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Abstract12

Earth orbiting satellites, such as Sentinel 1A-B, build up an ever-growing set of synthetic13

aperture radar images of the ground. This conceptually allows for real-time monitoring14

of ground displacements using Interferometric Synthetic Aperture Radar (InSAR), no-15

tably in tectonically active regions such as fault zones or over volcanoes. We propose a16

Kalman filter (KF) for InSAR time series analysis, an efficient method to rapidly update17

pre-existing time series of displacement with data as they are made available, with lim-18

ited computational cost. Our KF solves together for the evolution of phase change with19

time and for a parametrized model of ground deformation. Synthetic tests of our KF re-20

veal exact agreement with the equivalent weighted least-squares solution and a conver-21

gence of descriptive model parameter after the assimilation of about one year of data.22

We include, the impact of sudden deformation events such as earthquakes or slow slip23

events on the time series of displacement. First tests of the KF on ENVISAT data over24

Mt Etna (Sicily) and Sentinel 1 data around the Chaman fault (Afghanistan, Pakistan)25

show precise (±0.05 mm) retrieval of phase change when data are sufficient. Otherwise,26

the optimized parametrized model is used to forecast phase change. Good agreement is27

found with classic time series analysis solution and GPS-derived time-series. Accurate28

estimates are conditioned to the proper parametrization of errors so that models and ob-29

servations can be combined with their respective uncertainties. This new tool is freely30

available to process ongoing InSAR time series.31

1 Introduction32

Since the 1990s, Interferometric Synthetic Aperture Radar (InSAR) has been used and33

optimized to measure ground deformation from satellite [e.g. Griffiths, 1995, Burgmann34

et al., 2000, Simons & Rosen, 2015]. While first studies focused on temporally discrete,35

large amplitude events, such as earthquakes [e.g. Massonnet et al., 1993], recent geophys-36

ical applications rely on deriving the temporal evolution of deformation to capture the37

full spectrum of temporal behaviors, from short episodic deformation events [e.g. Lind-38

sey et al., 2015, Rousset et al., 2016] to long-term, decadal trends [e.g. Grandin et al.,39

2012, Chaussard, Bürgmann, et al., 2014, Jolivet et al., 2015]. Examples include contin-40

uous monitoring of aquifers [e.g. Schmidt & Bürgmann, 2003, López-Quiroz et al., 2009,41

Chaussard, Wdowinski, et al., 2014], volcanoes [e.g. Pritchard & Simons, 2004, Biggs et42

al., 2014] slow moving landslides [e.g. Hilley et al., 2004, Scheingross et al., 2013, Tong43
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& Schmidt, 2016] or aseismic slip along active faults [e.g. Jolivet et al., 2013, Khoshmanesh44

& Shirzaei, 2018].45

Capturing the time evolution of ground displacement using InSAR is not direct and re-46

quires adequate processing of sets of interferograms [e.g. Simons & Rosen, 2015]. An in-47

terferogram is the conjugate product of two Synthetic Aperture Radar (SAR) images.48

The corresponding interferometric phase directly records ground deformation between49

two passes of the satellite. Reconstructing the temporal evolution of the phase, hence50

ground deformation, through time should be straightforward. However, this procedure,51

called time series analysis, remains a challenge as interferograms are often affected by52

spatial and temporal decorrelation [e.g. Zebker & Villasenor, 1992, Berardino et al., 2002,53

Simons & Rosen, 2015]. Furthermore, the reconstructed phase is the combination of var-54

ious sources of noise such as atmospheric and ionospheric delays as well as ground dis-55

placements. Part of the time series analysis procedure intends to separate these differ-56

ent contributions [e.g. Burgmann et al., 2000, Emardson et al., 2003, Agram & Simons,57

2015].58

Two main approaches have been developed to perform time series analysis. First, Per-59

manent or Persistent Scatterers techniques focus on a subset of reliable pixels with sta-60

ble backscattering properties over time to perform spatial and temporal unwrapping [e.g.61

Ferretti et al., 2000, Hooper et al., 2007]. Second, Small Baseline Subset (SBAS) tech-62

niques rely on the redundancy of the network of interferograms to enhance spatial cov-63

erage and resolution [e.g. Berardino et al., 2002, Hetland et al., 2012]. In this paper, we64

focus on SBAS techniques.65

Temporal increments of phase change are linked to interferograms by a set of linear equa-66

tions. As we aim to reconstruct the evolution of phase with time from interferograms,67

we need to solve an inverse problem, which is usually done using classic least-squares [Schmidt68

& Bürgmann, 2003, Usai, 2003, Agram et al., 2013] or singular value decomposition [Be-69

rardino et al., 2002, López-Quiroz et al., 2009, Jolivet et al., 2012]. Nowadays, the res-70

olution, frequency and availability of SAR images grow dramatically thanks to recent71

launches of numerous SAR missions including the Sentinel 1A-1B (European Space Agency)72

or the ALOS 2 (Japan Aerospace Exploration Agency) missions [Elliott et al., 2016]. Fu-73

ture missions, such as Sentinel 1C-1D and NISAR (NASA, ISRO), will also lead to a growth74

in the amount of available data, ensuring long temporal coverage of deformation. Ex-75
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isting SBAS techniques will inevitably become overwhelmed by the rapid accumulation76

of images. These methods require increasing computing power and memory, as the size77

of the inverse problem to solve grows with the quantity of observations. More importantly,78

acquisitions at a given time do not inform on the state of deformation at another given79

time if these epochs are not connected by interferograms. Processing the entire set of80

interferograms each time a new acquisition is performed is not only computationally ex-81

pensive, but also not useful.82

We, propose a method to sequentially update pre-existing multi-annual time series of In-83

SAR data considering only the latest observations. We describe how to use data assim-84

ilation for the reconstruction of ground displacements using InSAR, including minimal85

computing time and little data storage. We derive the formulation of a Kalman filter for86

time series analysis, an approach analogous to least-squares in its assumptions and fi-87

nal solution [Kalman, 1960, Cohn, 1997]. As data assimilation methods require accurate88

estimation of errors at all steps, our method allows to investigate various sources of er-89

rors.90

Kalman filtering is already widely used to build Global Navigation Satellite System (GNSS)91

time series [e.g. Hofmann-Wellenhof et al., 2012], as very frequent acquisition of small92

amount of data makes such filtering very relevant. Other application in geodesy include93

modeling of volcanic reservoir properties [e.g. Shirzaei & Walter, 2010, Bato et al., 2018]94

or of fault slip at depth [e.g. Segall & Matthews, 1997, Bekaert et al., 2016]. Most of these95

techniques are driven by time series of deformation in order to reconstruct the tempo-96

ral evolution of a model describing the source of surface deformation. The aforementioned97

methods require the use of a time series analysis method in order to reconstruct surface98

displacements beforehand. Furthermore, although uncertainties are fundamental in any99

assimilation scheme, uncertainties are unfortunately not always correctly estimated [Agram100

& Simons, 2015, Bekaert et al., 2016]. Here we provide a method to continuously and101

efficiently build InSAR time series from a stack of SAR interferograms and propagate102

associated uncertainties.103

In the following, we detail time series analysis for InSAR and formulate explicitly the104

corresponding Kalman filter approach. We highlight the efficiency of our approach on105

two different regions subjected to volcanic and tectonic deformation. We first test our106

method on a time series of SAR acquisitions by the Envisat satellite between 2003 and107
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2010 over the Etna volcano, in Sicily, around which several GPS stations enable us to108

derive local time series of ground deformation. We validate our approach against this109

independent set of data. We also use GPS data to assess the robustness of the uncer-110

tainties derived by our Kalman filter implementation. We then derive a time series of111

ground deformation using Sentinel 1 data between 2014 and 2018 over western Pakistan112

and southern Afghanistan. This region is poorly instrumented and no deformation time113

series are available for comparison with our approach. However, vegetation cover is scarce,114

hence interferometric coherence is good, and the Sentinel constellation has acquired a115

large amount of SAR images, allowing us to highlight the efficiency of our time series116

analysis method.117

2 A Kalman filter-based approach for times series analysis118

2.1 Data description and formulation of the problem119

The phase of an interferogram is a differential measurement of the spatial and tempo-120

ral change in the two way travel time of the Radar wave between the satellite and the121

ground. It is a direct measurement of the change in the apparent distance between the122

satellite and the ground, hence a function of ground deformation between two dates. Our123

goal is to reconstruct the evolution of the interferometric phase over time with respect124

to the first acquisition and to extract ground deformation from this time series. We work125

on each pixel independently from its neighbors [Berardino et al., 2002, Cavalié et al., 2007].126

