×τ = A×B.

9.6.18 Lemma Let U be a reflexive object in a CCC C. Then, for {Uσ}σ∈Τp as above

∀σ, τ∈Tp Uσ < Uτ in C

In particular, then, ∀σ∈Tp Uσ→σ < Uσ.

Proof Assume, by induction on the syntactic structure of types, that U < Uσ and U < Uτ.

Clearly, U×U < Uσ×τ. It is also easy to check that UU < Uσ→τ. Similarly, from the inductive

assumptions Uσ < U and Uτ < U, one has Uσ→τ < UU < U, as U is a reflexive object, and

Uσ×τ < U×U < U, by proposition 2.3.6. Finally, U < U×U and U < UU, by T < U and the

exercise. Therefore, ∀σ,τ∈Tp Uσ < U < Uτ in C. ♦

As already shown, Scott domains, coherent domains and other categories of continuous functions

have nontrivial reflexive objects. By the lemma, in these categories there are lots of λ−models, one in

each higher type σ, over the reflexive object. We consider here yet another simple category with a

reflexive object, namely the category pcD of ω-algebraic pair-consistent c.p.o.’s, and the object P

of partial functions from integer to integer.

9. Reflexive Objects and the Type-Free Lambda Calculus

236

Call first a subset D of a p.o.set (X,≤) pairwise consistent if any pair of elements in D has

an upper bound in X (and write x⇑y for ∃z∈X x,y ≤ z) . (X,≤) is pair-consistent if any

pairwise consistent subset has a l.u.b. Call pcD the category of ω-algebraic pair-consistent c.p.o.’s

(cf. examples in 2.4.1), with continuous maps as morphisms.

Exercise Prove that pcD is a full subCCC of the category D of Scott domains in 2.4.1.

9.6.19 Theorem Let P be the set of the partial number-theoretic functions. Then for any object

X in pcD, X < P . In particular, P is reflexive.

Proof. Let X = (X, X0, <) be in pcD, and let e: ω→X0 be an enumeration of the compact

elements of X. Define ϕ: X→P by setting, for all n∈ω,

 ϕ(x)(n) = if e(n) ≤ x then 0

else if ~(x⇑e(n)) then 1

 else ⊥ .

Equivalently, ϕ(x)∈P is uniquely determined by the ordered pair in which its domain splits

〈{ n∈ω | ϕ(x)(n) = 0}, {n∈ω | ϕ(x)(n) = 1} 〉 = 〈{n∈ω | e(n) ≤ x}, {n∈ω | ~(x⇑e(n)) }〉.

It is easy to prove that ϕ is continuous.

In order to define ψ: P→X , for any f∈P, set

Xf = {e(i) | f(i) = 0 and ∀j < i, ~(e(i)⇑e(j)) → f(j) ≠ 0}.

First, Xf is pairwise consistent. Let i, j be such that e(i), e(j)∈Xf. Then f(i) = f(j) = 0. Suppose

that ~(e(i)⇑e(j)). Then i < j ⇒ f(i) ≠ 0 and j < i ⇒ f(j) ≠ 0 , which is impossible. Thus

e(i)⇑e(j), so Xf is pairwise-consistent. By the consistency property of X , we can define ψ: P→X

by ψ(f) = supX(Xf). It is a simple exercise to prove that ψ is continuous and that ψ°ϕ(x) = x for

all x∈X. Therefore X is a retract of P. ♦

It is clear that computability is at hand. As a matter of fact, the categories and results described so far

can be “effectivized,” in analogy to the examples in 2.4.1, e.g., the category ED. Denote by Xo the

collection of the compact elements of (X,≤) in pcD.

9.6.20 Definition Let X = (X,Xo ,eo,≤) be in pcD and eo: ω→Xo (bijective). Then X is

effectively given i f

1. eo(n)⇑eo(m) is a decidable predicate

2. ∃g∈R ∀n,m (eo(n)⇑eo(m) ⇒ eo (g(n,m)) = sup{eo(n), eo(m)}).

It is easy to show that if X and Y are effectively given, then also the space of continuous functions

from X to Y is effectively given. Indeed, the category of effectively given ω-algebraic pair-

consistent c.p.o.’s and continuous functions is cartesian closed (similarly to ED).

9. Reflexive Objects and the Type-Free Lambda Calculus

237

Recall that ideals are downward closed directed subsets of a poset (X,≤). As in the definition of

the category CD of constructive domains in 2.4.1, the idea now is to take, within an effectively given

(X,Xo ,eo,≤), only the l.u.b of those ideals of Xo, which are indexed over a recursively enumerable

set. Call computable elements the l.u.b of the r.e. indexed ideals. Clearly, the computable elements

of P are exactly the partial recursive functions, PR.

9.6.21 Definition A sub-p.o.set Xc of an effectively given X = (X,Xo ,eo ,≤) is a

constructive and pair-consistent domain (ccd) if for any ideal D ⊆ Xo one has:

D is principal in Xc iff eo-1(D) is a recursively enumerable set.

Thus Xc contains exactly the computable elements of X , e.g., Pc = PR. By the following

exercise, this gives yet another interesting CCC.

Exercises

i. Let CCD be the category whose objects are ccd's and whose morphisms are the continuous and

computable functions (computable as elements of the function spaces). Prove that CCD is cartesian

closed.

ii. Prove 9.6.19 above for PR instead of P, i.e., prove that also PR is reflexive in CCD.

Consider now the type structure {PRσ}σ∈Tp constructed over PR in CCD. These are known as

the (higher type) partial recursive functionals. By the exercise and lemma 9.6.18, they yield a (type-

free) λ-model in any finite type, as PRσ→σ < PRσ .

CCD tidily relates to categories defined in the previous section, provided that a minor

generalization is made. So far, we have only been dealing with total applicative structures, i.e.,

where “.” is everywhere defined, as combinatory algebras are total structures. There exist, though,

interesting partial applicative structures: for example, Kleene's K = (ω,.), where n.m = φn(m) for

some acceptable Gödel numbering φ: ω→PR of the partial recursive functions.

In general, given a partial applicative structure B = (X,.), i.e., “.” may be a partial binary

operation, one can define the categories PB, ERB and PERB as in definitions 9.5.2 and 9.5.4, with

a minor caution. Since we deal here with categories of total morphisms, we consider only total

polynomials in each P[Xn,Xm]; in particular in P[X,X], when defining ER[R,S] in definition 9.5.4.

As for PER[R,S], each f∈PER[R,S] is “computed,” in the sense of 9.5.4, by a (possibly partial)

g∈P[X,X] which must be total on domR, though. In conclusion, by the exercise before 9.5.3 and

remark 9.5.9, if X×X < X in PB, then proposition 9.5.5 applies similarly and PB and ERB are

full sub-CC of the CC PERB. Moreover, if B is a partial combinatory algebra, then PERB is a

CCC by corollary 9.5.8 and what follows. The remaining results carry on similarly.

9. Reflexive Objects and the Type-Free Lambda Calculus

238

This remark has already been (implicitly) applied when defining PER over ω. As a matter of fact,

Kleene’s K = (ω,.) is a partial combinatory algebra, as it contains (indices for) partial k and s.

Thus, the properties of PER (= PERK and ER = ERK) could be derived also by the work in this

chapter.

Exercise The reader has already checked that the category EN of numbered sets (see the examples

in section 2.2) is equivalent to ERK. He or she may try to give now an extension of EN which is

cartesian closed and equivalent to PERK.

We already mentioned, in example 2.4.1, an important theorem, the Generalized Myhill-

Shepherdson Theorem, which related constructive domains and EN. In this frame, it may be restated

as “CCD is equivalent, as a category, to a full subCCC of ERK.” Jointly to the exercise, this

provides interesting embeddings, up to equivalence, of CCD into ERK into PERK.

It should be clear why Kleene's K is only a partial combinatory algebra and not a total one. If

ωω represents PER[ω,ω] = P[ω,ω], then there is no principal p∈PER[ω,ωω], as there is no

Gödel-numbering or effective enumeration of P[ω,ω] = R, the recursive functions.

One may try another way to turn K into a combinatory algebra. Consider first the category

CCDp of ccd's and partial morphisms, i.e., partial continuous maps with open domain. Let _⊥ =
_° be the lifting functor defined in example 5.2.4. CCD[ω⊥,ω⊥], then, coincides with PR plus

the everywhere constant function on ω⊥. From any acceptable Gödel-numbering of PR it is easy to

construct a principal p'∈CCD[ω⊥,PR]; however, ω⊥×ω⊥ < ω⊥ in CCD fails, by a simple

continuity argument. Thus also (ω⊥,.) does not yield a combinatory algebra. However, by

PRσ→σ < PRσ in CCD and 9.5.10, λ-models may be found at any finite higher type.

Note that p' above or the Gödel-numberings are principal morphisms which cannot be turned

into retractions, by the latter observation or because, given a partial recursive function, there is no

uniform effective choice of one of its indices, by the Rice theorem. More examples could be given by

taking combinatory algebras which cannot be turned into λ-models. Indeed, a simple example is

given by the term model of Combinatory Logic, i.e., by a “model” constructed by purely syntactic

tools.

Remark (Partial vs. total maps) The reader may have noticed that there are various notions of

partiality mentioned in these sections. As for the last, it poses no problem: a partial applicative

structure has a (possibly) partial application. One may construct over it, though, categories of total

maps, such as EN, ERK (cf. the definition of morphisms in these categories).

Note now that we called {PRσ}σ∈Tp the partial continuous and computable functionals, even

though, at any type higher then 1, these are total, i.e., always defined, continuous (and computable)

maps. Why are they called partial, in the literature? The intuition should be clear, but the categorical

9. Reflexive Objects and the Type-Free Lambda Calculus

239

notion of complete object (see definition 2.5.6) may provide a better or more rigorous understanding.

As for the intuition, PR contains partial maps, in the ordinary sense, and each of the higher types

contains a least element: the empty set in PR, the constantly empty map in PRPR and so on.

Intuitively, these least elements give the “undefined value” in the intended type. Categorically, this is

understood by observing that, by this, each higher type, except for type 0 (i.e., ω) is a complete

object in the intended category of partial maps, in the sense of section 2.5. The point is that these

objects, by theorem 2.5.9, are exactly those such that the partial morphisms may be extended, and

indeed viewed, as total ones.

Remark (On total functionals) Consider now ω and the total maps from ω to ω. We hint now at

how to move to higher types and preserve totality of morphisms, in a categorical environment where

it is possible to give a good notion of computability.

In sections 3.4 and 5.3 we presented the CCC (sep-)FIL of (separable) filter spaces and

discussed some of its categorical properties. We also mentioned that this category is essentially

nontopological, as some relevant types are not in the range of the embedding functor H: Top→FIL,

defined in example 5.3.7. In particular, FIL-ω, the sub-CCC of sep-FIL generated by ω, endowed

with (the convergence induced by) the discrete topology, contains non topological types. The objects

in FIL-ω are the sets of total continuous functionals.

On separable filter spaces, with an enumeration {Ui}i∈ω of the base, one may consider the

effectively given objects by generalizing the technique for domains in example 2.4.1 and definition

9.6.3. In short, one has to require that the base is decidable in the sense that

{ i | Ui = ∅ } and { (i1,..., im,k1,...,kn) | Ui1∩...∩Uim ⊆ Uk1∩...∩Ukn }

are recursive (uniformely in n and m). Then the computable elements are defined as limits of r.e.

indexed filters. More precisely, let ↓s be the notion of convergence over filter spaces given in (s-

conv.) in 5.3.7. Then set, for (X,F)∈sep-FIL with a decidable base,

x∈X is computable iff ∃Φ↓sx { i | Ui∈Φ } is r.e..

In higher types, this defines total computable functionals.

Exercise Embedd the category ED, as topogical spaces, in 2.4.1 into sep-FIL by the functor H :

Top→FIL in 5.3.7 and describe how H and its left adjoint behave on computable elements. The

computable elements of FIL-ω are the (Kleene-Kreisel) total continuous and computable functionals

(see references).

As a final connection to the other categories of effective maps we used here, we just mention that

a complex quotienting technique, which hereditarily defines total elements as the functions that take

total elements to total elements, allows us to establish adjoint equivalences between ED-ωωωω⊥, the sub-

CCC generated by ωωωω⊥ in ED, and PERK-ω, the sub-CCC generated by (ω,id) in PERK.

9. Reflexive Objects and the Type-Free Lambda Calculus

240

Similarly, the subCCC PERPω-ω in PERPω, the category of p.e.r.’s over the reflexive object Pω,

corresponds to FIL-ω. (See references).

References The original construction in Scott (1972) gives a non trivial isomorphism AA ≅ A in

a CCC of lattices. The general notion of categorical model of the type-free calculus λλλλββββηηηη and λλλλββββ are

investigated in Berry (1979), Obtulowicz and Wiweger (1982), Koymans (1982), by using, though,

the category of retractions, which does not need to have e.p., instead of PER (see Barendregt (1984)

for a survey). By this one may deal with a weaker notion of model, the λ-algebras. λ-algebras,

originally called pseudo-λ-models in Hindley and Longo (1980), are exactly the models of

Combinatory Logic with β-equality (see also Barendregt (1984) or Hindley and Seldin (1986)). They

are characterized as in theorem 9.5.11(2), by dropping the assumption that C has enough points and

they are in between combinatory algebras and λ-models (in Barendregt and Koymans (1980) it is

shown that the term model of CL cannot be turned into a λ-algebra.) However, retractions do not

form a CCC on combinatory algebras and do not help in the categorical understanding of CL Thus we

used PER, as in Longo and Moggi (1990), which we largely followed and where the models of CL

were first characterized. The use of a choice operator ε in order to extend combinatory algebras to

λ-models, which we followed here, is formalized in Meyer (1982).

Cousineau and al. (1985) and Curien (1986) introduce the categorical abstract machine.

The valid isomorphisms in Cartesian Closed categories are characterized in Bruce and DiCosmo

and Longo (1990) (by a different proof, they where also given in Soloviev (1983)). The invertibility

theorem 9.6.13, for the type-free λ-calculus, is due to Dezani (1976). Rittri (1989) applies

isomorphisms in all CCC's to retrieval methods in libraries of programs.

Finally, pairwise consistent domains and the properties of Tω are investigated in Plotkin (1978).

Filter spaces and related categories are used, for higher type recursion theory, in Hyland (1979).

Ershov (1973-76) and Longo and Moggi (1984-84a) establish the relation between various classes of

total and partial functionals.

10. Recursive Domain Equations

241

Chapter 10

RECURSIVE DOMAIN EQUATIONS

One of the early applications of Category Theory to computer science was the solution of recursive

domain equations. This kind of equation is typical of every language that allows an explicit or implicit

form of self-application of its data types (such as a recursive procedure call, say).

For example, by theorem 9.5.10 we already know that in order to give semantics to the pure λ-

calculus we need a domain isomorphic to its own function space; moreover, if we are interested in

computing over a fixed domain A of atoms, we need a solution to the equation

(*) X ≅ A+(X→X).

In general, recursive specification of domains can be seen as a particular case of recursive

definition of data types that is an even more important topic in computer science. For example every

programmer is used to considering the data type of all the lists of objects of type A as a solution to the

following recursive equation:

A_List = Nil + A×(A_list)

where Nil is a one-element data type.

In many respects, the general and unified theory of this kind of equation, mainly developed in the

framework of Category Theory, has provided the base for the elimination, in most modern

languages, of many unreasonable restrictions in the definition of recursive data types that existed in

older languages. Note that these restrictions were not always motivated by implementation problems,

but often by a real misunderstanding of the semantics of recursive definitions.

The first mathematical difficulty in giving a meaning to recursive specifications of data types is

that they do not always have a set-theoretic solution. For example, equation (*) above has no solution

in Set by obvious cardinality reasons: the arrow-domain A→Β cannot be interpreted as the

collection of all functions between A and B. The natural choice is to consider categories other than

Set, with fewer morphisms but sufficiently many as to include all “computable functions” over the

intended data types. The relevance of morphisms suggests why the categorial framework arises so

naturally in this context. Note that the intended category C must be still Cartesian closed, in order to

give the correct interpretation to the function space constuction. Once C is fixed, the idea for solving

recursive domain equations is to use some sort of fixed point technique. To be more specific, in the

categorical approach, the general form of equations such as (*) above, looks like

(**) X ≅ F(X)

where X ranges over the object of a category C and F: C→C is a covariant endofunctor of the

category. If C is ω-cocomplete, C has an initial object, and F is ω-continuous, then theorem 6.5.2

10. Recursive Domain Equations

242

gives a solution to (**). The main problem is that an obvious definition does not always exist for

such an F, as we are going to show in the next section.

10.1 The Problem of Contravariant Functors
Consider again the equation

(*) X ≅ A+(X→X)

in the introduction. In order to apply theorem 6.5.2, we need to work in a ω-cocomplete category C.

Moreover, the category must be Cartesian closed and have coproducts, so that we can give the

expected interpretation to the operators → and +, which appear in (*).

Such a category is not difficult to find: an example is the category CPOS of c.p.o.’s with a least

(bottom) element and strict (bottom-preserving) continuous functions for morphisms. The next step

is to define a covariant functor F: C→C such that, for any object X of C, F(X) = A+(X→X).

The first idea would be to express F as a composition of the functors of sum and exponentiation

associated to the closure properties of C. For example, if A+_: C→C is the functor which takes B

to A+B, and f to idA+f, exp is the exponentiation functor, and ∆ is the diagonal functor, we

could be tempted to define
F = (A+_) ° exp ° ∆

Unfortunately, this is not possible since exp is contravariant in the first component and cannot be

composed with the diagonal function; in other words, since exp: Cop××××C→C , and ∆: C→C××××C,

the previous equation is ill typed.

