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CONVERGENCE OF NORMALIZED BETTI NUMBERS IN

NONPOSITIVE CURVATURE

MIKLOS ABERT, NICOLAS BERGERON, IAN BIRINGER, AND TSACHIK GELANDER

Abstract. We study the convergence of volume-normalized Betti numbers in Benjamini-
Schramm convergent sequences of non-positively curved manifolds with finite volume. In
particular, we show that if X is an irreducible symmetric space of noncompact type,
X 6= H3, and (Mn) is any Benjamini-Schramm convergent sequence of finite volume X-
manifolds, then the normalized Betti numbers bk(Mn)/vol(Mn) converge for all k.

As a corollary, if X has higher rank and (Mn) is any sequence of distinct, finite volume
X-manifolds, the normalized Betti numbers of Mn converge to the L2 Betti numbers of X .
This extends our earlier work with Nikolov, Raimbault and Samet in [1], where we proved
the same convergence result for uniformly thick sequences of compact X-manifolds.
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1. Introduction

We begin with a fair amount of general motivation, mostly from Elek [15] and Bowen
[11]. The well-versed reader can skip ahead to §1.1 for the statements of our results.

The normalized Betti numbers of a space X are the quotients

βk(X)/vol(X), where βk(X) := dimHk(X,R).

All spaces in this paper will be either Riemannian manifolds or simplicial complexes. In
the latter case, volume should be interpreted as the number of vertices.

Fix d > 0. A simplicial complex K has degree at most d if every vertex in K is adjacent to
at most d edges. In [15], Elek shows that the normalized Betti numbers of finite simplicial
complex K with degree at most d are testable, meaning that there is a way to read off
approximations of the normalized Betti numbers while only looking at bounded random
samples of K. More precisely, given ǫ > 0, there is some R(ǫ) as follows. Given K, select R
vertices of K at random and look at the R-neighborhood of each in K. Testability means
there is a way to guess from this data what the normalized Betti numbers of K are, that
is correct up to an error of ǫ with probability 1− ǫ.

This is really a continuity result, in the following sense. Consider the topological space

K =
{

pointed finite degree simplicial complexes (K, p)
}

/ ∼,

where each p ∈ K is a vertex, two pointed complexes are equivalent if they are isomorphic
via a map that takes basepoint to basepoint, and where two complexes are close if for large
R, the R-balls around their basepoints are isomorphic. Each finite complex K induces a
finite measure µK on K, defined by pushing forward the counting measure on the vertex
set V (K) under the map

V (K) −→ K, p 7→ [(K, p)].

A sequence (Kn) in K Benjamini-Schramm (BS) converges1 if the probability measures
µKn/vol(Kn) weakly converge to some probability measure on K. One can then reformulate
the testability of normalized Betti numbers above as saying:

Theorem 1.1 (Elek [15, Lemma 6.1]). If (Kn) is a BS-convergent sequence of simpli-
cial complexes, each with degree at most d, the normalized Betti numbers βk(Kn)/vol(Kn)
converge for all k.

Informally, the relationship with testability is that if we fix R > 0 and take n,m >> 0,
convergence says the measures associated to the two complexes Kn, Km will be close. So
by the definition of the topology on K, we will have that for large R, the distribution of
randomly sampled R-balls in Kn will be almost the same as that in Km, so having a way
to accurately guess the normalized Betti numbers from these (nearly identical) data sets
means that the normalized Betti numbers of Kn and Km must be close.

1Benjamini-Schramm convergence of graphs was first studied in their paper [9]. See also Aldous–Lyons [3]
for a broader picture of BS-convergence in the case of graphs.
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Recently, a number of authors, see e.g. [1, 2, 10, 11, 25], have studied the analogous
version of BS-convergence for Riemannian manifolds. Adopting the language of [2],’s set

M = {pointed Riemannian manifolds (M, p)}/pointed isometry,

endowed with the topology of pointed smooth convergence. See §2.1. A finite volume man-
ifold M induces a finite measure µM on M, by pushing forward the Riemannian measure
on M via the map p 7→ [(M, p)], and we say that a sequence (Mn) Benjamini-Schramm
(BS) converges if the measures µMn/vol(Mn) weakly converge to some probability measure.

The Riemannian analogue of Theorem 1.1 is not true, since if no geometric constraints
are imposed, we can pack as much homology as desired into a part of a manifold with
negligible volume. For example: connect sum a small volume genus g(n) surface, say with
volume 1, somewhere on a round radius-n sphere. The resulting surfaces will BS-converge
to an atomic measure on the single point [(R2, p)] ∈ M, where p ∈ R2 is any basepoint.
But by choosing g(n) appropriately, we can make the first Betti numbers whatever we like.

In this example, the real problem is injectivity radius. For a Riemannian manifold M
and a point x ∈ M we denote the injectivity radius of M at x by injM(x). Given ǫ > 0,
the ǫ-thick part and the ǫ-thin part of M are

M≥ǫ = {x ∈ M : injM(x) ≥ ǫ/2} and M<ǫ = M \M≥ǫ.

One says that M is ǫ-thick if M = M≥ǫ. Now, under geometric constraints like curvature
bounds, there is a standard way to model an ǫ-thick manifold M by a simplicial complex
K(M) with comparable volume and bounded degree: one selects an ǫ-net S in M , and lets
N(S) be the nerve of the covering of M by ǫ-balls. One can then show:

Theorem 1.2 (Elek–Bowen + ABBG). If (Mn) is a BS-convergent sequence of compact,
ǫ-thick Riemannian manifolds with upper and lower curvature bounds, then the normalized
Betti numbers bk(Mn)/vol(Mn) converge.

The above is really a special case of a more general result, see §2.3. A word is in
order about the attributions: it was originally conceived by Elek, and then written up and
published by Bowen [11, Theorem 4.1], but there is a significant error in the very last line
of Bowen’s proof, which we (ABBG) fix in §2.3. Briefly, the idea is to superimpose a bunch
of Poisson processes on Mn to create a random ǫ/2-net Sn ⊂ Mn, and then to prove that
the random nerve complexes N(Sn) BS-converge. By a slight generalization of Theorem
1.1 above, the expected normalized Betti numbers E[bk(N(Sn))]/|Sn|] will converge. Since
Mn is ǫ-thick, the Nerve Lemma implies that each N(Sn) is homotopy equivalent to Mn,
so the normalized Betti numbers bk(Mn)/vol(Mn) converge.

1.1. Results. Our interest in this paper is whether for certain manifolds of nonpositive
curvature, one can control the thin parts well enough so that BS-convergence implies con-
vergence of normalized Betti numbers, without any assumption of thickness.

Although almost all of the real work in this paper is done more generally, we start as
follows. Let X be an irreducible symmetric space of noncompact type. An X-manifold is
a complete Riemannian manifold whose universal cover is isometric to X .
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Theorem 1.3. Suppose that dim(X) 6= 3 and (Mn) is a BS-convergent sequence of finite
volume X-manifolds. Then for all k, the sequence bk(Mn)/vol(Mn) converges.

Here, the only three-dimensional irreducible symmetric spaces of noncompact type are
scales of H3. In fact, the conclusion of Theorem 1.3 is false when X = H3. As an example,
let K ⊂ S3 be a knot such that the complement M = S3 \K admits a hyperbolic metric,
e.g. the figure-8 knot. Using meridian–longitude coordinates, let Mn be obtained by Dehn
filling M with slope (1, n); then each Mn is a homology 3-sphere. The manifolds Mn → M
geometrically, see [8, Ch E.6], so the measures µMn weakly converge to µM (c.f. [5, Lemma
6.4]) and the volumes vol(Mn) → vol(M). However, 0 = b1(Mn) 6→ b1(M) = 1, so the
normalized Betti numbers of the sequence M1,M,M2,M, . . . do not converge. See also
Example 3.1 for a similar counterexample in which volume goes to infinity. In fact, there
is a real sense in which the only counterexamples come from Dehn filling. See §3.

To illustrate a special case of Theorem 1.3, let’s say that (Mn) BS-converges to X when
the measures µMn weakly converge to the atomic probability measure on the point

[(X, x)] ∈ M,

where x ∈ X is any basepoint. Now any X as above admits a (compact, even) X-manifold
M , by a theorem of Borel [26, Theorem 14.1]. A theorem of Mal’cev [24] says that π1M is
residually finite. So, we can take a tower of regular covers

· · · → M2 → M1 → M

corresponding to a nested sequence of normal subgroups of π1M with trivial intersection,
and such a sequence (Mn) will BS-converge to X , see [1] for details.

In this example, if we take M to be compact then convergence of the normalized Betti

numbers of (Mn) follows from an earlier theorem of DeGeorge and Wallach [13]β
(2)
k (X) of

the symmetric space X (see also Lück [23] for a more general result). We refer the reader
to [1, 23] for more information on L2 Betti numbers. Here, let us just remark that any
sequence of manifolds that BS-converges to X can be interleaved with the example above,
and the result still BS-converges. So, the following is a direct consequence of Theorem 1.3.

Corollary 1.4. Suppose that (Mn) is a sequence of finite volume X-manifolds that BS-

converges to X. Then for all k ∈ N, we have bk(Mn)/vol(Mn) → β
(2)
k (X).

With Nikolov, Raimbault and Samet, we proved this in [1] for sequences of compact, ǫ-
thick manifolds, using analytic methods. One could also prove it in the thick case by using
Theorem 1.2 above (the Bowen–Elek simplicial approximation technique) and interleaving
with a covering tower. In the thin case, we were able to push our analytic methods far
enough to give a proof for X = Hd, see [1, Theorem 1.8]. Hence, there is no problem in
allowing X = H

3 in Corollary 1.4, even though Theorem 1.3 does not apply.
While we were finishing this paper, Alessandro Carderi sent us an interesting preprint

where, among other things, he proves the same result as Corollary 1.4 if either k = 1,
or k is arbitrary and the symmetric space X = G/K is of higher rank and Mn is non
compact, or in most cases when X is of rank 1. His proof is quite different, he considers
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the ultraproduct of the sequence of actions of G on G/Γn. He then identifies the L2-Betti
numbers of the resulting G-action with the L2-Betti numbers of the group G.

Corollary 1.4 is particularly powerful when X has real rank at least two. In this case,
we proved with Nikolov, Raimbault and Samet that any sequence of distinct finite volume
X-manifolds BS-converges to X , see [1, Theorem 4.4]. So, Corollary 1.4 implies:

Corollary 1.5. Suppose that rankRX ≥ 2 and (Mn) is any sequence of distinct finite

volume X-manifolds. Then for all k ∈ N, we have bk(Mn)/vol(Mn) → β
(2)
k (X).

In the two corollaries above, we can identify the limit of the normalized Betti numbers
when the BS-limit is X . In general, one can think of Theorem 1.3 as giving a definition of
‘L2-Betti numbers’ for arbitrary limits of BS-convergent sequences. The measures on M
that arise as such limits have a special property called unimodularity, see [2], and it would
be interesting to find a good intrinsic definition of the ‘L2-Betti numbers’ of a unimodular
measure that is compatible with Theorem 1.3.

1.2. The proof, and generalities in nonpositive curvature. To prove Theorem 1.3,
we split into cases depending on rankRX . When the rank is one, we need to deal with
general BS-convergent sequences, but the thin parts of rank one locally symmetric spaces
are easy to understand. And when the rank is at least two, the only possible BS-limit we
need to consider is X . We now give two theorems that handle these two cases. We state
them very generally, without any assumption of symmetry.

Theorem 1.6 (Pinched negative curvature, arbitrary BS-limits). Let (Mn) be a BS-
convergent sequence of finite volume Riemannian d-manifolds, with d 6= 3, and with sec-
tional curvatures in the interval [−1, δ], for some −1 ≤ δ < 0. Then the normalized Betti
numbers bk(Mn)/vol(Mn) converge for all k.

Theorem 1.7 (Nonpositive curvature, with a thick BS-limit). Let ǫ > 0 and let (Mn) be a
sequence of real analytic, finite volume Riemannian d-manifolds with sectional curvatures
in the interval [−1, 0], and assume the universal covers of the Mn do not have Euclidean
de Rham-factors. If (Mn) BS-converges to a measure µ on M that is supported on ǫ-thick
manifolds, the normalized Betti numbers bk(Mn)/vol(Mn) converge for all k.

Let’s see how to deduce Theorem 1.3 from these results. Suppose X is an irreducible
symmetric space of noncompact type, dim(X) 6= 3. When X has rank one, X has pinched
negative curvature, so therefore Theorem 1.3 follows from Theorem 1.6. When X has
higher rank, [1, Theorem 4.4] says that any BS-convergent sequence (Mn) of X-manifolds
BS-converges to X , as mentioned above. Since X is actually ǫ-thick for any ǫ, Theorem 1.7
applies, and Theorem 1.3 follows.

The reader may wonder where we use d 6= 3 in the proof of Theorem 1.6. When d = 2,
one can deduce the claim from Gauss–Bonnet. In general, the point is that the boundary
of a Margulis tube is homeomorphic to an Sn−2-bundle over S1. When d ≥ 4, this bundle
is not aspherical, so it can be distinguished from a cusp cross section, which prevents one
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from doing Dehn filling as in our problematic 3-dimensional example. More to the point,
one can show that when d ≥ 4, Margulis tubes with very short cores have boundaries with
large volume, see Proposition 3.1, which implies that the number of Margulis tubes with
short cores one can see in a manifold is sublinear in volume. Hence, the contribution of
the tubes to homology cannot affect the normalized Betti numbers much.

The key to Theorem 1.7 is a celebrated theorem of Gromov, see [6], that bounds the
Betti numbers of an analytic manifold with sectional curvatures in [−1, 0] and no local
Euclidean deRham factors linearly in terms of its volume. Delving a bit into its proof, one
can show that in the setting of Theorem 1.7, the Betti numbers of the thin parts of the
Mn grow sublinearly with vol(Mn). One can then combine the proof of Theorem 1.2 (the
Bowen–Elek simplicial approximation argument), which handles the thick parts of the Mn,
with Mayer–Vietoris sequence to get Theorem 1.7, although one has to be a bit careful in
controlling the boundary of the thin part, where the thick and thin parts are glued.

Remark 1.1. Recently, the work [1] has been extended to analytic groups over non-
archimedean local fields [18]. For non-archimedean local fields of characteristic 0 the uni-
form discreteness assumption holds automatically for the family of all lattices and more
generally all discrete IRS. However this is not the case in positive characteristic. We ex-
pect that the analog of the stronger results obtained in the current work can be extended
to general analytic groups over non-archimedean local fields but some new techniques are
required.

1.3. Acknowledgments. M.A. was supported by the ERC Consolidator Grant 648017
and the NKFIH grant K109684. I.B. was partially supported by NSF grant DMS-1611851
and CAREER Award DMS-1654114. T.G was partially supported by ISF-Moked grant
2095/15.

2. Spaces of spaces and simplicial approximation

In this section, we discuss the topology on M and a similar topology on the space M of
all pointed metric measures spaces. We then state and prove a generalization of the Bowen–
Elek theorem on the convergence of Betti numbers of thick spaces, which was stated in a
weak form in the introduction as Theorem 1.2.