For a given pixel, the unwrapped phase of the interferogram between two dates at times127

ti and tj is128

Φij = φj − φi + εij , (1)

where φj is the unwrapped phase at a time tj relative to the phase φ0 at time t0, and129

εij is the error associated with the potentially inaccurate unwrapping of the interfero-130

metric phase, with spatial filtering and with multi-looking (i.e. non-coherent phase av-131

eraging often used to enhance coherence) [Goldstein et al., 1988, De Zan et al., 2015, Agram132

& Simons, 2015]. As interferograms connect multiple SAR acquisitions in time, we call133

a set of interferograms a network and εij is often referred to as network misclosure [Doin134

et al., 2011]. Herein, the standard deviation of εij will be noted σε, assuming it is com-135

mon to all interferograms for simplicity.136
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Moreover, for a single pixel, the network of interferograms is often incomplete as unwrap-137

ping of the phase is not always possible due to spatial and temporal variations of phase138

coherence. If the fringe rate is too high between neighboring pixels, it is not possible to139

derive the relative motion of these pixels from one to another, hence phase cannot be140

unwrapped [Goldstein et al., 1988]. Without connectivity, it is impossible to reconstruct141

a common phase history between temporally disconnected sets of interferograms. Var-142

ious methods propose to derive a temporally parametrized model of the phase evolution,143

either assuming constant velocities between sub-networks [Berardino et al., 2002] or more144

complex ad hoc models [e.g. López-Quiroz et al., 2009, Jolivet et al., 2012, Hetland et145

al., 2012, Jolivet & Simons, 2018].146

Following the approach of López-Quiroz et al. [2009], we consider a parametrized func-147

tion of time to describe the evolution of the interferometric phase. This function is the148

linear combination of a set of user-defined functions fn of time modulated by coefficients149

an, such as the interferometric phase φi at a time ti writes150

φi =

N∑
n=1

anfn(ti) + γi, (2)

where γi is the error corresponding to mismodeling of the interferometric phase at time151

ti, due to limitations of the functional model and decorrelation noise [Agram & Simons,152

2015]. Uncorrected atmospheric effects, such as turbulent and ionospheric delays, are the153

main contributions to γi [e.g. Doin et al., 2011, Jolivet et al., 2014]. In the following, we154

assume that γi is normally distributed with a zero mean and a standard deviation σγ ,155

assumed constant with time for simplicity. Functions fn can be taken for instance as poly-156

nomial terms, Heaviside functions or periodic functions describing the time history of157

the interferometric phase.158

Our goal is to solve both Equations 1 and 2 sequentially, whenever a new acquisition al-159

lows to compute new interferograms. We formulate an assimilation framework solving160

for the interferometric phase φi at each acquisition time ti and for the terms of the parametrized161

function ak and for the corresponding variances and covariances.162
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Symbol Meaning Structure Shape

mk state vector [a0, a1..., aL−1, φ0, ..., φk] (L+ k + 1)

dk measurement vector [Φfk,Φgk, ...,Φhk] N

Pk state covariance – (L+ k + 1)× (L+ k + 1)

Qk

process noise

covariance

diagonal matrix∗ with last

element equal to (σγ)2
(L+ k + 1)× (L+ k + 1)

Rk

observation noise

covariance

diagonal matrix with (σε)
2

on the diagonal
N ×N

Ak

state-transition

matrix

identity matrix with additional

row using an to forecast φk

(L+ k + 1)× (L+ k)

Hk observation model
pairs up the phases to build

the Φik. Contains 0, 1 and -1
N × (L+ k + 1)

Table 1. Vectors and matrices used in the kth Kalman filter iteration assimilating N in-

terferograms (Φik) constructed with the acquisition at time tk. At this given step, the filter

(re)estimates the N + 1 phases φi,k and the L parameters an of the linear descriptive model. (*)

In our applications, diagonal elements of Qk are zero except the last one, however, it may be use-

ful to add non-zero systematic error in the first L elements corresponding to an. See Appendix

7.1 for a detailed example of our KF matrices.

2.2 Setup of the Kalman filter163

A Kalman filter (KF) is an iterative procedure that allows to recover the least squares164

solution of an inverse problem by successively adding data. For a recent and detailed in-165

troduction to Kalman filtering, readers can refer to Evensen [2009] or Carrassi et al. [2018].166

Data assimilation procedures propagate and update with newly acquired data the prob-167

ability density function (PDF) of a given model. In a KF, the PDF of the model is a Gaus-168

sian distribution described by a state vector, m, containing mean values for model pa-169

rameters and the associated covariance matrix P. Each time new data is acquired, a KF170

proceeds in two successive steps.171
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Figure 1. Scheme of the temporal evolution of the state vector as a function of assimilation

time and available data. Markers highlight elements which are added or modified at a specific

time-step. Additional values may be kept and stored for later reanalysis. The last step corre-

sponds to the case when data are not available: the previous state vector is copied and the last

phase is forecast using the functional description described by the parameters an previously

estimated.

First, at a given time tk, we forecast the state vector mk and its covariance matrix Pk172

using the state vector, mk−1, at step k − 1. Second, we update this forecast with the173

information from data acquired at time tk in a step called analysis.174

In practice, at a time tk, the state vector mk includes the reconstructed phase values and175

the coefficients of the parametrized function of time, an (Figure 1). We initialize the frame-176

work with an a priori state vector, m0 and associated covariances, P0. This a priori re-177

flects our state of knowledge on the different parameters before we input any data. Each178

time a new SAR image is acquired, we compute the interferograms connecting this last179

acquisition with previous ones, typically the four previous ones. Then, we use the func-180

tional form governed by the terms an in the current state vector to forecast the phase181

at the time of the new acquisition. Afterwards, we analyze the forecast with the infor-182

mation of the incoming data to obtain the updated state vector.183

Following the marginalization rule, the forecast state vector mf
k and its covariance Pf

k

are given by

mf
k = Akmk−1 and Pf

k = AkPk−1A
T
k + Qk ∀k ∈ [1;M ] (3)
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where Ak is the state-transition matrix and Qk the process noise covariance (see Table184

1 for variable description). As illustrated in Figure 1, Ak applied to mk−1 computes the185

forecast for mk based on the latest parametric description of the time series given by an186

at time tk−1 (Equation 2). Ak is a matrix representation of the forecast equations. In187

practive, phase terms of previous acquisitions and functional parameters are kept con-188

stant while φfk is computed using Equation 2. Because Ak is of rectangular shape, mf
k189

is simply mk−1 augmented with the forecast phase value of the most recent acquisition.190

The corresponding covariance, Pf
k , depends on parameter uncertainties and systematic191

noise included in Qk. Systematic noise in Qk represents our level of confidence in an im-192

perfect forecast.193

We then update the state and its covariance using the available data dk at time tk ap-

plying Bayes’ rule, so that

mk = mf
k + Pf

kH
T
k

(
Rk + HkP

f
kH

T
k

)−1 (
dk −Hkm

f
k

)
(4)

where Rk is the observation noise covariance, and Hk the observation model. Hk is ef-

fectively the operator predicting interferograms from the state vector mk. Rk describes

our confidence in the observation model, Hk, for the data dk (hence, Rk describes the

statistics of phase misclosure, here assumed normally distributed). The analyzed vari-

ance covariance matrix, Pk, is

Pk = Pf
k −Pf

kH
T
k

(
Rk + HkP

f
kH

T
k

)−1

HkP
f
k . (5)