We would like to have a way of transforming every functor F in an associated functor F* with

the same behavior on objects, but covariant on morphisms, in all its components.

Unfortunately this is not possible in general, but still there is a very simple way, as we will see,

to turn a contravariant endofunctor F: C→C into a covariant endofunctor F* in an associated

category C*, which has the same objects of C, and such that isomorphisms in C* give isomorphisms

in C.

Then, if C* is ω-cocomplete and has a terminal object, and F* is ω-continuous, we can apply

theorem 6.5.2, find a solution in C*, and then derive a solution in C. Note that the category C*

does not need to be cartesian closed, neither it must be closed under coproducts, since we already

know how to give a meaning to the constuctions of new objects in C.

We shall define C* as a suitable subcategory of the following category C+-.

10.1.1 Definition Given a category C, the category C+- has the same object of C and

f ∈C+-[A, B] iff f = (f+,f-) with f+∈C[A, B] and f-∈C[B, A].

Composition is defined by (f+,f-) ° (g+,g-) = (f+° g+, g-° f-).

10. Recursive Domain Equations

243

An intuitive way to regard the category C+- is the following. Consider the objects as data types;

there is a morphism from A to B if and only if a pair of “coercions” is given in order to go from

one to the other. Note also that two objects are isomorphic in C+- iff they are isomorphic in C.

We next show how to define covariant functors on C+- from arbitrary functors on C. For

simplicity, we reduce the definition to the case of a bifunctor F covariant in the first component and

contravariant in the second.

10.1.2 Definition Given a category C, and a functor F: CxC → C contravariant in the first

component and covariant in the second, the covariant functor F+-: C+-xC+- → C+- is defined by

F+-(A,B) = F(A,B).

F+-((f+,f-), (g+,g-)) = (F(f-,g+), F(f+,g-)).

One problem with the category C+- is that it is very unlikely to have colimits for all ω-chains. The

interesting fact, though, is that the idea upon which definition 10.1.2 is based, works in every

subcategory C* of C+-, provided that only those functors F such that (F(f-,g+), F(f+,g-)) is still

a morphism in C* are considered.

Our goal, now, is to find a subcategory C* of C+- such that simple and common properties on

C (such as, for example, the existence of limits for all diagrams) are enough to guarantee the

existence of colimits for all ω-chains in C*.

In the search for such a category C*, we can be helped by some intuition.
When in theorem 6.5.2 we considered the ω-diagram ({Fi(0)}i∈ω, {Fi(z)}i∈ω), we had in

mind that it is a chain of increasingly finer approximations of the limit. Thus, a morphism Fi(0), in

a sense, must explain why Fi(z) is less than Fi+1(z): no information must be lost passing from

Fi(z) to Fi+1(z). Reasonably, we may try to define a subcategory D of C+- whose morphisms

express this kind of relation between objects.

Among the subcategories of C+- that seem to satisfy this condition, an important one is CRet,
whose morphisms (f+,f-) have the property that f-° f+ = id (in C).

CRet is also very attractive becauseevery functor F on C may be still turned into a covariant

functor F+- on CRet by means of definition 10.1.2.

Indeed, consider for example a bifunctor F contravariant in the first component and covariant in

the second one. Then one has
 F(f+,g-) ° F(f-,g+) = F((f+,g-) ° (f-,g+))

= F(f-° f+, g- ° g+) by composition in Cop××××C

= F(id, id) as (f+,f-), (g+,g-) are morphisms of CRet

= id.

Thus F+-((f+,f-), (g+,g-)) = (F(f-,g+), F(f+,g-)) is well defined as (F(f-,g+), F(f+,g-)) is a

retraction pair.

10. Recursive Domain Equations

244

Unfortunately, CRet does not seem to suffice for our purposes. For example, up to now, there

is no known nontrivial Cartesian closed category C such that CRet has colimits for every ω-chain.

Indeed, this is poses a very interesting problem: whether it is possible to find such a category, or

prove that it cannot exist.

It is very instructive to understand where the difficulty arises in general.

Suppose that the category C has limits for every diagram (this property holds in many interesting
CCC's; see chapter 6 for some examples) and let ({Di}i∈ω , {fi}i∈ω) be an ω-chain in CRet.

Then ({Di}i∈ω , {fi-}i∈ω) is an ω-chain in C, and it has a limit (L,{γi}i∈ω). The object L

seems to be a good candidate as a limit also for the chain ({Di}i∈ω , {fi}i∈ω) in CRet. Indeed,

the following theorem holds:

10.1.3 Theorem Let {Di}i∈ω ,{fi}i∈ω) be a ω-chain in CRet. If (L, {γi} i∈ω) is a limit for

({Di}i∈ω , {fi-}i∈ω) in C, then there is a cone (L, {(δi,γi)} i∈ω) for ({Di}i∈ω , {fi}i∈ω) in

CRet (that is, every γi is a right member of a retraction pair).

Proof: Fix Dj. For every i define fj,i : Dj → Di by:

fj,i = fi-° fi+1-° ... ° fj-1- if i < j

fi,i = id

fj,i = fi-1+° ... ° fj+1+° fj+ if i > j .

(Dj, {fj,i}i∈ω) is a cone for ({Di}i∈ω , {fi-}i∈ω), since fi- ° fj,i+1= fj,i as it is easy to check.

Thus there exists a unique morphism δj: Dj→ L such that ∀i∈ω γi ° δj = fj,i. In case i = j, γj ° δj
= fj,j = id.

We still have to check that ∀j∈ω (fj+,fj-)°(δj+1,γj+1) = (δj,γj) .

Now, fj-° γj+1= γj by the definition of cone in C. In order to prove that δj+1°fj+= δj, note that

∀i∈ω γi ° δj+1° fi+ = fj+1,i ° fj+ = fj,j = γi ° δj, and the result follows by unicity.

By a diagram, for i > j :

♦

10. Recursive Domain Equations

245

Unfortunately, we have no way to prove that the cone (L, {δi,γi}i∈ω) is universal. Indeed let (L',

{gi}i∈ω) be a cone for the ω-chain ({Di}i∈ω, {fi}i∈ω) in CRet. Then (L',{gi-}i∈ω) is a

cone in C for ({Di}i∈ω, {fi-}i∈ω) and there exists a unique morphism h in C from L' to L

such that ∀i∈ω h ° γi = gi- and γi ° h = gi+. In other words:

However, there is in general no reasonable way to define a morphism k from L to L' such that
h ° k = id. In the next section, we will see a way out of this problem.

10.2 0-Categories
Consider the class of morphisms {gi+° γi}i∈ω from L to L' defined by the diagram at the end of

the previous section. The morphism gi+ ° γi: L→ L' describes how the approximation of L up to

the ith-level may be represented inside L'. Intuitively, one may expect that, in some sense, gi+ ° γi
≤ gi+1+ ° γi+1. Moreover, if

1. the hom-sets in the category C are c.p.o.’s and
2. the class {gi+ ° γi}i∈ω is an ω-chain,

then we could soundly define k = ∪i∈ω{gi+ ° γi}, and k would play the role required at the end of

the previous section. This takes us to the notion of “0-category.”

10.2.1 Definition A category C is a 0-category iff
i. every hom-set C[a,b] is a cpo, with a least element 0a,b ;

ii. composition of morphisms is a continuous operation with respect to the partial order;
iii. for every f∈C[a,b] , 0b,c ° f = 0a,c .

Then, by definition, every 0-category satisfies (1) above. Our next problem is to ensure condition
(2). Note first that gi+ ° γi = gi+1+ ° fi+° fi- ° γi+1. Moreover, if fi+° fi- ≤ id, then gi+ ° γi ≤

gi+1+ ° γi+1. This suggests the refinement we need in the category CRet.

10. Recursive Domain Equations

246

10.2.2 Definition Let C be a 0-category, and let i: D→E, j: E→D be two morphisms in C.

Then (i,j) is a projection pair (from D to E) iff j ° i = idD and i ° j ≤ idE . (If (i,j) is a

projection pair, i is an embedding and j is a projection.)

Exercises Prove the following statements:

1. If (i,j) is a projection pair from D to E, and (i',j') is another projection pair for the same two

objects, then i ≤ i' iff j ≥ j'.

2. Every embedding i has a unique associated projection j = iR; conversely every projection j has

a unique associated embedding i = jL.

10.2.3 Definition Let C be a 0-category. The category CPrj has the same objects as C, and

projection pairs as morphisms.

Remark CPrj is a subcategory of CRet, and thus also of C+-. By the fact that every embedding

i has a unique associated projection j = iR (and, conversely, every projection j has a unique

associated embedding i = jL), CPrj is isomorphic to a subcategory CE of C that has embeddings as

morphisms (as well to a subcategory CP of C which has projections as morphisms). We prefer to

work in CPrj since it looks more natural and carries more explicit information. Note, however, the

following dualities: (CE)op ≅ CP ≅ (Cop)E (and, of course, (CP)op ≅ CE ≅ (Cop)P).

Exercise Let C be a 0-category with terminal object t. Prove that t is terminal in CPrj too. (Use

property 10.2.1.(iii) in the definition of 0-category).

10.2.4 Theorem Let C be a 0-category with all ωop-limits. Let ({Di}i∈ω,{(fi+,fi-)}i∈ω) be an

ω-chain in CPrj (and thus in CRet) and (L, {(δi,γi)} i∈ω) be the cone in CRet defined by

theorem 10.1.3. Then (L, {(δi,γi)} i∈ω) is a cone also in CPrj. Moreover it is universal in this

category.
Proof In order to prove that (L, {(δi,γi)}i∈ω) is a cone in CPrj we must show that,∀i∈ω, δi ° γi
≤ id. Note that ∀i∈ω δi ° γi = δi+1 ° fi+° fi- ° γi+1 ≤ δi+1 ° γi+1. Thus, {δi ° γi}i∈ω is a chain

and its limit Θ = ∪i∈ω{δi ° γi} must exist. We prove that Θ = id and, thus, that ∀i∈ω δi ° γi ≤ Θ

= id. Θ = id since Θ is a mediating morphism between (L, {γi}i∈ω) and itself in C. Indeed,

∀j∈ω,

γj ° Θ = γj ° ∪i∈ω{δi ° γi}

= γj ° ∪i ≥ j{δi ° γi}

= ∪i ≥ j{(γj ° δi) ° γi}

= ∪i ≥ j{fi,j ° γi}

10. Recursive Domain Equations

247

= ∪i ≥ j{fi,j ° γi}

= γj.

We prove next that the cone (L, {(δi,γi)}i∈ω) is universal in CPrj.

Let (L',{(gi+,gi-)}i∈ω) be another cone for ({Di}i∈ω ,{(fi+,fi-)}i∈ω). That is,

∀i∈ω gi+° γi = gi+1+° fi+° fi- ° γi+1 ≤ gi+1+° γi+1
∀i∈ω δi ° gi- = δi+1 ° fi+° fi- ° gi+1- ≤ δi+1 ° gi+1-.

Define then
h = ∪i∈ω{gi+ ° γi} : L → L'

k = ∪i∈ω{δi ° gi-} : L' → L.

Observe that (h,k) is a projection pair, for
 k ° h = ∪i∈ω{δi ° gi-} ° ∪i∈ω{gi+ ° γi}

= ∪i∈ω{δi ° (gi- ° gi+) ° γi}

= ∪i∈ω{δi ° γi}

= Θ = id

and
 h ° k = ∪i∈ω{gi+ ° γi } ° ∪i∈ω{δi ° gi-}

= ∪i∈ω{gi+ ° (γi ° δi) ° gi-}

= ∪i∈ω{gi+ ° gi-}

≤ id.
Moreover, (h,k) is a mediating morphism between (L, {(δi,γi)}i∈ω) and (L',{(gi+,gi-)}i∈ω),

since ∀j∈ω

(h,k) ° (δj,γj) = (h ° δj , γj ° k)

= (∪i∈ω{gi+ ° γi} ° δj , γj ° ∪i∈ω{δi ° gi-})

= (∪i ≥ j{gi+ ° γi ° δj} , ∪ i ≥ j { γj ° δi ° gi-})

= (∪i ≥ j{gi+ ° fj,i} , ∪ i ≥ j { fi,j ° gi-})

= (gj+,gj-)

(h,k) is unique, because, if (h',k') is another mediating morhism, then
(h',k') = (h'° id, id ° k')

= (h'° Θ, Θ ° k')

= (h'° ∪i∈ω{δi ° γi}, ∪i∈ω{δi ° γi} ° k')

= (∪i∈ω{h'° δi ° γi}, ∪i∈ω{δi ° γi ° k'})

= (∪i∈ω{gi+ ° γi}, ∪i∈ω{δi ° gi-})

= (h,k) . ♦

A useful characterization of ω-colimits in the category CPrj is the following:

10. Recursive Domain Equations

248

10.2.5 Proposition The cone (L, {(δi,γi)}i∈ω) for the ω-chain ({Di}i∈ω , {(fi+,fi-)}i∈ω)

in CPrj is universal iff Θ = ∪i∈ω{δi ° γi} = id .

Proof Exercise. ♦

Up to now, we have shown that, if C is a 0-category with all ωop-limits, then the category CPrj has

colimits for every ω-chain.

The next point is to understand what we have lost with regard to the possibility of applying the

construction in definition 10.1.2, which turns contravariant functors into covariant ones. Indeed,

there is no reason to believe that the functor F+- of this definition transforms projection pairs within

projection pairs.

Recall now that a two-argument endofunctor F over C, which is contravariant in the first

argument and covariant in the second one, has type F: Cop××××C →C .

10.2.6 Definition Let C be a 0-category. A functor F: Cop××××C →C is locally monotonic iff

it is monotonic on the hom-sets; that is, for f, f'∈Cop[A, Β] and g, g'∈C[C, D], one has

f ≤ f' , g ≤ g' ⇒ F(f,g) ≤ F(f',g').

10.2.7 Proposition If F: Cop××××C →C is locally monotonic and (f+,f-) , (g+,g-) are projection

pairs, then also F+-((f+,f-),(g+,g-)) is also a projection pair.

Proof: By definition F+-((f+,f-),(g+,g-)) = (F(f-,g+), F(f+,g-)). Compute then
F(f+,g-) ° F(f-,g+) = F((f+,g-) ° (f-,g+))

= F(f-° f+, g- ° g+)

= F(id, id)

= id

and
F(f-,g+) ° F(f+,g-) = F((f-,g+) ° (f+,g-))

= F(f+° f-, g+ ° g-)

≤ F(id, id)

= id. ♦

The last step is to see if we can find some simple condition on the functor F in C such that the

associated functor F+- in CPrj is ω-continuous.

10.2.8 Definition Let C be a 0-category. A functor F: Cop××××C →C is locally continuous
(0-functor) iff it is ω-continuous on the hom-sets. That is, for every directed set {fi }i∈ω in

Cop[A, Β], and every directed set {gi }i∈ω in C[C, D], one has

F(∪i∈ω{fi }, ∪i∈ω{gi)) = ∪i∈ω F(fi,gi) .

10. Recursive Domain Equations

249

Of course, if F is locally continuous, then it is also locally monotonic.

Exercise Prove that the composition of two locally nonotonic (continuous) functors is still

monotonic (continuous).

10.2.9 Theorem Let C be a 0-category with all ωop-limits. Let also F: Cop××××C→C be a locally

continuous functor. Then the functor F+-: CPrj××××CPrj→CPrj is ω-continuous.

Proof Let ({Ai}i∈ω, {(fi+,fi-)}i∈ω) and ({Bi}i∈ω, {(gi+,gi-)}i∈ω) be two ω-chains in

CPrj and let (L, {(ρi+,ρi-)}i∈ω) and (M, {(σi+,σi-)}i∈ω) be the respective limits. Then, by

proposition 10.2.5,
Θ = ∪i∈ω{ρi+ ° ρi-} = id;

Ψ = ∪i∈ω{σi+ ° σi-} = id.

We must show that
(F+-(L,M), {F+-((ρi+,ρi-), (σi+,σi-)) }i∈ω) = (F(L,M), {F(ρi-,σi+), F(ρi+,σi-))}i∈ω)

is a limit in CPrj for the ω-chain
({F+-(Ai,Bi)}i∈ω, {F+-((fi+,fi-), (gi+,gi-)) }i∈ω).

It is clearly a cone, by the property of functors. We show that it is universal by proving that
∪i∈ω{ F(ρi-,σi+) ° F(ρi+,σi-) } = id. The result then follows by proposition 10.2.5. We have the

following:
 ∪i∈ω{ F(ρi-,σi+) ° F(ρi+,σi-)} = ∪i∈ω{ F(ρi+ ° ρi-, σi+ ° σi-) }

= F(∪i∈ω{ρi+ ° ρi-}, ∪i∈ω{ σi+ ° σi- })

= F(Θ, Ψ)

= F(id, id)

= id. ♦

In conclusion, we have described a way to turn arbitrary functors into covariant functors on suitably

derived categories. Then we set the condition under which it is possible to obtain ω-continuous

functors. The solution of equations, such as (*) at the beginning of this chapter, is thus immediately

found for these functors.