2.1. The smooth topology. In the introduction, we introduce the space

M = {pointed Riemannian manifolds (M, p)}/pointed isometry,

endowed with the topology of pointed smooth convergence. Here, a sequence (Mn, pn)
converges smoothly to (M∞, p∞) if there is a sequence of smooth embeddings

(1) φn : BM∞
(p∞, Rn) −→ Mn

with Rn → ∞ and φn(p∞) = pn, such that φ∗
ngn → g∞ in the C∞-topology, where gn are

the Riemannian metrics on Mn. We call (φn) a sequence of almost isometric maps coming
from smooth convergence. Note that each metric φ∗

ngn is only partially defined on M∞, but
their domains of definition exhaust M∞, so it still makes sense to say that φ∗

ngn → g∞ on
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all of M∞, even if the language is a bit abusive. Álvarez López, Barral Lijó and Candel [4]
have shown that M, with the smooth topology, is a Polish space.

2.2. Metric measure spaces. A metric measure space (or mm-space) is a complete,
separable proper metric space M equipped with a Radon measure vol. Let

M = {pointed mm-spaces (M, vol, p)}/pointed measure preserving isometry.

Following Bowen [11, Definitions 28 and 29], an (ǫ, R)-relation between pointed mm-
spaces (M1, vol1, p1) and (M2, vol2, p2) is a pair of isometric embeddings

Mi −→ Z, i = 1, 2

into some common metric space Z having the following properties:

(a) dZ(p1, p2) < ǫ,
(b) BM1(p1, R) ⊂ (M2)ǫ and BM2(p,R) ⊂ (M1)ǫ,
(c) for all (closed, say) subsets Fi ⊂ BZ(pi, R), we have

vol1(F1) < (1 + ǫ)vol2( (F1)ǫ ) + ǫ, vol2(F2) < (1 + ǫ)vol1( (F2)ǫ ) + ǫ.

In other words, (a), (b) and (c) say respectively that the images of the base points are
close, the images of M1,M2 are close in the Chabauty topology, and the push forwards of
the measures are close in the weak topology2.

We endow M with the topology generated by (ǫ, R)-relations. That is, a basic open set
in M is obtained by picking some element of M and some ǫ, R > 0, and considering all
other elements of M that are (ǫ, R)-related to the first. Bowen shows that M is separable
and metrizable, see [11, Theorem 3.1]. (The way Bowen initially defines the topology on
M in [11, Definition 5] is slightly different, but he proves that the two points of view are
equivalent in [11, Proposition B.4].)

Lemma 2.1. Suppose that (Mi, pi), i = 1, 2, are pointed Riemannian d-manifolds and for
some R > 0 there is an embedding φ : BM1(p1, R) −→ M2 with φ(p1) = p2 and

(2) (1− δ)|v| ≤ |dφ(v)| ≤ (1 + δ)|v|, ∀v ∈ TBM1(p1, R).

Then if δ = δ(ǫ, d) is small, the triples (Mi, voli, pi) are (ǫ, R)-related, where voli is the
Riemannian measure on Mi.

Proof. Take δ < ǫ and let φ be as in the statement of the lemma. We want to produce an
(ǫ, R) relation between M1 and M2. Define the common space Z as the disjoint union

Z = M1 ⊔M2,

endowed with a metric that restricts to the given metrics on M1,M2, and where for x ∈
M1, y ∈ M2,

d(x, y) = inf{d(x, x′) + δ + d(φ(x′), y) | x′ ∈ BM1(p1, R + 1)}.

2Note that Bowen does not include multiplicative factors of (1+ǫ) in his version of (c), but this difference
does not affect the resulting topology on M below.
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We now verify that Z gives an (ǫ, R)-relation. First, dZ(p1, p2) = δ < ǫ. Second, if
x ∈ M1 ∩ BZ(p1, R) = BM1(p1, R), then d(x, φ(x)) = δ < ǫ, so x ∈ (M2)ǫ. Third, if
F1 ⊂ BZ(p1, R) is a closed subset, then we have

vol1(F1) = vol1(F1 ∩M1) ≤ (1 + δ)dvol2(φ(F1 ∩M1)) ≤ (1 + δ)dvol2( (F1)δ ),

where the first inequality follows from (2), and the second follows from the fact that
d(x, φ(x)) = δ. So, as long as δ is small, the right side will be at most (1 + ǫ)vol2((F1)ǫ).
The two remaining parts of properties (a) and (b) follow similarly. �

As an immediate corollary, we get the following:

Corollary 2.2. The natural inclusion M −→ M from the space of pointed Riemannian
manifolds (with the smooth topology) to the space of pointed mm-spaces is continuous.

We will need a slight variant of M for our work below. Let

M
ext = {(M, vol, p, E) | (M, vol, p) ∈ M, E ⊃ M a super-metric space}/ ∼,

where a super-metric space is just a proper, separable metric space that contains M as a
submetric space. We call a quadruple (M, vol, p, E) an extended pointed mm-space; two
quadruples are identified in Mext if there is a pointed isometry between the super-metric
spaces E that restricts to a measure preserving isometry from one mm-space M to the
other. The topology on Mext is similar to that on M: we say that (Mi, voli, pi, Ei), i = 1, 2,
are (ǫ, R)-related if there are isometric embeddings

Ei −→ Z, i = 1, 2

that restrict to give an (ǫ, R)-relation between the triples (Mi, voli, pi), and where also

(3) BE1(p1, R) ⊂ (E2)ǫ, BE2(p2, R) ⊂ (E1)ǫ.

We then have the following variant of Lemma 2.1.

Lemma 2.3. Suppose that (Mi, pi), i = 1, 2, are pointed Riemannian d-manifolds with
distinguished subsets Ti ⊂ Mi and that for some R > 0 there is an embedding

φ : BM1(p1, R) −→ M2

with φ(p1) = p2 that satisfies the following three properties:

(1) (1− δ)|v| ≤ |dφ(v)| ≤ (1 + δ)|v|, ∀v ∈ TBM1(p1, R).
(2) φ−1(T2) ⊂ (T1)δ, and φ(T1 ∩BM1(p1, R)) ⊂ (T2)δ,
(3) vol1(φ

−1(T2)△ T1) < δ,

where △ is the symmetric difference. Then if δ = δ(ǫ, d) is sufficiently small, the quadruples
(Ti, voli|Ti

, pi,Mi) are (ǫ, R)-related, where here voli is the Riemannian measure on Mi.

Proof. The proof is similar to that of Lemma 2.1. With Z = M1 ⊔ M2 and d the metric
defined in Lemma 2.1, equation (3) above follows exactly as before as long as δ < ǫ. So,
we just need to verify that Z gives an (ǫ, R)-relation between the subsets T1, T2. Property
(a) is immediate from the definition of the metric on Z. For (b), if x ∈ BT1(p1, R1) then
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φ(x) ⊂ (T2)δ, so dZ(x, T2) < 2δ. So, (b) holds if δ ≤ ǫ/2, as the proof of the other part is
similar. For (c), suppose F ⊂ BZ(p1, R) is closed. Then

vol1|T1(F1) = vol1(F1 ∩ T1)

≤ vol1(F1 ∩ φ−1(T2)) + vol1(φ
−1(T2)△ T1)

< (1 + δ)dvol2(φ(F1) ∩ T2)) + δ

= (1 + δ)dvol2|T2(φ(F1)) + δ

So since φ(F1) ⊂ (F1)δ, (c) holds if (1 + δ)d ≤ (1 + ǫ). The other part of (c) is similar. �

2.3. Normalized Betti numbers of mm-spaces. If (M, vol) is a finite volume mm-
space, let µ(M,vol) be the measure on M obtained by pushing forward the vol under

M −→ M, p 7−→ (M, vol, p).

A sequence of finite volume mm-spaces (Mn, voln) Benjamini-Schramm (BS) converges if
the associated measures µ(Mn,voln)/voln(Mn) weakly converges to some probability measure
on M.

An mm-space M is special if M has finitely many path components3, the measure vol
is non-atomic and fully supported, and metric spheres have measure zero. In [11], Bowen
claims the following theorem, and justifies it by fleshing out an argument of Elek.

Theorem 2.4 (see [11, Theorem 4.1]). Suppose (Mn.voln) is a BS-convergent sequence of
finite volume special mm-spaces and that there are constants r, v0, v1 such that

(1) all r/2-balls in Mn have volume at least v0,
(2) all 20r-balls have volume at most v1,
(3) all ρ-balls in Mn with ρ < 10r are strongly convex, meaning that for any two points

x, y in a ρ-ball B, there is a unique point z ∈ B with d(x, z) = d(y, z) = 1/2d(x, y).

Then the normalized Betti numbers bk(Mn)/vol(Mn) converge for all k.

As mentioned in the introduction, there is a significant error in the very last line of
Bowen’s proof of this theorem. Below, we will prove a slightly more (and less) general
theorem, Theorem 2.5. While it does not strictly imply Theorem 2.4, it can be used in
all Bowen’s applications. See the beginning of the proof of Theorem 2.5 at the end of the
section for an explanation of the error in Bowen’s argument.

To motivate the more general result, recall that Elek–Bowen’s approach involves approx-
imating each Mn by the nerve complex N associated to an open cover by balls centered
at points of a suitable net S ⊂ M . Condition (3) is only used to say that the nerve is
homotopy equivalent to Mn, so we should be able to state a version of Theorem 1.2 in
which (3) is omitted, if we talk about the Betti numbers of the nerve complexes instead of
the Betti numbers of the Mn. To make a result that is compatible with the machinery of
Gelander described in §3.2, it is also important for us to take nets in the Mn, but construct

3Bowen requires M to be path connected in his definition of special, but finitely many components
suffices everywhere below.
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the corresponding nerves using balls in larger spaces En. In other words, we need to work
with the extended mm-spaces of §2.2.

To that end, we say that an extended mm-space M = (M, vol, E) is finite volume or
special if the mm-space M is. When M has finite volume, we can construct a finite measure
µM on Mext by pushing forward vol under the map

p ∈ M 7→ (M, vol, p, E).

If Mn = (Mn, voln, En) is a sequence of extended mm-spaces, then we say that (Mn)
BS-converges if the sequence of measures µMn/voln(Mn) weakly converges.

We define an (r0, r1)-net in M to be a subset S ⊂ M such that

(1) S is r0-separated, i.e. d(x, y) > r0 for all x 6= y ∈ S,
(2) S r1-covers M , i.e. for every p ∈ M , there is some x ∈ S with d(p, x) < r1,

and an [r2, r3]-weighted (r0, r1)-net is a (r0, r1)-net S with a function

ρ : S −→ [r2, r3],

where here r0 < r1 ≤ r2 < r3. Given any weighted net (S, ρ) in M, we let NE(S, ρ) be the
nerve complex associated to the collection of E-balls BE(x, ρ(x)), where x ∈ S.

Theorem 2.5. Fix k, let Mn = (Mn, voln, En) be a BS-convergent sequence of extended
finite volume special mm-spaces and suppose we have constants vmin > 0, r1 > r0 > 0, and
r3 > r2 ≥ 2r1, a function vmax : R+ −→ R+ such that

(1) all r0/2-balls in every Mn have volume at least vmin,
(2) for all r ∈ R+, every r-ball in Mn has volume at most vmax(r).

Now suppose that we have a sequence Bn of positive numbers such that

(3) for any sequence of [r2, r3]-weighted (r0, 2r1)-nets (Sn, ρn) in Mn,
∣

∣bk(NEn(Sn, ρn))− Bn

∣

∣

voln(Mn)
→ 0.

Then the ratios Bn/vol(Mn) converge.

In our two applications, Theorem 1.6 and Theorem 1.7, the numbers Bn will be the Betti
numbers bk(Mn) and the Betti numbers bk(En), respectively. We state it as above to have a
single unified statement that applies in both situations. Note that when applying Theorem
2.5, one has to show that the Betti numbers of the nerve complexes associated to all nets
in (3) are approximated by a single sequence Bn. This usually requires an argument that
goes through the Nerve Lemma at some point.

Given a sequence (Mn, voln) of finite volume special mm-spaces, we can apply Theo-
rem 2.5 to the extended mm-spaces (Mn, voln,Mn), with Bn = bk(Mn), to get a slightly
weaker version of Theorem 2.4. The difference is that hypothesis (2) in Theorem 2.5 is
formally stronger than it is in Theorem 2.4, but in basically all applications, upper bounds
on ball volumes come from curvature lower bounds, which imply both versions of (2). Note,
however, that by the Nerve Lemma the nerve of any covering of Mn by strongly convex
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balls is homotopy equivalent to Mn, so condition (3) in Theorem 2.4 implies condition (3)
in Theorem 2.5 with Bn = bk(Mn), after adjusting the constants appropriately.

Before starting the proof, we record one elementary measure theoretic lemma.

Lemma 2.6. Suppose that (M, vol) is a mm-space and that every ball in M with radius
in the interval [r0/2, r0] has volume between vmin and vmax. Set c = v2min/(2vmax), c

′ =
v2min/(2v

2
max). Then for every measurable subset A ⊆ M , we have that

vol
(

{

x ∈ A
∣

∣

∣
vol(Br0(x) ∩ A) ≥ c ·

vol(A)

vol(M)

}

)

≥ c′ ·
vol(A)

vol(M)
· vol(A).

Here, the ball Br0(x) is the metric ball in M . Note that if vol(A)/vol(M) is bounded
away from zero, the lemma says that a definite proportion of A is taken up by points x ∈ A
such that A takes up a definite proportion of Br0(x).

Proof. Note that
∫

A

vol(Br0(x) ∩A) dx = vol2({(a, b) ∈ A2 | d(a, b) < r0})

≥
1

vmax

vol3({(x, a, b) ∈ M ×A2 | d(a, x) < r0/2 and d(a, b) < r0})

≥
1

vmax
vol3({(x, a, b) ∈ M ×A2 | d(a, x) < r0/2 and d(x, b) < r0/2})

=
1

vmax

∫

M

vol(Br0/2(x) ∩A)2 dx

≥
1

vmaxvol(M)

(
∫

M

vol(Br0/2(x) ∩ A) dx

)2

=
1

vmaxvol(M)

(
∫

A

vol(Br0/2(x)) dx

)2

≥
v2minvol(A)

2

vmaxvol(M)

= 2 ·

(

c ·
vol(A)

vol(M)

)

· vol(A).

From this the lemma follows immediately, since if f : A −→ [0, max] is a function then
∫

A

f ≥ 2 · ǫ · vol(A) =⇒ vol{x ∈ A | f(x) ≥ ǫ} ≥
ǫ

max
vol(A). �

2.4. The proof of Theorem 2.5. Naively, an ideal approach to the theorem would be as
follows. One would first construct a random weighted net (Sn, ρn) in each Mn, and then
prove that the associated random nerve complexes NEn(Sn, ρn) BS-converge. Then one
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would apply Elek’s Theorem 1.1 (or rather, a version for random complexes from Bowen’s
paper), to get that the sequence of expected normalized Betti numbers

(4)
E[bk(NEn(Sn, ρn))]

E[|Sn|]
=

bk(Mn)

E[|Sn|]

converges. Here, the equality is by condition (3) in the statement of the theorem. More-
over, if the random nets are constructed in some canonical, local way (Bowen builds his
random nets from Poisson processes), one could then prove that the ratio E[|Sn|]/voln(Mn)
converges, and the theorem would follow.