The term Pf
kH

T
k

(
Rk + HkP

f
kH

T
k

)−1

is often referred to as the Kalman gain as it quan-194

tifies how much the predicted state “has to gain” from the difference between observed195

and predicted data, dk − Hkm
f
k , called residual or innovation. It also modulates the196

information transitioning from the covariance in the model space HkP
f
k to the covari-197

ance of the analysis. For a practical example of our KF, see the the explicit formulation198

in Appendix 7.1. Note that Equation 4 is the generalized least squares solution of a lin-199

ear inverse problem [e.g. Tarantola, 2005].200

Because of observations equations, there is a need to keep previous estimates of phases201

in mk, whenever they are connected by interferograms used in the analysis step, in or-202

der to update phases φi (i < k) for all Φik in dk (Eqn. 1 and Fig. 1). For instance, if203

the data contains interferograms Φak, Φbk and Φck we will forecast and analyze φk and204

–9–



Author personal copy, accepted for publication in JGR: Solid Earth

re-analyze φa, φb and φc using past and current observations (Figure 1). This is essen-205

tial to keep improving phase estimates taking advantage of the redundancy of informa-206

tion from all interferograms and, thus, limit the propagation of errors over time. For-207

mally, the re-analysis of past estimates with future data implies that the Kalman filter208

formulated above is effectively a Kalman smoother [Cohn et al., 1994, Cosme et al., 2012].209

2.3 Configuring parameters210

The algorithm requires user-based choices for the parametrization of the functional form211

and for the various covariances on a case-by-case basis. First, we have to chose a parametriza-212

tion for the functional form used to derive the forecast. This choice is based on our knowl-213

edge of deformation and simplicity of the model should be favored over precision to pre-214

vent overfitting.215

Second, we need to estimate the typical standard deviation of mismodeling σγ for all time216

steps and of interferometric network misclosure σε for all interferograms. σε comes in the217

construction of R because it quantifies the error between our data (interferograms) and218

what we are looking for (the relative phase values). It effectively acts as a regulariza-219

tion term when computing the Kalman gain (Table 1 and Equations 4,5). As underlined220

by Doin et al. [2011], covariance terms in R are null because εij is specific to each in-221

terferogram Φij , independently of the common acquisitions φi,j . Regarding σγ , it depends222

on both the simplicity of the chosen functional form and on the amplitude of unexpected223

atmospheric perturbations of the interferometric delay. It is directly fed into the process224

noise variance-covariance matrix, Q, since it controls the flexibility given to the process225

for phase values to be different from those predicted by the chosen functional form. Typ-226

ically, σε should be small with respect to σγ because we have greater trust in the inter-227

ferogram construction (Equation 1) than in the functional description of the deforma-228

tion (Equation 2).229

Third, we must quantify the a priori mean and standard deviation of functional model230

coefficients an within the initial state vector m0 and covariance P0. These values directly231

control the amplitude of the possible values for model coefficients in the analyzed state232

vector, and, thus, directly affect the quality of the filter’s forecast. One needs to chose233

large enough variances with a realistic a priori state vector, so that the natural spread234

of the variable is within one standard deviation of its mean.235
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Fourth, we can optionally add some systematic error to the parameters of the functional236

representation, an in the L first elements of the diagonal of Q in order to slow down their237

convergence with assimilation steps. Such noise addition introduces some plasticity in238

the description of deformation (see Appendix 7.1). We discuss real case examples be-239

low to illustrate the influence of the different parameters and define a quantitative guide-240

line for parametrization in Section 4.1.241

3 Applications of the Kalman filter242

3.1 Synthetic tests243

3.1.1 Reference case setup244

In order to asses how well the Kalman filter (KF) retrieves known parameters, we gen-245

erate a synthetic set of InSAR data combining synthetic signal of tectonic deformation246

and atmospheric noise. We assess the influence of the choice of parameters and of the247

design of covariance matrices to validate the approach.248

We build a two dimensional, time varying, field of phase change typical of what is ex-249

pected in a region crossed by a major tectonic fault. We design a synthetic acquisition250

planning considering a 3 years observation period with acquisitions every 12 days; sim-251

ilarly to what is expected for recent satellite constellations such as Sentinel 1. For each252

of these synthetic acquisitions, we compute synthetic unwrapped interferograms with the253

three preceding acquisitions using Equation 1.254

We simulate the contributions of tectonic plate motion and shear due to interseismic load-255

ing along a fault (i.e slow, persistent deformation of a few cm/yr), between blocks mov-256

ing at 4 cm/yr with respect to each other. We add to the time series the surface displace-257

ments due to a typical earthquake (i.e. a discrete, large amplitude deformation event of258

several cm). The modeled earthquake occurs on day 500 of the time series and induces259

a maximum of 15 cm of displacement. In addition, we consider the case of a slow tran-260

sient slip event occurring on the same fault (i.e. episodic, medium amplitude deforma-261

tion spanning multiple acquisitions in time). This slow slip event has a temporal foot-262

print governed by an integrated spline function of 100-day-width centered on day 210263

of the time series, with a maximum cumulative displacement of 10 cm. Epicenters of both264

events are shown on Figure 2. All synthetic displacements are generated considering dis-265

locations embedded in an elastic homogeneous semi-infinite halfspace [Okada, 1992]. Fur-266
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Figure 2. Performance of the Kalman filter (KF) for a two-dimensional synthetic deforma-

tion field. The phase evolution with its noise content is retrieved from noisy interferograms (i.e.

non-zero network misclosure). A : True cumulative phase at the last time-step of the time se-

ries including deformation and correlated and uncorrelated noise. B : Reconstructed cumulative

phase from the KF. C : Root Mean Square error (RMS) of the the retrieved phase (B) with re-

spect to the true phase value (A). D : RMS of the phase retrieved with the KF (B) with respect

to the least-squares solution. All scales are in centimeters to ensure the example represents a

realistic case study. The location of the pixel of interest for Figure 3 is marked by a red square.

thermore, we include a constant deformation rate related with interseismic loading on267

the main fault and seasonal oscillations (i.e. yearly sinusoidal deformation with a phase268

shift) of the ground everywhere. In the following tests, we aim to recover all terms of de-269

formation described above as well as the resulting phase evolution with our KF.270

Consequently, the chosen parametrized model of the phase, φk, at a time tk, is

φk = a0 + a1tk + a2 sin

(
tk

2π

Tyear

)
+ a3 cos

(
tk

2π

Tyear

)
+ a4Ssse(tk) + a5Heq(tk) + γk, (6)

where an,∀n ∈ [1, 5], are the parameters to be solved for, Tyear is a one year period,271

Ssse is an integrated spline function centered on day 210 with a width of 100, Heq is a272

Heaviside function on day 500 and γk is the mismodeling term at time tk with standard273

deviation σγ .274

We first test the performance of the filter on synthetic data without any noise (imply-275

ing γk = 0,∀k ) and then on data including noise. To do so, we design a composite noise276

model to mimic real observations. This implies that we have, first, a spatially correlated277

noise reflecting atmospheric effects on each phase ‘acquisition’ and, secondly, a misclo-278

sure error lower by at least an order of magnitude, assuming that we have no contribu-279

tion from unwrapping errors [Schmidt & Bürgmann, 2003, Lohman & Simons, 2005, Cav-280
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alié et al., 2007, López-Quiroz et al., 2009, Agram & Simons, 2015]. We add spatial and281

temporal deviations to all parameters an following a random distribution with a stan-282

dard deviation equal to 10% of their values, and random noise on interferogram construc-283

tion equivalent to σε = 0.1 mm. Moreover, the atmospheric contribution to phase decor-284

relation is constructed through the convolution of a white noise, with standard devia-285

tion of 10 mm, and a decreasing exponential function of inter-pixel distances [Jolivet &286