Example In the introduction to this section we mentioned the important categorical equation X ≅

A+(X→X). If we wish to find a solution to equations of this kind in some category C based on

c.p.o.s (such as CPO, CPOS, Scott Domains, and so on), we are generally forced to relax the

interpretation of at least one of the two symbols + and →. Indeed, for their nature, all these categories

usually have fixpoints for all objects, and we know that this is inconsistent with having at the same

time coproducts and cartesian closedness. A typical way for avoiding the problem is to content

10. Recursive Domain Equations

250

ourselves with the interpretation of + as a weak coproduct. A weak coproduct is essentially defined

as a coproduct in definition 2.2.6, but no unicity is requested for the commuting arrow h.

The category CPO of c.p.o.’s with least (bottom) element and continuous functions for morphisms

is a 0-category with respect to the pointwise ordering of morphisms. CPO is a CCC with weak

coproducts A+B given by the coalesced sum (i.e. by identifying the two bottom elements of A and

B). Since it has coequalizers for every pair of objects, it has limits for every diagram.(see chapters 2

and 6). The functors A+_ : CPO→CPO and → : CPO××××CPO→CPO, respectively defined by:

A+_ (B) = A+B, A+_ (f) = idA+ f,

→(A,B) = BA, →(f, g) = λh. g ° h ° f,

are both locally continuous.

The diagonal functor ∆ : CPO→CPO××××CPO, defined by ∆(A) = (A,A) and ∆(f) = (f,f) , is

locally continuous too. Thus we can apply theorem 10.2.9 and conclude that the associated functors

a. (A+_)+- : (CPO)Prj → (CPO)Prj

 (A+_)+-(f+, f-) = (idA+f+, idA+f-)

b. (→)+- : (CPO)Prj××××(CPO)Prj → (CPO)Prj,
 (→)+- ((f+, f-), (g+,g-)) = (λh. g+ ° h ° f-, λh. g- ° h ° f+)

c. (∆)+- : (CPO)Prj → (CPO)Prj××××(CPO)Prj

 (∆)+-(f+, f-) = ((f+, f-) , (f+, f-))

are ω-continuous. But composition of ω-continuous functors is still a ω-continuous functor; thus,

the functor F = (A+_)+-° (→)+- ° (∆)+- : (CPO)Prj → (CPO)Prj is ω-continuous. Explicitly, F

is defined by

F(X) = A+XX

F(f+,f-) = (idA+ λh. f+ ° h ° f-, idA+ λh. f- ° h ° f+).

Thus, for every A, there exists X such that X ≅ A+XX.

References For an early computer scientific introduction to recursive domain equations, the

reader should consult Stoy (1977). The first solution to the problem of finding a domain isomorphic

with its own function space, as required for the type-free λ-calculus, was given in Scott (1972)

which basically started the mathematical discussion on recursive definitions of data types and, more

generally, the so called area of “denotational semantics”. The categorical approach exposed in the

present chapter is a direct generalization of Scott’s method and is essentailly due to Wand (1979),

Lehmann and Smith (1981) and Smith and Plotkin (1982). An introductory presentation may be also

found in Plotkin (1978). Gunter (1985) investigates the notion of embedding as a particular case of

adjunction and, thus, sets the base for an interesting generalization of the categorial approach.

11. Second Order Lambda Calculus

251

Chapter 11

SECOND ORDER LAMBDA CALCULUS

The system λ2, or second order λ-calculus, has been introduced by Girard for the sake of Proof

Theory. It was meant to prove, in particular, a normalization theorem for second order arithmetic,

PA2 (also considered a sound formalization of analysis, by proof theorists). The key points are that

(second order) λ-terms code proofs in (second order) systems based on natural deduction and, quite

generally, that cut elimination corresponds to β reduction for λ-terms. Thus normal proofs for and

consistency of PA2 follow from the normalization theorem for λ2 (see chapter 8 and references).

This calculus was later rediscovered by Reynolds and, since then, it has received great attention,

mostly within the computer science community, from both the syntactic (typing, consistent

extensions, etc.) and semantic points of view. The main novelty of λ2, over the simply typed

calculus, is the possibility of abstracting a term with respect to type variables; by this, λ2 represents

“polymorphic” functions, that is, functions that may have several types or, more precisely, that may

update their own type.

It is largely agreed that this specific formalization of the broad notion of polymorphism in

programming focuses most of the main concerns of the programmers who apply these methods and

suggests relevant implementations of modularity in functional programming.

The type system of λ2 is an extension of the simple types in section 8.2, and it is meant to

provide a type for polymorphic functions (i.e., terms obtained by type abstraction). As we said, this

is achieved by introducing type variables and allowing a quantification (informally, a product) over all

types. The type ∀X:Tp.T is the type of all those terms that, when applied to a type S, yield a new

term of type [S/X]T. Types are defined impredicatively since in the inductive definition of the

collection Tp of all types one has to use Tp itself, which is being defined. For example, Tp is used

when defining ∀X:Tp.T as a type or, also, ∀X:Tp.T is said to be a type, while it contains a

quantification over all types, including itself. The “dimensional clash” (and the semantic difficulty)

which derives from impredicativity is evident when considering that a term of type ∀X:Tp.T can be

applied to its own type. This circularity, very common in mathematics (e.g., for least upper bounds

and related notions) comes with the expressive power of the system and is reflected in the difficulty

of finding sound mathematical models for it. It is our opinion that Internal Category Theory provides

significant tools for this semantic investigation. First, it allows the explicit use of “constructive”

universes, as an alternative to the (usually intended) set-theoretic frame for (small) categories, where

the constructions below would provide trivial models. Second, it reflects and gives meaning to the

circularity of impredicativity by a mathematically clear closure property of some internal categories.

11. Second Order Lambda Calculus

252

11.1 Syntax
Types and (rough) terms are first defined in BN-form. The typing rules will pick up, among the

rough terms, the legal ones. Types are built up from type variables, ranged by X, Y, Z…; terms are

built up from (term) variables, ranged by x, y,…:

Type expressions: T := X | (T → S) | (∀X:Tp.T)

Term expressions: e := x | (ee) | (eT) | (λx:T.e) | (ΛX:Tp.e).

We use capital letters T,S,... as metavariables for type expressions.

Conventions: λ, Λ and ∀ are all variable binders. An unbound variable x in e is free in e

(notation: x∈FV(e)). The substitution of a for x in e ([a/x]e) is defined by induction,

provided that a is free for x in e, as usual.

A context is a finite set Γ of type variables; ΓX stands for Γ∪{X}. A type T is legal in Γ iff

FV(T) ⊆ Γ. A type assignment in Γ is a finite list E = (x1:T1),…, (xn:Tn) such that any Ti is

legal in Γ.

The typing relation Γ;E |- e: T, where E is a type assignment legal in Γ, e is a term expression

and T is a type expression, is defined as follows:

(assumption) Γ;E |_ x:T if (x:T)∈E

 Γ;E(x:T) |_ e: S

(→I) _____________________

Γ;E |_ (λx:T.e) : (T→S)

Γ;E |- f: (T→S) Γ;E |- e: T

(→E) ________________________

 Γ;E |- (fe) : S

 ΓX; E |_ e : T

(∀I) ___________________________ (*)

Γ;E |_ (ΛX: Tp. e) : (∀X : Tp. T)

* if there is no variable in FV(e) whose type depends on X

Γ;E |_ f : (∀X : Tp . T) Γ |_ S : Tp

(∀E) ________________________________

 Γ;E |_ (fS) : [S/X]T

11. Second Order Lambda Calculus

253

Conversion Equations among well-typed terms are defined by the following axioms:

β . (λx:A .b) e = [e/x]b

β2. (ΛX:Tp .b) A = [A/X]b

η. λx:A .bx = b if x∉FV(b)

η2. ΛX:Tp .bX = b if X∉FV(b)

and by the usual rules that turn “=” into a congruence relation.

Before starting the formal definition of the models for such a system, it is worthwhile to say a few

words about its interpretation, and to try to explain the following work by a naive presentation of the

categorical meaning of λ2. Note also that this chapter is followed by one entirely dedicated to

examples of the abstract categorical treatment which we follow here. The reader may find convenient

to check hi/her understanding of it against the structures presented in chapter 12.

As pointed out in chapter 8, any Cartesian closed category C can be used to give a categorical

semantics to the simply typed lambda calculus: types (which are just constant types or “arrow types”)

are interpreted by objects of C; terms of type T, with free variables x1:T1,…, xn:Tn, are

interpreted as morphisms from T1×…× Tn to T. The categorical interpretation of the second order

calculus generalizes this semantics; in this case, however, the collection of types Tp must be closed

not only under the arrow construction, but also under universal quantification. If we write ∀X:Tp.T

as ∀(λX:Tp.T), where λ is an informal lambda notation for functions, ∀ may be readily

understood as a map from (Tp → Tp) to Tp, as it turns the map λX:Tp.T in (Tp→Tp) into a

type. Thus, the interpretation of ∀ should be a map from ObC→ObC to ObC. The problem is that

this map has to be represented internally in some ambient category. A natural choice is to have some

sort of metacategory E such that C may be regarded as an internal category of E, in the sense of

section 7.2. Recall, in short, that C must consist of a pair (c0, c1) of objects of E such that,

informally, ObC = c0 and MorC = c1. If E is Cartesian closed, then ∀ may typed as ∀:

c0c0→c0.

Objects of the kind Tp→Tp (i.e. “points,” or “elements” of c0c0) are usually called variable

types. As we have already seen, if σ is a variable type, the type ∀(σ) represents intuitively the

collection of all the polymorphic terms e such that, for all types T, (eT) : σ(T). This is equivalent

to saying that ∀(σ) is a dependent product that is, a product of different copies of c0 indexed by σ

on elements of c0 itself. The projections of this dependent product yield the instances of the

polymorphic terms in ∀(σ) with respect to particular types. In other words, there will be in the

model an operation proj: (c0→c0)×c0→c1 that takes a variable type σ: c0→c0, a type T, and gives

a morphism projσ(T): ∀(σ)→σ(T); projσ(T) describes how a polymorphic term of type ∀(σ) can

be instantiated into the type σ(T), thus modeling the application of a term e in ∀(σ) to a type T.

By the definition of a dependent product, we will also have an isomorphism between the

polymorphic terms in ∀(σ) and the collection of all the families {eT: σ(T)}T∈c0 of terms indexed

11. Second Order Lambda Calculus

254

over all types. Let us call ∆ this isomorphism, which relates a family of terms {eT: σ(T)}T∈c0 to

the polymorphic term ∆({eT: σ(T)}T∈c0) = ΛT:Tp.eT : ∀(σ). The functions proj and ∆ satisfy

the following equations:

1. projσ(S) (∆({eT}T∈c0)) = eS ;

2. ∆({projσ(T)(e)}T∈c0) = e ;

whose meaning may be sketched as follows:

1. if we define a polymorphic function from the collection of functions {eT}T∈c0, and then we

consider the particular instance relative to the type S, this is equal to the original function eS;

2. if, given a polymorphic function e, we consider the collection of all its instances

{projσ(T)(e)}T∈c0 and then we use this collection to rebuild a polymorphic function, we obtain e

again.

Equations 1. and 2. above are the key facts allowing the interpretation of rules β and η,

respectively, for second order abstraction and application.

Exercise Compare equations 1 and 2 above with the equations for the categorical Cartesian product

pi ˚ <f1,f2> = fi for i = 1,2 ;

< p1 ˚ f, p2 ˚ f > = f .

11.2 The External Model
The informal discussion of the previous section should have motivated the use of internal concepts in

describing the semantics of λ2. The model definition inspired by these ideas will be the main object

of study in this chapter and it is presented in the following section. We introduce here a different

notion of categorical model that does not require the use of internal concepts. It is based on an

algebraic generalization of the semantics of the simply typed lambda calculus in a bidimensional

universe of Cartesian closed categories indexed over another (global) CCC. We will call this model

“external.” In this model the collection of types is represented by a single object of the global

category, say c0 (or Ω, as it is usually denoted in this approach), but no requirement is made in order

to have an internal category with c0 as an object of objects. This fact, however, must be heavily

compensated for by a number of particular conditions that relate “on the nose” categorical properties

of indexed categories, which are not very intuitive. Thus, on one hand, the external model is more

manageable then the internal one; on the other, it is less limpid and, in a sense, less suggestive. We

claim that both these properties of the external model are due to the fact that it is a particularly simple

instance of the internal notion. More specifically, we will show that an external model is just an

internal one whose ambient category is a topos of presheaves, and whose object of objects c0 is a

representable functor [_,Ω]. The understanding we propose of the external model also sheds some

11. Second Order Lambda Calculus

255

light on the interplay among the different conditions in its definition and gives a new justification for

some apparently ad hoc requirements.

At the base of the external notion of a model for λ2, there is the notion of a class of small

categories indexed over another (global) category E - essentially a contravariant functor G from E

to Cat. E is a Cartesian category with a distinguished object Ω, which interprets the collection of

types. Products Ωn are used to give meaning to contexts. Arrows in E[Ωn,Ω] represent types with

at most n free variables in the context Ωn .

The functor G: E→Cat takes every context Ωn in E to a (local) category G(Ωn) whose

objects are the types legal in that context. Thus these types appear both as arrows in E and as objects

in the local categories, and it is natural to require Obj(G(e)) = homE(e, Ω). The arrows between two

types σ and τ in a local category G(Ωn) correspond to terms of type τ and free variables in σ.

Every local category is required to be a model of a simply typed lambda calculus and, thus, it is

Cartesian closed. As for the interpretation of the polymorphic product it is described by an adjoint

situation between local categories; moreover this adjointness must be natural with respect to the global

parameter given by the context.

11.2.1 Definition An external λλλλ2 model (PL category) is a triple (E, G, Ω) where:

1. E is a Cartesian closed category (global category);

2. Ω is a distinct object in E;

3. G: Eop → Cat is a functor such that

i. for each object e in E, Obj(G(e)) = homE(e, Ω), and, for each morphism σ�∈E[e',e], the

functor G(σ�): G(e) → G(e') acts on the objects of G(e) as homE(σ�,Ω).

ii. for each object e in E, the (local) category G(e) is Cartesian closed; for every σ�∈E[e',e],

the functor G(σ�): G(e) → G(e') preserves the Cartesian closed structure “on the nose” (and

not just up to isomorphism); that is, for a,b∈ObjG(e) = homE(e, Ω) it satisfies:

a. G(σ�)(tG(e)) = tG(e'), where tG(e) is the terminal object in G(e)

G(σ�)(!a) = !G(σ�)(a)
b. G(σ�)(a × G(e) b) = G(σ�)(a) ×G(e') G(σ�)(b), where ×G(e) is the product in G(e)

G(σ�)(fsta,b) = fstG(σ)(a),G(σ)(b)
G(σ�)(snda,b) = sndG(σ)(a),G(σ)(b)

c. G(σ�)([a,b]G(e)) = [G(σ�)(a), G(σ�)(b)]G(e'), where [,]G(e) is the exponent in G(e)

G(σ�)(evala,b) = evalG(σ)(a),G(σ)(b)
iii. an E-indexed adjunction < Fst, ∀, ∆ > : G → GΩ, where

a. GΩ : Eop → Cat (see definition 7.1.2) is the functor defined by

∀e∈ObE GΩ(e) = G(e×Ω)

∀σ∈E[e',e] GΩ(σ) = G(σ×idΩ)

b. ∀e∈ObE , Fst(e) = G(fste,Ω) : G(e) → GΩ(e) = G(e×Ω) (with fste,Ω: e×Ω→e).

11. Second Order Lambda Calculus

256

By definition 7.1.6 of an E-indexed adjunction, we have, for every object e in E, an adjunction

< G(fste,Ω), ∀(e), ∆(e) > : G(e) → G(e×Ω)

and, moreover, ∆(e') ˚ G(σ�×idΩ) = G(σ) ˚ ∆(e)

11.2.2 Remark If (E,G) is an external λ2 model, then we have the following natural

transformations:

×G(_): homE×E(K2(_), (Ω ,Ω)) → homE(_, Ω),

[,]G(_): homE×E(K2(_), (Ω ,Ω)) → homE(_, Ω),

∀: homE(_×Ω, Ω) → homE(_, Ω),

where Κ2 is the diagonal functor.

Indeed conditions 3.ii.b and 3.ii.c in definition 11.2.1 express exactly the naturality of ×G(_)
and [,]G(_), while by definition ∀ is natural from GΩ to G and, a fortiori, also from

homE(_×Ω, Ω) to homE(_, Ω).

11.2.3 Lemma For every object a in E there are morphisms

x0 : ΩxΩ → Ω

[,]0 : ΩxΩ → Ω

∀0: ΩΩ → Ω

such that, for each object e of E and for all objects σ,τ of G(e),

x0 ˚ <σ,τ> = σ ×G(e)τ

[,]0 ˚ <σ,τ> = [σ,τ]G(e)
and, for each object ρ of G(e×Ω),

∀0 ˚ Λ(ρ) = ∀(e)(ρ)

Proof We have the following natural transformations

ε1 = ×G(_) ˚ <,> −1 : homE(_, Ω×Ω) → homE(_, Ω)

ε2 = [,]G(_) ˚ <,> −1 : homE(_, Ω×Ω) → homE(_, Ω)

ε3 = ∀ ˚ Λ −1 : homE(_, ΩΩ) → homE(_, Ω)

where

×G(_): homE×E(Κ2(_), (Ω,Ω)) → homE(_, Ω)

[,]G(_): homE×E(Κ2(_), (Ω,Ω)) → homE(_, Ω)

∀: homE(_×Ω, Ω) → homE(_, Ω)

are the natural transformations of remark 11.2.2 and

<,>−1: homE(_, Ω×Ω) → homE×E(Κ2(_), (Ω,Ω))

Λ −1: homE(_, ΩΩ) → homE(_×Ω, Ω)

are the natural isomorphisms given by the Cartesian closure of E.