The problem with this approach is that one really needs to make the ‘random nerve
complex’ construction a continuous map

(5) M
ext −→ P(K),

where P(K) is the space of probability measures on the space of pointed complexes. For
then we can produce the sequence of random nerve complexes by pushing forward the
weakly convergent sequence of measures µMn/voln(Mn) on Mext, and hence the random
nerves will also be weakly convergent. To make the map (5), one needs to convert the
base point of a pointed space (M, p) into a base point for the corresponding random nerve
complex, i.e. to a point in the random net S ⊂ M . Essentially, one just takes the closest
point in S to p, but then there are problems because in order to apply Elek’s result we
need to produce measures on K in which there is an equal probability of choosing any base
point, and the Voronoi cells corresponding to the points in a net S ⊂ M may not all
have the same measure. One avoids this problem by conditioning on the event that the
base point p ∈ M lies in some small, fixed-volume ball around a net point. This works
fine, but then it turns out that the expectations in (4) are now taken with respect to the
conditioned measures. (Bowen’s mistake is that he forgot this fact4.) While the numerator
is still bk(Mn), this change alters the denominator in such a way that requires to prove that
E[|Sn|

2]/voln(Mn)
2 converges, instead of E[|Sn|]/voln(Mn). (Here, we are writing both

expectations with respect to the original measures, not the conditioned ones.) This turns
out to be quite subtle, and requires a complete restructuring of the proof.

The way we fix the proof is as follows. Bowen constructs his random nets Sn ⊂ Mn

iteratively, by starting with a Poisson process, throwing out points that are too close
together, and then moving on to a new Poisson process to fill in the gaps. Repeating this
infinitely many times guarantees that a net is produced almost surely. Instead of doing
this, we just go through finitely many Poisson processes. While this doesn’t always produce
a net, we can show that it produces some discrete subset that with high probability can be
extended to a net without using too many extra points. Most of Bowen’s argument goes
through when we replace his nets with our ‘almost-nets’, and it turns out that using our
construction, it is much easier to estimate the quantity analogous to E[|Sn|

2].

4The mistake is in the very last line of the proof, in which he uses that E[vol(Mi(v0/2))]/vol(Mi) =
λi(MS(v0/2)), the point being that the expectation should really be taken with respect to λ′

i, while he is
assuming it is taken with respect to λi.
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In the rest of the section, we formalize the argument sketched above.

2.4.1. Random ‘almost-nets’. Fix a finite volume special mm-space (M, vol) and real num-
bers 0 < r0 < r1. For each j ∈ N, let P j be a Poisson process on M with intensity 1 and let
f j : P j −→ [0, 1] be a random function whose values are chosen independently according
to Lebesgue measure. Each function f j is almost surely injective, and when it is, it induces
a linear order “ < ” on P j via s < t ⇐⇒ f j(s) < f j(t). Set

P j(< s) = {t ∈ P j | t < s}.

Pick some r with r0 < r < r1 and choose a continuous function

φ : [0,∞) −→ [0, 1], where φ(t) = 0 if t ≤ r0, φ(t) = 1 if t ≥ r.

For each pair s, t ∈ P , let X(s, t) be a Lebesgue-random element of [0, 1], where the X(s, t)
are independent as s, t are varied. We now recursively define subsets

Sj ⊂ P j, S≤j := S1 ∪ · · · ∪ Sj, S<j := S1 ∪ · · · ∪ Sj−1,

where given S1, . . . , Sj−1, the rule is that for s ∈ P j, we say that s ∈ Sj if

for all t ∈ P j(< s) ∪ S<j, φ(d(s, t)) ≥ X(s, t).

In other words, go through all the elements s of a Poisson process P 1 one by one, in some
random order. For each s, backtrack through all previously considered t, flip for each a
[0, 1]-valued coin, and add s to S1 if for each t, the value φ(d(s, t)) is bigger than the result
of the coin flip. After finishing with all available s, switch over to a new Poisson process,
and add points to S2 using a similar rule, comparing them against previous points in P 2

and also against all points in S1. Then repeat this with a third Poisson process to define
S3, and a fourth to define S4, etc...

For later use, we record:

Claim 2.7. There is some c = c(r0, r1, vmin, vmax) > 0 such that for all j, if M satisfies
conditions (1) and (2) in the statement of the theorem, we have E[|Sj|] ≥ c · vol(M).

Proof. Certainly, it suffices to set j = 1. Let B1, . . . , Bk be a maximal collection of disjoint
r0-balls in M , and note that k ≥ c1 · vol(M) for some uniform c1, by (1) and (2). For
each i, there is some definite probability that the Poisson process P1 will intersect the
r1-neighborhood of Bi in a single point x that lies in Bi. When this happens, this x will
automatically be included in S1. So, E[|S1 ∩ Bi|] ≥ c2 for some uniform c2 > 0. Hence,
E[|S1|] ≥ c1 · c2 · vol(M) by linearity of expectation. �

By the definition of φ, we will almost never add s to Sj if d(s, t) ≤ r0 for some previously
considered t. So, for each j, the subset S≤j is almost surely r0-separated. On the other
hand, we cannot ensure that any particular S≤j is an (r0, r1)-net, since it may not r1-cover
M . (You do get a net if you take j = ∞, as in Bowen’s proof.) However, define

nj = min
{

|T \ S≤j|
∣

∣ T is a (r0, 2r1)-net in M with T ⊃ S≤j
}

,

a random integer associated to each choice of M and j. We prove:
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Proposition 2.8. Given ǫ > 0, there is some j = j(ǫ, r0, r1, vmin, vmax) such that for any
M satisfying (1) and (2) in the statement of the theorem, we have

E[nj ]

vol(M)
< ǫ.

Proof. For each j, write Rj for the complement of the r1-neighborhood of S≤j ⊂ M , and
let Rj

2 be the complement of the 2r1-neighborhood. If X is any maximal r0-separated set
in the space Rj

2, then the M-balls Br0(x), x ∈ X are disjoint and contained in Rj, so

vmin · |X| ≤ vol(Rj).

Since the union X ∪ Sj is a (r0, 2r1)-net in M , this means nj ≤ vol(Rj)/vmin, so to prove
the proposition it suffices (after adjusting ǫ) to find j such that

(6)
E[vol(Rj)]

vol(M)
< ǫ.

Claim 2.9. There is some δ = δ(ǫ, r0, r1, vmin, vmax) < 1 as follows. Suppose a fixed S≤j,
and hence Rj, is given, and that vol(Rj)/vol(M) ≥ ǫ/2. Then

E[vol(Rj+1) |Rj] ≤ δ · vol(Rj).

Here, we write E[vol(Rj+1) |Rj] to indicate that this is the expected volume of Rj+1,
conditioned on our particular choice of a fixed Rj. This is to remove some ambiguity when
we apply the claim later. In the proof of Claim 2.9, though, we will always consider Rj as
fixed and just write E[ · ], omitting any reference to Rj. Also, to avoid a proliferation of
constants in the following proof, we will use the notation x � y to mean that x ≤ Cy for
some constant C > 0 depending only on ǫ, r0, r1, vmin, vmax.

Proof. Fix c, c′ as in Lemma 2.6. Let Rj
◦ be the subset of R

j consisting of all points x ∈ Rj

such that vol(Br1(x) ∩ Rj) ≥ c · ǫ/2, and let Rj
◦◦ be the further subset consisting of all

points x ∈ Rj
◦ such that vol(Br1(x) ∩Rj

◦) ≥ c · ǫ/2. Then Lemma 2.6 says that

vol(Rj
◦) ≥ vol(Rj

◦◦) � vol(Rj).

Pick a maximal r0-separated (say) subset Z ⊂ Rj
◦◦. By assumption, there is an upper

bound for the volumes of all the r0-balls around points z ∈ Z, so since Rj
◦◦ is contained in

the union of all such balls, our lower bound on the volume of Rj
◦◦ implies that

(7) |Z| � vol(Rj).

For each z ∈ Z ⊂ Rj
◦◦, the volume of Br1(z) ∩ Rj

◦ is bounded below and the volume of
B2r1(z) is bounded above, so if P j+1 is the Poisson process used in defining Sj+1, we have

(8) P j+1 ∩ Br1(z) ∩ Rj
◦ 6= ∅ and |P j+1 ∩ B2r1(z)| = 1

with some definite probability. Hence, by linearity of expectation and (7),

E
[

∣

∣{z ∈ Z | (8) holds for z}
∣

∣

]

� vol(Rj).
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But for every z such that (8) holds, the single point of P j+1 that is in Br1(z) ∩ Rj
◦ is at

least r1-away from every other point of P j+1, and is also at least r1-away from S≤j , since
z ∈ Rj . Hence, this single point lies not just in P j+1, but in Sj+1. It follows that

(9) E
[

|{x ∈ Sj+1 ∩ Rj
◦ |Br1(x) ∩ Sj+1 = {x}} |

]

� vol(Rj).

Note that Rj+1 = Rj \
⋃

x∈Sj+1 Br1(x). By definition of Rj
◦, the r1-ball around each

x ∈ Sj+1 ∩ Rj
◦ intersects Rj in a set with volume bounded below, and if we only look at

those x where Br1(x) ∩ Sj+1 = {x}, all the balls Br1(x) are disjoint. So by (9),

E

[

vol

(

Rj ∩
⋃

x∈Sj+1

Br1(x)

)]

� vol(Rj),

and the claim follows. �

We now complete the proof of the proposition. Let σj be the law of S≤j. Then condi-
tioning on whether vol(Rj)/vol(M) ≥ ǫ/2 or not, we have

E[vol(Rj+1)]

vol(M)
≤

ǫ

2
+

∫

vol(Rj)/vol(M)≥ǫ/2

E[vol(Rj+1) |Rj]

vol(M)
dσj .(10)

Let’s call the second term on the right in (10) Xj+1. Then by Claim 2.9, we have

Xj+1 ≤ δ ·

∫

vol(Rj )/vol(M)≥ǫ/2

vol(Rj)

vol(M)
dσj ≤ δ ·

∫

vol(Rj−1)/vol(M)≥ǫ/2

E[vol(Rj)]

vol(M)
dσj−1 ≤ δXj

for all j, where the middle inequality uses the inclusion Rj ⊂ Rj−1 to say that the condition
on vol(Rj) is at least as restrictive as the condition on vol(Rj−1). Since δ < 1 is fixed, there
is some uniform j = j(ǫ, r0, r1, vmin, vmax) such that Xj < ǫ/2, and then

E[vol(Rj)]

vol(M)
< ǫ/2 + ǫ/2 = ǫ

as desired in (6). �

We will also need the following variance estimate.

Lemma 2.10. Given j, there is some C = C(j, r0, r1, vmin, vmax) such that for any M
satisfying (1) and (2) in the statement of the theorem, we have

V ar[|S≤j|] := E[|S≤j|2]− E[|S≤j|]2 < Cvol(M).

Proof. Recall from the construction that S≤j = S1 ∪ · · · ∪ Sj, where each Sj is the set of
all points s in a Poisson process P j on M such that

(11) ∀t ∈ P j(< s) ∪
⋃

i<j

Si, φ(d(s, t)) ≥ X(s, t).

The main ingredient is the following claim.

Claim 2.11. Suppose that A,B ⊂ M and that d(A,B) ≥ 2 · (j + 1) · r1. Then the random
subsets S≤j ∩ A and S≤j ∩ B are independent.
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Proof. For s, t as in (11), if d(s, t) ≥ r1 then φ(d(s, t)) = 1 ≥ X(s, t) ∈ [0, 1]. So, the deci-
sion whether to include s in Sj only depends upon the points t that lie in an r1-neighborhood
of s. So, suppose d(A,B) ≥ (j + 1) · r1. The intersections P j ∩ Nr1(A) and P j ∩ Nr1(B)
are independent, since P j is a Poisson process, and the order of the elements in the first
set is also independent of the order in the second, since the order on P j is determined by
picking independent, random values in [0, 1] for each s ∈ P j. Assuming inductively that
S<j ∩Nr1(A) and S<j ∩Nr1(B) are independent, the result follows for j. �

Fix some positive v < vmin. For x ∈ M , let B(x) be the unique volume-v ball around
x. Here, we are using that M is special and satisfies condition (1) in the theorem; (1) also
implies that B(x) has radius less than r0/2. Given S≤j, let

S≤j(v) = ∪x∈S≤jB(x) ⊂ M.

Note that since S≤j is r0-separated, this is a disjoint union. Then if χj is the characteristic
function of S≤j(v), and σj is the law of S≤j, we have

v2E[|S≤j|2] =

∫ ∫

M×M

χj(x)χj(y) dx dy dσj =

∫

M×M\

∫

χj(x)χj(y) dσj dx dy,

by Fubini. Let D ⊂ M ×M be the subset consisting of all pairs (x, y) such that

d(x, y) ≤ 2 · (j + 1) · r1 + 2r0.

(Compare with Claim 2.11.) Then we can split the outer two integrals above into an
integral over D, and an integral over M ×M \D. By condition (2) in the statement of the
theorem, we have vol(D) = O(vol(M)), so since |χj(x)χj(y)| ≤ 1, we have

v2E[|S≤j|2] =

∫

M×M\D

(
∫

χj(x)χj(y) dσj

)

dxdy +O(vol(M))

But for a fixed x, we have χj(x) = 1 exactly when there is some point of S≤j in the set Ax

of all the centers of volume-v balls in M that contain x. Now Ax ⊂ Br0(x), so if (x, y) ∈ D
then the distance d(Ax, Ay) is bigger than the constant from Claim 2.11, and hence the
random variables χj(x) and χj(y) are independent. Thus, the above

=

∫

M×M\D

(
∫

χj(x) dσj

)(
∫

χj(y) dσj

)

dxdy +O(vol(M)).

But using again that vol(D) = O(vol(M)), the above

=

∫

M×M

(
∫

χj(x) dσj

)(
∫

χj(y) dσj

)

dxdy +O(vol(M))

= v2E[|S≤j|]2 +O(vol(M)),

and the Lemma follows. �
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Finally, in the proof of Theorem 2.5, it will be crucial that the random S≤j ⊂ M depend
continuously on M in the appropriate sense. To say precisely what this means, let

M
ext
sp = { pointed, extended special mm-spaces (M, vol, p, E) }/ ∼ ⊂ M

ext,

MS
ext = { 5-tuples (M, vol, p, E, S), where S ⊂ M is discrete }/ ∼,

where here sp stands for special, and in the second line ∼ is generated by isomorphisms of
pointed extended mm-spaces that preserve the distinguished subsets. If M = (M, vol, p, E)
is an extended special, pointed mm-space and j is fixed, we can choose a random element
of MS

ext by choosing a random S≤j ⊂ M as above. The law of this random element is a
measure on MS

ext depending on M, and this defines a continuous function

(12) σ : Mext
sp −→ P(MS

ext).

