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Abstract. General equations for conservative yet dissipative (entropy producing)
extended magnetohydrodynamics are derived from two-fluid theory. Keeping all
terms generates unusual cross-effects, such as thermophoresis and a current viscosity
that mixes with the usual velocity viscosity. While the Poisson bracket of the ideal
version of this model have already been discovered, we determine its metriplectic
counterpart that describes the dissipation. This is done using a new and general
thermodynamic point of view for deriving dissipative brackets, a means of derivation
that is natural for understanding and creating dissipative brackets. Finally the
formalism is used to study dissipation in the Lagrangian variable picture where, in the
context of extended magnetohydrodynamics, nonlocal dissipative brackets naturally
emerge.
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1. Introduction

1.1. Background

It is well known that the Hamiltonian dynamics of discrete and continuum systems
may be written in terms of Poisson brackets [1, 2] with Hamiltonians. Such
systems describe the evolution of a point in a phase space that may be finite-
dimensional, the case for discrete systems, or infinite-dimensional, the case for
continuum systems. The Poisson bracket is a bilinear operation on the set of smooth
functions or functionals (0-forms) that maps phase space to the real numbers. This
set includes all the physical observables of interest. The Poisson bracket is also
skew-symmetric and satisfies the Jacobi identity. In the canonical case the Poisson
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bracket is nondegenerate and the Jacobi identity is equivalent to the closedness of the
associated symplectic 2-form, while in the noncanonical case degeneracy gives rise to
Casimir invariants that have vanishing Poisson brackets with all functionals. The rich
geometry of a phase space with a defined Poisson bracket, which includes symplectic
and Poisson geometry, is intellectually very interesting and allows for better insight.
Moreover, it is of practical value for understanding spectra, perturbation theory, and
the construction of numerical algorithms (see, e.g., [3, 4, 5, 6]).

Less known is the fact that dissipative dynamics can also emerge from brackets
[7, 8, 9, 10, 11, 12] and the entropy S rather than the Hamiltonian H may serve as
the generating function. (See [13, 14, 15, 16, 17, 18, 19, 20, 21] for a selection of more
recent theoretical work, and e.g. [22, 23, 24] for recent numerical algorithms based
on bracket dissipative structure.) Given that physical models generally contain both
Hamiltonian and dissipative parts, we would like to use both kinds of brackets to
get the complete dynamics. To this end we introduce a free energy F = H − T S ,
where T is a Lagrange multiplier, interpreted as a generalized temperature (which is
a uniform constant, in opposition to the physical temperature of the system T). This
generalization is natural both because the free energy has a physical interpretation
and because the entropy is a Casimir invariant of the Poisson bracket. The dynamics
then becomes for any functional f of the system,

d f
dt

=
[
[ f ,F ]

]
,

where
[
[ f , g]

]
is an inclusive bracket, defined as the difference between a Poisson

bracket, denoted { f , g}, and a dissipative bracket, denoted ( f , g). Since the energy
is preserved and the entropy increases with time, F is a thermodynamic potential.
Then, an equilibrium is given by δF = 0, where δ means the functional variation,
which will be formally defined later.

An interesting property can already been proven. We denote by σ the entropy
density and assume that this variable appears in the Hamiltonian only through an
internal energy density uVol. But, from thermodynamics, we know that the local
temperature is defined by T = ∂uVol/∂σ. Then, the variation of F induced by a
perturbation of the entropy δσ gives δF/δσ = T − T . Therefore, at equilibrium,
the temperature is uniform and equals the Lagrange multiplier T , which validates
our interpretation of this constant.

To be compatible with thermodynamics, there are requirements. The second
law of thermodynamics is assured if the dissipative bracket be a nonnegative
symmetrical bilinear form (we assume T to be nonnegative, which is consistent with
its equilibrium interpretation). Then, it almost defines a metric. The first law requires
the conservation of the Hamiltonian, i.e. (H,F ) = 0. A stronger assumption is to
require the degeneracy, i.e. (H, f ) = 0 for any functional f . The situation is then
symmetrical with the fact that S is a Casimir of the Poisson bracket. If such an
assumption is fulfilled, the dissipative bracket is called metriplectic and metriplectic
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dynamics of any functional f is given by

d f
dt

=
[
[ f ,F ]

]
= { f ,H}+ T ( f ,S) .

The two principles of thermodynamics are then fulfilled by construction:

dH
dt

= {H,H}+ T (H,S) = 0 ;

dS
dt

= {S ,H}+ T (S ,S) = T (S ,S) ≥ 0 .

The formalism above with the properties of symmetry and degeneracy first
appeared in [8, 10], with the terminology metriplectic introduced in [12]. Several
examples were given in these early works. Later it was called generic in [13].

For a given physical system, it remains to determine the brackets. For fluid-like
theories, the Poisson brackets naturally come from canonical brackets in terms of
Lagrangian position/momentum variables, which can then be transformed into the
usual Eulerian variables (see e.g. [2]). Poisson brackets for many models of plasma
physics exist in the literature, including those for magnetohydrodynamics [25, 26],
relativistic magnetohydrodynamics [27] and extended magnetohydrodynamics [28].
They are also known in other subjects of physics, e.g., in geophysical fluids [29] and
elasticity [30]. Fewer metriplectic brackets are known; however, they have been
discovered for fluids with viscosity and thermal diffusion [10], n-fluid models with
chemical reactions [20], elasticity [30], and magnetohydrodynamics [31].

1.2. Extended Magnetohydrodynamics: Model

In this paper, we will mostly focus on extended magnetohydrodynamics. Extended
magnetohydrodynamics may be derived from two-fluid theory, where ions and
electrons are treated as distinct fluids. From this model, it is possible to get new
equations in the usual variables, the center-of-mass velocity v and the electrical
current j [32, 33] (see also [34, 35]). To simplify the equations, two assumptions
are made: quasi-neutrality, viz. that the densities of electrons and ions are assumed
equal, and that the ratio of masses of electrons and ions µ = me/mi is small so that
one can make a development in powers of µ. With these assumptions, one gets a
generalized equation of motion for the velocity and a generalized Ohm’s law. The
model restricted to order zero in µ is called Hall magnetohydrodynamics (HMHD),
while the order one is called extended magnetohydrodynamics (XMHD).