11. Second Order Lambda Calculus

257

Then, by the Yoneda lemma, the arrows x0, [,]0, ∀0 with the requested properties are obtained

by setting

x0 = ε1(Ω×Ω)(idΩ×Ω)

[,]0 = ε2(Ω×Ω)(idΩ×Ω)

∀0 = ε3(ΩΩ)(idΩΩ)

For example, we have, for σ,τ: e → Ω,

x0 ˚ <σ,τ> = ε1(Ω×Ω)(idΩ×Ω) ˚ <σ,τ>

= homE[<σ,τ>, Ω×Ω] (ε1(Ω×Ω)(idΩ×Ω))

= ε1(e)(homE[<σ,τ>, Ω×Ω](idΩ×Ω))

= ε1(e) <σ,τ>

= σ ×G(e)τ.

The other equations are proved similarly. ♦

11.3 The External Interpretation
In this section we define, in several steps, the “external” interpretation of the second order lambda

calculus.

11.3.1 Type Expressions A type expression T legal in a context Γ = {X1,...,Xn} i s

interpreted by a morphism [T]Γ: [Γ]→[A] in E (where [Γ] = c0n=((t×c0)×…×c0), inductively

defined as follows:

1. [Xi]Γ = snd˚fstn-i;

2. [S→T]Γ = [,]0 ˚ < [S] Γ, [T] Γ >;

3. [∀X:Tp.T]Γ = ∀0 ˚ Λ([T]ΓX).

Note that, as in the simply typed λ-calculus, variables are projections and arrows are exponents.

Morover, impredicative types are interpreted by formalizing (externally) the informal discussion at the

end of 11.2 (see also 11.5.1).

11.3.2 Type assignment A legal type assignment E = (z1: S1)... (zn: Sn), in a context Γ, is

interpreted by the product (local in G([Γ]))

[E]Γ = (...(tG([Γ]) ×[S1]Γ)...)×[Sn]Γ = xon ˚ <...<tG([Γ]),[S1]Γ>...,[Sn]Γ >

where tG([Γ]) is the terminal object in the local category G([Γ]).

11.3.3 Terms A legal term M such that

Γ = X1,...,Xn ; E = (z1: S1)... (zn: Sn) |- M : T

is interpreted by a morphism

11. Second Order Lambda Calculus

258

[M]ΓE : [E]Γ→[T]Γ in the local category G([Γ]) .

The inductive definition is

1. [zi]ΓE = snd ˚ fstn-i;

2. [MN]ΓE = eval ˚ <[M]ΓE, [N]ΓE>;

3. [λx:S.M]ΓE = Λ([M]ΓE[x:S]);

4. [ΛX:Tp.M]ΓE = ∆([M]ΓX;E);
5. [M[T]]ΓE = G(<id, [T] Γ >) (Proj([Γ])) ˚ [M]ΓE,

where Proje is the counit of the adjunction < G(fste,Ω), ∀(e), ∆(e) > : G(e)→G(e×Ω), i.e., Proje
= ∆(e)-1(id).

11.3.4 Remark The interpretation we have just given is somewhat informal. Indeed we should

always specify in which local category we are working in, and we should add a lot of indices for the

natural transformations. Note also that the interpretation is not, as it could seem, by induction on the

syntactical structure of terms, but on the lenghth of the proof of their derivation (the proof that the

terms are well typed). For example, a fully specified interpretation for [ΛX:Tp.M]ΓE would be: if

ΓX; E |- M: T and τ = [T]ΓX then [ΛX:Tp.M]ΓE = (∆([Γ])([E]Γ, τ)) ([M]ΓX;E).

11.4 The Internal Model
In this section we define the notion of internal λ2 model. The intuition is to require for an internal

Cartesian closed category c∈Cat(E) the existence of the arrow ∀0: c0c0→c0, which gives the

depended product, in a such a way that equations 1 and 2 of section 11.1 are verified. We obtain by

this a characterization of internal models by means of ground equations, with the consequence that

internal models are preserved by limit- and exponent-preserving functors.

In what follows, we always assume that the ambient category E is Cartesian closed and has finite

limits.

11.4.1 Definition Let a be an object of E. |a| is the internal category (a, a, id, id, id, id).

The internal |a| represents (internalizes) the discrete category with exactly one morphism (the

identity) for each point in a.

11.4.2 Definition Let c = (c0, c1, DOM, COD, COMP, ID)∈Cat(E). Define then:

c* = (c0c0, c1c0, DOM*, COD*, COMP*, ID*) with

DOM* = Λ(DOM ˚ eval)

COD* = Λ(COD ˚ eval)

COMP* = Λ(COMP ˚ eval×0eval ˚ p)

11. Second Order Lambda Calculus

259

ID* = Λ(ID ˚ eval)

where p = <<Π1° p1, p2>, <Π2° p1, p2>>0 : (c1c0 ×0 c1c0) × c0 → (c1c0 × c0) ×0 (c1c0 × c0).

The idea behind the previous definition is that the object c* represents internally the category of

functors from |c0| to c. Note that, as |c0| is a discrete category, the functors F from |c0| to c are

fully determined by their functions f0 on objects. In effect, this informal idea may be formalized by

the following remark: if E is Cartesian closed, so it is Cat(E). The object c* of the previous

definition is isomorphic in Cat(E) to the exponent of |c0| and c. The category c* may be also

regarded as the collection of all tuples of elements of c indexed by elements in c0, for |c0| is a

discrete category.

11.4.3 Definition The constant internal functor K : c→c* is K = (k0, k1) with

k0 = Λ(fst) : c0→c0c0 where fst: c0×c0→c0 is the projection

k1 = Λ(fst) : c1→c1c0 where fst: c1×c0→c1 is the projection.

K : c→c* must be considered as a sort of diagonal functor. Informally, given an object b in c0, its

image under K is the tuple (indexed on c0) of all-b elements (i.e., the constant-b function from c0
to c0). As a right adjoint to the diagonal functor Κ2: C→C2 yields the categorical product,

similarly, a right adjoint to the functor K : c→c* yields the (categorical) dependent product indexed

over c0.

11.4.4 Definition A model for λλλλ2222 is given by

1. a Cartesian closed category E with all finite limits (global category);

2. an internal Cartesian closed category c = (c0,c1,DOM,COD,COMP,ID)∈Cat(E);

3. a right (internal) adjoint to K: c → c* .

The requirements on the global category E in the previous definition could be slightly relaxed: the

notion of internal category can be also given in interesting ambient categories without all limits (see

the next chapter for an example). Similarly, for a model of λ2 we actually need only exponents of the

form ec0 in E. Our requirements are very close to those needed for models of the stronger calculus

Fω. In this case the only further condition is that of having a right (internal) adjoint to Ke: c→ce for

every object e of E, where ce = (c0e, c1e, DOMe, CODe, COMPe, IDe) represents the category

of functors from |e| to c, and Ke: c→ce is the internal functor defined by

Ke = (ke,0 = Λ(fst): c0→c0e, ke,1 = Λ(fst): c1→c1e).

By theorem 7.3.7, a right adjoint to K: c → c* is fully determined by

i. an arrow ∀0: c0c0→ c0,

11. Second Order Lambda Calculus

260

ii. an arrow PROJ: c0c0→ c1c0 such that DOM* ˚ PROJ = k0 ˚ ∀0 , COD* ˚ PROJ = id.

 (if h: e → c0c0 , we use the abbreviation PROJh for PROJ ˚ h)

iii. an arrow ∆: X"→ Y" where X" and Y" are respectively the pullbacks of

< DOM* , COD* > : c1c0→ c0c0×c0c0, k0×id : c0×c0c0→ c0c0×c0c0

< DOM,COD > : c1→ c0×c0, id×∀0 : c0×c0c0→c0×c0

such that:

g0. γ' ˚ ∆ = γ

g1. (PROJ ˚ p2 ˚ γ) * (Λ(fst) ˚ ΠY" ˚ ∆) = ΠX"
h. ∆ ˚ < γ', (PROJ˚ p2 ˚ γ') * (Λ(fst) ˚ ΠY") >0 = idY"

where h*k = COMP* ˚ <h,k>0 = Λ(Λ-1(h) oΛ-1(k)), and fst: c1×c0→c1 is the projection.

PROJ is the counit of the adjunction. In order to understand its meaning, it is useful to compare it

with the counit of the Cartesian product. In that case, the counit is

(p(a1,a2),1, p(a1,a2),2) ∈ C2[(K2(a1×a2), (a1,a2)]

where K2 is the diagonal functor. That is, the counit is a collection of morphisms p(a1,a2),i in C,

indexed over objects (a1,a2) of C2 and objects i = 1,2 in the category 2, such that each p(a1,a2),i
has domain a1×a2 and codomain ai. Analogously, PROJ: c0c0→c1c0 ≅ c0c0×c0→c1 is a

collection of morphisms PROJσ(T) in c1 indexed over objects σ of c* and objects T of c

(which now corresponds to the category 2 above), such that each projection PROJσ(T) has domain

∀0(σ) and codomain σ(T).

Consider now two points f: t→c1c0, g: t→c1 in c1c0 and c1. Informally, f is a family of

terms in c1 indexed by objects in c0, and g is a term in c1. If there exists some a such that

DOM ˚ f = Κ0 ˚ a, that is if all the terms represented by f have a common domain a : t→c0, then

we can “apply” the isomorphism ∆ and obtain the polymorphic term ∆˚f (note the usual confusion

between application and composition resulting from reasoning about points). Conversely, if there

exists b such that COD ˚ g = ∀0 ˚ b, then g is a polymorphic term of type ∀0˚b.

Formally, for every e in E, given f: e → c1c0 and g: e→ c1 such that

DOM ˚ f = Κ0 ˚ a COD ˚ f = b

DOM ˚ g = a COD ˚ g = ∀a0 ˚ b

11. Second Order Lambda Calculus

261

equations (g1) and (h) above give

g1. PROJb * (Λ(fst) ˚ ΠY" ˚ ∆ ˚ <<a,b>,f>0) = f

h. ∆ ˚ < <a,b>, PROJb * (Λ(fst) ˚ g) >0 = <<a,b>,g>0
and with easy manipulations, recalling that h*k = COMP* ˚ <h,k>0 = Λ(Λ-1(h) o Λ-1(k)), one

obtains

g1'. Λ((eval ˚ PROJb×idc0)o(ΠY" ˚ ∆ ˚ <<a,b>,f>0 ˚ fst)) = f

h ' . ∆ ˚ < <a,b>, Λ((eval ˚ PROJb×idc0)o(g ˚ fst)) >0 = <<a,b>,g>0
which are the formalization of equations 1 and 2 of our informal discussion about second order

models in section 11.1.

11.5 The Internal Interpretation
Let us now summarize some of the data that come with an internal model. All these objects,

morphisms, and functions will be used to give an explicit definition of the interpretation for second

order terms as follows:

i. For the global category E:

- a terminal object T, products and exponents

- projections: fst, snd

- evaluation morphism: eval (used for defining COMP*)

- pairing function: <,>

- “currying” function: Λ

ii. For the internal category:

- an arrow t0: T → c0 defining the internal terminal object

- an arrow x0 : c0×c0 → c0 defining the internal product

- an arrow [,]0 : c0×c0 → c0 defining the internal exponent

- an arrow ∀0: c0c0 → c0 defining the dependent product

- internal projections: FST: c0×c0 → c1 , SND: c0×c0 → c1
- internal evaluation morphism: EVAL: c0×c0 → c1
- instantiation morphism: PROJ: c0c0 → c1c0 of the dependent product

- internal pairing: <,>: (c0×c0×c0) ×0 (c1×c1)→(c0×c0×c0) ×0 c1
<,>(a,b,c, f: a→b, g:a→c) = (a,b,c, pairing(f,g): a→b×c)

- internal currying function: Λ: (c0×c0×c0) ×0 c1→ (c0×c0×c0) ×0 c1
Λ(a,b,c, f:a×b→c) = (a,b,c, curry(f): a→cb)

- dependent pairing: ∆: (c0×c0c0) ×0 c1c0 → (c0×c0c0) ×0 c1
∆(a, σ,{eT: a→σ(Τ)}) = (a, σ, dep_pairing({eΤ}): a→∀(σ)).

11. Second Order Lambda Calculus

262

We point out that an internal model is completely determined by (pullbacks and) a set of ground

equations, that is, equations without (quantified) free variables; this contrasts with external models

(or with standard, “external” Cartesian closed categories, for that matter). An important consequence

of this is that internal models are preserved by limit- and exponent- preserving functors (that is

functors preserving the structure for sources and targets of the data defining the model). This fact will

be used later on to relate internal and external models.

Notation For e∈ObE, en = (((t×e)×e)×…×e) where t is the terminal object of E and e appears

n times.

11.5.1 Type Expressions A type expression T legal in a context Γ = {X1, ..., Xn} is

interpreted by a morphism [T]Γ : c0n→c0 in E. In particular:

1. [Xi]Γ = snd ˚ fstn-i

2. [S→T]Γ = [,]0 ˚ < [S]Γ, [T]Γ >

3. [∀X:Tp.T]Γ = ∀0 ˚ Λ([T]ΓX)

11.5.2 Type Assignments A type assignment E = (z1: S1)...(zm: Sm) legal in a context Γ

={X1,...,Xn} is interpreted by the product

[E]Γ = x0m ˚ <...<t0 ° !c0n,[S1]Γ>...,[Sm]Γ> : c0n → c0
where x01 = x0 and, for i>1, x0i = x0 ˚ (x0i-1×id).

11.5.3.Terms A legal term e such that

Γ = {X1,...,Xn}; E = [z1: S1]... [zm: Sm] |- e : T

is interpreted by a morphism

[e]ΓE : c0n → c1
such that DOM ˚ [e]ΓE = [E]Γ : c0n → c0

COD ˚ [e]ΓE = [T]Γ : c0n → c0
In particular,

1. [zi]ΓE = SND o FSTn-i

(where for simplicity we omit the “indexes” for FST and SND);

2. if Γ;E |- f: S→Τ , Γ;E |- e:S, σ = [S]Γ , τ = [T]Γ, then

[fe]ΓE = EVALσ,τ o (<,> ˚ < <<[E]Γ,[S→Τ]Γ>, σ>0 , <[f]ΓE,[e]ΓE> >0);

3. if Γ;E(x:S) |- e: T , σ = [S]Γ , τ = [T]Γ, then

[λx:S.e]ΓE = Πy' ˚ Λ ˚ < <[E]Γ,σ,τ>, [e]ΓE(x:S) >0 ;

4. if ΓX; E |- e: T and τ = [T]ΓX, then

[ΛX:Tp.e]ΓE = ΠY" ˚ ∆ ˚ < <[E]Γ,Λ(τ)>, Λ([e]ΓX;E)>0 ;

11. Second Order Lambda Calculus

263

5. if Γ,E |- e: ∀X:Tp.S and σ = Λ([S] ΓX), then

[eT]ΓE = Λ−1(PROJσ * (Λ(fst) ˚ [e]ΓE)) ˚ <id, [T]Γ>

= (Λ-1(PROJσ) o ([e]ΓE ˚ fst)) ˚ <id, [T]Γ>

(where h * k = COMP* ˚ <h,k> ; h o k = COMP ˚ <h,k>).

Given the above definitions, the proof of a soundness theorem, with the required substitution

lemmas, is a routine check (as straightforward as it is tedious and laborious).

11.6 Relating Models
In the previous sections, two different notions of model have been introduced. We are now interested

in the relation between them. It will turn out that the two notions are not as distant as they may seem.

We start by an analysis of how we can define an external model from an internal one. The

construction is based on the externalization process of an internal category via hom-functors

presented in chapter 7, which corresponds, essentially, to the Yoneda embedding. Since the hom-

functor preserves pullbacks and exponents, we will be able to show that any internal model yields an

“equivalent” external one.

Suppose that c = (c0,c1,DOM,COD,COMP,ID)∈Cat(E) is an internal model. As the reader has

probably imagined, the functor [_,c] : Eop→Cat of definition 7.4.2 plays the role of G in the

external approach. For ease of reference, we recall here that definition.

11.6.1 Definition Let c∈Cat(E). The functor G = [_,c] : Eop→ Cat is defined in the following

way:

on objects e∈E [_,c] = [e,c] ;

on arrows σ: e'→e [_,c](σ) = [σ,c] is the functor from [e,c] in [e',c] which is defined as

[σ,c0] on objects and as [σ,c1] on arrows.

11.6.2 Lemma ∀ σ: e'→e, G(σ) = [σ,c]: [e,c]→[e',c] acts on the objects of [e,c] (i.e., on

E[e,c0]) as E[σ,c0].

Proof By definition. ♦

11.6.3 Lemma If c is (internally) Cartesian closed, then, for every e in E, Ee,c is Cartesian

closed.

Proof (sketch)

Let 1. < O, T, ο > : c → 1

2. < ∆, x, <,> > : c → c×c

3. < x, [,] , Λ > : c → c

11. Second Order Lambda Calculus

264

be the internal adjunctions given by the Cartesian closure of c. Then <[_,F], [_,G], Θ > :

[_,c]→[_,d] is an E-indexed adjunction. By proposition 7.4.11 there are three E-indexed adjunctions

1'. <[_,O], [_,T], o' > : [_,c]→[_,1]

2'. <[_,∆], [_,x], <,>' > : [_,c]→[_,c×c] ≅ [_,c]×[_,c]

3'. <[_,x], [_, [,]], Λ' > : [_,c]→[_,c] with parameters in [_,c].