Here, continuity follows from exactly the same arguments as [11, Lemma 4.2]. The only
difference is that our mm-spaces are extended, but since the extensions E do not appear
anywhere above, their presence does not affect the proof, except in notation.

2.4.2. Random nerve complexes. Above, we defined the space MS
ext of pointed, extended

special mm-spaces with distinguished discrete subsets. Here, we explain how to construct a
random nerve complex from certain elements of MS

ext, in a way that depends continuously
on the input. Consider the subset

(MS
ext)′ ⊂ MS

ext

consisting of all tuples (M, vol, p, E, S) such that there is a unique element of S that is
closest to p. Given some such tuple, construct a simplicial complex by choosing indepen-
dently and Lebesgue-randomly a number ρ(x) ∈ [r2, r3] for each x ∈ S and taking the nerve
NE(S, ρ) of the collection of balls BE(x, ρ(x)), where x ∈ S. Note that the balls are in E,
not in M . The unique element of S closest to p is a natural base point for the nerve, and
if K is the connected component of NE(S, ρ) containing p then we have a map

(13) (MS
ext)′ −→ P(K),

where K is the space of all pointed, finite degree simplicial complexes, P(·) denotes the
space of probability measures, and the map sends (M, vol, p, E, S) to the (law of the)
random pointed complex (K, p) described above. Note that properties (1) and (2) in the
statement of the theorem imply that there is a universal degree bound for all constructed
K, that is independent of n.

Claim 2.12. The map in (13) is continuous.

Proof Sketch. In his Claim 1 at the beginning of the proof of Theorem 4.1, Bowen shows
that a variant of (13) is continuous. Here are the discrepancies with our version. First,
Bowen works only with [r2, r3] = [5r0, 6r0], but his argument obviously generalizes. He
also does not use extended mm-spaces, and so the map he constructs is from the subset
MS′ ⊂ MS of all (M, p, vol, S) where there is a unique closest point in S to p, and the balls
he uses in constructing the nerve are just in M , not in some larger space. However, the
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quick proof of continuity works verbatim in our extended setting: basically all that is used
is that the topology comes from pointwise Hausdorff convergence of the mm-spaces M , so
since we are putting the same topology on the super-sets E, the argument extends. �

2.4.3. Convergence of normalized Betti numbers. We now begin on the main argument for
the proof of Theorem 2.5. Much of the work below is from [11], altered so that we use our
S≤j instead of his random nets.

Let Mn = (Mn, voln, En), be as in the statement of Theorem 2.5, and fix ǫ > 0. Pick
j = j(ǫ, r0, r1, vmin, vmax) as in Proposition 2.8, and let σn be the law of the random subset
S≤j ⊂ Mn constructed above. For simplicity in notation, we’ll drop the subscript j below
and just write Sn for a σn-random subset of Mn.

For each n, let λn be the measure on MS
ext obtained by pushing forward the product

measure (voln/voln(Mn))× σn under the map

(14) Mn × { discrete S ⊂ Mn } −→ MS
ext, (p, S) 7→ (Mn, voln, p, En, S)

But λn can also be obtained by pushing forward µMn/voln(Mn) via the continuous map
σ : Mext

sp −→ P(MS
ext) from (12) to get a measure on P(MS

ext), and then taking the
expected value. In symbols,

µMn ∈ P(Mext
sp )

σ∗7−→ σ∗(µMn) ∈ P(P(MS
ext))

∫

7−→ λn ∈ P(MS
ext).

Since both the above maps are continuous and (µMn) is weakly convergent, it follows that
(λn) converges weakly to some probability measure λ∞ on MS

ext.
Fix v > 0. If S ⊂ M is a discrete set, let S(v) be the union of all volume-v closed balls

in M that are centered at points of S. Let

MS
ext(v) ⊂ MS

ext

be the subset consisting of all tuples (M, vol, p, S, E) such that p ∈ S(v). Fixing n and
0 ≤ v ≤ vmin/2, say, the volume-v balls around the points of an (r0, r1)-net in Mn are all
disjoint, since by hypothesis balls of radius r0/2 have volume at least vmin. Hence, a λn-
random element of the set MS

ext(v) can be described by first picking Sn ⊂ Mn randomly
according to σn, and then choosing a random point from one of the |Sn|-many disjoint
volume-v balls centered at points of Sn. It follows that

(15) λn(MS
ext(v)) = v ·

E[|Sn|]

voln(Mn)
,

where Sn is chosen σn-randomly. So, we have that for 0 < v < v′ ≤ vmin/2 and all n,

λn(MS
ext(v′))

λn(MS
ext(v))

= v′/v.

It then follows just like in the proof of Bowen’s Claim 2 that

(16) λ∞(∂MS
ext(vmin/2)) = 0, and λn(MS

ext(vmin/2)) → λ∞(MS
ext(vmin/2)).
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Finally, note that by Claim 2.7, we have some uniform c = c(r0, vmin, vmax) such that
E[|Sn|] ≥ c · voln(Mn). This gives a lower bound for (15), and taking the limit gives

(17) λ∞(MS
ext(vmin/2)) ≥

1

2
cvmin > 0.

Restrict each λn to MS
ext(vmin/2) and normalize to produce probability measures

λ′
n ∈ P(MS

ext(vmin/2)).

By (16) and the Portmanteau Theorem, we have λ′
n → λ′

∞ ∈ P(MS
ext(vmin/2)). Note that

since all our nets are r0-separated, and r0/2-balls have volume at least vmin, we have

MS
ext(vmin/2) ⊂ (MS

ext)′.

Hence, we can apply (13) to the λ′
n to get a sequence νn of probability measures on the

space K of all pointed, finite degree complexes. Note that each νn is supported on the finite
subset of K consisting of all pointed complexes with at most, say, vol(Mn)/vmin vertices.

Now for each n, when we pick a λ′
n-random element of MS

ext(vmin/2), there is an equal
probability that the random basepoint pn will end up in the ball with volume vmin/2 around
any given point in the random subset Sn. Hence, νn assigns equal weight to all the possible
basepoints for a complex. So, Bowen’s Lemma 2.2 implies that the limit

(18) lim
n→∞

E[bk(Kn)]

E[vol(Kn)]

exists for all k, where for each n, a pointed complex (Kn, ⋆) is chosen νn-randomly. (Note
that neither the Betti numbers nor the volume of a complex depend on the base point,
though, so it is not necessary to write ⋆ in (18).)

Let’s try to unpack (18) into an expression just involving the spaces Mn = (Mn, voln, En)
and the associated σn-random subsets Sn ⊂ Mn. Now the expectations in (18) are taken
with respect to the measure νn, which is constructed using σn, and tracing back through
the construction, the key point is the following:

Claim 2.13. If f : K −→ R≥0 is a Borel function that is basepoint independent then

E[f(K)] =
vmin

2voln(Mn) · λn(MS
ext(vmin/2))

· E
[

f(NEn(Sn, ρn)) · |Sn|
]

,

where on the left (K, ⋆) is chosen νn-randomly, and on the right Sn ⊂ Mn is chosen σn-
randomly and the values of ρn : Sn −→ [r2, r3] are independent and Lebesgue distributed.

Proof. Since νn is the push forward of λ′
n under the random nerve complex map, we have

E[f(K)] = E[f(NEn(Sn, ρn))],(19)

where on the right side (Mn, voln, pn, En, Sn) is selected λ′
n-randomly, and then the values

of ρn are selected independently and Lebesgue-randomly. But then (19) becomes
∫

MS
ext

∫

f(NEn(Sn, ρn)) dρn dλ
′
n
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=
1

λn(MS
ext(vmin/2))

∫

MS
ext(vmin/2)

∫

f(NEn(Sn, ρn)) dρn dλn

=
1

voln(Mn) · λn(MS
ext(vmin/2))

∫

Sn⊂Mn

∫

p∈Sn(vmin/2)

∫

f(NEn(Sn, ρn)) dρn dvoln dσn,

where here the reader should recall that Sn(v) is the union of all volume-v closed balls in
Mn centered at points of Sn. Since the integrand does not depend on p, this becomes

=
1

voln(Mn) · λn(MS
ext(vmin/2))

∫

Sn⊂Mn

voln(Sn(vmin/2))

∫

f(NEn(Sn, ρn)) dρn dσn,

=
vmin/2

voln(Mn) · λn(MS
ext(vmin/2))

∫

Sn⊂Mn

|Sn|

∫

f(NEn(Sn, ρn)) dρn dσn,

and the claim follows. �

Applying the claim to both the numerator and denominator of (18), we get

lim
n→∞

E[bk(K)]

E[vol(K)]
= lim

n→∞

E
[

bk(NEn(Sn, ρn)) · |Sn|
]

E[|Sn|2]
,(20)

where for each n, Sn ⊂ Mn is chosen σn-randomly, the values of ρn : Sn −→ [r2, r3] are
chosen independently and Lebesgue-randomly. Now, by Proposition 2.8 and the definition
of j in the beginning of §2.4.3, the expectation of the number of points needed to extend
Sn to a (r0, 2r1)-net Tn ⊂ Mn is at most ǫ · voln(Mn). The nerves of Sn and Tn then differ
by O(ǫ ·voln(Mn)) simplices, where here and below, all constants in big-O notation depend
only on the constants in conditions (1) and (2) of the theorem. By condition (3) of the
theorem, the Betti numbers of the nerve of Tn differ sublinearly in volume from Bn:

bk(NEn(Tn, ρn)) = Bn + o(voln(Mn)).

So, applying Mayer–Vietoris, we have

bk(NEn(Sn, ρn)) = Bn +O(ǫ · voln(Mn)).

Hence, the numerator in (20) becomes:

E
[

bk(NEn(Sn, ρn)) · |Sn|
]

=
(

Bn +O(ǫ · voln(Mn)
)

· E[|Sn|].

For the denominator, note that by Lemma 2.10, we have

|E[|Sn|
2]− E[|Sn|]

2| ≤ C · voln(Mn),

where here C is independent of n. By Claim 2.7, though, E[|Sn|] ≥ c · voln(Mn) for some
uniform c = c(r0, r1, vmin, vmax), so as voln(Mn) → ∞ it follows that

lim
n→∞

E[|Sn|
2]

E[|Sn|]2
= 1.
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Combining these estimates for the numerator and denominator of (20), we get that

E
[

bk(NEn(Sn, ρn)) · |Sn|
]

E[|Sn|2]
=

(

Bn

E[|Sn|]
+

O(ǫ · voln(Mn))

E[|Sn|]

)

·
E[|Sn|]

2

E[|Sn|2]
,

where the limit of the last ratio is 1, as above. But since the left hand side converges and

lim
n→∞

E[|Sn|]

voln(Mn)
=

vmin

2
λ∞(MS

ext(vmin/2)) ≥ c = c(r0, r1, vmin, vmax),

the takeaway here is that

lim sup
n→∞

Bn

voln(Mn)
− lim inf

n→∞

Bn

voln(Mn)
≤ C · ǫ

for some C depending only on the constants in the statement of the theorem. Of course, ǫ >
0 was arbitrary, so this means that the sequence Bn/voln(Mn) converges. This completes
the proof of Theorem 2.5. �

2.5. A variation of Theorem 2.5. The following variant of Theorem 2.5 will serve us in
the sequel:

Corollary 2.14. Fix k, let Mn = (Mn, voln, En) be a sequence of extended finite volume
special mm-spaces and assume that for some sequence of constants Vn, the measures µMn/Vn

weakly converge to some finite measure µ on Mext. Pick constants vmin > 0, r1 > r0 > 0,
and r3 > r2 ≥ 2r1, and a function vmax : R+ −→ R+ such that

(1) all r0/2-balls in every Mn have volume at least vmin,
(2) for all r ∈ R+, every r-ball in Mn has volume at most vmax(r),
(3) for every sequence of [r2, r3]-weighted (r0, 2r1)-nets (Sn, ρn) in Mn,

∣

∣bk(NEn(Sn, ρn))− Bn

∣

∣

Vn
→ 0.

Then the ratios Bn/Vn converge.

Note that here, the measures µMn/Vn and their limit may not be probability measures.

Proof of Corollary 2.14 given Theorem 2.5. Let µ be the weak limit of µMn/Vn. Then

lim
n→∞

voln(Mn)

Vn
= lim

n→∞

∫

1 d(µMn/Vn) = µ(Mext) ∈ [0,∞).

Suppose first that µ(Mext) = 0. By (1) and (2), the number of points in any (r0, 2r1)-net
inMn is proportional to voln(Mn), so the Betti numbers in (3) are O(voln(Mn)). Combining
(3) and the triangle inequality, we have Bn/Vn → 0.

If µ(Mext) > 0, then Vn/voln(Mn) has a finite limit, so the probability measures

µMn

voln(Mn)
=

Vn

voln(Mn)
·
µMn

Vn
→

µ

µ(Mext)
.
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In other words, the extended mm-spaces Mn BS-converge. Also, voln(Mn) and Vn are
proportional, so (3) holds with voln(Mn) instead of Vn. Theorem 2.5 then says that
Bn/voln(Mn) converges, from which it follows that Bn/Vn converges too. �

3. Pinched negative curvature and Theorem 1.6

In this section, we consider only d-manifolds M with sectional curvature

−1 ≤ K ≤ −a2 < 0,

and we let ǫ(d) be the corresponding d-dimensional Margulis constant. For any ǫ ≤ ǫ(d),
each component of the ǫ-thin part (Mn)≤ǫ is either:

• aMargulis tube, which is (topologically) a tubular neighborhood of a closed geodesic,
and so is homeomorphic to a ball bundle over the circle, or

• a cusp neighborhood, which is homeomorphic to S × [0,∞) for some compact as-
pherical (d− 1)-manifold S with virtually nilpotent fundamental group.

See for instance [7, §8] for a proof.
In the introduction, we explained how to produce BS-convergent sequences (Mn) of hy-

perbolic 3-manifolds where the normalized Betti numbers do not converge, using Dehn
filling. In the example we gave, the volumes vol(Mn) were bounded, but one can con-
struct similar examples with unbounded volumes by filling the complements of links with
unboundedly many components, instead of a fixed knot complement. Instead of doing
the details of this approach, though, we’ll briefly describe a similar example in which the
BS-limit is easier to understand.

Example 3.1. Let M be the mapping torus of a homeomorphism φ : S −→ S, where φ is
a pseudo-Anosov homeomorphism of some closed surface S with genus at least 2. So, M
comes with a fibration M −→ S1. Identify S with a fiber of this fibration, and let γ be a
simple closed curve on S. By Thurston’s Hyperbolization Theorem [21], the manifold

M(∞) := M \ γ

admits a finite volume hyperbolic metric.
Let M(k) be the closed 3-manifold obtained from M(∞) by (1, k)-Dehn filling5. For large

k, Thurston’s Dehn Filling Theorem [8] implies that M(k) admits a hyperbolic metric;
moreover, as k → ∞ the manifolds M(k) → M(∞) geometrically. Note that since we are
doing (1, k) filling, each M(k) is also a genus g mapping torus. Indeed, if Tγ is a Dehn
twist around γ, the monodromy map of M(k) is T k

γ ◦ φ.
For k ∈ N ∪ {∞}, let Mn(k) be the degree n cyclic cover of M(k) corresponding to the

subgroup of π1M(k) that is the preimage of nZ ≤ Z ∼= π1(S
1) under the map induced by

M(k) →֒ M −→ S1.