Simons, 2018]. The specified values reflect errors observed in processed Sentinel 1 data287

(see Section 3.3). The resulting cumulative phase change after 3 years is shown in Fig-288

ure 2. The temporal evolution of phase change for one pixel is visible in Figure 3.289

3.1.2 Performance of the Kalman filter with optimal configuration290

We apply our KF with the assumption that the functional form given in Equation 6 is291

known. Results for simpler functional forms applied to the same synthetic data are in292

Figure S2 and S3. A priori model parameters in the initial state vector, m0, are set to293

zero with standard deviations comparable to the expected spread of parameters: 10 mm294

for a0, 0.05 mm/day for a1, 5 mm for the sine and cosine amplitudes and 70 mm for295

the displacement of slip events. The first phase value for all pixels is set to zero with zero296

uncertainty. This means that m0 is a null vector and P0 is a diagonal matrix contain-297

ing the squared standard deviations listed above. When realistic noise is considered, we298

chose optimal parameters corresponding to the noise implemented in the synthetic data,299

that is σγ = 10 mm and σε = 0.1 mm. For comparison, we solve the full problem for300

all acquisitions using an equivalent least squares inversion with identical model and data301

covariances [Tarantola, 2005].302

For a model without any noise (except σε = 10−5 mm to avoid singularity of the gain),303

phase values are retrieved within σε and model parameters converge after the assimila-304

tion of ∼ 6 months of data (Figure 3A). The time required for convergence of the model305

parameters is justified by the fact that there is an ambiguity between the contribution306

of the linear and periodic terms to the deformation before reaching half the oscillation307

period. Regarding the earthquake, the corresponding amplitudes is found within 10−5
308

mm just after it occurred. Similarly, the amplitude of the slow slip event is retrieved once309

the total cumulative displacement caused by the slow slip event has been fully assimi-310

lated.311
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A

B

Figure 3. Time series for one pixel with temporal evolution of the model on a synthetic set of

InSAR data for one pixel. A : case without noise in the synthetic data. B : same synthetic defor-

mation but with a realistic noise model on top. Pink markers represent reconstituted phases from

the Kalman filter, while black crosses are ‘true’ phases. When the phase is well retrieved, markers

overlay each other and errorbars are too small to appear. Colored lines are models derived at

each assimilation of a new acquisition, which date is indicated by the colorbar. Dashed black

line is the true deformation. In A, true and reconstituted phases lie on each other and mask the

underlying curves, which include the true model and computed models after day 500 (time of the

modeled earthquake).
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Figure 4. Maps of three of the model parameters : velocity, slow slip amplitude and quake

amplitude. For comparison the true values (top), the values retrieved through least squares inver-

sion (LSQ) (middle) and the values retrieved through Kalman filter (KF) (bottom) are displayed.

The final outcome of the KF is comparable with basic least squares performance (Fig-312

ure 2 and 4). Figure 2 shows that the KF cumulative displacement root mean square er-313

ror (RMS) with respect to the true displacement is on the order of σε (0.1 mm), while314

it is of ∼ 10−5 cm with respect to least squares estimation. Regarding model param-315

eters, the difference between KF solution and target value is of ∼ 1 mm, whereas it is316

of ∼ 10−3 mm between KF and least squares solutions. The noticeably large noise in317

retrieved parameters over areas with target values close to zero (Figure 4) is explained318

by the constant high a priori variance applied everywhere. Thus, if the location of the319

events is known, it is preferable to define a spatially variable a priori variance for, at least,320

slip events.321

We detail here the behavior of the filter as data is assimilated in time and the require-322

ments for convergence. Figure 3B shows the time series of a representative pixel (located323

on Figure 2) and Figure 5 the associated evolution of model parameters. The functional324

model evolves and gains information as data are successively assimilated. Graphically,325

the dark blue curves combine both the a priori null model and the little information brought326
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Figure 5. Temporal evolution of model functional parameters at each assimilation step for

the reference pixel in our synthetic test. Colors refer to time (see colorbar in Figure 3). The am-

plitudes of the slow slip and the quake are added in the parameter space just before they occur.

For reference, the dotted black line shows the true parameter value (i.e. target), and the dashed

grey line shows the least-squares optimum. The Kalman filter solution tends toward the least-

square solution, which itself depends on the interferometric network configuration and the noise

in interferograms.

by the first few points, while the dark red curve uses all available information and closely327

fits the underlying model. The model progressively converges toward the least squares328

solution, close to the target model, at a rate that depends on how quickly parameter un-329

certainties collapse (Figures 3B and 5), which in turns depends on the Kalman gain (Equa-330

tion 5, Appendix 7.1). As shown on Figure 5, it takes about 150 days for the offset, a0,331

to be adjusted and around one year for the yearly periodic signal, a2 and a3. However,332

the inter-dependency of functional parameters clearly appears as variations in the tran-333

sient event amplitude a4 induces a change in a0 by 1-2 mm and the earthquake at t =334

500 days perturbs almost all parameters, including the velocity which is shifted by ∼ 0.01335

mm/day. Correlations between parameters appear in the off-diagonal terms of the co-336

variance matrix (Figure S1).337

Interestingly, we also see that, although the local earthquake amplitude a5 of 37.4 mm338

was correctly retrieved after 3 assimilations ±7 mm, the assimilation steps for t > 750339

days lead to an overestimate of a5 and a correlated underestimate of a1. As interfero-340
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Figure 6. Errors in estimated model parameters (an) and phases (φi) from the Kalman Filter

(KF) as a function of the standard deviation of the mismodeling noise (σγ) and the standard

deviation of interferometric network misclosure (σε). The true value of the noise injected in the

build of the synthetic deformation is marked by the white circle. A and B reveal variations in the

KF estimate accuracy by looking at the Root Mean Square Error (RMSE) in φi (A) and in an

(B). C and D display the mean standard deviation (abrv. std) of estimates. Values concerning

parameters are normalized for homogeneity. The white dashed line corresponds to σγ/σε = 1 and

the dotted line to σγ/σε = 104.

grams long after the event do not bring information about its amplitude, the state vec-341

tor mk needs to be modified. That is, to avoid fitting noise and limit trade off between342

parameters, functional parameters in mk can be added or removed from the procedure343

when relevant. Also, phases which do not appear in latter interferograms can be stored344

and removed from mk. This does not affect final time series and lowers the memory load345

of the algorithm. Practically, our KF effectively works with two storage files : one con-346

taining time, phases and their uncertainties (from the diagonal of Pk) and another one347

containing mk, Pk and other auxiliary information in order to run the next forecast and348

analysis at time tk+1.349

Nevertheless, it is a challenge to optimally parametrized the inversion with real InSAR350

data, especially because mismodeling and misclosure errors are generally not known[Schmidt351

& Bürgmann, 2003].352

3.1.3 Sensitivity analysis to predefined errors353

We study the effect of non-representative σγ and σε in a sensitivity analysis, for one given354

pixel (shown in Figure 5 and 3). We deliberately set poorly chosen values of σγ and σε355

in the KF with respect to the known sources of noise. Subplots of Figure 6 display how356
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4 proxies of the quality of KF estimates vary as a function of those two parameters. While357

Figures 6A and 6B consider the error in the absolute estimates, and thus the accuracy,358

Figures 6C and 6D indicate the precision (i.e. standard deviation) associated with those359

estimates.360

The quantity displayed in 6A is the Root Mean Square error of phase estimates, and in