Hence for every e in E, [e,c] is Cartesian closed, since [e,1] is the terminal category in Cat and

[e,∆] : [_,c]→[_,c]×[_,c] is the diagonal functor. ♦

Propositions 7.4.10 and 7.4.11 allow us to give an explicit definition for the natural

isomorphisms in (1')-(3') above. In particular,

given σ,τ, γ : e→c0, and f: e →c1×c1 such that DOM ˚ f = ∆0 ˚ σ, COD ˚ f = < τ, γ >

<,>'(f) = Πy ˚ <,> ˚ (< <σ, <τ, γ> >, f >0) : e → c1;

given σ,τ, γ : e→c0, and g: e→c1 such that DOM ˚ g = σ, COD ˚ f = x0 ˚ < τ, γ >

<,>'-1(g) = Πx ˚ <,>−1˚ (< < σ, <τ,γ> >, g >0) : e → c1×c1;

given σ,τ, γ : e→ c0 and f: e→ c1 such that DOM ˚ f = x0 ˚ < σ,τ >, COD ˚ f = γ

Λ'(f) = Πy' ˚ Λ ˚ (< <<σ,τ>, γ >, f) : e → c1;

given σ,τ, γ : e → c0 and g: e→ c1 such that DOM ˚ g = σ, COD ˚ g = [,]0 ˚ <τ, γ >

Λ'-1(g) = Πx' ˚ Λ−1 ˚ (< <σ,<τ, γ >, g) : e → c1.

By exercise 7.4.12, given σ,τ : e→c0, the projections associated to <,>' are derived from the

internal projections FST and SND by

FSTσ,τ = FST ˚ <σ,τ> : e→c1
SNDσ,τ = SND ˚ <σ,τ>: e→c1.

Note that

DOM ˚ FSTσ,τ = x0 ˚ <σ,τ>

COD ˚ FSTσ,τ = σ

DOM ˚ SNDσ,τ = x0 ˚ <σ,τ>

COD ˚ SNDσ,τ = τ.

Analogously, given σ,τ : e → c0, the counit EVALσ,τ of Λ' for the object [,]0˚<σ,τ> is

EVALσ,τ = EVAL ˚ <σ,τ> : e → c1
where EVAL is the internal evaluation map.

Note that

DOM ˚ EVALσ,τ = x0 ˚ <[,]0˚ <σ,τ>, σ >

COD ˚ EVALσ,τ = τ .

11.6.4 Lemma Let c be (internally) Cartesian closed. ∀σ: e'→e, [σ,c]: [e,c]→[e,c'] preserves

the Cartesian closed structure "on the nose".

11. Second Order Lambda Calculus

265

Proof We only consider the product; the other cases are similar.

∀τ,γ in [e,c] [σ,c](τ×γ) = [σ,c]([e,x](τ,γ))

= [σ,c](x0 ˚ <τ,γ>) by def. of [e,x]

= x0 ˚ <τ,γ> ˚ σ

= x0 ˚ <τ ˚ σ, γ ˚ σ >

= x0 ˚ < [σ,c](τ), [σ,c](γ) >

= [e,x]([σ,c](τ), [σ,c](γ))

= [σ,c](τ) × [σ,c](γ) by def. of [e,x]. ♦

11.6.5 Lemma For every e, a objects of E, [e,c|a|] ≅ [e×a,c] .

Proof E is Cartesian closed, thus there are the isomorphisms

Λe,c0: E[e×a, c0] ≅ E[e, c0a]

Λe,c1: E[e×a, c1] ≅ E[e, c1a].

Λe,c0 and Λe,c1 are respectively the functions on objects and on arrows of a functor ΛΛΛΛ from [e×a,c]

to [e,c|a|] . Indeed, for every σ: e×a→c0
Λe,c1(idσ) = Λe,c1(ID ˚ σ)

= Λe,c1(ID ˚ eval ˚ Λe,c0(σ)×id)

= Λe,c1(ID ˚ eval) ˚ Λe,c0(σ)

= IDc|a| ˚ Λe,c0(σ)

= idΛ(σ)
and for every f, g: e×a→c1
 Λe,c1(g o f) = Λe,c1(COMP ˚ <g,f>)

= Λ(COMP ˚ <eval ˚ Λe,c1(g)×id, eval ˚ Λe,c1(f)×id>)

= Λ(COMP˚ eval×eval ˚ <Λe,c1(g)×id, Λe,c1(f)×id>)

= Λ(COMP˚ eval×eval ˚ p ˚ <Λe,c1(g), Λe,c1(f) >×id)

= Λ(COMP˚eval×eval˚p) ˚ <Λe,c1(g), Λe,c1(f) >

= COMPc|a| ˚ <Λe,c1(g), Λe,c1(f) >

= Λe,c1(g) o Λe,c1(f)

Similarly, Λe,c0
-1 and Λe,c1

-1 define the functions on objects and on arrows of ΛΛΛΛ−1,

respectively. ♦

11.6.6 Lemma Let K: c→c* be the functor of definition 11.4.3. For every e in E, ΛΛΛΛ−1 ˚ [e,K] =

G(fst) = [fst,c] : [e,c]→[e,c|a|].

Proof On objects σ: e→c0
 (Λ−1 ˚ [e,K])(σ) = Λ−1([e,K](σ))

= Λ−1(k0 ˚ σ) by def. of [e,K]

= Λ−1(k0) ˚ σ×id

11. Second Order Lambda Calculus

266

= fst ˚ σ×id by def. of k0
= σ ˚ fst

= [fst,c](σ) by def. of [fst,c].

On arrows f: e→c1
 (Λ−1 ˚ [e,K])(f) = Λ−1([e,K](f))

= Λ−1(k1 ˚ f) by def. of [e,K]

= Λ−1(k1) ˚ f ×id

= fst ˚ f ×id by def. of k1
= f ˚ fst

= [fst,c](f) by def. of [fst,c]. ♦

11.6.7 Corollary Let Ω = c0 . Then for every e in E, <[fst,c], [e,∀] ˚ ΛΛΛΛ , ∆ '˚ Λe,c1> :

[e,c]→[e×Ω,c] is an adjunction.

Proof By lemma 11.6.6, [fst,c] = ΛΛΛΛ−1˚ [e,K] . Then we have the isomorphisms

Λe,c1 ∆ '

[e×Ω,c][Λe,c0
-1([e,K](σ)), τ] ≅ [e,c*][[e,K](σ), Λe,c0(τ)] ≅ [e,c][σ, [e,∀](Λe,c0(τ))]. ♦

Note that, given σ: e→c0 ,τ: e×a→c0 , and f: e×a→c1 such that

DOM ˚ f = Λ−1([e,K](σ)) = σ ˚ fst

COD ˚ f = τ,

we have ∆'˚ Λe,c1(f) = ΠY" ˚ ∆ ˚ (<<σ, τ >, Λ(f) >0) : e→c1, where ΠY" is as in the diagram

after definition 11.4.4.

Analogously, given σ: e→c0, τ: e×a→c0, and g: e→c1 such that

DOM ˚ g = σ

COD ˚ f = [e,∀](Λ(τ)) = ∀0 ˚ Λ(τ)

we have the following:

(∆'˚ Λe,c1)-1(g) =

= Λe,c1
-1 (∆'-1(g))

= Λ−1(ΠX" ˚ ∆'−1 ˚ (<<σ, τ >, g >0))

= eval ˚ (ΠX" ˚ ∆'−1 ˚ (<<σ, τ >, g >0))×id: e×a→c1.

In particular, given σ : e → c0c0, the counit (∆'˚ Λe,c1)-1(id[e,∀](Λ(τ))) is

 Projσ,τ = eval ˚ (ΠX" ˚ ∆'−1 ˚ (< <σ, τ >, ID ˚ ∀0 ˚ Λ(σ) >0))×id: e×c0 → c1
= eval ˚ (PROJ ˚ <s,t>)×id

= Λ-1((PROJ ˚ <s,t>)

where PROJ is the internal counit.

11. Second Order Lambda Calculus

267

11.6.8 Lemma The isomorphism of the adjunction in corollary 11.6.7 is also natural in e; that is,

for every γ: e→e', [γ,c] ˚ (∆'˚ Λe,c1) = (∆'˚ Λe,c1) ˚ [γ×id,c].

Proof For every γ: e→e', and f: e×a→c1 such that

DOM ˚ f = Λ−1([e,K](σ)) = σ ˚ fst

COD ˚ f = τ (where σ: e → c0 ,τ: e×a → c0)

 ([γ,c] ˚ (∆'˚ Λe,c1))(f) = [γ,c] (∆'(Λe,c1(f)))

= [γ,c] (Πy" ˚ ∆ ˚ <<σ, τ >, Λ(f) >0)

= ΠY" ˚ ∆ ˚ <<σ, τ >, Λ(f) >0 ˚ γ

= ΠY" ˚ ∆ ˚ <<σ ˚ γ , τ ˚ γ >, Λ(f)˚ γ >0
= ΠY" ˚ ∆ ˚ <<σ ˚ γ , τ ˚ γ >, Λ(f ˚ γ×id) >0
= (∆'˚ Λe,c1) (f ˚ γ×id)

= ((∆'˚ Λe,c1) ([γ×id,c](f))

= ((∆'˚ Λe,c1) ˚ [γ×id,c]) (f). ♦

11.6.9 Theorem If (E,c) is an internal λ2-model, then (E, c0, G=[_,c]) is an external λ2-

model. Moreover, for any legal expression Q of λ2, the internal interpretation of Q in (E,c)

coincides with the external interpretation of Q in (E, c0, G=[_,c]); t hat is, they are the same arrow

in E.

Proof Easy, by the previous lemmas. ♦

Now we prove that, using the “internalization” technique of chapter 7, we obtain from any external

model G:Eop→Cat an internal model in the topos of presheaves Eop→Set. The translation

shows that, essentially, any PL-category is nothing else but an internal category in the category of

presheaves having as object of objects the contravariant hom-functor. Recall (see definition 7.5.1)

that given an E-indexed category G: Eop→Cat , we can build an internal category G = (G0, G1,

DOM, COD, COMP, ID)∈Cat(Eop→Set) in the following way:

for all objects e, e' and arrows f: e'→e in E:

- G0: Eop→Set is the functor defined by

G0(e) = ObG(e)
G0(f) = G(f)ob : ObG(e)→ObG(e')

- G1: Eop→Set is the functor defined by

G1(e) = MorA(e)
G1(f) = G(f)mor : MorG(e)→MorG(e')

- DOM: G1→G0 is the natural transformation whose components are the domain maps in the

local categories, i.e., for e∈ObE, DOMe: MorG(e)→ObG(e) is defined by

DOMe(h:σ→τ) = σ.

- COD, ID and COMP are defined analogously, “fiber-wise.”

11. Second Order Lambda Calculus

268

Note in particular that if (E, c0, G) is a PL category, then G0= E[_, Ω].

11.6.10 Proposition If (E, c0, G) is a PL category, then G is an internal Cartesian closed

category.

Proof By proposition 7.5.4. ♦

Before showing that G also has an internal dependent product, it is useful to take a closer look at the

structure of the involved exponents in Eop→Set.

11.6.11 Lemma Let H: Eop→Set be any functor, and let G0 = E[_, Ω]. Then their exponent

HG0: Eop→Set is given, up to isomorphisms, by the following data:

a. HG0(e) = H(e×Ω)

HG0(f) = H(f×idΩ);

b. eval : HG0× G0 → H

evale(m,f) = H(<ide, f>)(m), for e∈ObE, m∈H(e×Ω), f∈E[e,Ω];

c. Λ : Nat[F×G0, H] ≅ Nat[F, HG0]

Λ(τ)(e)(m) = τe×Ω(F(fst)(m),snd),

where τ: F×G0→H, e∈ObE, m∈F(e), fst:e×Ω→e, snd: e×Ω→Ω.

Proof We use the usual definition of exponents in the category of presheaves (see section 3.5) and

prove that the one given above is equivalent up to isomorphisms. Remember that

HF(e) = Nat[E[_,e]×F, H]

HF (f:e'→e)(σ) = σ ˚ E[_,f]×idF
where E[_,f] is the natural transformation from E[_,e'] into E[_,e] defined by E[_,f] = f ˚ _ .

When F = G0 = E[_, Ω], we can use Yoneda's lemma and have

HG0(e) = Nat[E[_,e]×E[_, Ω], H] ≅ Nat [E[_,e×Ω], H] ≅ H(e×Ω).

Let now f∈E[e',e]:

HG0 (f) (σ) = σ ˚ E[_,f]×E[_,idΩ] ≅ σ ˚ E[_,f×idΩ]∈Nat[E[_,e'×Ω], H] ≅ H(e'×Ω)

Hence, the Yoneda isomorphism yields HG0(f) ≅ H(f×idΩ).

Let us check that the above expressions for eval and Λ satisfy the equations for the exponents. We

have to prove that eval ˚ Λ(τ)×id = τ and Λ(eval ˚ h×id) = h; let m∈F(e) and f∈c0(e):

evale((Λ(τ)e×ide)(m,f)) =

= evale(τe×Ω (F(fst)(m), snd), f) by def. of Λ

= H(<ide, f>)(τe×Ω (F(fst)(m), snd)) by def. of eval

= τe(F(<ide, f>)(F(fst)(m)), snd ˚ <ide, f>), by naturality of τ

= τe(F(fst ˚ <ide, f>)(m), f) for F functor

= τe(m, f)

11. Second Order Lambda Calculus

269

Λ(eval ˚ h×id)e (m) =

= (evale×Ω ˚ he×Ω×ide×Ω) (F(fst)(m), snd) by def. of Λ

= evale×Ω(he×Ω(F(fst)(m)), snd))

= H(<ide×Ω, snd>)(he×Ω(F(fst)(m))) by def. of eval

= H(<ide×Ω, snd>)(H(fst×idΩ)(he(m))) by naturality of h

= H(fst×idΩ ˚ <ide×Ω, snd>)(he(m)) for G functor

= H(<fst,snd>) (he(m))

= he(m). ♦

The following lemma exploits the results above in order to give an explicit definition of the constant

internal functor K: G → G*, whose right adjoint will give the depended product:

11.6.12 Lemma The internal functor K = (k0, k1): G→ G* of definition 11.4.3 is given in

Eop→Set by

k0(e) = G(fst)obj
k1(e) = G(fst)mor

where fst:e×Ω→e in E.

Proof Definition 11.4.3 gives the following for K

k0 = Λ(fst) : G0→G0G0 where fst: G0×G0→G0 in Eop→Set

k1 = Λ(fst) : G1→G1G0 where fst: G1×G0→G1 in Eop→Set.

Note first that, for e∈ObE, the components of the natural transformations fst above behave as the

first projections. Now let h∈c0(e); then

 k0(e)(h) = Λ(fst)(e)(h)

= fste×Ω(G0(fst)(h), snd) by lemma 11.6.12, where fst:e×Ω→e in E

= G0(fst)(h)

= G(fst)(h).

Analogously, for any g∈c1(e):

 k1(e)(g) = Λ(fst)(e)(g)

= fste×Ω(c1(fst)(g), snd)

= G1(fst)(g)

= G(fst)(g). ♦

11.6.13 Theorem Let (E, G, Ω) be an external model; then G is an internal model. Moreover,

for any legal expression Q of λ2 , the external interpretation of Q in (E, G, Ω) coincides with the

internal interpretation of Q in G ; that is, they are the same arrow in E.

11. Second Order Lambda Calculus

270

Proof G is Cartesian closed, by proposition 11.6.11. By definition of an external model, the

functor G(fst) has a right adjoint ∀:GΩ→G. In view of lemma 11.6.12, this is all we need for the

proof.♦

By the previous theorem, and by the particularly simple way the category G is defined from the

indexed category (E, G, Ω), every external model can be thought of as an internal model. We could

even say that external models are the internal categories in the topos of presheaves that have the

(contravariant) hom-functor as object of objects (and that have the required internal structure, of

course). In this sense, external models are less general than internal ones, since they result from

fixing some data in an internal model. Note that we have also obtained a posteriori a justification of

the apparent simplicity of the external model. This is due to the choice of the well-known topos of

presheaves as ambient category and of the hom-functor as canonical object of objects for the internal

categories in this topos. This approach, though not fully general, allows a great simplification in the

definitions of the involved exponents.

A final comparison between the two approaches is suggetsted by the following remark. Note first

that any internal model in a presheaves topos “is” an indexed category; thus, one can think as well of

a definition of indexed category model in which also the indexing functor is not representable. On the

other hand, if the indexing functor is chosen to be representable, as in the external model, one may

wonder why only the object of objects should enjoy this privileged condition. Note that if we

suppose that also the object of morphisms is representable, i.e., c1 = E[_, Ω1], then by the Yoneda

embedding, we have an internal model c = (Ω, Ω1, ...) in E.

References The polymorphic lambda calculus was defined in Girard (1971) in his investigation

of foundational problems in mathematics. Three years later it was reinvented by Reynolds (1974),

who was mainly interested in the type structure of programming languages, testifying the relevance of

this formalism for computer science. References to protoype programming languages, where

polymorphism is formalized in terms of second order λ-calculi, and a recent application may be found

in Cardelli and Longo (1990).