5Here, we use meridian-longitude coordinates to parametrize the boundary of a cusp neighborhood,
where the meridian is the curve that was homotopically trivial before we drilled out γ.
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Then for every n and k < ∞, the manifold Mn(k) is a mapping torus over a genus g
surface, and hence

b1(Mn(k)) ≤ 2g + 1.

On the other hand, setting k = ∞ the manifold Mn(∞) has n cusps, so we have

b1(Mn(∞)) ≥ n.

Now set k = n. As n → ∞, the sequences Mn(n) and Mn(∞) both BS-converge to
the same limit measure µ on M. This µ is supported on pointed manifolds isometric
to the infinite cyclic cover M∞(∞) of M(∞) corresponding to the kernel of the map on
fundamental groups induced by M(∞) −→ S1; more carefully, µ is the push forward of the
normalized Riemannian measure on M(∞) under the map

M(∞) −→ M, p 7−→ [(M∞(∞), p∞)],

where p∞ is any point that projects to p under the covering map M∞(∞) −→ M(∞). (This
is a special case of the construction in Example 2.4 in [2].) However,

b1(Mn(n))/vol(Mn(n)) → 0, b1(Mn(∞))/vol(Mn(∞)) 6→ 0.

Essentially, the reason why Dehn filling is problematic is that from the perspective of
most points in a manifold, a Margulis tube with very small core length can look nearly
identical to a rank two cusp. (One can only see the difference if one is close enough to
be able to distinguish the core geodesic of the tube, and when the core length is small,
the set of points a bounded distance from the core has very small volume.) This coinci-
dence is particularly three-dimensional, though. For instance, note that the boundary of a
d-dimensional Margulis tube is a Sd−2-bundle over S1, while the boundary of a cusp neigh-
borhood is a Euclidean (d− 1)-manifold. If d = 3, the torus T 2 satisfies both descriptions,
but when d ≥ 4, Sd−2-bundles over S1 are not aspherical, so cannot be Euclidean.

The plan for the rest of §3 is as follows. In §3.1 we show that Margulis tubes with short
cores have large volume in dimension at least 4. In §3.2 we adapt some of Gelander’s work
in [17], showing that one can approximate (shrinkings of) the ǫ-thick parts of manifolds
with pinched negative curvature with certain nerve complexes. And then finally, in §3.3
we prove Theorem 1.6.

3.1. Lower volume bounds for Margulis tubes. As mentioned above, the basic idea
in Theorem 1.6 is to show that the number of Margulis tubes with very short cores that
appear in a manifold with pinched negative curvature is a very small fraction of its volume.
To verify this, we will use the following proposition.

Proposition 3.1 (Short geodesics imply large volume). Let d ≥ 4 and let M be a complete
Riemannian d-manifold with sectional curvatures in the interval [−1,−a2], where a > 0.
Suppose that T ⊂ M≤ǫ is a component of the ǫ-thin part of M whose core geodesic has
length ℓ. Then vol(T ) ≥ C := C(d, a, ǫ, ℓ), where C → ∞ as ℓ → 0.
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By Wang’s finiteness theorem [27], for d ≥ 4 a finite volume hyperbolic d-manifold M
can only have a very short geodesic if its volume is very large. So for hyperbolic manifolds,
one can think of the above as a strengthening of this statement that says that the large
volume has to come from the Margulis tube around the short geodesic.

One could probably prove (at least a version of) the proposition using a geometric limit
argument informed by the above discussion on Dehn filling. We assume there is a se-
quence of manifolds and Margulis tubes Tn ⊂ Mn where the core length ℓn → 0, but where
sup vol(Tn) < ∞. Take base points pn ∈ ∂Tn and extract pointed Gromov-Hausdorff limits
of everything, giving T∞ ⊂ M∞ and p∞ ∈ ∂T∞. Since ℓn → 0, this T∞ is a cusp neigh-
borhood, rather than a Margulis tube. And since sup vol(Tn) < ∞, one can argue that the
diameter of ∂Tn is bounded, which means that ∂T∞ should actually be homeomorphic to
∂Tn. But as mentioned above, this is impossible since the boundary of a cusp neighborhood
is always aspherical, but the boundary of a Margulis tube is not if d ≥ 4.

We chose not to use the geometric limit approach because pushing through the limiting
arguments requires control over higher order derivatives of the metric tensors, which we do
not necessarily want to include in the statement of Theorem 1.6. Also, the proof we give
below is attractive in that one could use it to write down an explicit formula for C.

Before starting the proof of Proposition 3.1, we establish the following simple lemma.

Lemma 3.2. Suppose that n ≥ 3 and A ≤ O(n) is an abelian subgroup, which we consider
as acting on the unit sphere Sn−1 by isometries. Then diam(G\Sn−1) ≥ π/2.

Here, the distance between two points in the quotient is the minimal distance in Sn−1

between points in their preimages. Note that G\Sn−1 is a path metric space.

Proof. The subgroup A is contained in a subgroup T ≤ O(n) of the form

T =





O(2)
. . .

O(2)



 or T =









O(2)
. . .

O(2)
±1









,

written in suitable orthonormal coordinates (x1, . . . , xn) for Rn, depending on whether n
is even or odd. But in these coordinates, the action of A preserves the intersection I of
Sn−1 with the x1x2-coordinate plane, and it also preserves the intersection J of Sn−1 with
either the x3x4-coordinate plane or the x3-axis, depending on whether n ≥ 4 or n = 3. The
distance in Sn−1 between I and J is π/2, so the lemma follows. �

Proof of Proposition 3.1. Pick a universal covering map M̃ −→ M and lift the core geodesic
γ ⊂ T to a complete geodesic γ̃ ⊂ M̃ . Let T̃ be the component of the preimage of T that
contains γ̃, and let g : M̃ −→ M be a nontrivial deck transformation stabilizing γ̃ that is
primitive in the deck group. So, g is determined up to inversion, the cyclic group 〈g〉 is the
stabilizer of T̃ , and any deck transformation not in 〈g〉 moves T̃ completely off itself.
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Pick a point p̃ ∈ γ̃ and isometrically identify the fiber N1(γ̃)p̃ of the unit normal bundle
of γ̃ with Sn−2. Parallel transport then determines a global trivialization

γ̃ × Sn−2 −→ N1(γ̃),

and we can then write the action of g on N1(γ̃) in these coordinates as

g = τ × r,

where τ is a translation by ℓ along γ̃ and r ∈ O(d− 1).
Since O(d− 1) is a compact manifold, there is some c > 0 such that if S ⊂ O(d− 1) is

any set of mdimO(d−1) points, there are s, t ∈ S such that

d(s(ξ), t(ξ)) ≤ c/m, ∀ξ ∈ Sd−2.

Setting m = ⌊ℓ
−1

dimO(d−1)+1 ⌋, we get that there is some power rk, k ≤ mdimO(d−1) with

(21) d(rk(ξ), ξ) ≤ c/m ≤ c · ℓ
1

dimO(d−1)+1 , ∀ξ ∈ Sd−2.

Note that we also have

(22) d(τk(x̃), x̃) ≤ ℓ ·mdimO(d−1) ≤ ℓ · ℓ
− dimO(d−1)
dimO(d−1)+1 = ℓ

1
dimO(d−1)+1 , ∀x̃ ∈ γ̃.

Since M̃ has sectional curvatures in [−1,−a2], it follows from the triangle comparison
theorems that if two unit speed geodesic segments α, β in M̃ share an endpoint α(0) = β(0)
at which they intersect with angle θ, then we have that

(23) θt ≤ d(α(t), β(t)) ≤ θ sinh(t), ∀t > 0.

Similarly, by an application of Berger’s extension of Rauch’s comparison theorem [12,
Theorem 1.34], if α, β start out with α(0), β(0) ∈ γ̃, and both are perpendicular to γ̃, then

(24) d(α(t), β(t)) ≤ d(α(0), β(0)) · cosh(t), ∀t > 0.

Combining (21) and (22) with the upper bounds in (23) and (24), and using the decompo-

sition g = τ × r, we get that for a point x̃ ∈ M̃ that lies at distance t from γ̃,

d(gk(x̃), x̃) ≤ ℓ
1

dimO(d−1)+1
(

c · sinh(t) + cosh(t)
)

≤ 2ℓ
1

dimO(d−1)+1 · c · cosh(t).

So if ℓ is small, we can set L = cosh−1(ǫ/(6cℓ
1

dimO(d−1)+1 )), and then the L-neighborhood of

γ̃ will be contained in the subset T̃ǫ/3 ⊂ T̃ that is the lift of T ∩M≤ǫ/3.
Since d ≥ 4, Lemma 3.2 implies that

diam(〈r〉\Sn−2) ≥ π/2.

Since the quotient is a path metric space, we can then choose for any θ > 0 a set S of
⌊π/(2θ)⌋ points in Sn−2, with the property that the 〈r〉-orbits of any two distinct points in
S are at least a distance of θ from each other in Sn−2. Identify Sn−2 with the fiber N1(γ̃)p̃
of the unit normal bundle as above, let expp̃ is the Riemannian exponential map, and let

S = {expp̃(L · ξ) | ξ ∈ S}.
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By the lower bound in (23), we get that the distance between the 〈g〉-orbits of any two
distinct points in S is at least L. So taking θ = ǫ/2L, the 〈g〉-orbits of points in S are at

least ǫ/3 apart in M̃ .
Now T̃ǫ/3 is star-shaped with respect to the geodesic γ̃, so we can now project S ⊂ T̃ǫ/3

radially from γ̃ to a subset S ′ ⊂ ∂Tǫ/3. Since M̃ has negative curvature, this radial

projection cannot decrease the distance between any two points in T̃ǫ/3 that are the same

distance from γ̃. Hence, the 〈g〉-orbits of points in S ′ are still at least ǫ/3 apart in M̃ . It

follows that the covering map M̃ −→ M restricts to an embedding on the union of the ǫ/3-

balls in M̃ around the points of S ′. (It is an embedding on each individual ball by definition
of T̃ǫ/3.) Each of these ǫ/3-balls is contained in T̃ , so volume of T is bounded below by the
sum of the volumes of these balls. Each ball has volume at least some V = V (ǫ, d, a), by
the usual comparison arguments, and there are ⌊π/(2θ)⌋ balls in total. By our definitions
of θ and L, the number of balls goes to infinity with ℓ, and the proposition follows. �

3.2. Simplicial approximation of the thick part. Suppose that M is a metric space
and A ⊂ M . Following [17], we denote the metric ξ-neighborhood of A by (A)ξ, and we
define the ξ-shrinking of A to be the subset

)A(ξ := M \ (M \ A)ξ ⊂ A.

Fix now ǫ, ξ > 0, with ǫ less than the Margulis constant ǫ(d), and let M be a Riemannian
d-manifold with curvatures in [−1,−a2]. The main result of this section is the following,
which is an application of techniques of Gelander [17]. Informally, it says that the shrinking
)M≥ǫ(ξ of the ǫ-thick part of M can be simplicially modeled (up to homotopy) by the nerve
complex associated to a certain open cover.

Proposition 3.3 (([17])ǫ). For any sufficiently small ǫ > ǫ′ > 0 and any c′ ≥ c ≥ 1, there
is a constant b = b(d, a, ǫ) > 0 and some small δ0 = δ0(d, a, c, ǫ

′) > 0 such that the following
holds for every d-manifold M with curvatures in [−1,−a2], and all δ < δ0.

Set ξ = ǫ/2 + δ and let S be a (δ, cδ)-net in )M≥ǫ(ξ. Let

ρ : S −→ [(b+ c)δ, (b+ c′)δ]

be any function and let N(S, ρ) be the nerve of the collection of balls BM(x, ρ(x)), where
x ∈ S. Then N(S, ρ) is homotopy equivalent to M≥ǫ.

Here, recall from §2.3 that S is a (δ, cδ)-net if it is δ-separated and cδ-covers. The key
to the above is the following restatement of a result from [17].

Lemma 3.4 (essentially Lemma 4.1 in [17]). Let M be a complete Riemannian d-manifold
with sectional curvatures in the interval [−1, 0], let M ′ ⊂ M be a connected submanifold
with boundary and let ǫ, b, c, c′ > 0, with c < c′, be fixed. Suppose that

(1) M ′ is contained in the ǫ-thick part of M ,
(2) M ′ is homotopy equivalent to )M ′(ǫ/2,
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(3) the preimage X̃ of X = M \ M ′ under a universal covering map M̃ −→ M is a

locally finite union X̃ = ∪γX̃γ of convex open sets with smooth boundary,

(4) for any point x ∈ M̃ \ X̃ with d(x, X̃) ≤ ǫ, there is a unit tangent vector n(x) ∈
Tx(M̃) such that for each i with d(x, X̃) = d(x, X̃γ), we have

n(x) · ∇d(·, X̃γ)|x ≥ 1/b.

Then there is some small δ0 = δ0(ǫ, b, d) > 0 such that the following holds for all δ < δ0.
Let S be any δ-separated subset of )M ′(ǫ/2+δ that cδ-covers )M ′(ǫ/2+δ, and let

ρ : S −→ [(b+ c)δ, (b+ c′)δ]

be a function. Then the nerve of the collection of balls

C = {BM(x, ρ(x)) | x ∈ S}

is homotopy equivalent to M ′.

We should say that Lemma 4.1 in [17] is not quite stated as above. The biggest difference
is that maximal δ-separated subsets of )M ′(ǫ/2+δ are used in [17] instead of subsets that
cδ-cover, and the radii of the balls in the collection C are all chosen to be (b+1)δ. However,
the proof works just as well if all the 1’s are replaced by numbers between c and c′. (So
for instance, one should use c′ instead of 1 in Proposition 4.7 of [17], and allow the radius
to vary in Proposition 4.8.) A purely cosmetic difference is that Lemma 4.1 in [17] is
stated for locally symmetric spaces, but local symmetry is not used in its proof. Finally,
the conclusion of Lemma 4.1 in [17] is that M ′ is homotopy equivalent to an unnamed
simplicial complex, but if one looks at [17, Proposition 4.8], one will see that this unnamed
complex is just the nerve mentioned above. (The statement of Proposition 4.8 references
the cover of )M ′(ǫ/2 given by the collection of intersections C ∩ )M ′(ǫ/2, rather than the
cover by C ∈ C, and a priori the difference matters when constructing the nerve complex.
However, the proof of Proposition 4.8 shows that when a finite subset of C has a nonempty
intersection, this intersection intersects )M ′(ǫ/2, so one gets the same nerve whether one
considers the collection C referenced in our statement of Lemma 3.4, or the collection
consisting of the intersections of its elements with )M ′(ǫ/2, as in [17].)

Proof of Proposition 3.3. Set M ′ = M≥ǫ. First, note that M
′ is homotopy equivalent to its

ǫ/2-shrinking, since its complement components are star-shaped neighborhoods of either
a closed geodesic or a point at infinity, so we can deformation retract M ′ to its shrinking
by flowing outwards. See the proof of Claim 8.5 of [17] for more details. So, by the Nerve
Lemma it suffices to show that M ′ satisfies the conditions of the lemma above.