The equations of extended magnetohydrodynamics are expressed in terms of the
variables (ρ, σ, σe, v, j, E, B), which are respectively the mass density, the total entropy
density, the electron entropy density, the center-of-mass velocity, the electrical current
and the electric and magnetic fields. If our plasma is confined in a domain Ω,
the three Eulerian scalars are functions from Ω × R −→ R, while the four vector
fields are functions from Ω ×R −→ TΩ, where TΩ stands for the tangent bundle
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of the manifold Ω. For simplicity, we define χ = m/e and choose units such that
µ0 = ε0 = c = 1. The three scalar fields satisfy the conservation laws,

∂tρ +∇ · (ρv) = 0, ∂tσ +∇ · (σv) = 0, ∂tσe +∇ · (σeve) = 0 ,

where at order one in µ, the electron velocity ve = v − (1− µ)χ j/ρ. The center of
mass velocity satisfies the momentum conservation law,

dv
dt

= ∂tv + v · ∇v = −1
ρ
∇P +

j
ρ
× B− µχ2 j

ρ
· ∇
(

j
ρ

)
,

while its counterpart is the generalized Ohm’s law,

E + v× B = χ
j
ρ
× B− χ

ρ
∇Pe

+ µ
χ2

ρ

[
∂j
∂t

+∇ · (v⊗ j + j⊗ v)
]
− µχ3 j

ρ
· ∇
(

j
ρ

)
.

Finally, the electromagnetic variables are linked by the Maxwell equations,

∂tB +∇× E = 0, ∇× B = j, ∇ · B = 0 .

To close the system, one must specify the internal energies per unit mass for ions
ui(ρi, σi) and its electron counterpart ue(ρe, σe), where ρi = (1− µ)ρ, ρe = µρ and
σi = σ− σe. Then, the pressures are determined by

Pi = ρ2
i

∂ui

∂ρi
, Pe = ρ2

e
∂ue

∂ρe
, and P = Pi + Pe .

One can also simplify the extended magnetohydrodynamics equations by
eliminating the variables j and E, which is indeed useful since the Ohm’s law and
Ampere’s equation are not evolution equations but constraint equations. Then, the
phase space should be a submanifold of the (ρ, σ, σe, v, j, E, B) vector space. Thus, we
are able to reduce these variables to get an easier phase space. To this end, it is useful
to define a drifted magnetic field,

B∗ := B + µχ2∇×
(

j
ρ

)
= B + µχ2∇×

(
1
ρ
∇× B

)
. (1)

Physically, this drift comes from the difference of inertia between ions and electrons.
While the velocity represents mostly the movement of ions, the frozen-in property of
the magnetic field [36] (also see e.g. [33]) is related to the dynamics of electrons. This
creates a drift between the velocity and the magnetic flux, which is taken into account
in this drifted magnetic field.

The Ohm’s law and the Maxwell’s equations then reduce to [28]

∂tB∗ = ∇×
[

v× B∗ − 1
ρ
(∇× B)× B∗ + µ

χ

ρ
(∇× B)× (∇× v)

]
− χ

ρ2 (∇Pe ×∇ρ) .
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1.3. Extended Magnetohydrodynamics: Geometry

After the reduction of removing E and j, the phase variables can be chosen to be
(ρ, σ, σe, m, B∗) where m = ρv is the momentum density and B∗ is constrained to be a
divergence-free vector field. However, the divergence-free constraint will be fulfilled
if it is initially true, because it turns out the dynamics will propagate it. Then, we
define the local phase space at a point x ∈ Ω as

Φx = Rρ ×Rσ ×Rσe × (TxΩ)m × (TxΩ)B∗

and the global phase space Φ as the sections of the bundle

qx∈ΩΦx −→ Ω .

That is, a point of the global phase space gives an element of the local phase space
for each spatial position, which describes uniquely the state of our system. We then
define a functional as a map from Φ −→ R (or R3 for vectors), a bracket as a bilinear
operator RΦ ×RΦ −→ RΦ that fulfills the Leibniz rule, the variation of a functional
f as δ f : Φ×Φ −→ R given by

δ f (ϕ, δϕ) = limε→0
f (ϕ + εδϕ)− f (ϕ)

ε
,

and the functional derivative of f at a point δϕ ∈ Φ, denoted δ f /δϕ, as the only
functional such that for any ϕ ∈ Φ,

δ f (ϕ, δϕ) =
∫

Ω

δ f
δϕ

δϕ ,

where the volume element (e.g. d3x) will not be stated when there is no likelihood of
confusion. We consider a particular physical path in the phase space, parametrized
by the time R, and then functionals may be seen as functions of time. Let us also
notice that a function on a local phase space g : Φx −→ R, where x ∈ Ω, may be
seen as a functional gx : ϕ ∈ Φ −→

∫
Ω g(ϕ(y))δΩ(x− y)d3y, where δΩ is the Dirac

distribution on Ω (and assuming that we can define g over any local phase space,
which is natural in practice). Without changing notations we identify g with gx.

Finally, one must define the important functionals S and H. First, of course, is
the total entropy,

S =
∫

Ω
σ . (2)

Second, the energy per unit volume contains the kinetic energy, the internal energy,
the magnetic energy, and also the kinetic energy of the electrons [16]. We denote the
global internal energy per unit mass u = (ρiui + ρeue)/ρ = (1 − µ)ui + µue. All
together, this gives the local energy,

ε =
1
2

ρ|v|2 + ρu +
1
2
|B|2 + 1

2
µ

χ2

ρ
|j|2 =

|m|2
2ρ

+ ρu +
1
2

B · B∗ . (3)
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where use has been made of (1) and in the last equality a total divergence has been
dropped. Then, the Hamiltonian is

H =
∫

Ω
ε =

∫
Ω

(
|m|2
2ρ

+ ρu +
1
2

B · B∗
)

. (4)

For extended magnetohydrodynamics , the following Poisson bracket on e.g.
functionals f , g, which was first given in [37] based on the earlier work of [16, 38],
together with the Hamiltonian of (4) produces the equations of motion:

{ f , g} =
∫

Ω
d3y

[
ρ

δ f
δm(y)

· ∇
(

δg
δρ(y)

)
− ρ

δg
δm(y)

· ∇
(

δ f
δρ(y)

)
+ σ

δ f
δm(y)

· ∇
(

δg
δσ(y)

)
− σ

δg
δm(y)

· ∇
(

δ f
δσ(y)

)
+ m ·

(
δ f

δm(y)
· ∇
(

δg
δm(y)

))
−m ·

(
δg

δm(y)
· ∇
(

δ f
δm(y)

))
+ B∗ ·

(
δ f

δm(y)
· ∇
(

δg
δB∗(y)

))
− B∗ ·

(
δg

δm(y)
· ∇
(

δ f
δB∗(y)

))
− δ f

δm(y)
·
(

B∗ · ∇
(

δg
δB∗(y)

))
+

δg
δm(y)

·
(

B∗ · ∇
(

δ f
δB∗(y)

))
− de

ρ

(√
m
me

B∗ − de∇×
(

m
ρ

))
×
(
∇×

(
δ f

δB∗(y)

))
×
(
∇×

(
δg

δB∗(y)

))]
. (5)

This bracket is clearly skew-symmetric in f , g and it was shown by direct calculation
in [37] to satisfy the Jacobi identity. A much simplified proof of the Jacobi identity
along with some remarkable connections to other models was obtained in [39] and
the bracket of (5) was derived from a Lagrangian variable action functional in [28].