The model definition based on the internal approach is due to Moggi (1985). Unfortunately, since

at that time there was no known concrete model that could be described “internally,” his idea was

never published, and for some years it remained known only to a restricted number of specialists and

collaborators (see Hyland (1987)). Meanwhile a different and in a sense simpler notion of model

based on indexed categories was proposed in Seely (1987). Both models are based on the idea in

Lawvere (1970) of expressing logical quantifications by means of categorical adjunctions. Further

discussions on categorical models of λ2 may be found in Reynolds (1984), Bainbridge et al. (1987),

11. Second Order Lambda Calculus

271

Hyland and Pitts (1987), Pitts (1987), Longo and Moggi (1988), Scedrov (1988), Reynolds and

Plotkin (1988) and Meseguer (1988), among others.

This chapter is derived largely from Asperti and Martini (1989).

12. Examples of Internal Models

272

Chapter 12

EXAMPLES OF INTERNAL MODELS

In this chapter we present three examples of internal models: provable retractions inside a PER

model, PER inside ωωωω-Set, and PL-Categories inside their Grothendieck completion. The general

categorical investigation of internal models developed in the previous chapter allows a deeper and

unified analysis of the different aspects of these models, which brings, in our view, to in an original

understanding of all of them.

12.1 Provable Retractions
This example continues the analysys of an internal model of retractions developed in chapter 7 (see

examples 7.2.2.2, 7.3.9.1.)

12.1.1 Definition λβ(η)p is λβ(η) plus a fresh constant p such that

1. pp = p

2. (px)˚ (px) = px where s˚ r = λx.s(rx)

 a ˚ a = a
R. ________
 pa = a

1+2 imply p ˚ p = p and, hence, p is a retraction whose range contains exactly the provable

retractions: range(r) = {a | λβηp |__ ra = a }. The model constructed over this simple type-free

theory is the “distilled” (syntactic) version of the various models in the literature based on categories

of retractions: closures, finitary projections, etc. (see the references). It focuses on the general idea of

“types as retractions” and, thus, clarifies the basic constructions in these models where “type is a

type” (i.e., p itself is a retraction). This extension of type-free λ-calculus is provably non Church-

Rosser, w.r.t. the obvious reduction relation, but it is consistent (see references). Consider then the

term model of λβηp: it is an applicative structure T = (T, .), where [M]∈T iff [M] = { N |

λβηp |_ M = N } and [M] . [N] = [MN]. Sometimes, for semplicity, we will make no distinction

between a term and is equivalence class.

Of course, T is an extensional λ-model and, thus, by theorem 9.5.10, TT ≅ T in PERT
(remember that by definition [M] T [N] iff λβηp |__ M = N) .

12. Examples of Internal Models

273

It is easy to show that this isomorphism is actually an identity, that is TT = T, indeed:

 [M] TT [N] iff ∀[P],∀[Q] [P] T [Q] implies [MP] T [MQ]

iff ∀P,∀Q λβηp |_ P = Q implies λβηp |_ MP = NQ

iff λβηp |_ Mx = Nx

iff λβηp |_ M = N

iff [M] T [N]

As already pointed out, PERT is a Cartesian closed category with all finite limits.

Let RETT = (R0, R1, dom, cod, comp, id)∈Cat(PERT) be the internal category of retractions

on T. As we proved in the example 7.3.9.1, RETT is Cartesian closed; we want to prove that

RETT yields an (internal) λ2-model.

We start by giving the explicit definition of R0 and R1. Remember that in PERT the equalizer

of a pair of morphisms f,g: P → Q is (E, h: E→P) where aEb iff (aPb and f(a)Qg(b)) and

h is the injection from E to P. Note also that dom(E) = dom(P) ∩ {a | f(a) Q g(a)}, and on this

domain E coincides with P. Then it is easy to verify that [M] R0 [N] iff ([M] T [N] and λβηp

|_ M ˚ M = M.) In other words R0 coincides with T but is restricted to those terms which are

provable retractions.

The domain of R1 are (λβηp-equivalence classes of) triples <M, F, G>, where < , > is the

standard encoding of tuples in λ-calculus, F and G are provable retractions, and M is a morphism

from F to G, that is, λβηp |__ G ˚ M ˚ F = M. Formally:

dom(R1) = { [<M, F, G>] | F ˚ F =λβηp F ; G ˚ G =λβηp G ; G ˚ M ˚ F =λβηp M },

[<M, F, G>] R1 [<M', F', G'>] iff [<M, F, G>] T [<M', F', G'>]

Note moreover that [<M, F, G>] T [<M', F', G'>] iff M =λβηp M', F =λβηp F', G =λβηp G'.

Let RETT* = (R0R0, R1R0, dom*, cod*, comp*, id*) be as in definition 11.4.2. We must

prove that the costant functor K: RETT → RETT * has a right adjoint ∀ = (∀0: R0R0→R0, ∀1:

R1R0→R1). ∀0 is the function realized by λFλzt.F(pt)(z(pt)). Thus, we need to show that

1. if F is in the domain of R0R0 then ∀0(F) is in the domain of R0 ;

2. ∀0 takes elements that are equivalent in R0R0 to elements that are equivalent in R0.

As for (1) we have

 ∀0F ˚ ∀0F = λx(λzt.F(pt)(z(pt)))(λt.F(pt)(x(pt)))

= λx(λt.F(pt)(λt.F(pt)(x(pt)) (pt)))

= λx(λt.F(pt)(F(pt)(x(pt))))

= λxλt. F(pt)(x(pt)) because F(pt) is a retraction by hypothesis

= ∀0F

(2) is evident.

An element in R1R0 is a triple < T, F, G >, where F and G are in the domain of R0R0, T

is in the domain of T R0 , and for every retraction M, one has TM = GM ˚ TM ˚ FM.

12. Examples of Internal Models

274

∀1 is the function that takes (an equivalence class in R1R0 of) a triple < T, F, G > in (the

equivalence class in R1 of) the triple < λtλm .T(pm)(∀0Ft),∀0(F), ∀0(G) >.

Note that λtλm .T(pm)(∀0Ft)) is a morphism from the retraction ∀0F to the retraction ∀0G;

indeed,

∀0G ˚ λtλm .T(pm)(∀0Ft) ˚ ∀0F =

= λz.∀0G(λm .T(pm)(∀0Fz))

= λz. (λxλt.G(pt)(x(pt))) (λm .T(pm)(∀0Fz))

= λz. λt.G(pt)((λm .T(pm)(∀0Fz)) (pt))

= λz. λt.G(pt)((T(pt)(∀0Fz))

= λz. λt.T(pt)(∀0Fz) because G(pt) ˚ T(pt) = T(pt) by hypothesis

It should be clear that ∀1 is indeed a morphism in PERT its realizer is simply obtained by

abstraction on < T, F, G >.

Given a variable type G in R0R0 and a type N in R0, the projection projG(N) from ∀0G

to G(N) is realized by the term λx.xN. Indeed, if S has type ∀0G that is, S = (∀0G)S, then

SN = ∀0GSN = G(N)(SN), and thus SN has type G(N).

We define now the isomorphism ∆ of the adjunction.

Let < T, λx.M, G > be an element in R1R0, where M is a retraction and λx.M = K0(M).

Define then ∆M,G(< T, λx.M, G >) = < λtλm .T(pm)t, M, ∀0G >.

Conversely, given < S, M, ∀0(G) > in R1, define ∆M,G-1(< S, M, ∀0(G) >) = <

λmλt.Stm, λx.M, G >. Note that λm.λt.Stm = λm.(λx.xm ˚ S) = λm.(projG(m) ˚ S). Thus,

for every retraction N, one has

G(N) ˚ λt.StN ˚ M = projG(N) ˚ S ˚ M = G(N) ˚ projG(N) ˚ S ˚ M = λt.StN .

Moreover,

∆M,G-1(∆M,G(< T, λx.M, G >)) =

= ∆M,G-1(< λtλm .T(pm)t , M, ∀0(G) >)

= < λmλt.T(pm)t, λx.M, G >

= < λm.T(pm), λx.M, G >

and clearly T and λm.T(pm) are equivalent in T R0.

As for the converse, note first that if S = ∀0(G) ˚ S, then

St(pm) = ∀0(G)(St)(pm) = (λm.G(pm)(St(pm)))(pm) = G(pm)(St(pm)) = Stm

Thus: ∆M,G(∆M,G-1(< S, M, ∀0(G) >)) =

= ∆M,G(< λmλt.Stm, λx.M, G >)

= < λtλm .St(pm) , M, ∀0G >

= < λtλm .Stm , M, ∀0G >

= < S, M, ∀0G >

12. Examples of Internal Models

275

Define then

∆ (< M,G, < T, λx.M, G > >) = < M, G, < λtλm .T(pm)t , M, ∀0G > >

and

∆-1(< M,G, < S, M, ∀0G > >) = <M,G, < λmλt.Stm, λx.M, G > >.

12.1.2 Remark It is possible to give an elegant categorical characterisation of the models of

λβ(η)p. Let A be a reflexive object (AA ≅ A) in some category C, and let RETA = (R0, R1,

dom, cod, comp, id) be the internal category of retractions on A in PERA. Let ξ: R0→AA be as

usual the equalizer of the identity and λf. f ˚ f. All we need to turn RETA in a model for λβ(η)p

is that there exist p: AA→R0 such that R0 is a retract of AA via (ξ,p). Then, in a sense, since

R0 represents all the retractions on A, we can say that the collection of objects of RETA is itself an

object of RETA: more formally, that RETA is internal to RETA w.r.t. PERA. We have thus the

following facts:

1. (AA < A in a CCC C and RETA internal to RETA with respect to PERA)

imply A |= λβp .

2. A |= λβp implies

(AA < A in PERA and RETA internal to RETA w.r.t. PERA).

The reader should complete the details for exercise.

12.2 PER inside ωωωω -Set
This example continues our presentation of PER an an internal category M of ωωωω-Set (see examples

7.2.7 and 7.3.9.2, where it is shown that the construction gives also an internal model.)

Let M* be defined as c* in 11.4.2. We next define an internal right adjoint to the constant

functor K : M → M*, that by def. 11.4.4 will complete the construction of a model for λ2.

Again, we shall take advantage of the wise blend of set-theory and computability on which ωωωω-Set

is based, in order to avoid the most formal details.

The following lemma motivates the definition of ∀ below.

12.2.2 Lemma If <τ,F,G>∈ωωωω-Set[Mo,M1] then ∃n ∀A∈Mo τ(A) = {n}F(A)→G(A) .

Proof. Suppose that m |__ <τ,F,G>. Since 0 |__ A for any A∈PER , then take n = m.0 and

observe that n |__ <τ(Α),F(A),G(A)>. Thus τ(A) = {n}F(A)→G(A). ♦

As for the definition of ∀0, observe that the intersection of any collection {Ai}i∈I of objects in

PER is still in PER, by viewing them as sets of pairs (of numbers). That is, set

n (∩ i∈I Ai) m iff ∀i∈I (n Ai m).

12. Examples of Internal Models

276

12.2.3 Definition

1. ∀o : [Mo → Mo] → Mo, is given by ∀o(F) = ∩A∈MoF(A),

2. ∀1: [Mo → M1] → M1 is defined as follows. If m |_ <τ,F,G>∈ωωωω -Set[Mo,M1], set

∀1(<τ,F,G>) = <{m.0}∀o(F)→∀ο(G) ,∀o(F),∀o(G)> .

12.2.4 Proposition. ∀ in definition 12.2.3 is well defined. In particular, ∀1 is realized by any

number p such that , for all m , p.m = m.0 .

Proof. By definition, if F : Mo→Mo, then ∀o(F) is in Mo. ∀o is realized by (any index of)

any total recursive function. By lemma 12.2.2, ∀1 is well defined as its definition does not depend

on the choice of the realizer m for <F,τ,G>. Therefore we only need to show that ∀1 is realized

by p. Namely, that if

1. m1,m2 |__ <τ,F,G>

2. n1 ∀o(F) n2
3. A∈Mo

then one has (p.m1.n1) G(A) (p.m2.n2). Indeed,

4. p.m1 = m1.0 (F(A)→G(A)) m2.0 = p.m2 , by (1)

5. n1 F(A) n2 , by (2) and (3),

and thus (p.m1.n1) G(A) (p.m2.n2) by (4), (5) and the definition of (F(A)→G(A))∈Mo. ♦

12.2.5 Remark. It should be clear that lemma 12.2.2 is a very simple but crucial lemma. Note

first that the morphisms in ωωωω-Set[Mo,M1] are described as triples, <τ,F,G>, where τ: Mo →

∪A∈MoQ(F(A)→G(A)) is such that τ(A)∈Q(F(A)→G(A)) and F, G: Mo → Mo give the source

and target of τ(A). This is a sound description, since M* = ([Mo→Mo], [M1→M1],...) may be

viewed as the internal category of functors from the discrete category, whose object of objects is Mo,

to M . Thus [Mo→M1] or ωωωω-Set[Mo,M1] are internal natural transformations. By lemma

12.2.2, now, there is a uniform n which realizes τ(A) for all A. In a sense these internal natural

transformations are “almost” constant maps and only depend on the source and target objects.

We need now to prove that there exists an internal natural isomorphism ∆, which gives the

adjunction between ∀ and K. We can use the simplicity of the intended universe and perform the

construction directly. As in the proof of the internal Cartesian closure of M, the point is to show that

the functional dependencies, usually implicit in the external world (or given by “indexes”: recall a,b

|_ Λa,b), can be turned into internal constructions. Once more, this will be straightforward to check

within ωωωω-Set, as the realizers for the natural isomorphism and its inverse will not depend on their

“indexes.”

Let K, with components ko and k1, be the internal constant functor in definition 11.4.3.

12. Examples of Internal Models

277

12.2.6 Definition. For m |__ < τ,ko(B),G>∈ωωωω-Set[Mo,M1] , set

∆B,G (< τ,ko(B),G>) = < {m.0}Β→∀ο(G) ,Β,∀o(G)> ∈M1 .

and ∆−1B,G (<{m}Β→∀ο(G) ,Β,∀o(G)>)

= < λX∈Mo.{m}Β→G(X) ,ko(B),G>∈ωωωω-Set[Mo,M1].

12.2.7 Proposition. ∆B,G and ∆−1B,G in 12.2.6 are well defined, for all B∈Mo. and G:

Mo→Mo (= [Mo → Mo]). Moreover, they are realized by p and k (respectively), such that

p.m = m.0 and k.m.n = m .

Proof: By lemma 12.2.2, ∆B,G does not depend on the choice of the particular realizer m. As for

∆−1B,G, note that, if m(Β→∀ο(G))m, then ∀n,q (nBq ⇒ m.n (∩A∈MoG(A)) n.q), by

definition of ∀ο, and hence m.n G(A) n.q, for all A∈Mo. Therefore, m (Β → G(A)) m for all

A∈Mo and ∆−1B,G too is well defined. By definition, they are uniformly realized by p and k

as above. In particular, p and k compute ∆B,G and ∆−1B,G for all B and G. ♦

12.3 PL-Categories Inside Their Groethendiek Completion
This example show another way for obtaining an internal model from a PL-category, different from

the internalization process of chapter 11.

12.3.1 Definition. Given any E-indexed category G, define the category ∫∫∫∫G, the Grothendieck

completion of G, having as objects the pairs (e, σ) with e∈ObjE and σ∈ObjG(e) and as

morphisms pairs (α, f) such that:

(α, f)∈∫G[(e, σ), (e', τ)] iff α∈E[e,e'] and f∈G(e)[σ,G(α)(τ)].

The identity of (e, σ) is (ide, idσ); the composition of (α , f)∈∫∫∫∫G [(e,σ),(e',τ)] and (β ,

g)∈∫∫∫∫G[(e',τ), (d,ρ)] is (β, g) ˚ (α, f) = (β ˚ α, G(α)(g) ˚ f).

Let (E, G, Ω) be an external model (that is an indexed category with the additional requirements

on functor G in 12.2.1); then the Grothendieck completion ∫∫∫∫G assumes a particularly simple form

Objects: (e, σ)∈∫∫∫∫G iff σ∈ObjG(e) = E[e, Ω]

(hence we can identify objects of ∫G with arrows σ: e→Ω)

Morphisms: (α,f)∈∫∫∫∫G[σ:e→Ω,τ:e'→Ω] iff

α∈E[e,e'] and f∈G(e)[σ,G(α)(τ)] = G(e)[σ,τ ˚ α].

The point is that ∫∫∫∫G contains an internal category which, in a sense, internalizes the external model

(E, G, Ω).

12. Examples of Internal Models

278

Warning We are here forcing our terminology, since the category ∫∫∫∫G does not need to have all finite

limits, at least not in general, and hence we could not speak of “internal categories in ∫∫∫∫G.” However,

all the needed pullback diagrams exist in ∫∫∫∫G, as pointed out below.

The internal category Γ = (c0, c1, DOM, COD, COMP ,ID)∈Cat(∫∫∫∫G) is defined as follows:

c0 = tG(Ω) : Ω→Ω the terminal object in G(Ω)

c1 = [,]0 : Ω×Ω→Ω [,]0 is given in lemma 11.2.3

DOM = (fst, !) ! is the unique arrow from c1 to c0˚fst in G(Ω×Ω)

COD = (snd, !)