6C it is the average of the posterior standard deviation of the phase estimates, σφk
. The

exact equations corresponding to fields in 6B and 6D are√√√√ 1

L

L∑
n=1

(
an − atn
atn

)2

and
1

L

L∑
n=1

σan
|an|

, (7)

respectively, where the superscript t indicates target value and L is the number of pa-361

rameters. The first functional model parameters a0, a constant offset, is voluntarily ex-362

cluded because, first, atn = 0 and, second, the misfit in a0 mainly results from the re-363

quirement that φ0 = 0.364

As expected from governing equations, we see that estimated standard deviations are365

directly impacted by choices in σγ and σε. Indeed, phase uncertainties appear sensitive366

to σε and model parameter uncertainties to σγ (Figure 6C, 6D). Another main feature367

is the improvement of an estimates at the expense of the accuracy in φk when approach-368

ing the domain σε ≥ σγ (Figures 6A, 6B). This is clearly not desirable, because phase369

estimate directly derive from interferometric data, while model parameters depend on370

an ad hoc functional description which may have to be improved as new data is assim-371

ilated. To the contrary, when too much confidence is given to interferograms with respect372

to the model (i.e. σε ≤ σγ×10−4) the effective misclosure error means that data may373

be hard to reconcile together and numerical instability arises. Thus, providing σε/σγ is374

in between 10−4 and 1, the quality of φk and an estimates appears robust to several or-375

ders of magnitude variations in σγ and σε. We still observe an upper bound limit of ∼376

30 mm and ∼ 15 mm for σγ and σε, respectively, above which estimates are so uncer-377

tain that they do not adjust to the data. Time series representative of the overall effect378

of underestimating or overestimating σγ and σε are shown in supplementary Figures (S4-379

S7).380

In practice, εij only results from how we construct interferograms and could be directly381

estimated by quantifying the effect of multilooking and filtering during the processing382

of each interferogram. Alternatively, it could be measured either before time series anal-383
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ysis by forming triplets of interferograms [De Zan et al., 2015, Benoit et al., 2020] or a384

posteriori by looking at the discrepancy between real and reconstituted interferograms385

from time series [Cavalié et al., 2007].386

In addition to uncertainty quantification, another challenge of real InSAR data is that387

all interferograms do not unwrap everywhere due to local loss of coherence. Consequently,388

given pixels will potentially show missing links in the interferometric network. In the fol-389

lowing we apply our KF to two data sets thought to be representative of the challenges390

brought by real InSAR data.391

3.2 Application to the Etna Volcano on Envisat Asar images392

As a real case example, we first present the assimilation of interferograms over the Etna393

volcano in Sicily. We have chosen this example as it has been used in the past for mul-394

tiple validation studies [e.g. Doin et al., 2011, Jolivet et al., 2014] and because several395

GNSS stations record the relatively large displacements observed over this volcano. We396

use 63 images from the ENVISAT mission acquired between January 2003 and August397

2010 [Doin et al., 2011]. Single Look Complex (SLC) images are focused and coregistered398

to a single master using the Repeat Orbit Inteferometry Package [ROIPac, Rosen et al.,399

2004]. Coregistration to a single master image is enhanced using the Digital Elevation400

Model and all possible interferograms are derived. The 222 interferograms are filtered401

and unwrapped using a branch cut algorithm [Goldstein et al., 1988, Goldstein & Werner,402

1998]. We correct interferometric phase delays due to the temporal variations of the strat-403

ified troposphere using the output of the ERA-Interim reanalysis of atmospheric data404

as described in Jolivet et al. [2011]. All details about the processing can be found in Doin405

et al. [2011] and in Jolivet et al. [2014].406

We apply our Kalman filter (KF) on each pixel of the stack of images that has unwrapped407

interferometric data. In addition to the precise retrieval of phase evolution, we aim to408

obtain a mean rate of deformation, including potential transient events and ignoring sea-409

sonal contributions. Hence, our parametrized model for the phase evolution includes lin-410

ear and seasonal terms described by four parameters, a constant term, a rate of phase411

change, a sine term and a cosine term. This model is very simplified for a volcano which412

has undergone several eruptive events over 2003-2010. Although this may lower our pre-413

dictive capabilities, phase estimates of uninterrupted interferometric network should not414
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Figure 7. A: Map of cumulative phase change between 2003 and 2010 over Mt Etna (Sicily,

Italy) as inferred from the Kalman filter time series analysis applied on ENVISAT data. B : Map

of the associated standard deviation. Displacements and associated uncertainties are in the di-

rection of the satellite’s line of sight (LOS). Topography, shown in the background in shades of

gray, is from SRTM [Farr et al., 2007]. Holes in the data correspond to pixels excluded from the

inversion because less than 20 interferograms were unwrapped at their location. Black squares

show a selection of GPS station used for comparison [Blewitt et al., 2018].

be affected and more complex model could be applied in a second time (Section 3.1). Con-415

sequently, we set σγ = 18 mm and σε = 0.01 mm, as a high σγ with respect to σε lim-416

its the confidence in the model-based phase forecast and keeps large uncertainties for model417

parameters. With the same logic, we chose a priori standard deviation equal to 15 mm418

for the constant term, 5 mm/day for velocity and 10 mm for sine and cosine terms. We419

set the initial state vector m0 to zeros. Note that, because the constant term reflects the420

noise in the reference acquisition (φ0) with respect to the model, its standard deviation421

should be close or superior to σγ . The impact of different σγ and P0 on model param-422

eter estimates is displayed in Figures S11-S13.423

We compare local time series of displacement derived from Global Navigation Satellite424

System (GNSS), often referred to as GPS for simplicity, at the stations EIIV, ESLN, HCRL425

and MMME (Figures 7 and 8; Blewitt et al. [2018]). We consider differential displace-426
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ments between two GPS stations and the equivalent closest InSAR pixel. Figure 7 shows427

the cumulative phase change and associated uncertainties over 8 years in the direction428

of the Line Of Sight (LOS) of the satellite as derived by our KF analysis at t61, the 14th429

of July 2010. The displayed penultimate phase φ61 incorporates most of the studied de-430

formation with limited uncertainty as it is a reanalyse phase, unlike the last phase.431

Standard deviations in Figure 7B are marked by a clear spatial dichotomy between the432

well resolved pixels displaying uncertainties < 10−1 mm and other pixels with uncer-433

tainties reaching more than 10 mm. Precise estimates are available on the volcano flanks434

and in the urbanized region to the south, notably around stations ESLN, EIIV and HCRL435

and, thus, cover the area of geophysical interest. In Figure 7A, the displacement field436

is dominated by aseismic slip along the Pernicana fault extending from the volcano sum-437

mit to the eastern coast of Sicily [Palano et al., 2006]. Indeed, the fault slipped more than438

25 cm locally in the LOS direction over the ∼ 8 years covered by the time series. Smaller439

coherent displacements of a few cm on the volcano flanks are also recovered. In the plains440

surrounding Mt Etna, cm-scale uncertainties are associated with about ±2 cm of sharp441

inter-pixel variations in the displacement field.442

Large uncertainties arise in area where more than 50% of interferograms do not unwrap443

due to significant spatial noise (Figure S10). When a pixel is not unwrapped, no infor-444

mation is available at this location and the analysis step of the filter cannot be performed.445

In this configuration, the forecast made from the functional model is taken as the esti-446

mate with its large uncertainty (i.e. mk = mf
k and Pk = Pf

k). This allows to continue447

building the time series and to connect different subsets of interferograms which may not448

be linked by a common phase. However, the error associated with the forecast phase is449

carried forward in the subsequent solutions, if they are all relative to this one. A solu-450

tion to lower uncertainties is to re-reference the phases by constructing long-baseline in-451

terferograms.452

Time series in Figure 8 evidence that the relative InSAR displacement between pixels

close to GPS stations is consistent with what is measured independently by GPS. A mea-

sure of the monotonicity of this relationship is given by the Spearman’s rank correlation

coefficient for n pairs of InSAR-GPS observations, defined as

Cs = 1− 6

n(n2 − 1)

n∑
i=1

d2i (8)
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Figure 8. Overlay of GPS and InSAR time series of relative deformations. Each subplot in-

cludes the complete time series and its uncertainty for InSAR (red dots) and the available GPS

time series on the same time period (blue dots). The subplot titles indicate the pair of stations

located in Figure 7. The GPS data point that are temporally the closest to InSAR measurements

are highlighted in light blue. They are used to compute the Spearman correlation coefficient, Cs