Lastly, we note that strong boundary conditions are assumed such that all
needed integrations by parts produce no boundary terms. In this paper, we will
not consider any boundary effect on the brackets, and not even mention the several
boundary assumptions that would be used.

1.4. Development - Overview

Given the model and Hamiltonian structure of sections 1.2 and 1.3, respectively, it
remains to discuss dissipation. The dynamical variables, the phase space, will remain
the same, but the evolution equations will obtain new dissipative terms generated by
a metriplectic bracket. A quite general form with several dissipative effects will be
obtained by this means.

In section 2 we start again from two-fluid theory, with general forms of thermal
and viscous dissipative terms, to obtain dissipative extended magnetohydrodynam-
ics. We will also consider cross-terms and look at their effect. For example, our model
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will include thermophoresis, and we will also discover a new current viscosity. This
new viscosity will allow new cross effects between the velocity and magnetic field
evolutions that may be of higher derivative orders while remaining linear.

In section 3 we will examine the dissipative brackets from a purely
thermodynamic point of view, and find from this new perspective the brackets of
hydrodynamics. Next we will introduce another set of variables that appear more
natural for constructing the metriplectic bracket and then present a systematic way
to derive general dissipative brackets for fluid-like systems.

In section 4 we will determine the complete brackets of dissipative extended
magnetohydrodynamics. Keeping all cross effects, the dissipative bracket is given by
equation (26) with the various phenomenological coefficients including cross effects
described there.

In section 5, we discuss the Lagrangian variable picture of this model. While
the Hamiltonian dynamics is well-known in terms of these variable, dissipation is
usually considered only in the Eulerian picture. Consequently, we complete the
picture by examining general forms of dissipation in the Lagrangian variable picture,
and describe the transformation to the Eulerian picture as an example of metriplectic
reduction.

Finally, in section 6 we conclude this work.

2. From Two-Fluid Theory to Dissipative Extended Magnetohydrodynamics

2.1. Two-Fluid Theory

In the two-fluid model, one considers the ions and the electrons as two distinct fluids
with two velocity fields vi and ve, two mass densities ρi and ρe, and two pressures Pi
and Pe. In addition one has the individual mass conservation laws,

∂tρi +∇ · (ρivi) = 0 and ∂tρe +∇ · (ρeve) = 0 . (6)

The quasi-neutrality assumption states, at order one in µ,

ρi = (1− µ)ρ and ρe = µρ ,

where ρ = ρi + ρe. These fluid equations are then coupled via Maxwell’s equations.
Conductivity arises from collisions between electrons and ions, and these are

modeled by an exchange term in the momentum equation proportional to the relative
velocity (see e.g. [33]). This term will express the resistivity of Ohm’s law, with the
bonus of a physical interpretation at this level. Plus, we know that in the one-fluid
theory, Ohm’s law has a tensorial phenomenological constant, like what may occur
for Fourier’s law of heat conduction. From a thermodynamic point of view there
could also be cross-terms between heat and electrical conduction [40]; consequently,
for generality, we will add such cross terms in our two-fluid theory. To conserve the
total momentum these appear with opposite signs.
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A decision about temperature needs to be made. In many plasmas the electrons
and ions have not relaxed to a common temperature. Because we are interested in
a theory that relaxes to thermal equilibrium and for simplicity in this paper, at the
outset we assume that there is a common local temperature. This assumption allows
us to drop the σe variable, as will be discussed later. Nevertheless, while we use local
temperature equilibrium to derive the brackets from formal thermodynamics, we can
generalize the bracket by dropping this hypothesis.

We assume that both fluids have their individual viscosities, which together
will generate a one-fluid viscosity. This assumption naturally produces additional
viscosities: a current viscosity and cross-effect viscosities, which do not appear
to have been heretofore explored. Physically, all viscosities can be traced back to
collisions between particles of the fluids. We are also able to add cross viscosity at the
outset between the fluids, but this only alters the phenomenological coefficients that
appear in our final theory. The terms we obtain can be interpreted as arising from
collisions between ions and electrons of an higher order than the usual exchange
terms.

Given the above assumptions, the equations read as follows:

(1− µ)ρ (∂tvi + vi · ∇vi) = −∇Pi + χ−1ρ (E + vi × B)− ρ2

χ2 ηjj(vi − ve)

− ρ

χ
ηjT∇T +∇ · [Λii∇vi + Λie∇ve] (7)

and

µρ (∂tve + ve · ∇ve) = −∇Pe − χ−1ρ (E + ve × B) +
ρ2

χ2 ηjj(vi − ve)

+
ρ

χ
ηjT∇T +∇ · [Λei∇vi + Λee∇ve] , (8)

where we have introduce six phenomenological coefficients. Two conductivities,
electrical with ηjj and thermic with ηjT, and four viscosity coefficients, for ions Λii,
electrons Λee, and cross effects Λie and Λie, where the latter are symmetric because of
the Onsager relations. The conductivities are in general 2-tensors, i.e. matrices of TxΩ
at each point x ∈ Ω, whereas the viscosities are 4-tensors, i.e. matrices of the vector
space of matrices of TxΩ. Thus, e.g. the bth-component of the term ∇ · [Λii∇vi]) in
cartesian tensor notation, where repeated indices are summed, is ∂a[(Λii)abcd∂c(vi)d],
with a, b, c, d ∈ {1, 2, 3}. Other tensor expressions here and henceforth should
be interpreted similarly. We choose some constants with these coefficients, which
change nothing since one may define the phenomenological coefficients another way,
but will simplify the calculations.

For generality we allow the phenomenological coefficients to be arbitrary: they
may be general tensors that depend on the phase space variables and position.

Lastly, thermodynamics gives two equations, the thermodynamic identities,

Tdsi = dui −
Pi

ρ2
i

dρi and Tdse = due −
Pe

ρ2
e

dρe,
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where si and se are the specific entropies of ions and electrons while ui and ue are
the specific internal energies of ions and electrons. Later, we will prefer to use the
densities, which are related to the specific entropies and internal energies according
to σα = ραsα and uα, Vol = ραuα for α ∈ {i, e}.