Conditions (1) and (2) are immediate from the definition of M ′, where

X̃γ = {x ∈ X̃ | d(x, γ(x)) < ǫ}, γ ∈ π1M.

For condition (3), we define the vector n(x) in two cases. As long as ǫ is small, we can
assume that any x in condition (3) is contained in the preimage of the ǫ(d)-thin part of M ,
where ǫ(d) is the Margulis constant. If x lies in a component of this preimage that covers



28 MIKLOS ABERT, NICOLAS BERGERON, IAN BIRINGER, AND TSACHIK GELANDER

a Margulis tube, we define n(x) exactly as in the proof of Lemma 7.4 of [17], i.e. by using
Lemma 7.3 with b = b(d) and a unit vector n(x) whose inner products with the gradients

∇d(·, X̃γ) are all at least 1/b. If x lies in a component that covers a cusp neighborhood,
we let n(x) point away from the point at infinity to which the lifted cusp neighborhood
accumulates, just as in Section 6 of [17]. In [17] the control on the associated constant b
makes use of the fact that only locally symmetric manifolds are considered. Instead, here
we use the following:

Claim 3.5 (Moving away from the cusp). Suppose M̃ is a simply connected Riemannian
manifold with curvatures in [−1,−a2] and let ξ ∈ ∂∞M̃ . Let γ be a parabolic isometry of

M̃ with γ(ξ) = ξ, let x ∈ M̃ be a point with d(x, γ(x)) ≥ ǫ and let c : R −→ M̃ be a unit
speed geodesic with c(−∞) = ξ and c(0) = x. Then we have

d

dt
d(c(t), X̃γ)|t=0 ≥ ǫ · a/2.

Proof. Since the geodesics c(t) and γ ◦ c(t) are asymptotic to ξ as t → −∞ and always lie
on the same horospheres, [20, Proposition 4.1] says that for any fixed s,

d(c(t), γ ◦ c(t)) ≤ d(c(s), γ ◦ c(s)) · ea(t−s), ∀t ≤ s.

Since the two sides are equal at t = s and we are saying that t ≤ s, it follows that

d

dt
d(c(t), γ ◦ c(t))|t=s ≥

d

dt
d(c(s), γ ◦ c(s)) · eat|t=s.

Apply this to the (unique) value s ≤ 0 such that c(s) ∈ ∂X̃γ . Then

(25)
d

dt
d(c(t), γ ◦ c(t))|t=s ≥ ǫ · a.

On ∂X̃γ , the gradients of dγ and d(·, X̃γ) are parallel. As

dγ(y) ≤ dγ(x) + 2d(x, y) ∀x, y,

we have |∇dγ| ≤ 2, while ∇d(·, X̃γ) is a unit vector. So, this and (25) imply:

d

dt
d(c(t), X̃γ)|t=s = ∇d(·, X̃γ) · c

′(0) ≥
1

2
∇dγ · c

′(0) ≥
1

2
ǫ · a.

Finally, as curvature is nonpositive and Xγ is a convex set, d(c(t), X̃γ) is a convex function
and hence has increasing derivative. As s ≤ 0, the claim follows. �

So, to finish the proof of Proposition 3.3, we just take b to be at least the constant
b = b(d) from the Margulis tube case, and at least ǫ ·a/2. With this b and n, the conditions
of Lemma 3.4 are satisfied, so the proposition follows. �

Finally, we prove the following estimate on the volumes of balls in the shrunk thick parts
)M≥ǫ(δ, which is necessary if we want to invoke Theorem 2.5.
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Lemma 3.6. Suppose that M is a complete Riemannian d-manifold with sectional curva-
tures in [−1,−a2]. Fix ǫ < ǫ(d), let δ, r < min{ǫ, ǫ(d) − ǫ}/4 and set N := )M≥ǫ(δ. Then
there is some c = c(d, ǫ, a) > 0 such that

vol(BN(p, r)) ≥ crd, ∀p ∈ N.

Note that since M is non-positively curved, the volume of any embedded metric ball B ⊂
M is at least the volume of a ball with the same radius in Rd, see e.g. [16, Theorem 3.101].
So, as long as we choose ρ < ǫ, the lemma is trivial for balls BN(p, r) that do not intersect
∂N . The point of the lemma, then, is that the boundary of N is moderate enough that
balls centered near ∂N still have a definite amount of volume that is contained in N .

Proof. As described in the paragraph above, it suffices to consider only points p ∈ N that
are within r of ∂N . The fact that δ < (ǫ(d)− ǫ)/4 ensures that the radius r ball BM(p, r)
in M around p will be an embedded ball contained the ǫ(d)-thin part M<ǫ(d). Choose a
universal cover

π : M̃ −→ M,

components T̃<ǫ ⊂ T̃<ǫ(d) ⊂ M̃ of the preimages of M<ǫ,M<ǫ(d), and a point

p̃ ∈ T̃<ǫ(d) \ (T̃<ǫ)δ, π(p̃) = p.

Then we can write T̃<ǫ as the union

T̃<ǫ = ∪γX̃γ ,

where γ ranges over the nontrivial elements in the group of deck transformations stabilizing
T̃<ǫ, and

X̃γ := {x̃ ∈ M̃ | d(γ(x̃), x̃) < ǫ}.

We claim that there is a unit vector n ∈ TM̃p̃ and some b = b(d, a, ǫ) such that

(26) n · ∇d(·, X̃γ)|p̃ ≥ 1/b > 0, ∀γ.

Now if T̃<ǫ covers a Margulis tube, any two γ, γ′ as above commute, so we have

∇d(·, X̃γ) · ∇d(·, X̃ ′
γ) ≥ 0

by the argument of [17, Lemmas 7.1 and 7.2] (see also [5, Lemma 3.5]), and then one can

construct n as in [17, Lemma 7.3] (or [5, Lemma 3.12]). If T̃<ǫ covers a cusp neighborhood,
we can just let n be the unit vector that points away from the point ξ ∈ ∂∞M̃ to which
T̃<ǫ accumulates (i.e. let n = c′(0) where c is a unit speed geodesic with c(−∞) = ξ and
c(0) = p̃) and then the claim follows from Claim 3.5 above, after setting b = ǫa/2.

It follows from (26) that for every v ∈ TM̃p̃ with |v − n| < 1/b we have

v · ∇d(·, X̃γ) = n · ∇d(·, X̃γ) + (v − n) · ∇d(·, X̃γ)

= 1/b− |v − n|

> 0,
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so v points out of the convex subset (X̃γ)d(p̃,X̃γ)
⊂ M̃ on whose boundary p̃ lies. And since

p̃ 6∈ (T̃<ǫ)δ =⇒ (T̃<ǫ)δ ⊂ ∪γ(X̃γ)d(p̃,X̃γ)
,

we then have that for all v ∈ TM̃p̃ with | v/|v| − n | < 1/b, the Riemannian exponential

expp̃(v) 6∈ (T̃<ǫ)δ.

Now as explained in the beginning of the proof, r is small enough so that BM (p, r) is an
embedded ball in M<ǫ(d). So, if we let

V = {v ∈ TM̃p̃ | |v| < r, | v/|v| − n | < 1/b},

the composition π ◦ expp̃ of the universal covering map and the Riemannian exponential
map embeds V as a subset of N , where N =)M≥ǫ(δ. The ratio of the Euclidean volume of
V to rd is certainly bounded below by some constant depending only on b = b(d, a, ǫ), so
nonpositive curvature implies that the same is true of BN (p, r), [22, Corollary 11.4]. �

3.3. The proof of Theorem 1.6. We will assume everywhere below that d ≥ 4, since the
theorem follows trivially from the Gauss–Bonnet theorem when d = 2 and we have assumed
that d 6= 3. Fix a sequence of finite volume d-manifolds (Mn) with curvatures in [−1,−a2]
and for each n, let µn be the measure on Md

a obtained by pushing forward the Riemannian
measure on Mn under p 7→ (Mn, p). By assumption, the sequence (µn/vol(Mn)) converges
weakly to some probability measure µ on Md

a.

Claim 3.7. For some ǫmax > 0, we have that µ(Eǫ) = 0 for all but countably many ǫ ∈
(0, ǫmax), where here Eǫ is the set of all (M, p) ∈ Md

a such that M has a primitive closed
geodesic with length exactly 2ǫ.

Proof. Take ǫmax less than the Margulis constant ǫ(d). Using Proposition 3.1, we may
assume that ǫmax is small enough so that if ǫ ∈ (0, ǫmax), then any ǫ(d)-Margulis tube with
core length 2ǫ has volume at least 1. For each ǫ ∈ (0, ǫmax) and R > 0, consider the set
Eǫ,R of all (M, p) ∈ Md

a such that there is an ǫ(d)-Margulis tube with core length 2ǫ that
is completely contained in the radius R ball around p. In any manifold M with sectional
curvatures at least −1, the radius R ball around any point has volume at most some
constant V (d, R), see [16, Theorem 3.101]. So, it follows that for fixed R, any (M, p) ∈ Md

a

can be contained in Eǫ,R for at most V (d, R)-many choices of ǫ. Hence, we have
∑

ǫ

µ(Eǫ,R) ≤ V (d, R),

implying that µ(Eǫ,R) 6= 0 for at most countably many ǫ. But letting R ∈ N, there are then
only countably many pairs (ǫ, R) such that µ(Eǫ,R) 6= 0, and hence only countably many ǫ
such that µ(Eǫ,R) 6= 0 for some R ∈ N. Since Eǫ = ∪R∈NEǫ,R, the claim follows. �
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Fix now some small ǫ, ξ > 0, to be determined later, such that µ(Eǫ) = 0. Using the
notation and terminology of §2.2, consider the extended mm-space

Mn := ( )(Mn)≥ǫ(ξ,Mn),

and let µMn be the associated measure on Mext. Then if

T = {(M, p) ∈ Md
a | d(p,M<ǫ) > ξ},

the measure µMn is just the push forward of the restriction µn|T under the map

T −→ M
ext, (M, p) 7−→ ( )M≥ǫ(ξ, p,M).

Lemma 3.8. The measures µMn/vol(Mn) weakly converge.

Note that these are not probability measures.

Proof. Let f : Mext −→ R be a bounded, continuous function and define

F : Md
a −→ R, F (M, p) =

{

f( )M≥ǫ(ξ, p,M) (M, p) ∈ T

0 otherwise.

We have
∫

f dµMn =
∫

F dµn, so it suffices to show that the limit

lim
n→∞

1

vol(Mn)

∫

F dµn

exists. Recall that the measures µn/vol(Mn) → µ weakly. So by the Portmanteau theorem,
it suffices to show that F is continuous on a subset of Md

a that has full µ-measure.

Claim 3.9. The map F is continuous on the difference Md
a \ (Eǫ ∪ D), where

D := {(M, p) ∈ Md
a | d(p,M<ǫ) = ξ}

and Eǫ is as in Claim 3.7.

Proof of Claim 3.9. Suppose that we have a convergent sequence

(Nn, pn) → (N, p) ∈ Md
a \ (Eǫ ∪ D).

Assume first that d(p,N<ǫ) < ξ. By a result of Ehrlich [14], injectivity radius is contin-
uous under smooth convergence, so it follows that d(pn, (Nn)<ǫ) < ξ as well for large n. In
this case, the continuity of F along our sequence is obvious, since for large n,

0 = F (Nn, pn) → F (N, p) = 0.

So, assume that d(p,N<ǫ) > ξ, i.e. that (N, p) ∈ T . First, we claim that (Nn, pn) ∈ T
for large n. If not, then after passing to a subsequence there would be points qn ∈ Nn with
d(pn, qn) ≤ ξ and injNn

(qn) ≤ ǫ. Again by continuity of injectivity radius, we can take a
subsequential limit of the qn to produce some q ∈ N with d(p, q) ≤ ξ and injN(q) ≤ ǫ. If
injN(q) is less than ǫ, then this contradicts that d(p,N<ǫ) > ξ. So assume injN(q) = ǫ.
Since (N, p) 6∈ Eǫ, the point q cannot lie on a closed geodesic of length exactly 2ǫ, so q can
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be perturbed to a point q′ with injN(q
′) < ǫ. Taking the perturbation small enough so that

d(p, q′) < d(p,N<ǫ), we have a contradiction.
In order to avoid a debauch of parentheses, set Tn =)(Nn)≥ǫ(ξ and define T ⊂ N similarly.

To prove that F is continuous along (Nn, pn) → (N, p), it suffices to show that

(27) (Tn, pn, Nn) → (T, p,N) ∈ M
ext.

Fixing some large R > 0, choose a sequence of embeddings

φn : BN (p, R) −→ Nn, φn(p) = pn,

such that the pullback metrics φ∗
n(gn) → g in the smooth topology, as described in §2.1.

To prove (27), we would like to apply Lemma 2.3 to say that for a given α > 0, the triples
in (27) are (α,R)-related for large n. This requires proving that for an arbitrary δ > 0,
conditions (1)–(3) in Lemma 2.3 hold for large n.

Condition (1) in Lemma 2.3 is immediate, since the maps φn are nearly isometries when
n is large. The proof of condition (2) in Lemma 2.3 is similar to the first two paragraphs
of the current claim. Namely, suppose that the first part of condition (2) fails for infinitely
many n. Then for infinitely many n, there are points

qn ∈ Tn ∩ φ(BN(p, R)), d(φ−1
n (qn), T ) > δ.