ID = (<idΩ, idΩ>, ΛG(Ω)(snd)) snd∈G(Ω)[tG(Ω)×idΩ, idΩ], hence

Λ(snd)∈ G(Ω)[tG(Ω), idΩ→idΩ], where idΩ→idΩ
The situation for COMP is more delicate, since ∫∫∫∫G does not have all finite limits. However, the

pullback of DOM: c1→c0, COD: c1→c0 does exist, and it is given by

c2 = (p2→p3)×(p1→p2),

where product and exponents are in the fiber G(Ω×Ω×Ω) and pi∈E[Ω×Ω×Ω, Ω]; the pullback

projections ∏1, ∏2 : c2→c1 are

∏1 = (<p2,p3>, id)

∏2 = (<p1,p2>, id).

In order to define COMP, remember that in any CCC, given three objects A, B, C, there exists a

morphism cmp∈Hom[CB×BA, CA] that internalizes the composition, namely

cmp = Λ(eval ˚ id×eval ˚ p) for p: (CB×BA)×A→CB×(BA×A) an isomorphism.

Define then

COMP = (<p1,p3>, cmp) for cmp∈G(Ω×Ω×Ω)[c2, p1→p3]

(recall that, in G(Ω×Ω×Ω), p1→p3 = [,]0 ˚ <p1,p3>).

The verification that these data define an internal category is straightforward.

We now prove that if (E, G, Ω) is an external model, than ∫∫∫∫G is Cartesian closed.

The terminal object is given by tG(t), the terminal object of the local category G(t) (for t terminal in

E). As for products, they can be defined by using the Cartesian structure of the local categories:

(f:e→Ω)×∫G(g:d→Ω) := x0 ˚ f×Eg, where x0: Ω×Ω→Ω is the arrow obtained in lemma 11.2.3;

hence f ×∫G g = (f ˚ fst)×G(e×d)(g ˚ snd). Projections are obtained as follows. We need FST:

c0×c0→c1, where FST = (α, f) for some α:Ω×Ω→Ω×Ω and f∈G(Ω×Ω)[c0×c0, c1˚ α]. As for

α, which intuitively takes a pair of objects (σ, τ) to (σ×τ, σ), we can take α = <x0, fst>:

Ω×Ω→Ω×Ω.

In order to define f∈G(Ω×Ω)[tG(Ω×Ω), x0→fst], we can use again the Cartesian closed

structure of G(Ω×Ω) and the fact that, by lemma 11.2.3, one has

x0 = x0 ° id = x0 ° <fst,snd> = fst ×G(Ω×Ω) snd.

Define then f = Λ(fst) where fst∈G(Ω×Ω)[fst×snd, fst]. SND is defined analogously.

12. Examples of Internal Models

279

It remains to give the pairing isomorphism <,>; note first of all that the required pullbacks (see

definition 7.3.6, and also appendix A at the end of chapter 7) are given by the following data:

X = [,]0×∫G[,]0 ˚ <id×fst, id×snd> : Ω×(Ω×Ω)→Ω

∏X : X→c1×c1 (that is X → [,]0 ×∫G [,]0)

∏X = (<id×fst, id×snd>, id)

ρ : X → c0×c0×c0 (that is X → tG(Ω×Ω×Ω))

ρ = (id, !)

Y = [,]0 ˚ id×x0 : Ω×(Ω×Ω)→Ω

∏Y : Y→c1 (that is Y → [,]0)

∏Y = (id×x0, id)

ρ' : Y → tG(Ω×Ω×Ω)
ρ' = (id, !)

Observe now that, as we are dealing with objects of G(Ω×(Ω×Ω)), by interpreting all products and

exponentials locally in G(Ω×(Ω×Ω))), one has

X = (fst → fst ˚ snd)×(fst → snd ˚ snd)

Y = fst → ((fst ˚ snd)×(snd ˚ snd))

and hence X ≅ Y, since G(Ω×(Ω×Ω)) is Cartesian closed.

The isomorphism <,>: X→Y (in ∫∫∫∫G) is then given by <,> = (id,f), where f is the

isomorphism between X and Y in G(Ω×(Ω×Ω)). The required equations are now easily verified.

Let us now come to the exponents ⇒0 = ([,]0 , !) : c0×c0→c0, where [,]0 is given again by

lemma 11.2.3.

EVAL : c0×c0→ c1 is given by a pair: EVAL = (α ,f), for α :Ω×Ω→Ω×Ω and

f∈G(Ω×Ω)[c0×c0, c1˚ α]. As for α, whose intuitive content is to send a pair of objects (σ, τ) into

(τσ×σ, τ), we can set α = <x0 ˚ < [,]0, fst>, snd>.

We need now f∈G(Ω×Ω)[tG(Ω×Ω), [,]0 ˚ <×0 ˚ < [,]0, fst>, snd>]; observe that

[,]0 ˚ <x0 ˚ < [,]0, fst>, snd> =

= (x0 ˚ < [,]0, fst>) → snd in G(Ω×Ω)

= ([,]0 × fst) → snd

= ((fst→snd) × fst) → snd.

Take then evalfst,snd∈G(Ω×Ω)[(fst→snd) × fst, snd] and set

f = Λ(evalfst,snd)∈G(Ω×Ω)[tG(Ω×Ω), ((fst→snd) × fst) → snd].

Before giving the isomorphism Λ, we need to express the pullback diagrams of theorem 7.3.7 (see

also appendix A). They can be instantiated as

12. Examples of Internal Models

280

where:

X' = [,]0 ˚ (x0× idΩ) Y' = [,]0 ˚ (idΩ × [,]0)

∏X' = (x0× idΩ, id) ∏Y' = (idΩ×[,]0, id)

σ = (idΩ×Ω×Ω, !) σ' = (idΩ×Ω×Ω, !)

As before, observe that

X' = fst×(fst ˚ snd)→(snd˚ snd)

Y' = fst → ((fst ˚ snd)→(snd˚ snd)).

Therefore X' ≅ Y', by the Cartesian closure of G(Ω×(Ω×Ω)) .

The internal Cartesian closed category Γ∈Cat(∫∫∫∫G) is actually an internal model when (E, G, Ω) is

an external one. In order to define the required adjunction, we need first to show that we can indeed

construct the internal category Γ*; that is, the exponents c0c0 and c1c0 exist in ∫∫∫∫G (as for the

limits, not all the exponents exist in ∫∫∫∫G).

12.3.2 Lemma

i. For any object e of E, c0tG(e) exists in ∫∫∫∫G and it is given by tG(Ωe).

ii.For any object e of E, c1tG(e) exists in ∫∫∫∫G and it is given by ∀([,]0 ˚ eval).

Proof Set σ = tG(e).

i. Note first that in ∫∫∫∫G, for any e' and τ, every arrow (β,g):τ→tG(e') has g = !. We must then

show that, for c0σ = tG(Ωe), the following diagram commutes, for any object τ and arrow (α,!):

which is immediate.

12. Examples of Internal Models

281

ii. Let τ: e'→Ω be any object of ∫∫∫∫G; we are looking for the unique Λ(α, f) such that the following

diagram commutes:

Since α: e'×e→Ω×Ω, if we set Λ(α,f) = (α,f), a natural choice for α is α = Λ(α):e'→(Ω×Ω)e.

Moreover, for (α, f):τ×σ→[,]0, we have the following:

f∈G(e'×e)[τ×σ, [,]0˚α] ≅

≅ G(e'×e)[τ˚ fst, [,]0˚ α] by σ = tG(e) and the definition of product in ∫∫∫∫G

≅ G(e')[τ˚ fst, ∀([,]0˚ α)] via the isomorphism ∆ of the adjuction giving the

external model

≅ G(e')[τ˚ fst, ∀([,]0˚ eval) ˚ Λ(α)] by naturality of ∀.

We can then define

c1σ = ∀([,]0 ˚ eval) : (Ω×Ω)e→Ω

and take f = ∆(f); the previous diagram then commutes for eval = (eval, projc0σ).

We can eventually give the data for the adjunction

∀0 : c0c0 → c0
∀0 = (∀0 : ΩΩ → Ω, !).

As for PROJ = (α, f): c0c0→c1c0, we need α : ΩΩ→(Ω×Ω)Ω and f∈G(ΩΩ)[c0c0, c1c0˚ α].

For eval : ΩΩ×Ω→Ω and fst: ΩΩ×Ω→ΩΩ, set α = Λ(<∀0 ˚ fst, eval>). As for f, note first that

 c0c0 = tG(ΩΩ)

and
 c1c0˚ α = ∀([,]0 ˚ eval) ˚ Λ(<∀0 ˚ fst, eval>)

= ∀([,]0 ˚ <∀0 ˚ fst, eval>) by naturality of ∀

= ∀((∀0 ˚ fst) → eval) by the usual isomorphims.

We are then looking for f∈G(ΩΩ)[tG(ΩΩ), ∀((∀0 ˚ fst) → eval)]; as we did in the proof of the

previous lemma, let us look for an arrow h∈G(ΩΩ×Ω)[tG(ΩΩ)˚ fst, (∀0 ˚ fst) → eval]. Then the f

we need will then be ∆(h). Observe now that projeval∈G(ΩΩ×Ω)[∀0 ˚ fst, eval]; this immediately

gives the required h in the following diagram:

12. Examples of Internal Models

282

In conclusion, the Grothendieck completion provides yet another example of the general categorical

construction of model in chapter 11. Moreover, it gives further insight into the external versus

internal approach by giving a setting where the external models may be viewed as internal

constructions.

References The examples in this chapter may be found, in part, in the many papers mentioned at the

end of the previous chapter. Since Moggi's hint for the small completeness of the PER construction,

in particular, these models have been thoroughly explored by many authors. The three sections above

develop the ideas in Amadio and Longo (1986) and in Longo and Moggi (1988), and follow Asperti

and Martini (1989), respectively. By this, the first two sections extend to higher order the

understanding of simple types as partial equivalence relations and retractions in Scott (1976). The

consistency of λβηp is shown in Berardi (1988).

Bibliography

283

BIBLIOGRAPHY

Adachi T. [1983] “A categorical characterization of lambda-calculus models” Dept. of Info. Sci.
Tokyo Inst. Tech., n. C-49.

Amadio R., Bruce K., Longo G. [1986] “The finitary projections model and the solution of higher
order domain equations” IEEE Conference on Logic in Computer Science, LICS'86
Boston.

Amadio R., Longo G. [1986] “Type free compiling of parametric types”, IFIP Conference, in
Formal Description of Programming Concepts-III, M. Wirsing (ed.), Ebberup (DK),
North-Holland, 1987.

Arbib M., Manes E. [1975] Arrows Structures and functors: The Categorical Imperative,
Academic Press, London.

Arbib M., Manes E. [1975a] “Adjoint Machines, State-Behavior Machines and Duality” J. Pure
and Applied Algebra, 6, (313-344).

Asperti A. [1988] “Stability and Computability in Coherent domains” Info&Comp. (to appear).

Asperti A., Longo G. [1987] “Categories of partial morphism and the relation between type-
structures” Semester on Theory of Computation, Banach Center Publications, vol. 21,
Warsaw.

Asperti A., Martini S. [1989] “Categorical models of polimorphism” Note interne, Dip. di
Informatica, Università di Pisa.

Bainbridge E., Freyd P., Scedrov A., Scott P.J. [1990] “Functorial Polymorphism” Theoretical
Comp. Sci. 70, 35-64.

Barendregt H.P., Koymans K. [1980] Comparing some classes of lambda calculus
models, in Hindley and Seldin, (287-302).

Barendregt H. [1984] The Lambda Calculus; its syntax and semantics, Revised and
expanded edition, North Holland.

Barr M. [1979] *-Autonomous Categories, Springer Lecture Notes in Mathematics 752, Berlin.

Barr M. [1990] “*-Autonomous Categories and Linear Logic”, Mathematical Structures in
Computer Science, to appear.

Barr M., Wells C.F. [1985] “Toposes and Theories” Gundlehren der Mathematiscgen
Wissenschaffen, 273, Springer-Verlag, New York.

Bibliography

284

Beeson M. [1980] Foundations of Constructive Mathematics, Springer -Verlag.

Bénabou J. [1985] “Fibered Categories and the Foundations of Naive Category Theory” J.
Symbolic Logic 50, 1, (1o-37).

Berger U. [1986] Berechenbarkeit in Hoheren Typen Nach Einem Ansatz Von Ju.L.
Ersov, dissertation Munchen.

Berry G. [1978] Stable models of typed λλλλ-calculi. Proc. 5th ICALP. LNCS 62, (72-89).

Berry G. [1979] “Some Syntactic and categorical Constructions of Lambda Calculus Models”
INRIA, Valbonne.

Berry G. [1981] “On the definition of lambda-calculus models” Proc. Int. Coll. on Formalization
of Programming Concepts, LNCS 107, (218-230).

Bruce K., Di Cosmo R., Longo G. [1990] “Provable Isomorphisms of Types” Symposium on
Symbolic Computation, E.T.H., Zuerich (CH), March 1990; to appear.

Bruce K., Longo G. [1988] “Modest models for inheritance and explicit polymorphism” CMU
report CS-88-126, IEEE Conference on Logic in Computer Science, LICS '88,
Edinburgh, (Info.&Comp., to appear).

Carboni A., Freyd P., Scedrov A. [1988] “A categorical approach to realizability and polymorphic
types” 3rd ACM Symp. on Math. Found of Language Semantics, New Orleans, Main
(ed), Springer LNCS 298, (23-42).

Cartmell J. [1978] “Generalised Algebraic Theories and Contextual Categories”, PhD Thesis,
Oxford.

Coquand T., Gunter C., Winskel G. [1989] “Domain theoretic models of polymorphism”
Information and Computation 81,123--167.

Cousineau G., Curien P.L., Mauny M. [1985] “The categorical Abstract machine” in Functional
Programming Languages and Computer Architecture, J.P. Jouannaud (ed.), Lecture
Notes in Computer Science 201, (Springer, Berlin), (130-139).

Curien P.L. [1986] Categorical Combinators and Functional Programming, Pitman.

Curien P.L., Obtulowicz A. [1988] “Partiality, Cartesian Closedness and Toposes”, Info&Comp.,
Vol. 80, (50-95).

Degano P., Meseguer J., Montanari U. [1989] “Axiomating Net Computation and Processes”, IEEE
Conference on Logic in Computer Science, LICS'89.

Dezani M. [1976] “Characterization of normal forms possessing an inverse in the λβη-calculus”,
Theor. Comp. Sci., 2 (323-337).

Bibliography

285

Di Paola A., Heller A. [1984] “Dominical Categories”, City Univ. New York.

Ehrhard T. [1988] “A Categorical Semantics of Constructions” IEEE Conference on Logic in
Computer Science, LICS'88, Edinburgh.

Ehrig H, Kiermeier K.D., Kreowski H.J., Kuehnel W. [1974] “Universal Theory of Automata: A
Categorical Approach” B.G. Teubner, Stuttgard.

Eilenberg S., Moore J.C. [1965] “Adjoint Functors and Triples”, Illinois J. Math. 9, (381-398).

Eilenberg S., Kelly M.G. [1966] “Closed Categories” Proc. Conf. Categorical Algebra, in S.
Eilemberg et al. (eds.) (La Jolla 1965). Springer-Verlag.

Elgot C.C. [1971] “Algebraic Theories and programs Schemes”, Symp. on the Semantics of
Algorithmic Languages, in Engeler (ed.) LNM 188, (71-88).

Ershov, Ju.L. [1973] “Theorie der Numerierungen I”, Zeischr. f. math. Logik un Grundl. d.
math., Bd. 19.

Ershov, Ju.L. [1975] “Theorie der Numerierungen II”, Zeischr. f. math. Logik un Grundl.
d. math., Bd. 21.

Ershov, Ju. [1976] “Hereditarily Effective Operations”, Algebra i Logika, Vol. 15.

Feferman S. [1969] “Set-Theoretical Foundations of Category Theory”, Reports of the Mid-
West Category Seminar III, in S. Mac Lane (ed.), LNM 106, (201-247).

Fourman M.P., Scott D.S. [1979] “Sheaves and Logic”, Applications of Sheaves, Springer, LNM
753, (302-401).

Freyd P. [1964] Abelian Categories: An Introduction to the Theory of Functors, Harper
& Row, New York.

Freyd P., Girard J.Y., Scedrov A., Scott P.J. [1988] “Semantic Parametricity in Polymorphic
Lambda-Calculus” IEEE Conference on Logic in Computer Science, LICS'88,
Edinburgh.

Germano G., Mazzanti S. [1987] “Loose Diagrams, Semigroupoids, Categories, Groupoids and
Iteration”, 1st Workshop on Computer Science Logic, E. Börger et al. (eds.), LNCS
273 .

Giannini P., Longo G. [1984] “Effectively given domains and lambda calculus sematics”,
Information and Control, 62, 1 (36-63).

Gierz G., Hofmann K.H., Keimel K., Lawson J.D., Mislove M., Scott D.S. [1980] A
compendium of continuous lattices, Springer-Verlag.

Bibliography

286

Girard J.Y. [1971] “Une extension de l'interpretation de Gödel a l'analyse, et son application a
l'elimination des coupures dans l'analyse et la theorie des types”. In 2nd Scandinavian Logic
Symposium, J.E. Festand (ed.), North-Holland, Amsterdam, (63-92).

Girard J.Y. [1972] “Interpretation fonctionelle et elimination des coupure dans l'arithmetic d'odre
superieur”, These de Doctorat d'Etat, paris.

Girard J.Y. [1986] “The system F of variable types, fifteen years later”, Theor. Comp. Sci., 45,
(159-192).

Girard J.Y. [1987] “Linear Logic” Theor. Comp. Sci., 50, (1-102).