2.2. Toward One-Fluid Theory

Next we define the center-of-mass velocity v, the electrical current j, and the total
pressure P by

v = (ρivi + ρeve)/ρ = vi + µ(ve − vi) , j = ρ(vi − ve)/χ , P = Pi + Pe .

We may also write,

vi = v + µχ j/ρ and ve = v− (1− µ)χ j/ρ .

Given the above change of variables and the quasineutrality assumption,
equations (6) imply the one-fluid mass conservation law,

∂tρ +∇ · (ρv) = 0 .

The one-fluid velocity equation and Ohm’s law appear from the sum and difference
of equations (7) and (8). The more difficult part of this computation is to manage
the nonlinear terms. However, these terms are purely dynamical and not dissipative,
and they have already been derived. For the detailed computation of these nonlinear
terms, see [32, 28]. Summing equations (7) and (8) gives

ρ

[
∂tv + v · ∇v + µχ2 j

ρ
· ∇
(

j
ρ

)]
= j× B−∇P

+ ∇ ·
[

Λvv∇v + Λvj∇
(

j
ρ

)]
,

where

Λvv = Λii + Λie + Λei + Λee

and

Λvj = −χ (Λie + Λee) + µχ (Λii + Λei + Λie + Λee) .

We can also define the viscosity 2-tensor

Πv = Λvv∇v + Λvj∇
(

j
ρ

)
.

The independent combination µ(1 − µ)χ
ρ × (7) − (1 − µ)χ

ρ × (8) gives the
following:

µ
χ2

ρ

[
∂j
∂t

+∇ · (v⊗ j + j⊗ v)− χj · ∇
(

j
ρ

)]
+ ηjj j + ηjT∇T (9)

= E +

(
v− χ

j
ρ

)
× B +

χ

ρ
∇ (Pe − µP) +∇ ·

[
Λjv∇v + Λjj∇

(
j
ρ

)]
,
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where

Λjv = −χ (Λei + Λee) + µχ (Λii + Λei + Λie + Λee) (10)

and

Λjj = χ2Λee − µχ2 (2Λee + Λie + Λei) . (11)

To maintain a consistent ordering we let Pe − µP → Pe by absorbing the order µ part
into a redefinition of Pe. We can also define another viscosity 2-tensor,

Πj = Λjv∇v + Λjj∇
(

j
ρ

)
.

Given the above, from conservation of energy, one can get the new equation
for entropy. The global entropy is defined by σ = σi + σe just like the global
internal energy density is defined as uVol = ui, Vol + ue, Vol. This equation is a natural
generalization of the entropy evolution for magnetic field-free flow [40]:

dσ

dt
= ∇ · JT +

1
T
∇T · JT +

1
T

j · Jj +
1
T
∇v : Πv +

1
T
∇
(

j
ρ

)
: Πj , (12)

where we have defined the heat flux JT = ηTjj + ηTT∇T that drives the entropy.
Here we have added the two mirror coefficients of conductivity. The first is the usual
heat conductivity ηTT. This coefficient is usually defined with a factor T, which here
for simplicity and symmetry is absorbed in the definition of the phenomenological
coefficient. Indeed, it will appear that the natural variable is ∇ (1/T) and not ∇T;
we then add T to the phenomenological coefficients to compensate. The second
coefficient is the cross effect conductivity ηTj, which is expected to be symmetric with
ηjT because of the Onsager relations.

Next we specify the pressure and temperature. Just like before, we suppose there
is a known total internal energy density uVol(ρ, σ), whence the temperature T and total
pressure P are given by

T =
∂uVol

∂σ
and P =

1
ρ2

∂uVol

∂ρ
.

It remains to specify the electron pressure Pe that appears in the Ohm’s law of (9). In
a more general study we might keep electron entropy σe and define it as in [16].
In nondissipative study, this is not a problem since the entropies are conserved.
But now they evolve and it is tricky to find out which kind of dissipation varies
with each entropy, since some forms of dissipation are exchange terms, i.e. they
exchange entropy. Indeed, the thermodynamic study has four variables that evolve
with time: the two internal energies and the two entropies, which are linked by two
thermodynamic identities. The usual study takes advantages of the conservation of
energy to close the system. But here we still lack an energy equation. To compensate,
we will use the fact that we have supposed a local temperature equilibrium. To this
end we now suppose a known expression for the electron Helmholtz free energy
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density fe := ue, Vol − Tσe, which is a function of (ρe, T), and this is determined for all
time by our set of equations. We then can define

Pe =
1
ρ2

e

∂ fe

∂ρe
.

If we no longer assume the local temperature equilibrium, the problem becomes
harder. The global thermodynamic identity uses two temperatures, so the entropy
evolution is more complex and we are still missing an equation to close the system.
This open question will not be solved in this paper, leaving it for a future study.

2.3. Reduced Equations and Discussion

As before, we eliminate j and E and write the equations in terms of (ρ, σ, m, B∗). We
will write them as four evolution equations and four phenomenological equations.

The first evolution equation is mass conservation,

∂tρ +∇ ·m = 0 ;

the second is momentum conservation,

∂tm +∇ · (m⊗ v) = −∇P− µρ
χ2

2
∇
(
|j|2
ρ2

)
+ j× B∗ +∇ ·Πv ;

the third is the magnetic field evolution equation,

∂tB∗ = ∇×
[

v× B∗ − 1
ρ
(∇× B)× B∗ + µ

χ

ρ
(∇× B)× (∇× v)

− Jj +
1
ρ
∇ ·Πj

]
− χ

ρ2 (∇Pe ×∇ρ) ;

and the forth is the entropy equation,

∂tσ +∇ · (σv) = ∇ · JT +
1
T
∇T · JT +

1
T

j · Jj

+
1
T
∇v : Πv +

1
T
∇
(

j
ρ

)
: Πj .

On the other hand, the first two phenomenological equations are for the
viscosities,

Πv = Λvv∇v + Λvj∇
(

j
ρ

)
and Πj = Λjv∇v + Λjj∇

(
j
ρ

)
;

while the second two are for conduction,

Jj = ηjjj + ηjT∇T and JT = ηTjj + ηTT∇T .

Let us discuss the several dissipative effets. Some are usual: the tensor Λvv is
the usual viscosity, which gives viscous dissipation of the velocity if this velocity has
spatial variation; the matrix ηjj is the usual electrical conductivity and gives the usual
Ohm’s law; and the coefficient TηTT is the usual heat conductivity that gives the
usual Fourier law. The other coefficients are less usual. The cross terms ηjT and ηTj
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are thermo-electric coefficients, which arise from different responses of the different
particles to the gradient of the temperature. In this context, this phenomenon is called
thermophoresis. More precisely, ηjT gives the Soret effet, while ηTj gives the Dufour
effect.