Passing to a subsequence, we can assume that φ−1
n (qn) → q ∈ BN(p, R), and by continuity

of injectivity radius we have q ∈ T , a contradiction. The second part of condition (2) is
similar, although as we did above one has to use that there are no closed geodesics of length
exactly 2ǫ in N . So, it remains to prove condition (3) of Lemma 2.3, i.e. that

vol(φ−1
n (Tn)△T ) < δ

for large n. Pick a neighborhood U ⊃ ∂T ∩BN(p, R) with volume less than δ. If n is large,
then the same arguments as above show that φ−1

n (Tn)△T ⊂ U, so we are done. �

By our choice of ǫ, we have µ(Eǫ) = 0. So, to prove Lemma 3.8 it suffices to show that
µ(D) = 0. Essentially, the point is that d(p,M<ǫ) = ξ is a measure zero condition within
each fixed M , and as a weak limit of measures constructed using Riemannian measures on
finite volume manifolds, µ is distributed on each ‘leaf’

LM = {(M, p) | p ∈ M} ⊂ Md
a

according to the Riemannian measure of M . (This is not quite precise, the leaves may be
highly singular, but one can make this argument work in the foliated ‘desingularization’ of
M constructed in [2, Theorem 1.6]). However, an easier approach is to use that µ satisfies
the mass transport principle, see [2, (1)]. Namely, define a Borel function

ϕ : (Md
a)2 −→ {0, 1}, ϕ(M, p, q) =

{

1 d(p,M<ǫ) = ξ and d(p, q) ≤ ǫ

0 otherwise
,
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where (Md
a)2 is the space of doubly pointed d-manifolds with curvature in [−1,−a2], en-

dowed with the natural version of smooth convergence, see [2]. Note that

d(p,M<ǫ) = ξ =⇒

∫

q∈M

ϕ(M, p, q) dvol ≥ volBRd(0, ǫ),

since embedded ǫ-balls in a d-manifold of nonpositive curvature have volume at least that
of an ǫ-ball in Rd, c.f. [16, Theorem 3.101]. By the mass transport principle [2, (1)],

µ(D) ≤ 1/BRd(0, ǫ) ·

∫

(M,p)∈Md
a

∫

q∈M

ϕ(M, p, q) dvolM dµ

= 1/BRd(0, ǫ) ·

∫

(M,p)∈Md
a

∫

q∈M

ϕ(M, q, p) dvolM dµ

= 0,

where the last equality is because for small ǫ, the set of points exactly at distance ξ from
the ǫ-thin part has measure zero in any manifold with negative curvature. �

We now know that the sequence of measures µMn/vol(Mn) weakly converges, and we
would like to apply Theorem 2.5, or really Corollary 2.14. Lemma 3.6 will give the lower
bound on ball volumes needed in Theorem 2.5 (1), and the upper bound needed in (2)
comes from the uniform lower sectional curvature bound, see e.g. [16, Theorem 3.101 on
p. 169]. The key, though, is to use our work in §2 to define the appropriate r0, r1, r2, r3.
Namely, take ǫ, δ > 0 small enough so that Proposition 3.3 applies, set ξ = ǫ/2+ δ, and let
b be as given in Proposition 3.3 for c = 3, c′ = 4, say. If

r0 = δ, r1 = 3δ, r2 = (b+ 6)δ, r3 = (b+ 7)δ,

then Proposition 3.3 says that the nerve NMn(Sn, ρn) in Mn associated to any [r2, r3]-
weighted (r0, r1)-net (Sn, ρn) in )(Mn)≥ǫ(ξ is homotopy equivalent to (Mn)≥ǫ. So, applying
Corollary 2.14 to the sequence of extended mm-spaces Mn, with Bn = bk((Mn)≥ǫ), Vn =
vol(Mn) and r0, r1, r2, r3 as above, we get that the limit

(28) lim
n→∞

bk((Mn)≥ǫ)

vol(Mn)
= L ∈ [0,∞).

But Proposition 3.1 says that the number of components of the ǫ-thin part of Mn is at
most vol(Mn)/C, where C = C(ǫ, d, a) → ∞ as ǫ → 0. Removing a cusp neighborhood
from Mn does not change the homotopy type, and by Mayer–Vietoris removing a Margulis
tube can only change Betti numbers by 1. So, we get that for each n and k,

|bk((Mn)≥ǫ)− bk(Mn)| ≤ vol(Mn)/C.

Combining this with (28), we get that

L− 1/C ≤ lim inf
n→∞

bk(Mn)

volMn
≤ lim sup

n→∞

bk(Mn)

volMn
≤ L+ 1/C,

so sending ǫ → 0, and hence C → ∞, proves the theorem.
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4. Manifolds of nonpositive curvature and Theorem 1.7

In this section we prove Theorem 1.7, i.e. the convergence of normalized Betti numbers
for BS-convergent sequences of analytic d-manifolds of nonpositive curvature without Eu-
clidean factors, when the limit is thick. For that purpose it will be more convenient to
work not with the standard thick thin decomposition but a close variant of it, introduced
in [7], which we call a ‘stable’ thick thin decomposition:

4.1. A stable thick thin decomposition. Suppose that M is a finite volume, real an-
alytic d-manifold with sectional curvatures in the interval [−1, 0] and that the universal
cover X of M has no Euclidean deRham factors. Write M = Γ\X . Then Γ operates freely
and the displacement functions dγ (γ ∈ Γ) are analytic. In particular the convex sets

Min(γ) = {x ∈ X | dγ(x) = min(dγ)}

are complete submanifolds. An element γ ∈ Γ is called J-stable if we have

Min(γi) = Min(γ), ∀i = 1, . . . , J.

Let ǫ be less than the Margulis constant, and I the index constant in the Margulis lemma,
and fix also the constants δ, Iδ, and J = Iδ · I defined at the beginning of [7, §13.4], but
using ǫ instead of the actual Margulis constant. The interested reader can refer to [7] if
necessary, but it is not necessary to know what these constants are to read our proof below.
(As at the top of pg 141 of [7], though, we note that 0 < δ < ǫ/Iδ.) As in [7], let

∆0 := {γ ∈ Γ \ {1} | γ is J-stable and inf
x∈X

dγ(x) ≤ δ}, and

∆ := {γ1, . . . , γIδ | γ ∈ ∆0}.

We now define two subsets X± ⊂ X with X− = X \X+ by

X+ := {x ∈ X | dγ(x) ≥ ǫ ∀γ ∈ ∆}, X− := {x ∈ X | dγ(x) ≤ ǫ for some γ ∈ ∆},

and we define the stable ǫ-thick part M+ and the stable ǫ-thin part M− by

M+ := Γ\X+, M− = Γ\X−

Lemma 4.1. M+,M− are topological submanifolds of M and their common boundary
∂M− = ∂M+ is compact.

Proof. We work mostly with X±, and address M± at the end. By definition, X− is the
union over all γ ∈ ∆ of the sets

Uγ,ǫ := {x ∈ X | dγ(x) ≤ ǫ}.

Since X is a Hadamard manifold, the second variational formula implies that the distance
function d : X × X −→ R is convex. Moreover, each dγ is a submersion except along
Min(γ), see [7, Lemma, pg 96]. This implies that Uγ,ǫ is a smooth, convex codimension
zero submanifold of X .

Let N be the frontier of X+ and X− in X . We claim that N is a topological submanifold
of X . So, pick some p ∈ N . By discreteness of Γ, there is a small open neighborhood
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W ⊂ X of p and a finite subset F ⊂ ∆ such that W ∩ Uγ,ǫ 6= ∅ only when γ ∈ F . By the
Margulis lemma, F generates a subgroup of Γ that has a nilpotent subgroup with index at
most I. Now p 6∈ Min(γ) for any γ ∈ Γ, since

inf dγ(x) ≤ δ · Iδ < ǫ/Iδ · Iδ = ǫ

while the fact that p ∈ F implies that dγ(p) ≥ ǫ for all γ ∈ Γ. As every γ ∈ ∆ is I-stable,
this means that p 6∈ Min(γi) for any i ≤ I, so [7, Lemma, part (2), pg 96] says that there
is some v ∈ TXp such that

(29) 〈∇dγ, v〉 > 0, ∀γ ∈ F .

Note that at p, the gradient ∇dγ is just the outward normal vector to the set Uγ,ǫ.
Shrinking W if necessary, pick a chart φ : W −→ Rd = Rd−1 × R with φ(p) = (0, 0) and

such that dφ(v) = (0, 1). After shrinking W further, the implicit function theorem and
(3.7) imply that for each γ ∈ F , we have

φ(W ∩ Uγ,ǫ) = {(x, t) ∈ φ(W ) ⊂ R
d−1 × R | t ≤ fγ(x)},

where fγ is a smooth function defined on a neighborhood of 0 ∈ Rd−1. Hence,

φ(W ∩N) = {(x, t) ∈ φ(W ) ⊂ R
d−1 × R | t = max

γ∈F
fγ(x)},

which is the graph of a continuous function. Hence, N is a submanifold of X .
The frontier ∂M− = ∂M+ is the projection of N to M , and hence is a topological

submanifold ofM . It follows that M± are topological submanifolds with boundary. Finally,
frontiers are always closed, and since M has finite volume M+ ⊂ M≥ǫ′ is compact, so ∂M±

is compact. �

By [7, Corollary 12.5], there is some integer m = m(J) such that for any γ ∈ Γ \ {1},
there is some j ≤ m such that γj is J-stable. So, if ǫ′ = ǫ/m we have

(30) M<ǫ′ ⊂ M− ⊂ M<ǫ, M≥ǫ ⊂ M+ ⊂ M≥′ǫ.

The following proposition is a modification of [7, Theorem 13.1].

Proposition 4.2. Suppose that M is a finite volume, real analytic d-manifold with sectional
curvatures in the interval [−1, 0] and that the universal cover X of M has no Euclidean de
Rham factors. Then there is some C = C(d, ǫ) such that for all k ∈ N, both bk(M−) and
bk(∂M−) are less than or equal to Cvol(M<2ǫ).

It is necessary to assume here that M is analytic and that X has no Euclidean de Rham
factors. If M = N × S1 for some (d − 1)-manifold N , we can scale the S1-factor so that
M = M≤ǫ = M− and vol(M) ≈ 0. And unless we assume analyticity (or some weaker
alternative, see [7, §A2]) there are finite volume manifolds with sectional curvatures in
[−1, 0] where the thin parts have infinite Betti numbers, see [7, §11.1].

Before starting the proof, we record a brief algebraic topology lemma.
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Lemma 4.3. Suppose that N is a (possibly noncompact) topological manifold with compact
boundary. If bk(N,R) ≤ C for all k, then bk(∂N,R) ≤ 2C for all k.

Proof. By Poincaré-Lefschetz duality, using cohomology with compact support,

(31) C ≥ b∗(N) = dimH∗(N ;R) = dimHd−∗
c (N, ∂N ;R).

But by the long exact sequence of a pair, for every k we have

dimHk(∂N ;R) ≤ dimHk(N ;R) + dimker
(

Hk(∂N ;R) −→ Hk+1(N, ∂N ;R)
)

≤ C + dim ker
(

Hk(∂N ;R) −→ Hk+1(N, ∂N ;R)
)

.

However, since ∂N is compact, the map whose kernel we are interested in factors as

Hk(∂N ;R) ∼= Hk
c (∂N ;R) −→ Hk+1

c (N, ∂N ;R) −→ Hk+1(N, ∂N ;R).

So, the dimension of the kernel is at most C, by (31). Hence,

bk(∂N) = dimHk(∂N ;R) ≤ 2C. �

So for instance, to prove Proposition 4.2 it would suffice to just estimate the Betti
numbers bk(M−), and the estimates for bk(∂M−) would follow. It turns out, however, that
this is not logically how the proof will go, since one needs an a priori estimate for bk(∂M−)
in order to calculate bk(M−). We will still apply Lemma 4.3 to estimate bk(∂M−), though,
but the manifold N in the lemma will not be M−.

We are now ready for the proof.

Proof of Proposition 4.2. We first estimate the Betti numbers of ∂M−. By (30),

M<ǫ′ ⊂ M− ⊂ M<ǫ,

where ǫ′ < ǫ depends only on ǫ, d. Let {Bα} be a collection of open ǫ′/2-balls in M with
centers on ∂M−, such that the same centers determine a maximal collection of pairwise
disjoint ǫ′/4-balls centered on ∂M−. Since inj(p) ≥ ǫ′ on ∂M−, each Bα is embedded and
convex, and contained in M<2ǫ. In particular, we have

(32) #{Bα} ≤ C · vol(M<2ǫ), where C = C(ǫ, d).

Choose arbitrary lifts B̃α ⊂ X of each ball. If X− ⊂ X is the preimage of M−, then as
discussed in the proof of Lemma 4.1, we have

int(X−) = ∪γ∈∆int(Uγ,ǫ), where int(Uγ,ǫ) := {x ∈ X | dγ(x) < ǫ}.

Since int(Uγ,ǫ) is convex, each intersection B̃α ∩ int(Uγ,ǫ) projects to a convex open subset
Bα,γ ⊂ int(M−). Note that for a given α, only some N = N(ǫ, d) of the sets Bα,γ are
nonempty, for instance by Corollary 3.4 of [5], so (32) implies that the number of nonempty
Bα,γ is bounded by C · vol(M<2ǫ), after adjusting C = C(ǫ, d). It then follows from the
Nerve Lemma (see the proof of Claim 4.7 below) that the Betti numbers of the union

U = ∪α,γBα,γ
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are bounded above by C · vol(M<2ǫ) as well. But U ∪ ∂M− is a manifold with compact
boundary by Lemma 4.1, so it follows from Lemma 4.3 that

(33) bk(∂M−) ≤ C · vol(M<2ǫ)

for some C = C(ǫ, d) as well.

The estimate for bk(M−) closely follows the proof of [7, Theorem 13.1]. Let

g : (0,∞) −→ [0,∞)

be a C∞ function with

• g(t) > 0, g′(t) < 0 for t ∈ (0, ǫ),
• g(t) = 0 for t ≥ ǫ,
• g(t) → ∞ as t → 0,
• g(δ) = 1.

and with ∆ as above, consider the smooth function

F : X −→ [0,∞), F (x) =
∑

γ∈∆

g ◦ dγ(x).

Since ∆ is conjugation invariant in Γ, this F descends to a smooth function f : M −→ R.
On [7, pg 145], it is shown that f and F have finitely many critical values

0 = r0 < r1 < . . . < rs.

Note that the 0-critical set f−1(0) is exactly M+, and that f−1(0,∞) = int(M−).
In [7], Ballmann–Gromov–Schroeder use this function f to give a linear upper bound

(34) bk(M) ≤ C · vol(M), C = C(d).

We will describe this argument, then indicate how to modify it to prove that bk(M−) ≤
Cvol(M2ǫ). First, at the top of pg 148 in [7], the authors prove:

(35) bk(M) ≤
∑

i,j

bk
(

{fxij
< ri + ρ}

)

.

In the summation, each index i corresponds to a critical value ri of f , and the indices j
correspond to different pieces of the critical set f−1(ri). More precisely, there is a collection
of complete immersed submanifolds Vxij

# M as follows6. For each j, let fxij
:= f |Vxij

be

the restriction. Then the minimum value of fxij
is ri, this minimum is achieved on the set

{fxij
= ri}, which has nonempty interior in Vxij

, and f−1(ri) decomposes as:

f−1(ri) = ∪ij{fxij
= ri}.

So, in (35) the set {fxij
< ri + ρ} is just a small neighborhood of {fxij

= ri} in Vxij
, since

ρ > 0 is small. The proof of (35) is essentially via Morse theory, applied to the function
f : one considers the homology of the sublevel set {f < r}, starting with r < 0 where

6In [7], they set Vx := Yx/Γx, but mostly use the latter notation in proofs.
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{f < r} = ∅, and one shows that passing through the critical point r = ri contributes at
most the corresponding index-i terms of the summation in (35) to the Betti numbers.

To derive (34), the authors show in [7, pg 148, (16)] that each term in (35) is bounded
above by a constant times the essential volume7 of the immersed submanifold Vxij

:

(36) bk({fxij
< ri + ρ}) ≤ C · ess-vol(Vxij

), C = C(d).

Here, the ess-vol(V ) is an integer that estimates volume up to some fixed multiplicative
constant, but in a way that ignores small volume Euclidean factors, see [7, §12.8]. Finally,
in [7, Theorem 12.11] they show8 that

(37)
∑

ij

ess-vol(Vxij
) ≤ C · vol(M), C = C(d),

so it follows from (35), (36) and (37) that bk(M) ≤ C · vol(M), where C = C(d).

We now adapt this argument to M−. It suffices to estimate the Betti numbers of

int(M−) = f−1(0,∞),

since M− is a manifold, by Lemma 4.1, and so is homotopy equivalent to int(M−). The
idea is to run the Morse theory argument proving (35), but only on the interval (0,∞).