(Equation 8). The black line is the deformation according to the functional model of the Kalman

filter on InSAR.

where di is the difference between the ranks of the ith coeval observations in both sets.453

This metric was preferred over other correlation coefficients because of its little sensi-454

tivity to outliers. For the 6 differential displacements considered, Cs is always positive455

indicating that when InSAR measures an increase, so does GPS (Figure 8). Moreover,456

its value close to 0.5 for 4 time series reveals a significant numerical correlation. Nonethe-457

less, the implications of this metric are limited because it is applied to the subset of GPS458

measurement coincident in time with InSAR acquisitions and both time series are af-459

fected by different sources of noise. Independently of the numerical correlation, the over-460

all good match between measured velocities validates our KF approach for InSAR time461

series analysis, even when the quality of data implies that errors are large (Figure 8A,462

8D and 8E) .463
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3.3 Application to the Chaman fault on Sentinel 1 images464

In the following section, we illustrate the Kalman filter (KF) performance to reconstruct465

surface displacements around a tectonic fault imaged by a recent satellite constellation.466

The satellites of the Sentinel 1 mission launched in 2014 and 2015, are providing SAR467

images with a better temporal sampling than ever before for C-band satellites. Over the468

Chaman fault, we construct 364 interferograms with 95 acquisitions spanning Novem-469

ber 2014 to May 2019. We use the ISCE package (Gurrola et al. [2010]; JPL/Caltech)470

to build unwrapped interferograms. We coregister SAR images with a network-based en-471

hanced spectral diversity (NESD) approach [Fattahi et al., 2017] and remove atmospheric472

perturbations using ECMWF-ERA 5 global reanalysis of atmospheric data (PyAPS soft-473

ware; Jolivet et al. [2011, 2014]). We also multilook and filter interferograms to enhance474

the signal-to-noise ratio before unwrapping with the branch cut method [Goldstein et475

al., 1988, Goldstein & Werner, 1998]. The final size of the 2488× 7024 pixels is ∼ 80×476

130 m. Additionally, we subtract to each interferogram a best fitting ramp (linear func-477

tion of longitude and latitude) on the subregion north of the fault trace.478

For comparison, we perform the time series analysis with both the well tested New Small479

Baseline Subset method, NSBAS [Berardino et al., 2002, Doin et al., 2011] implemented480

in GIAnT [Agram et al., 2013], and the KF developed here. We chose a simple functional481

description of deformation with a constant deformation rate and seasonal oscillations.482

A disadvantage of this model is that it poorly describes deformation for specific areas483

affected by earthquakes or anthropogenic groundwater pumping. However, because our484

implementation of NSBAS does not allow for spatial variations of the parametrized model,485

we prefer not to account for those very local dynamics (i.e. local in comparison with our486

600 km long interferograms). Our a priori uncertainties are 25 mm for offset, 9 mm/yr487

for velocity and 8 mm for cosine and sine terms. In agreement with Section 3.1.3, we chose488

σγ = 10 mm and σε = 0.05 mm. Similarly to the previous example, we focus on the489

reconstructed phases with time rather than on its parametrized description and display490

maps of the penultimate phase of the time series (Figure 9).491

Final solutions from NSBAS and KF are very similar (Figure 9A and 9B). The displace-492

ment relative to the first acquisition shows a long-wavelength fault-perpendicular gra-493

dient of about 60 mm over ∼ 120 km. We also observe strong negative signals with a494

kilometer scale footprint, such as around the city of Quetta, most likely due to aquifer-495

–23–



Author personal copy, accepted for publication in JGR: Solid Earth

65° 66° 67° 68°

28°

29°

30°

31°

32° CF

GF

LOS

Quetta

Kandahar

Chaman

A B

C

A

−150 −100 −50 0 50
(mm)

65° 66° 67° 68°

B

65° 66° 67° 68°

C

10−2 10−1 100 101
(mm)

65° 66° 67° 68°

D

Figure 9. Maps of cumulative phase change between late 2014 and early 2019 over western

Pakistan and southern Afghanistan from time series analyses applied on Track 42 data of Sen-

tinel 1. A: Reference NSBAS solution, with labels of markers appearing in all subplots. B and

C : Corresponding Kalman filter (KF) solution with its standard deviation. D : absolute difference

between the NSBAS (A) and KF (B) solutions. Displacements and associated uncertainties are

in the direction of the satellite’s line of sight. Two main faults of the region are the Chaman fault

(CF) and the Ghazaband fault (GF) [Fattahi & Amelung, 2016]. The topography is shown in the

background in shades of gray. Cities are marked by square markers. The three black crosses and

letters locate the selected pixels in subplots of Figure 10.

related subsidence. Moreover, there is a sharp contrast of displacement across the Chaman496

fault which reaches up to ∼ 3 cm, notably in between labeled pixels A and B or across497

the northernmost segment, whereas no to little contrast is seen across the Ghazaband498

fault. This is consistent with Fattahi & Amelung [2016] in depth study of the region.499

The difference in phase reconstruction between both methods is smaller than 0.1 mm500

after the assimilation of ∼ 4 years of data, except in areas where the KF identified large501

uncertainty in the output with respect to the ±0.05 mm precision (equal to σε) valid for502

most pixels (Figure 9C and 9D). Mismatch between NSBAS and KF methods, as well503

as large uncertainties in phase and model parameters concentrate around the dune desert504

to the West and the Indus River plain in the South-East corner. There, rapid geomor-505

phological changes, seasonal oscillations and human activity impose a low interferomet-506

ric coherence and, as a result, many interferograms could not be unwrapped there.507
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Figure 10. Time series for selected 3 pixels (indicated on Figure 9). Our Kalman filter (KF)

solution with associated standard deviation (red dots) is shown alongside the solution computed

with the NSBAS method [Berardino et al., 2002, Doin et al., 2011]. Most of the KF phase so-

lutions have standard deviation too small to be visible. The corresponding functional models of

deformation are also represented: dashed black curve for NSBAS and red line for KF. An idea of

the spread of the models within one standard deviation of the KF solution is outlined by the red

shaded area delimited by the parametrized phase evolution given ai ± σai (Equation 2).

The concordance is also true at all time steps for every parameter of the state vector (dis-508

placements and functional model). Figure 10 presents three representative time series509

of deformation on single pixels. The two nearby pixels selected in Figure 10A and 10B510

exhibit highly correlated deformation with a spread of ∼ 7 cm around the functional511

model. Phase estimation is precise with ±0.05 mm and in good agreement with NSBAS512

estimations. For pixel A, the inferred velocity is found to be 3.5±0.9 mm/yr in the KF513

or 3.5 in the NSBAS solution and, similarly, the seasonal amplitude and phase shift are514

0.9± 1.2 mm and 0.7± 0.1rad or 0.9 mm and 0.74 rad. Those functional descriptions515

agree with each other and the uncertainties given by the KF are precious indicators of516

the model representativity and, thus, of the confidence in the resulting forecast.517