The current viscosity Λjj is predominately determined by the electron viscosity.
This seems natural in the context of extended magnetohydrodynamics since the
electrons do have inertia. Also, one might think there could be contributions of
higher order in the exchange terms, emerging from electron-ion collisions.

According to two-fluid theory, if the electrons have viscosity, then the coefficient
Λjj will not vanish. However, in magnetofluid models this effect is neglected
and does not appear to have been studied. One can understand this by roughly
estimating the order of magnitude of a viscosity coefficient. Dimensionally one has
[Λ] = M · L−1 · T−1. Choosing parameters as the mass density nmα, with particle
number density n, the average velocity vα (or equivalently the thermal energy T),
and the Debye length λD = T

4πe2n , where α ∈ {e, i}, one can estimate

|Λαα| ∼ mαnvαλD ∼ n
√

TmαλD .

Since n and T are the same for both electrons and ions, one can estimate
|Λee|
|Λii|

∼
√

me

mi
=
√

µ .

More physically, the idea is that electrons are much lighter. Thus, even if there are
more electron-electron collisions than ion-ion ones, mostly because they are quicker,
these collisions contribute less to the change of momentum.

Finally, in order of magnitude, one has |Λvv| ∼ |Λii| ∼ 1 and |Λjj| ∼ |Λee| ∼√
µ. Numerically, this is small, yet terms of this order are retained in extended

magnetohydrodynamic framework. This may explain why there appears to be no
literature on this effect, even though our estimates suggest retaining this term as a
higher order correction of the usual formulas. We caution that our estimates are
approximate and various temperatures differences for ions and electrons may also
change this result. So, keeping in mind that this effect is small, we will keep it in our
equations for the purposes of generality and symmetry. Getting general brackets is
easier this way, since one is reminded of this symmetry, which also appears naturally
in the brackets.

With regard to the cross effects, the Onsager relations and the constraint of
entropy growth assure |Λie| ∼ |Λie| ≤

√
|Λii||Λee|. For usual cross effects, one may

believe that these coefficients also are of order
√

µ. Since these cross-effects can be
interesting terms and also exhibit symmetries, we will keep them too. These cross-
effects may be interesting since they provide a new way to mix the velocity field and
the magnetic field, of higher derivative order and linear. Then, around equilibrium
and for fast variations, while other mixing terms may disappear, these cross effect
may offer new kinds of mixing. An easy and naive example will be provided in the
next subsection.
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2.4. An Example of the Viscous Cross-Effects

In this subsection, we will illustrate an effect of the viscous cross-terms. We will
show a way to transfer mechanical energy into electromagnetic energy thanks to
these terms. The model will be drastically simplified, to be educational and to get
better insight into the meaning of these new terms.

To this end we assume, Ω = R+
y ×R2, with translational symmetry along the

z-axis, i.e. we work with a 2D-fluid. All phenomenological tensors are assumed to
be constant scalars and the internal energy is chosen so that ρ remains constant and
uniform, just like T. At y = 0 we assume there is a wall that oscillates in the x-
direction with velocity u = u0eiνt, with u0 being the amplitude, assumed small, and
ν is the frequency, assumed large. We work with the viscous boundary limit, close
enough to the wall and with u0 small enough to neglect all nonlinear terms. We will
not exhibit the huge constraints of such a hypothesis, this is not the goal. At the
beginning of this thought experiment, there is no magnetic field, and there are no
outside sources, so that the electromagnetic energy is null. Upon forcing the fluid
with such a sinusoidal mechanical input: What will happen?

For a classical fluid, like a plasma without the viscous cross term, the magnetic
field equation states dB∗/dt = 0. Thus, the electromagnetic energy remains zero and
the problem is purely mechanical. If one defines the scalar vorticity as ω = ẑ · ∇× v,
then the equation of motion becomes ρ∂tω = Λvv∆ω. The mechanical sinosoidal
input will then give rise to a sinusoidal output ω = ω0eky+iνt, where the wavenumber
k will respect the dispersion relation:

k = −(1± i)δ−1 , where δ =

√
2Λvv

ρν
.

The quantity δ is the boundary layer thickness and ω0 ∼ u0/δ. Physically, the
sinusoidal input will create oscillations in the fluid along the same direction, and
this oscillation will propagate in the y-direction with an exponential decrease into
the boundary layer.

Now, if we add the other viscous terms, which are linear, the situation changes.
The linear terms are now,

∂tω =
Λvv

ρ
∆ω−

Λvj

ρ
∆2B

∂tB∗ = ηjj∆B +
Λjv

ρ
∆ω−

Λjj

ρ
∆2B

where the components of B∗ and B are along the symmetry direction. Then, the
sinusoidal input appears in the magnetic field equation thanks to the Λjv term. The
solutions will then become

ω = ω0eky+iνt and B = B0eky+iνt ,
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and the wavenumber k is now given by the dispersion relation(
Λvv

ρ
k2 − iν

)(
ηjjk2 −

Λjj

ρ
k4 − iν

(
1− µ

χ2

ρ
k2
))

+
ΛvjΛjv

ρ2 k6 = 0 .

Thus, one can link ω0 and B0, while ω0 ∼ |k|u0.
Although our system of equations could be studied more deeply, the above is

sufficient for our purpose: How should one understand this thought experiment?
The wall moves sinusoidally and the viscous boundary layer limit means the wall
will drive the fluid with it. Then these oscillations propagate in the y-direction, so the
wall moves a column of fluid. And it does so with some effectiveness, parametrized
by the viscous coefficient. But which fluid is drifted? The ions or the electrons?
In fact, both, but not with the same effectiveness, i.e., not with the same force.
Thus, electrons and ions oscillate, but not at the same amplitude, thereby creating a
current. If one looks at the scene from the ions’ point of view, one would see electrons
oscillating. Indeed, this interface effect is creating an alternating electric current from
a mechanical input. Thus, we have a sort of wall-driven dynamo effect.