Girard J.Y., Lafont Y. [1987] “Linear Logic and Lazy Computation” Tapsoft '87, Pisa, LNCS
250, Springer Verlag.

Goguen J.A., Thatcher J.W., Wagner E.G., Wright J.B. [1973] “A junction between computer
science and category theory: I, Basic definitions and concepts” Technical Report RC-4526,
IBM Research, September, (part 1).

Goguen J.A., Thatcher J.W., Wagner E.G., Wright J.B. [1976] “A junction between computer
science and category theory: II, Basic definitions and concepts” Technical Report RC-5908,
IBM Research, March, (part 2).

Goguen J.A., Thatcher J.W., Wagner E.G., Wright J.B. [1975] “An introduction to Categories,
Algebraic Theories and Algebras” Technical Report RC-5369, IBM Research, April.
Yorktown Heights.

Goguen J.A., Thatcher J.W., Wagner E.G., Wright J.B. [1977] “Initial Algebra Semantics and
Continuous Algebras” J. ACM, 24(1), (68-95).

Goguen J.A., Ginali S. [1978] “A Categorical Approach to General Systems Theory”. Applied
General Systems Research (257-270) in G. Klir (ed.), Plenum, New York.

Goguen J.A., Thatcher J.W., Wagner E.G. [1978] “An Initial Algebra Approach to the
Specification, Correctness and Implementation of Abstract data Types”. Current Trends in
Programming Methodology, in R. Yeth (ed.), Prentice Hall, NJ (80-149).

Goguen J.A., Burstall R.M., [1984] “Some Foundamental Tools for the Semantics of Computation,
Part 1: Comma categories, Colimits, Signatures and Theories”. Theor. Comp. Sci., 31, (175-
209).

Goldblatt R. [1979] Topoi-The Categorial Analysis of Logic, North Holland, Amsterdam.

Gunter C. [1985] “Profinite solutions for recursive Domain Equations”, Ph.D. Thesis, Comp. Sci.
Dept., C.M.U..

Hayashi S. [1985] “Adjunction of semifunctors: categorical structures in non-extensional lambda-
calculus”, Theor. Comp. Sci., 4.

Bibliography

287

Herrlich H., Strecker G.E. [1973] Category Theory, Allyn and Bacon.

Hindley R., Longo G. [1980] “Lambda-calculus models and extensionally”, Zeit. Math. Logik
Grund. Math. n.2, Vol. 26 (289-310).

Hindley R., Seldin J., (ed.) [1980] To H.B. Curry: Essays in Combinatory Logic,
Lambda calculus and formalism, Academic Press.

Hindley R., Seldin J. [1986] Introduction to Combinators and Lambda-Calculus, London
Mathematical Society.

Hyland J.M.E. [1977] “Filter Space and Continuous Functionals” Annals of Mathematical
Logic 16, (101-143).

Hyland J.M.E. [1982] “The effective Topos”, in The Brouwer Symposium, (Troelstra, Van
Dalen eds.), North Holland.

Hyland J.M.E. [1987] “A small complete category”, Lecture delivered at the Conference Church's
Thesis after 50 years, Zeiss (NL), June 1986 (Ann. Pure Appl. Logic, to appear).

Hyland J.M.E., Johnstone P., Pitts A. [1980] “Tripos Theory”, Math. Proc. Camb. Phil.
Soc., 88 (205-232).

Hyland J.M.E., Pitts A. [1987] “The Theory of Constructions: categorical semantics and topos
theoretic models”, Categories in Computer Science and Logic, Boulder (AMS notes).

Hyland J.M.E., Robinson E., Rosolini P. [1990] “The descrete objects in the effective topos”,
Proc. London Math. Soc. (3) 60,1-36.

Huet G. [1986] “Formal Structures for Computation and Deduction” Lecture Notes, C.M.U..

Jacobs B. [1989] “Some Notes on Fibred Categories and the Semantics of Dependent Types”,
Università di Pisa, Projects ST2-0374-C of the European Communitee.

Johnstone P.T. [1977] Topos Theory. Academic Press, London.

Jones N. [1980] (ed.) Semantics-Directed Compiler Generation, LNCS 94, Springer-Verlag.

Kan D.M. [1958] “Adjoint Functors” Trans. Am. Math. Soc., 87, (294-329).

Kasangian S., Labella A. [1988] “Enriched Categorical Semantics for Distributed Calculi”, Univ. di
Roma “La Sapienza”, (preprint).

Kelly G.M. [1964] “On MacLane's Conditions for Coherence of Natural Associativities,
Commutativities, ect.” J. Algebra 1 (397-402).

Kelly G.M. [1982] Basic Concepts of Enriched Category Theory, Cambridge University
Press.

Bibliography

288

Kock A. [1972] “Strong Functors and Monoidal Modas”, Archiv. der Mathematik, 23.

Koymans K. [1982] “Models of the lambda calculus”, Information and Control, 52, (306-332).

Kreisel G. [1959] “Interpretation of analysis by means of constructive functionals of finite type”,
Constructivity in Mathematics, A. Heyting N-H (ed.), (101-128).

Kuratowski C. [1952] Topologie, Vol. 1, Warsaw.

Lafont Y. [1988] “The Linear Abstract Machine”, Theoretical Computer Science 59, 157-180.

Lafont Y. [1988] “Introduction to Linear Logic” Lecture Notes of the School on Constructive
Logics and Category Theory (Isle of Thorns, August 1988).

Lambek J. [1968] “Deductive systems and categories”, I. J. Math. Systems Theory, 2, (278-
318).

Lambek J. [1974] “Functional completeness of cartesian categories”, Ann. Math. Logic, 6, (252-
292).

Lambek J. [1980] “From lambda-calculus to cartesian closed categories”, in J.R. Hindley and J.P.
Seldin (eds.) to H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, Academic Press, (375-402).

Lambek J. [1985] “Cartesian Closed Categories and typed lambda calculi”, in Guy Cousineau,
Pierre-Luis Curien and Bernard Robinet (eds.) Combinators and Functional Programming
languages, LNCS 242, Springer-Verlag.

Lambek J., Scott P.J. [1974] “Aspects of higher order categorical logic” Contemporary
Mathematics, 30, (145-174).

Lambek J., Scott P.J. [1980] “Intuitionist type theory and the free topos”, J. Pure Appl.
Algebra, 19, (215-257).

Lambek J., Scott P.J. [1986] Introduction to higher order Categorical Logic, Cambridge
University Press.

Lawvere F.W. [1966] “The Category of categories as a Foundation for Mathematics”, in Proc.
Conf. on Categorical Algebra, S. Eilemberg et al. (eds.), La Jolla, 1965, Springer-Verlag.

Lawvere F.W. [1976] “Variable quantities and variable structures in topoi”, in Algebra Topology
and Category Theory: a collection of papers in honor of Samuel Eilenberg, A. Heller and M.
Tierney (eds.), Academic Press, (101-131).

Lehman D., Smyth M. [1981] “Algebraic specification of data types: a synthetic approach”,
Mathematical Systems Theory, 14, (97-139).

Bibliography

289

Longo G. [1983] “Set-Theoretical Models of Lambda-Calculus: Theories, Expansions,
Isomorphisms”, Annals Pure Applied Logic, 24, (153-188).

Longo G. [1984] “Limits, higher computability and type free languages”, MFCS'84, Prague
(Chytil, Koubek eds.), LNCS 176, Springer-Verlag, (96-114).

Longo G. [1986] “On Church's Formal Theory of functions and functionals”, Church's Thesis
after 50 years, Zeiss (NL), June 1986, (Ann. Pure Appl. Logic., 40, 1988, (93-133)).

Longo G. [1988] From type-structures to Type Theories, Lecture Notes, Spring semester
1987/8, Computer Science dept., C.M.U..

Longo G., Moggi E. [1984] “The Hereditary Partial Recursive Functionals and recursion Theory in
higher types”, J. Symb. Logic, vol. 94, 4 (1319-1332).

Longo G., Moggi E. [1984a] “Cartesian Closed Categories of Enumerations and effective Type
Structures”, Symposium on Semantics of Data Types (Khan, MacQueen, Plotkin eds.)
LNCS 173, Springer-Verlag, (235-247).

Longo G., Moggi E. [1990] “A category-theoretic characterization of functional completeness”
Theoretical Computer Science vol. 70, 2 (193-211)

Longo G., Moggi E. [1988] “Constructive Natural Deduction and its ω-Set Interpretation” CMU
Report CS-88-131, Mathematical Structures in Computer Science, vol.1, n.2, 1991.

Mac Lane S. [1971] Categories for the Working Mathematician, Springer-Verlag, New
York.

Mac Lane S. [1982] “Why Commutative Diagrams Coincide with Equivalent Proofs?”,
Contemporary Mathematics, 13, (387-401).

Manes E.G. [1976] Algebraic Theories, Springer-Verlag, New York.

Makkai M., Reyes G.E. [1977] “First order Categorical Logic”, Lecture Notes in Math., 611.

Margharia I., Zacchi M. [1983] “Right and left invertibility in λβ-calculus”, R.A.I.R.O., 17,
no.1, (71-88).

Marti-Oliet N., Meseguer J. [1989] “From Petri Nets to Linear Logic”, Category Theory and
Computer Science, Manchester, Pitt et al. (eds.) LNCS 389, Springer Verlag.

Marti-Oliet N., Meseguer J. [1990] “Duality in Closed and Linear Categories”, Mathematical
Structures in Computer Science, to appear.

Martini S. [1987] “An interval model for second order lambda calculus”, Category Theory and
Computer Science, Edimburgo, Pitt et al. (eds.) LNCS 283, Spriger-Verlag.

Bibliography

290

Martini S. [1988] “Modelli non estensionali del polimorfismo in programmazione funzionale”, Tesi di
Dottorato, Dipartimento di Informatica, Pisa.

Martini S. [1988] “Bounded quantifiers have interval models”, ACM Conference on Lisp and
Functional Programming Languages, Snowbird, Utah.

Mauny M., Suarez A. [1986] “Implementig functional languages in the categorical abstract machine”,
Proc. Lisp and Functional Programming Conf., ACM, Boston.

Meseguer J., Montanari U. [1988] “Petri Nets are Monoids: A New Algebraic Foundation for net
Theory”, IEEE Conference on Logic in Computer Science , LICS'88, Edinburgh.

Meseguer J. [1988] “Relating Models of Polymorphism”, SRI-CSL-88-13, October, SRI Projects
2316, 4415 and 6729, Comp. Sci. Lab., SRI International.

Meyer A.R. [1982] “What is a model of the lambda calculus?”, Information and Control, 52,
(87-122).

Mints G.E. [1981] “Closed Categories and the Theory of Proofs”, Journal of Soviet Math.,
N.V., 15, (45-63).

Mitchell B. [1965] Theory of Categories, Academic Press.

Mitchell J. [1984] “Semantic Models for Second-Order Lambda Calculus”, in Proc. 25th IEEE
Symp. on Foundations of CS, (289-299).

Mitchell J., Harper R. [1988] “The essence of ML”, Proc. ACM-POPL 88.

Moggi E. [1987] “Interpretation of second order lambda-calculus in categories” unpublished
manuscript, underground Edinburgh/Pisa.

Moggi E. [1988] “Partial Morphism in Categories of Effective Objects”, Info&Comp., 76, 2/3,
(250-277).

Moggi E. [1988a] “The partial lambda-calculus”, Ph.D. Thesis, Edinburgh.

Moggi E. [1989] “Computational Lambda-Calculus and Monads”, IEEE Conference on Logic
in Computer Science, LICS'89, Asilomar (Ca).

Obtulowicz A., Wiweger A. [1982] “Categorical Functorial and Algebraic Aspects of the Type-Free
Lambda-Calculus”, Universal Algebra and Applications, Banach Center Publications, 9, (399-422)
PWN-Polish Scientific Publishers, Warszawa.

Ohori A. [1987] “Orderings and types in databases”, Proc. of the Workshop on Database
Programming Languages, Roscoff, France, September.

Oles F.J. [1985] “Type algebras, functor categories, and block structure”. In Algebraic Methods
in Semantics, Maurice Nivat and John C. Reynolds (Eds.), Cambridge University Press.

Bibliography

291

de Paiva V.C.V. [1987] “The Dialectica Categories”, Conference in Category Theory,
Computer Science and Logic, Boulder (AMS notes).

Pitt D.H., Abramsky S., Poigné A., Rydeheard D.E., (Eds.), [1985] Category Theory and
Computer Programming, LNCS 240, Springer-Verlag.

Pitt D.H., Abramsky S., Poigné A., Rydeheard D.E., (Eds.) [1987] Category Theory and
Computer Science, LNCS 283, Springer-Verlag.

Pitts A. [1987] “Polymorphism in Set Theoretic Constructively” Symposium on Category Theory
and Comp. Sci., LNCS 283 (Pitt et al. eds.), Edinburgh.

Plotkin G. [1978] “Tω as a universal domain”, J. Comp. Syst. Sci., 17, (209-236).

Plotkin G. [1980/4] “Domains”, Lecture Notes, C.S. Dept., Edinburgh.

Reynolds J. [1980] “Using category theory to design implicit conversion and generic operators”. In
Proceedings of the Aarhus Workshop on Semantics Directed Compiler Generation,
N.D. Jones (ed.), Springer-Verlag, January, LNCS 94.

Reynolds J. [1984] “Polymorphism is not set-theoretic”, Symposium on Semantics of Data
Types, Kahn, MacQueen, Plotkin (eds.) LNCS 173, Springer-Verlag.

Reynolds J.C., Plotkin G. [1988] “On functors expressible in the polymorphic typed lambda
calculus”, CMU report CS 88-125, in Logical Foundations of Functional programming,
G. Huet (ed.), Addison-Wesley, 1990, 127-152.

Rittri M. [1990] “Using types as Search Keys in Function Libraries” Journal of Functional
Programming, vol. 1.

Robinson E., Rosolini P. [1988] “Categories of partial maps”, Info&Comp., 79, (95-130).

Rosolini G. [1986] “Continuity and Effectiveness in Topoi” D. Phil. Thesis, Oxford University.

Rydeheard D.E., Burstall R.M. [1988] “Computational Category Theory”, Prentice Hall
International Series in Computer Science, C.A.R. Hoare Series Editor.

Scedrov A. [1988] “A Guide to Polymorphic Types”, CIME Lectures, Montecatini Terme, June
1988 (revised version).

Scott D. [1972] “Continuous lattices”, Toposes, Algebraic Geometry and Logic, Lawvere
(ed.) SLNM 274, (97-136) Springer-Verlag.

Scott D. [1976] “Data types as lattices”, SIAM Journal of Computing, 5, (522-587).

Scott D. [1979] “Identity and Existence in Intutionistic Logik”, In Applications of Sheaves,
LNM 753, Springer-Verlag (660-696).

Bibliography

292

Scott D. [1980] “Relating theories of the lambda-calculus”, In Hindley/Seldin .

Scott D. [1980a] “Lambda-calculus, some models, some philosophy”, The Kleene Symposium,
Barwise et al. (eds.), North-Holland.

Scott D. [1980b] “A space of retracts”, manuscript, Bremen.

Scott D. [1981] “Lectures on a mathematical theory of computation”, Oxford Univ. Comp. Lab.,
Tech. Mon. PRG-19.

Scott D. [1982] “Some ordered sets in Computer Science”, In Ordered Sets, Rival (ed.), Reidel.

Scott D. [1982] “Domain for denotational semantics”, (preliminary version), Proceedings ICALP
82, LNCS 140, Springer-Verlag.

Scott D. and Gunter C. [1990] “Semantic Domains” Handbook of Theoretical Computer
Science, J. van Leeuwen (ed), North Holland, to appear.

Scott P.J. [1978] “The “dialectica” interpretation and categories”, Zeitschr. f. Math. Logik und
Grundlagen d. Math., 24, (553-573).

Seely R.A.G. [1987] “Categorical semantics for higher order polymorphic lambda calculus”,
Journal Symb. Logic, 52, n.4, (969-989).

Seely R.A.G. [1987] “Linear Logic*-Autonomous Categoires and Cofree Coalgebras”, Categories
in Computer Science and Logic, Boulder (AMS notes).

Smyth M. [1977] “Effectively Given Domains”, Theoret. Comp. Sci., 5, (255-272).

Smyth M., Plotkin G. [1982] “The category theoretic solution of recursive domain equations”,
SIAM Journal of Computing, 11, (761-783).

Soloviev S.V. [1983] “The category of finite sets and cartesian closed categories” Journal of
Soviet Math., 22, 3.

Stoy J. [1977] Denotational Semantics, M.I.T. Press.

Tatsuya H. [1987] “A typed lambda calculus with categorical type constructors”, In D.H. Pitt et al.
(eds.)

Taylor P. [1986] “Recursive Domains, Indexed Category Theory and Polymorphism”, Ph.D.
Thesis, Cambridge University, London.

Troelstra A.S. [1973] “Notes in intutionistic second order arithmetic”, Summer School in Math
Logic, LNM 337, Cambridge, Springer-Verlag, (171-203).

Wand M. [1979] “Fixed-point Construction in Order-enriched Categories”, Theor. Comp. Sci.,
(13-30).

Bibliography

293

Winskel G. [1986] “Category Theory and Models of Parallel Computation”, Proc. Summer
Workshop on Category and Computer Programming, Surrey, LNCS 240, (266-281).

Wiweger A. [1984] “Pre-adjunctions and lambda-algebraic theories”, Coll. Math. XLVIII,
Warszava, (153-165).