The time series in Figure 10C exhibits large error bars of ∼ 5 mm from mid-2016 aris-518

ing from disconnected subsets in the interferogram network. In the KF, the use of the519

functional model to forecast a disconnected phase and link subnetworks means that the520

model error propagates to subsequent phase estimations. The parametrized model of de-521

formation differs sensibly between NSBAS and KF methods (Figure 10), by opposition522

to the very good agreement found between KF and least-squares for synthetic data (Fig-523

ure 4). A first reason for this is the a priori on model parameters in the KF, which ef-524

fectively is a form of regularization leading to smaller velocity estimates of a1 = −19525
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mm/yr instead of the physically unlikely −40 mm/yr for NSBAS. A second reason is that526

the NSBAS solution does not account for errors in model and data directly and instead527

attributes a weight to phase fitting over model adjustment, so that Equation 2 only im-528

pacts phase values when interferometric connections do not allow an estimate with Equa-529

tion 1 [Doin et al., 2011] . By definition, this weight is similar to the ratio σε/σγ , and530

thus was set to 10−3.531

Therefore, our Kalman filter can be applied to old, often sparse and incomplete data (EN-532

VISAT) as well as to most recent and memory-consuming data which are collected nowa-533

days (Sentinel 1).534

4 Discussion535

4.1 Guideline to choose parameters536

Efficient KF requires a sensible parametrization of the problem, with the definition of537

appropriate errors (σε, σγ), descriptive functional model (fn(tk),∀n) and a priori knowl-538

edge on the model parameters in m0 and P0 (Section 2.3).539

For the functional model, it is a good rule of thumb to start with a simple model, which540

includes a linear polynomial and an annual periodic oscillation. The innovation or resid-541

ual term is key to assess the relevance of this parametrized model, as it quantifies the542

difference between the data and the information brought by the forecast (Section 2.2).543

If the model is appropriate the mean innovation at each time step should have a Gaus-544

sian distribution around zero on each pixel (e.g. subplots B,C versus D,E in Figure S3).545

Thus, during the iterative process, checking the distribution of this mean innovation would546

help refine the parametrized model. Moreover, some source of deformation are a priori547

known and can be included. For instance, the displacements due to earthquakes affect-548

ing the study area can be easily included using a step function, which footprint is con-549

strained by the location and timing of the event in seismic catalogs. To adapt to the di-550

versity of applications of our KF, other implemented functions include higher degree poly-551

nomials, hyperbolic tangent, exponential and logarithmic decay as well as basis spline.552

Further assumptions are required on the functional model when evaluating the a priori553

state m0 and covariance P0. m0 and P0 define expected values of the multiplicative co-554

efficients an to each functional element fn. Assuming an terms are unknown, m0 is set555

to zero vector with a likely spread in the diagonal of P0. Consequently, small P0 dims556
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Figure 11. Variations of the gain in phase and model parameter estimates (A-C ) and of the

standard deviation of those estimates (D-F ) as a function of the error terms used to initialize our

Kalman Filter. Quantitative values are derived from Equations 3, 4 and 5 for the parametrization

chose in our synthetic example. We look at one assimilation step k=1. The blue line is effectively

φ1 and the red line a3. Similar trends, with different amplitudes are observed for any an. We

vary successively all σan (in the diagonal of P0) (A,D), σγ (B,E) and σε (C,F ). In A,D σan are

multiplied by a common coefficient. The dashed grey line indicates zero gain. The black dashed

line correspond to the case where σa3 evaluated at k=1 is the a priori σa3 (at k=0). The shaded

grey area is the domain where σε¿σγ . Green shading highlights the domains where the (i) gain

on the phase is maximal, (ii) the gain on model parameter is not null (i.e. the model learns from

data), (iii) the uncertainty on phase estimate is small (∼10−2 mm) and (iv) the uncertainty on

parameter estimate is not very large (<40 mm). Variations in σγ or σan do not affect phase es-

timates. The model parameters are not adjusting to the data when the a priori on its standard

deviation is too low or when σγ is too high.

extrema as it is effectively a regularization term for an, while large P0 allows parame-557

ters to adjust freely to incoming data and stability might be lost (Figure 11, S8, S9 and558

S12). In practice, the order of magnitude of a priori errors is determined using our phys-559

ical knowledge about expected deformation. Higher values will be favored if little smooth-560

ing of the model is desired, however, this may lead to unrealistic forecast and very large561
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σan in the first few assimilation steps. The impact of the m0 and P0 will tend to van-562

ish as more data is assimilated.563

Regarding the mismodeling noise γk and network misclosure εij (Equations 1, 2), we as-564

sumed that they could be represented by constant standard deviations σγ and σε, un-565

less variations in acquisition quality (e.g. seasonal noise from snow cover) or in interfer-566

ogram construction (e.g. varying amount of filtering) are known. Typically, we have σε �567

σγ so that phase fitting is strongly favored over parametrized model adjustment (Sec-568

tion 3.1.3, Figure 11). εij could be measured by looking at the closure of triplets of in-569

terferograms and representative σε deduced. σγ should reflect the dispersion of the data570

around the parametrized model, which depends on the chosen model itself and the noise571

in the data. From previously published studies, σε is of the order of the millimeter (as-572

suming no unwrapping error) and σγ superior to the centimeter [Schmidt & Bürgmann,573

2003, Cavalié et al., 2007, López-Quiroz et al., 2009, Sudhaus & Jónsson, 2009, Agram574

& Simons, 2015].575

4.2 Efficiency of the Kalman filter576

A main improvement of the Kalman Filter (KF) over more conventional method is the577

data assimilation approach. We have shown that it is capable of accurately solving the578

same problem than a least-squares method. However, our Kalman Filter is designed to579

solve other problems relevant to our ever-expanding SAR archive. First, it can actual-580

ize a pre-existing time-series with new interferograms in a fast and neat way. Secondly,581

we have built the tool in a modular and flexible manner, so that it can adapt to the evolv-582

ing knowledge of the deformation as data is assimilated. Below, we discuss and detail583

those statements.584

The iterative procedure allows fundamental discussion about the amount and shape of585

data necessary to obtain a meaningful description of deformation. Our tests reveal that586

phases are instantaneously fitted to ±0.1 mm with later refinement as we gain informa-587

tion from new interferograms. Differently, model parameters require at least one year588

of data in order to converge, a time that depends on the variability of deformation mea-589

sured and how precise and accurate is our a priori knowledge. Velocity adjusts rather590

quickly, if no transient event is recorded, compared to the cosine and sine terms which591

require obviously more than a year. Consequently, forecast within the first year is rarely592
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accurate, which clearly reflects on the uncertainty. Once model parameters have converged593

toward their final value, the forecast is as good as the model is, independently of the elapsed594

time of assimilation. The instantaneous innovation reflects the dispersion of the data around595

the background model.596

Updating pre-existing model imply a gain of time, computing power and memory. Quan-597

titative comparisons of computing performance of NSBAS and KF methods are not easy598

because their implementation are different. Indeed, our KF is implemented for simul-599

taneous processing of pixels in parallel by Message Passing Interface, while NSBAS uses600

multiple threads with shared memory in its GIAnT version [Agram et al., 2013]. How-601

ever, it is clear that the numerical cost of updating an existing time series with the KF602

is much smaller than when retrieving all the phases at once with NSBAS. The time to603

run a KF update incorporates not only the computation time, but also the time neces-604

sary to read and write data and models. The latest has been optimized so that, in the605

example presented in Section 3.2, reconstructing phases and parameters for the 62 first606

dates takes 17 min, whereas updating the time series with the last acquisition takes only607

30 sec. As a reference, we use 2 computing nodes with 20 threads per nodes and Infini-608