3. Thermodynamic Theory of Dissipative Brackets

3.1. From Non-Equilibrium Thermodynamics to Dissipative Brackets

While thermodynamics historically deals with equilibrium states, non-equilibrium
thermodynamics is concerned with systems close to thermal equilibrium and
implements irreversible processes [40, 18, 19]. In developing such a theory, the first
step is to write a thermodynamic identity

dσ = ∑
α

Xαdζα , (13)

where, as before, σ is the entropy density and ζα is a density associated with an
conserved extensive property, with Xα = ∂σ/∂ζα. One then has conservation
equations for all the densities,

∂tζα +∇ · Jα = 0 ,

where Jα is an unknown flux associated with ζα. Given the above, the evolution of
the entropy is determined by the equation of motion

∂tσ +∇ · JT = ∑
α

Jα · ∇Xα; JT = ∑
α

XαJα ,

and ∇Xα is called the affinity associated with the density and flux labeled by α.
It remains to determine the fluxes Jα. Close to equilibrium, one typically assumes

linear responses:

Jα = ∑
β

Lαβ∇Xβ ,

for any α. What can we say about the matrix L? Because of Onsager’s relations, L is
symmetric. Plus, the growth of entropy is assured if and only if L has nonnegative
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eigenvalues. It is then natural to define the phase space, a vector space of functions on
Ω, that has the basis {ζα, ∀α}, in which the entropy is geometrically constructed; thus,
the form of (13) would be maintained for another choice of basis besides {ζα, ∀α}.
Then, one can decompose the phase space into a part defined by the kernel of L and
a subspace where L defines a metric.

To see what L does look like on the phase space, let us rewrite the evolution
equations, at a space point x and time t, as follows:

∂tζα(x, t) = −∇ · Jα(x, t) = −∇ ·
[

Lαβ(x, t)∇
(

∂σ

∂ζβ

)
(x, t)

]

= −
∫

Ω
d3y δΩ(x− y)∇ ·

[
Lαβ(y, t)∇

(
∂σ

∂ζβ

)
(y, t)

]

=
∫

Ω
d3y

[
∇ (δΩ(x− y)) Lαβ(y, t)∇

(
∂σ

∂ζβ

)
(y, t)

]

=
∫

Ω
d3y

[
∇
(

δζα(x, t)
δζγ(y, t)

)
Lγβ(y, t)∇

(
δS(t)

δζβ(y, t)

)]
, (14)

where have been used repeated index notation for summation over β and γ and
δΩ(x − y) is the Dirac delta function. Proceeding from (14) one easily recognizes a
bracket, because the {ζα, ∀α} constitutes a basis of the phase space. To make this
clearer, we exhibit the entropy evolution equation as follows:

∂tσ(x, t) = −∇ · JT(x, t) + Jα · ∇
(

∂σ

∂ζα

)
(x, t)

= −∇ ·
[

∂σ

∂ζα
(x, t)Lαβ(x, t)∇

(
∂σ

∂ζβ

)
(x, t)

]

+∇
(

∂σ

∂ζα

)
(x, t)Lαβ(x, t)∇

(
∂σ

∂ζβ

)
(x, t)

= − ∂σ

∂ζα
(x, t)∇ ·

[
Lαβ(x, t)∇

(
∂σ

∂ζβ

)
(x, t)

]

=
∫

Ω
d3y

[
∇
(

∂σ

∂ζα
(y, t)δΩ(x− y)

)
Lαβ(y, t)∇

(
∂σ

∂ζβ
(y, t)

)]

=
∫

Ω
d3y

[
∇
(

δσ(x, t)
δζα(y, t)

)
Lαβ(y, t)∇

(
δS(t)

δζβ(y, t)

)]
.

Thus, the dynamics of out-of-equilibrium thermodynamics on the phase space
can be express with a symmetric bracket. Namely, for any two functionals f , g, we
define the bracket

( f , g) :=
1
T

∫
Ω

d3y∇
(

δ f
δζα(y)

)
Lαβ∇

(
δg

δζβ(y)

)
. (15)
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Here the phenomenological tensor Lαβ is written with explicit subscripts α and β

denoting the processes, while other tensorial indices are suppressed. Let us remark
that it is independent of the basis {ζα, ∀α}. Indeed, the functional derivatives can be
seen as functional gradients, and both functional gradients are contracted thanks to
the pseudo-metric L. We then deal with purely geometrical objects. Similarly, if ζα is
an a-tensor and ζβ is an b-tensor, then Lαβ is an (a + b + 2)-tensor. Plus, notice that
thanks to the Onsager relations, the bracket is symmetric. Finally, one can write the
evolution of any functional f as

d f
dt

= T ( f ,S) .

Our construction above shows that the dissipative brackets are completely
natural for non-equilibrium thermodynamics, just like Poisson brackets are natural
for Hamiltonian dynamics. Above, we have explicitly derived a general dissipative
bracket, apparently for the first time, from basic thermodynamic first principles.
This bracket is general and covers existing fluid-like theories of non-equilibrium
thermodynamics such as those given in [10, 31, 13, 14].

Consider now the role of entropy S . It is the counterpart to the role of
the Hamiltonian in analytical mechanics; however, of course here, it is not a
conserved quantity. On the contrary, the nonnegativity of the pseudo-metric L
assures the entropy growth, i.e. the second law of thermodynamics. We have seen in
noncanonical Hamiltonian mechanics that using σ as a variable was useful because
its integral S , being a Casimir invariant, is conserved. Another variable that is very
important, but not usually basic dynamical variable, is ε, the energy density, since
it appears in the Hamiltonian that generates the dynamics. In thermodynamics, σ

is no longer a natural independent variable. But ε, since the energy is preserved, is
a natural variable for the thermodynamic identity and then for the basis. While σ

now appears through the entropy S that generates the dynamics. In brief, the roles
of ε and σ are interchanged. Thus, there are natural variables for the basis of the
phase space, but these are different in the Hamiltonian and thermodynamic points of
view. One can change variables, thanks to the thermodynamic identity, and obtain a
bracket in any complete set of phase space variables.

Finally we ask: What about the first law of thermodynamics? Using ε as a basic
variable in the thermodynamic framework makes it clear. Indeed, since δH/δε is
unity, a uniform constant, and the other elements of the basis are independent of ε,
one gets for any functional f ,

( f ,H) = 0 .

This is not a coincidence, since by construction the non-equilibrium thermodynamics
conserves

∫
Ω ζα for any α, and ε is chosen as one of the ζα’s. Therefore, by

construction, our dissipative bracket has a strong formulation of the first law of
thermodynamics. Indeed it has all of the properties given in [8, 10, 12], including
bilinearity, symmetry, and degeneracy. Coupling such a bracket with the associated
noncanonical Poisson bracket gives a metriplectic dynamical system.



Metriplectic Framework and Dissipative Extended MHD 17

3.2. Application to Hydrodynamics

Hydrodynamics deals with a single fluid, without any electromagnetic effects. The
equations of this model are

dρ

dt
= −∇ · v

ρ
dv
dt

= −∇P +∇ · (Λ∇v)

dσ

dt
= ∇ ·

(
1
T

κ∇T
)
+

1
T2∇T · κ∇T +

1
T
∇v : Λ∇v,

where Λ is the viscosity, a 4-tensor, and κ the heat conductivity, in general a 2-tensor.
We now apply our new formulation to the fluid, whose variables are (ε, ρ, m).