There are two main differences in the argument. First, we are no longer starting the
Morse theory argument with an empty sublevel set, so we need to estimate independently
the Betti numbers of f−1(0, r) when r > 0 is small. As long as r < r1, Morse theory implies
that f−1(0, r) is homeomorphic to a product Z × (0, r). The union f−1(0, r) ∪ ∂M− is a
manifold with boundary by Lemma 4.1, so there is a collar neighborhood ∂M− × [0, 1) →֒
f−1(0, r). Since this collar gives an end neighborhood of f−1(0, r) ∼= Z × (0, r), there is
some t ≈ 0 such that f−1(t) ⊂ ∂M− × [0, 1). But as the composition

Z ∼= f−1(t) →֒ ∂M− × [0, 1) →֒ f−1(0, r) ∼= Z × (0, r)

is a homotopy equivalence, it follows that the homology of Z injects into the homology of
the collar ∂M− × [0, 1), and therefore by (33) we have

(38) bk(f
−1(0, r)) = bk(Z) ≤ bk(∂M−) ≤ C · vol(M<2ǫ).

Above, we are avoiding saying that Z is homeomorphic to ∂M−, which is what you would
expect in the current situation. This is probably true, but it is less obvious than the
estimate in (38), which is all we need.

Second, we claim that for some C = C(d, ǫ), we have

(39)
∑

i,j, i 6=0

ess-vol(Vxij
) ≤ C · vol(M<ǫ).

7We are suppressing some constants in our notation. Really, essential volume depends on a choice of ǫ
and a > 0, and is written ǫ-essa-vol in [7].

8The conclusion of [7, Theorem 12.11] is about essential volume, but note that for M itself, essential
volume agrees with volume up to a dimensional constant, since M has no Euclidean factors.
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This follows from the arguments in [7]. Namely, their proof of (37) in [7, Theorem 12.11] is
stronger than the statement: if N :=

∑

ij ess-vol(Vxij
), the authors construct a collection

of N injectively embedded r-balls centered at points of M<ǫ/2
9 that overlap with uniformly

bounded multiplicity, where here r > 0 depends only on d. Hence, this shows N is at most
a dimensional constant times vol(M<ǫ) as desired.

The Proposition now follows from (38) and (39). Namely,

bk(M−) ≤ bk(f
−1(0, r)) +

∑

i,j, i 6=0

bk
(

{fxij
< ri + ρ}

)

≤ bk(f
−1(0, r)) +

∑

i,j, i 6=0

ess-vol(Vxij
)
)

≤ C · vol(M<ǫ),

where the first inequality is the Morse theory argument from [7], the second inequality is
(36), and the third is (38) and (39). �

4.2. Proof of Theorem 1.7. Let ǫ0 > 0 and let (Mn) be a sequence of real analytic,
finite volume Riemannian d-manifolds with sectional curvatures in the interval [−1, 0], and
assume the universal covers of the Mn do not have Euclidean de Rham-factors. Assume
(Mn) BS-converges to a measure µ on M that is supported on ǫ0-thick manifolds. Here,
recall that BS-convergence means that if µn are the associated measures on Md, then

µn/vol(Mn) → µ

weakly. We want to show that the following limit exists for all k:

lim
n→∞

bk(Mn)/vol(Mn).

First, here is the reason we assume that µ is supported on ǫ0-thick manifolds.

Claim 4.4. For all R > 0 and 0 < ǫ < ǫ0, we have

vol({x ∈ Mn | d(x,M≤ǫ) ≤ R})/vol(Mn) → 0.

Proof. By the continuity of injectivity radius with respect to smooth convergence [14],

D := {(M, p) ∈ Md | d(p,M≤ǫ) ≤ R} ⊂ Md

is closed, so by the Portmanteau theorem,

lim sup
n

vol({x ∈ Mn | d(x,M≤ǫ) ≤ R})

vol(Mn)
≤ lim sup

n
µn(D) ≤ µ(D) = 0,

so the limit of the sequence on the left is zero. �

9See [7, (3) pp. 132–133]. In their construction of the centers z of these balls there exists an element
βz ∈ Γ such that dβz

(z) = ǫ/2, see top of page 132.
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Pick some ǫ > 0 that is less than ǫ0 and also less than the Margulis constant, and fix
some ξ < ǫ/20. With the notation ( )+ of the last section, with input ǫ, let

Nn := ((Mn)+)ξ = {x ∈ Mn | d(x, (Mn)+) ≤ ξ},

and using the notation and terminology of §2.2, consider the extended mm-spaces

Mn := (Mn,Mn), Nn := (Nn,Mn)

and their associated measures µMn, µNn on Mext. (Note that the space Nn may be discon-
nected, but since it has finitely many components, it is special and hence our work in §2.3
still applies to Nn.) Here, if

ι : Md −→ M
ext, (M, p) 7−→ (M, p,M),

is the natural continuous map (see Corollary 2.2), then µMn = ι∗(µn), so

µMn/vol(Mn) = ι∗
(

µn/vol(Mn)
)

→ ι∗(µ).

Claim 4.5. We have µNn/vol(Mn) → ι∗(µ) as well.

Here, note that by Claim 4.4, we have that vol(Nn)/vol(Mn) → 1, so one could replace
the normalizing factor by vol(Nn) if desired.

Proof. Let f : Mext −→ [0,M ] be a continuous function, and fix α > 0. Given δ, R, let

Cδ,R = {M ∈ M
ext | M is (δ, R)-related to N ∈ M

ext =⇒ |f(M)− f(N)| < α}.

Since the sets Cδ,R are open, are nested when δ is decreased and R is increased, and union
to all of Mext, we can choose δ, R such that

ι∗(µ)(Cδ,R) > 1− α.

By the Portmanteau theorem, lim infn µMn(Cδ,R) > 1− α, so there is some N such that

µMn(Cδ,R) > 1− α, ∀n ≥ N.

Furthermore, in light of Claim 4.4 and (30), we can also assume that

vol({x ∈ Mn | d(x, (Mn)−) ≤ R})

vol(Mn)
< α, ∀n ≥ N.

Combining the above two estimates, we see that the vol/vol(Mn)-measure of the set of
points p ∈ Mn such that both d(x, (Mn)−) > R and (M, p,M) ∈ Cδ,R is at least (1 − 2α).
Now at any such point p, we have p ∈ Nn as well, and the pointed extended mm-spaces
(Nn, p,Mn) and (Mn, p,Mn) are obviously (δ, R)-related. Hence, at any such p, we have

(40) |f(Nn, p,Mn)− f(Mn, p,Mn)| < α.

Breaking the domains of the following integrals in two, and using the upper bound M ≥ f
on the piece where (40) is not helpful, we see that

∣

∣

∣

∣

∫

f dµNn −

∫

f dµMn

∣

∣

∣

∣

≤ (1− 2α) · α + α · 2M, ∀n ≥ N.
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So, since α > 0 was arbitrary and
∫

f dµMn →
∫

f dι∗(µ), we have that
∫

f dµNn →
∫

f dι∗(µ) as well, and the claim follows. �

We now want to apply Corollary 2.14 to the sequence µNn/vol(Mn), in order to say
something about normalized Betti numbers. We’ll apply it with r0 = 4ξ, r1 = 5ξ, r2 = 10ξ
and r3 = 11ξ, with Bn = bk(Mn) and Vn = vol(Mn). So, let’s verify its hypotheses.

For condition (1) of Corollary 2.14, just note that any point p ∈ Nn is within ξ of a point
q in (Mn)+, so BNn(p, 2ξ) contains an embedded ξ-ball around q, which by nonpositive
curvature has volume at least that of a ξ-ball in Rd, see e.g. [16, Theorem 3.101]. Similarly,
for condition (2) the lower curvature bound implies that any r-ball in Nn has volume at
most that of an r-ball in H

d, again see [16, Theorem 3.101].
For condition (3), we need to prove the following.

Lemma 4.6. If (Sn, ρn) is a sequence of [10ξ, 11ξ]-weighted (4ξ, 10ξ)-nets in Nn, then
∣

∣bk(NMn(Sn, ρn))− bk(Mn)
∣

∣

vol(Mn)
→ 0.

Assuming the lemma, the hypotheses of Corollary 2.14 are satisfied, so

Bn/Vn = bk(Mn)/vol(Mn)

converges, proving Theorem 1.7. So, it remains to prove the lemma.

Proof of Lemma 4.6. Since inj : Mn −→ R is 2-lipschitz, we have

∀x ∈ Sn ⊂ Nn := ((Mn)+)ξ, inj(x) ≥ ǫ− 2ξ >
9ǫ

10
>

11ǫ

20
> 11ξ ≥ ρn(x).

Nonpositive curvature then implies that the balls Bρ(x)(x) are convex, so the Nerve Lemma
(c.f. [19, Corollary 4G.3]) says that NSn := NMn(Sn, ρn) is homotopy equivalent to

Un := ∪x∈SnBρn(x)(x).

So to prove the claim, it suffices to show the following:

(a) If Dk,n is the dimension of the image of the map Hk(Un,R) −→ Hk(Mn,R) induced
by inclusion, then bk(Mn) = Dn,k + o(vol(Mn)).

(b) If Kk,n is the dimension of the kernel of the map Hk(Un,R) −→ Hk(Mn,R) induced
by inclusion, then Kk,n = o(vol(Mn)).

For (a), apply Mayer–Vietoris to Mn = (Mn)− ∪ (Mn)+, giving the long exact sequence

· · · −→ Hk((Mn)−;R)⊕Hk((Mn)+;R) −→ Hk(Mn;R) −→ Hk−1(∂(Mn)−,R) −→ · · · .

By Proposition 4.2 and Claim 4.4, bk((Mn)−) and bk−1(∂(Mn)−) are o(vol(Mn)), so

bk(Mn) = dim Im
(

Hk((Mn)+;R) −→ Hk(Mn;R)
)

+ o(vol(Mn)).

But the inclusion map (Mn)+ −→ Mn factors through U −→ Mn, so we have

bk(Mn) ≥ Dn,k ≥ bk(Mn)− o(vol(Mn))
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as well, proving (a).
For (b), let Tn ⊂ Mn \Nn be a maximal collection of points such that

d(s, t) ≥
1

3
min{inj(s), inj(t)}, ∀s, t ∈ Tn.

Since inj is continuous, Tn is locally finite. Moreover, suppose x ∈ Mn \ Nn and x 6∈ Tn.
By maximality, there must be some t ∈ Tn with

d(x, t) ≤
1

3
min{inj(x), inj(t)} ≤

1

3
inj(t),

so the open balls of radius ρn(t) :=
1
2
inj(t) around all t ∈ Tn cover Mn \ Nn. Let NSn∪Tn

be the nerve complex associated to the cover of Mn by the collection of all such balls
Bρn(t)(t), t ∈ Tn, together with the balls Bρn(x)(x), x ∈ Sn. As all these balls are convex,
NSn∪Tn is homotopy equivalent to Mn. In fact, more is true:

Claim 4.7. There is a diagram of maps

Un NSn

Mn NSn∪Tn

Φ

F

that is commutative up to homotopy, where the vertical maps are the natural inclusions and
the horizontal maps Φ, F are homotopy equivalences.

The claim does not assert that the pairs (Mn, Un) and (NSn∪Tn , NSn) are homotopy
equivalent, although it is certainly a result along those lines. We should note that there
is at least one ‘Relative Nerve Lemma’ for pairs in the literature, see e.g. [5, Lemma 2.9],
but this does not apply in our situation since Un →֒ Mn is not a cofibration. One can get
around this, but the fix is not particularly pretty, and it is much more direct just to prove
the claim above without referencing any citations.

Before proving the claim, let us quickly indicate how to finish the proof of (b). Any
point x ∈ Sn such that Bρn(x)(x) intersects a ball Bρn(y)(y), where y ∈ Tn, must lie close
to the ǫ-thin part of Mn. By Claim 4.4 the volume of any fixed R-neighborhood of (Mn)−
is o(vol(Mn)), so this means that there are only o(vol(Mn))-many vertices of NSn that are
adjacent to vertices of NSn∪Tn \NSn. So, Mayer–Vietoris implies that the kernel of the map

Hk(NSn;R) −→ Hk(NSn∪Tn;R)

induced by inclusion has rank o(volMn). Therefore, Claim 4.7 implies that the same is true
for the kernel of the map on homology induced by Un →֒ Mn.

Proof of Claim 4.7. Let’s review the proof of the Nerve Lemma. For a much more general
proof that essentially specializes to the one below, see Hatcher [19, 4G].
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We start with a Riemannian manifold X and an open cover O by small convex balls. If
N is the nerve complex of the cover O, we can define homotopy inverses

α : X −→ N, β : N −→ X

as follows. Pick a partition of unity {φO | O ∈ O} subordinate to O, and define

α : X −→ N, α(p) =
∑

O∈O, p∈O

φO(p) · O ∈ N.

Here, the values φO(p) are the barycentric coordinates of α(p), within the simplex of N
spanned by those O containing p. The map β is defined inductively on the i-skeleta BN i

of the first barycentric subdivision BN of N . Before starting the construction, note that
every vertex v of BN is the barycenter of a simplex of N , which corresponds to some finite

Fv ⊂ O, ∩O∈FvO 6= ∅,

and if ∆ is a simplex of BN , there is one vertex v(∆) of ∆ such that Fv(∆) is contained in
Fw for every other vertex w of ∆. (This v(∆) is just the vertex that is the barycenter of
the simplex of N with minimal dimension.) For i = 0, 1, 2, . . ., we now construct the map
β on BN i in such a way that for any i-simplex ∆,

(41) β(∆) ⊂ ∩O∈Fv(∆)
O.

If v is a vertex of BN , just pick β(v) ∈ ∩O∈FvO arbitrarily. In general, assuming β has
been defined on ∂∆, it follows from the definition of v(∆) and (41) that

β(∂∆) ⊂ ∩O∈Fv(∆)
O.

This intersection is contractible, so there is some extension of β to ∆ satisfying (41). The
homotopy α ◦ β ≃ 1 is constructed inductively on the skeleta of BN , using the homotopy
extension principle at each step. To see that β ◦ α ≃ 1, one just notes that if p ∈ X , then
α(p) is in some simplex ∆ of BN that has as a vertex some O ∋ p, so by (41), β ◦α(p) ∈ O.
In other words, p and β ◦ α(p) are both contained in one of the small convex balls in our
cover, so we can just take a straight line homotopy from β ◦ α to 1.

With the above presentation of the proof of the Nerve Lemma (which we could not find
a reference for) the claim becomes trivial. Namely, let Φ : Un −→ NSn be the map called
α above, where the manifold is Un and the cover is by the ρn(x)-balls around x ∈ Sn. Let
F : NSn∪Tn −→ Mn be the map called β above, where the manifold is Mn and the cover is
by the ρn(x)-balls around x ∈ Sn ∪Tn. These are both homotopy equivalences, and just as
above the straight-line homotopy connects F ◦ Φ to the inclusion Un −→ Mn. �

Now that we have proved the claim, the lemma follows. �

And so does the theorem. �
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