Band communication. Concerning memory usage, previously computed interferograms609

do not need to be stored in order to update existing model, providing that the latest es-610

timates of mk and Pk are available. For the example in Section 3.3, this information is611

stored in a HDF5 file of 6 Go, while all interferograms weigh >25 Go.612

Another advantage of the KF is the systematic and consistent propagation of error through613

time series analysis. It is a requirement to correctly combine what we know from the data614

and from the existing model. We have seen that the absolute value of the uncertainty615

associated with computed phases is a consequence of the a priori standard deviation of616

misclosure (σε) (Figure 6), which can be measured from interferograms or inferred from617

the way interferograms are built. Additionally, the standard deviation of mismodeling618

error (σγ) will also come into play in the case of missing data for a time step or discon-619

nection in the interferometric network. This error is a more subjective parameter, as it620

depends on the functional description chosen, and the dispersion of phases around it. Nev-621

ertheless, the relative uncertainty in between pixels and time steps directly results from622

the data structure, such as the number of interferograms available or how ‘far’ is the tem-623

poral reference. Those differences allow us to discriminate pixels and weight estimates624

for subsequent processing or modeling. This is particularly relevant for long time-series625
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(<1 year). Furthermore, covariance estimation is key to combine different data sets ,such626

as InSAR and GPS [Bekaert et al., 2016, Sudhaus & Jónsson, 2009] or different frames627

of InSAR acquisitions [Jolivet & Simons, 2018].628

4.3 Limitation and perspectives629

The propagation of uncertainty highlights a fundamental limit of time series analysis.630

The time series being relative to the first date, errors tend to propagate in time. This631

is a big issue for long time series, such as ones drawn from Sentinel 1 nowadays. Numer-632

ous interferograms, especially those with long baselines, are necessary to limit this ef-633

fect inherent to any classical InSAR time series analysis. Moreover, the similarity with634

GPS time series evidenced in Section 3.2 shows the possibility of a precise re-referencing635

of the pixel location within the time series. This has been done for vertical displacement636

[Shirzaei & Bürgmann, 2018]. In addition, our comparison with GPS time series could637

be improved by correcting interferograms for ionospheric effect [Simons & Rosen, 2015,638

Liang et al., 2019].639

The pixel by pixel approach of our KF imply that we do not account for spatial covari-640

ance [Jolivet & Simons, 2018]. This covariance may take the form of a function of the641

pixel-to-pixel distance, which empirically models the isotropic part of the InSAR signal642

not due to ground deformation. Such signal mainly arises from atmospheric effects. In643

our real case example, we limited the spatial correlation by substracting a best-fitting644

ramp to interferograms and by removing the stratified tropospheric delays in each in-645

terferogram. Turbulent atmospheric delays remain, however. Nevertheless, because our646

KF is built to deal with long time series, the temporally decorrelated contributions of647

InSAR (e.g. turbulent delays) are reflected by the inter-acquisition dispersion for a given648

pixel and is empirically included in the mismodeling error. This contrast with studies649

looking at few SAR acquisitions to deal with a localized event in time [Lohman & Si-650

mons, 2005, Sudhaus & Jónsson, 2009]. Spatial covariances are also implemented to in-651

crease spatial continuity [Jolivet & Simons, 2018]. For our KF, we found that spatial con-652

tinuity of phase and function parameter naturally arise from the data which only has high653

inter-pixel noise in regions where coherence is low (e.g. Figure 10). In such region, the654

numerous ‘holes’ in assimilated interferograms ensure low confidence in the KF estimates.655

Spatial constrain would help gain confidence by adding more information in the prob-656

lem but it would dramatically increase the numerical cost and would require additional657
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parametrization [Agram & Simons, 2015, Jolivet & Simons, 2018]. Additionally, the smooth-658

ing of model parameters brought by the a priori ensure greater spatial continuity in low659

coherence area with respect to NSBAS.660

We built the Kalman filter as an accessible tool relevant to many geophysical applica-661

tions. More specific applications will be implemented in the future, taking advantage of662

the iterative procedure as well as systematically exploiting outputs of the KF not de-663

tailed in this paper, such ad the full temporal covariance matrix or the gain and inno-664

vation vectors. For instance, the iterative procedure is ideal to implement automatic de-665

tection of transient events, such as slow slip on faults. The quality of the parametrized666

model could be systematically checked by looking at the instantaneous innovation of phase667

values but also of model parameters. An automatic detection of non-gaussianity of the668

innovation distribution over time could send a warning, stop the assimilation and or au-669

tomatically update the model with predefined functions (e.g. quadratic term, Heaviside670

function). Another major improvement of our KF would be to remove σγ from the pre-671

defined parameters and include it as a parameter to be recovered during time series anal-672

ysis.673

5 Conclusion674

We developed a tool to rapidly and efficiently update pre-existing time series of defor-675

mation from a set of unwrapped interferograms as they are made available. The Kalman676

filter (KF) approach is new to InSAR time series analysis and was tested on diverse sets677

of synthetic and real interferograms in regions affected by tectonic deformations. We show678

that the filter behaves in agreement with existing methods and GNSS measurements,679

providing that we correctly estimate errors associated with interferograms as well as with680

the parametrized description of deformation. We thoroughly studied and described the681

design and impact of setup parameters. The source code is fully implemented in Python682

3 and was built as a flexible and modular tool for the community.683
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7 Appendix878

7.1 Explicit formulation of an example879

To explicitly present our Kalman filter (Equations 3, 4 and 5) and the design of each ma-

trix for InSAR data (Table 1), we describe an example below. We consider the case of

the Kalman filter at the 2nd assimilation of data (k = 2) for a linear phase model, with

an offset and a velocity φi = a0+a1ti. The state vector, then, writes as m1 = (a0, a1, φ0, φ1).

After assimilation of data at time t1, we have the covariance P1, the measurement A2

and the noise Q2 as

P1
4×4

=



σ2
a0

σ2
a1

σ2
φ0

σ2
φ1


, A2

5×4
=



1

1

1

1

1 t2 0 0


and Q2

5×5
=



q0

q1

0

0

σ2
γ


.

(9)

Because we want to exactly reconstruct phases with respect to a fixed null starting phase,880

φ0, then σφ0
must be set to zero. The parameters q0 and q1 are non-zero if there is a need881

to add systematic noise for functional parameters a0,1. This would relax the weight of882

the previous estimate of a0,1 on each forecast.883

We consider two interferograms, φ2−φ0 and φ2−φ1, from 3 acquisitions at times t0,

t1 and t2. Thus the data, observation model H2 and covariance R2 are given as

d2
1×2

= (Φ02,Φ12), H2
2×5

=

0 0 0 0 1

0 0 0 −1 1

 and R2
2×2

=

σ2
ε 0

0 σ2
ε

 (10)

Applying Equations 3,

σfφ2
=
√
σ2
a0 + σ2

a1t
2
2 + σ2

γ . and φf2 = a0 + a1t2 (11)

Note that, if data is sufficient, the phase φ1 would have been reconstructed at the pre-884

vious step with little uncertainty, so that σφ1 → 0. Following this assumption and us-885

ing the data in d2, we update the forecast with Equations 4 and 5. As an example, we886

have887
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(σφ2
)k=2 =

√
(σfφ2

)2 − 2κ(σfφ2
)4 and (φ2)k=2 = φf2 + ρκ(σfφ2

)2 (12)

(σa1)k=2 =
√
σ2
a1 − 2κσ4

a1t
2
2 + q0 and (a1)k=2 = a1 + ρκσ2

a1t2 (13)

with κ the common part of the gain to all analyzed parameters and ρ the residual ex-

pressed as

κ =
1

σ2
ε + 2(σfφ2

)2
and ρ = Φ02 + Φ12 + (φ1)k=1 − 2φf2 (14)

The subscript ‘k=2’ outlines that the values are those evaluated at the second assimi-888

lation step. The velocity a1 will be re-analyzed at each assimilation step and the phase889

φ2 may be re-analyzed if interferogram(s) Φ2k for any k are assimilated over the course890

of subsequent assimilation steps. If noise associated with interferogram construction is891

small (i.e. σε → 0), then Equation 12 tells us that the phase at time t2 is perfectly re-892

constructed with zero uncertainty. In a more general sens, Equations 12 and 13 evidence893

the dependency of any phase and model parameter estimate to error terms arising from894

governing Equations 3, 4 and 5 (see Figures 11).895
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