Indeed, these variables are independent, they specify the state of the fluid, and they
are conserved densities; respectively, the total energy H, the global momentum P ,
and the total massM are constants of motion:

H =
∫

Ω
ε , P =

∫
Ω

m , and M =
∫

Ω
ρ .

Our construction guarantees that these quantities will remain constant. If u is the
specific internal energy, the local energy is

ε =
|m|2
2ρ

+ ρu(ρ, s) ,

where s is the specific entropy and σ = ρs. The thermodynamic identity reads
du = Tds + Pdρ/ρ2, which upon changing variables gives

Tdσ = dε− v · dm− gdρ ,

where g is a modified specific Gibbs free energy, namely g := u− Ts + P/ρ− |v|2/2.
Its differential is then dg = −sdT + dP/ρ− v · dv, so that g(T, P, v) is an extensive
quantity with intensive arguments and, consequently, vanishes. Let us remark that
in this paper we do not consider chemical reactions or particle creation/annihilation,
in such cases this free energy would not vanish. Finally, the phase space for
thermodynamics is smaller than the Hamiltonian case since ρ is not an interesting
variable. The thermodynamic variables then are (ε, m) and the thermodynamic
identity is

Tdσ = dε− v · dm .

From this thermodynamic identity, one can see that there will be two irreversible
responses, linked to ε and m, that could be expressed with the affinities ∇T and ∇v.
These dissipation processes are, respectively, the heat conduction and the viscosity.
We are set to proceed, but there are two complications. First, the natural affinity
associated with ε is ∇ (1/T), but this choice implies some factors of T will appear.
Second, the natural affinity of m is −∇ (v/T), but this may create cross effects. Since
we know because of space-parity symmetry no such cross effects exist between the
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affinities ∇T and ∇v, we must destroy them using non-diagonal terms of the tensor
L. This is a strange constraint that is certainly linked with the choice of the basis.

To get the expression for L, one can look at the various fluxes and compare them
with the usual notations [40]. For m, the flux is the opposite of the usual viscous
tensor, viz.,

Πv = Lmm∇
( v

T

)
− Lmε∇

(
1
T

)
= Λ∇v ,

whence Lmm = TΛ and Lmε = TΛv. On the other hand, the energy flux is

Jε = −Lεm∇
( v

T

)
+ Lεε∇

(
1
T

)
= v ·Πv + κ∇T ,

whence Lεm = Tv ·Λ and Lεε = T2κ + v ·Λv. Thus, L is effectively symmetric and it
is easy to check that we have the correct heat flux,

JT =
1
T

Jε + v ·Πv =
1
T

κ∇T .

Having proceeded in this systematic way, the bracket on any functionals f and
g is immediate:

( f , g) =
1
T

∫
Ω

d3y

(
∇
(

δ f
δε(y)

)
·
[ (

T2κ + v ·Λv
)
∇
(

δg
δε(y)

)

+ Tv ·Λ∇
(

δg
δm(y)

)]

+∇
(

δ f
δm(y)

)
:
[

TΛv⊗∇
(

δg
δε(y)

)
+ TΛ∇

(
δg

δm(y)

)])
.

We know this bracket is a metriplectic bracket that preserves the desired quantity, it
is symmetric, and it is positive.

What about the known dissipative bracket of hydrodynamics given in [10]? To
compare we transform back to the more usual fluid dynamical variables of fluid
mechanics, (ε, m, ρ) −→ (σ, m, ρ). Via the chain rule the functional derivatives satisfy

δ f
δε
−→ ∂σ

∂ε

δ f
δσ

=
1
T

δ f
δσ

and
δ f
δm
−→ δ f

δm
+

∂σ

∂m
δ f
δσ

=
δ f
δm
− v

T
δ f
δσ

.

Using

∇
(

δ f
δm
− v

T
δ f
δσ

)
= ∇

(
δ f
δm

)
− 1

T
δ f
δσ
∇v−∇

(
1
T

δ f
δσ

)
⊗ v ,

it is seen that the last term compensates the cross terms, simplifying the heat part of
the bracket, yielding,

( f , g) =
∫

Ω
d3y

T
T

[
T∇

(
1
T

δ f
δσ(y)

)
· κ∇

(
1
T

δg
δσ(y)

)

+

(
∇
(

δ f
δm(y)

)
− 1

T
δ f

δσ(y)
∇v
)

: Λ
(
∇
(

δg
δm(y)

)
− 1

T
δg

δσ(y)
∇v
)]

,
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the bracket given in [10].
To summarize, in this section we have developed a systematic way to construct

dissipative brackets, and we showed that this method reproduces the known bracket
for hydrodynamics. In the next section we will use the method to derive a bracket
for extended magnetohydrodynamics. There we will change some notation, i.e. we
write for the 2-tensor ηTT := κ/T and the 4-tensor Λvv := Λ.

4. Derivation of the Brackets of Dissipative Extended Magnetohydrodynamics

4.1. Thermodynamics

We now return to extended magnetohydrodynamics. Recall, for this theory the
energy density ε is given by the expression of (3) with B∗ is given by (1). For
dissipative extended magnetohydrodynamics, this quantity needs to be incorporated
into the theory via an appropriate choice of a magnetic conserved quantity. Then,
we can choose the associated magnetic variable and use directly the general bracket
theory derived in section 3.

Since ε now depends on the magnetic field, the thermodynamic identity will
be modified accordingly. First, note that the global momentum P =

∫
Ω m is

conserved, consistent with the Galilean symmetry [41]. Because of quasi-neutrality
the local momentum m has no magnetic (vector potential) part (explained in [35]),
and so remains equal to ρv. Consequently, P will not participate in the magnetic
part of the dissipation. One can check easily from the equations of dissipative
extended magnetohydrodynamics of section 2 that the integrated drifted magnetic
field

∫
Ω B∗ is preserved. Thus, we will use the coordinates (ε, ρ, m, B∗) and express

the thermodynamic identity in these variables.
One may ask why

∫
Ω B∗ should be conserved, which unlike other conserved

quantities does not come from deeper insight such as Galilean invariance. To explain
this, let us first digress for a moment and address why

∫
Ω B is conserved for ordinary

magnetohydrodynamics, a fact pointed out as early as [41] that does not seem
to be well known. To interpret this conservation law, consider the postulate of
conservation of the magnetic flux of any surface moving with the velocity field v.
First, remember that the magnetic field is a pseudo-vector (vector density), which is
more naturally re-expressed as a 2-form. In local coordinates, this 2-form, denoted
B, can be written as Bab = εabcBc, where εabc is the Levi-Civita tensor. Thus, the
magnetic flux through a surface Σ with unit normal n is

∫
Σ B · n =

∫
Σ i∗B, where i∗

is mathematically the pull back of the inclusion Σ ⊂ Ω that chooses the associated
coordinate of the 2-form B. Given the assumption that the flux through a surface is
preserved when advected by v, not forgetting that the surface Σ moves following this
vector field, we get the equation

d
dt

∫
Σ

i∗B =
∫

Σ
i∗ (∂tB+ £vB) = 0 ,
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where £v is the Lie derivative generated by the vector field v. So, our postulate is
equivalent to the local equation

∂tB+ £vB = 0 . (16)

Now, choose some fixed direction to evaluate the magnetic field, that is, a 1-form
θ. We can restrict ourselves to closed 1-forms, i.e. dθ = 0. Remembering that the
magnetic field being divergence-free means dB = 0, and using the Cartan formula
and Stokes theorem, we have the identity∫

Ω
B∧ £vθ =

∫
Ω
B∧ divθ =

∫
Ω

d(B∧ ivθ)−
∫

Ω
(dB) ∧ ivθ = 0 , (17)

where iv is the interior product by v. The integral of the θ-component of the magnetic
field is

∫
Ω θ(B) =

∫
Ω B ∧ θ. One can interpret this as a global flux, the sum of the

fluxes through the local surfaces normal to θ. Using that the vector field v preserves
Ω, then that θ is fixed and satisfies equation (17), the evolution of this property is

d
dt

∫
Ω

θ(B) =
∫

Ω
(∂t(B∧ θ) + £v(B∧ θ))

=
∫

Ω
(∂tB+ £vB) ∧ θ = 0 .

Finally, saying that this is true for any θ is just saying that
∫

Ω B is preserved, which
is exactly what we wanted. Note, here the vector field v could have been any vector
field, and need not be the physical velocity field, since we only used that it preserves
the domain Ω.

The flux conservation assumption is central for magnetohydrodynamics with
the velocity field as the advection field v, which is the well-known frozen-in property
(e.g. [33]). Nevertheless, this is no longer true for extended magnetohydrodynamics,
since neither B nor B∗ are advected by v. Yet, the conservation of

∫
Ω B∗ can be seen

by using modified velocity fields. Indeed, according to [28] (and with their notation),
the drifted magnetic field can be decomposed into the following form:

B∗ =
β−B+ − β+B−

β− − β+
, (18)

where β± are scalar constants and B± are modified ‘magnetic fields’ that satisfy
equation (16) with modified velocities v±. Thus, the integrals of B± are preserved,
and by linearity, the integral

∫
Ω B∗ is too.

Given that we have settled on our magnetic conserved quantity, let us proceed
with obtaining the dissipative bracket. To this end we will need that the variation of
B∗ can be expressed as

δB∗ = δB + µχ2∇×
(

1
ρ
∇× δB

)
− µχ2∇×

(
j

ρ2 δρ

)
.

Remembering that variations will be integrated, we can directly write, using
integration by part, the following:

B · δB∗ = B · δB + µχ2B · ∇ ×
(

1
ρ
∇× δB

)
− µχ2B · ∇ ×

(
j

ρ2 δρ

)
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= B∗ · δB− µχ2
(
|j|
ρ

)2

δρ ,

and from this identity we obtain

d
(

B · B∗
2

)
= B · dB∗ + µχ2

(
|j|
ρ

)2

dρ . (19)

Using (19) and (3) we now can write the following thermodynamic identity:

Tdσ = dε− v · dm− B · dB∗ − g∗dρ

where g∗ := u − Ts + P/ρ − |v|2/2 + µχ2 (|j|/ρ)2 is a modified specific Gibbs free
energy. Thus, its natural variables are g∗(T, P, v, j/ρ) or equivalently g∗(T, P, vi, ve).
An extensivity/intensity argument like that of section 3.2 shows again g∗ = 0. Thus,
the thermodynamic identity is given by

Tdσ = dε− v · dm− B · dB∗ . (20)

Neglecting the factors of T discussed in section 3.2, which we will return to, we
would conclude that the response to m is ∇v, the gradient of the thermodynamic
dual and, similarly, the response to B∗ would be∇B. One might think that this latter
response is a 2-tensor; actually, it is not because B, as noted above, is not a vector but
a pseudo-vector or more naturally a 2-form, with the constraint∇ · B = 0. Then, it is
natural to think that this constraint will reduce the size of the response. Indeed, we
will see that the response will be∇× B = j, which is a 1-tensor, and a special case of
the global 2-tensor, if we re-write the phenomenological tensor.

There is yet another complication. From the thermodynamic identity (20), we
easily see that the response to ε will create heat conduction, that the response to B∗

will create electrical conductivity, and cross terms can, of course, easily be added.
Also we see that the response to m will create velocity viscosity, but what about
current viscosity? In fact, in the energy expression there is a term with B, the
magnetic energy, and so conduction, and a term in j, the inertia of electrons, and
so the current viscosity. So, what happened? We reduced variables to eliminate j,
thanks to Ampere’s law. In this way we hid this effect. How should we manage this
situation? We will add a new affinity, one that will create this current viscosity. The
original energy had a term with |j|2/ρ, which would create an affinity∇ (j/ρ), which
is exactly what appears in the equations. Thus, we are finally let to the following list
of affinities:

∇
(

δS
δε

)
; ∇

(
δS
δm

)
; ∇×

(
δS
δB∗

)
; ∇

(
1
ρ
∇×

(
δS
δB∗

))
.

Now, let us return to the problem involving ∇T encountered in the
hydrodynamic case. Recall, the natural variables led to the bad effect of generating
a cross term with ∇T that must be compensated through cross terms. But our new
affinity is of second order and so will create cross terms of second order in T. To
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compensate for these bad terms, we have to have a new affinity of second order in T.
Upon examination of these cross terms, we see that the needed affinity will be

∇
(

1
ρ

B×∇
(

δS
δε

))
.

One could consider a general second derivative of the temperature and modify the
phenomenological tensor as a consequence, but for simplicity we will directly use
the easiest affinity.

4.2. Determination of Phenomenological Tensor

At this point, there are two options to get the dissipative brackets of the theory.
First, in complete analogy with the hydrodynamic case studied in section 3, we can
identify the various coefficients of the phenomenological tensor from the known
flux expressions derived in section 2. Then, we have an expression for the
dissipative brackets that can easily be changed back to the usual set of variables.
Alternatively, we can first change variables of the affinity expressions and then
identify the phenomenological tensors through the known equations of the model.
The advantage of this second method is that in the dynamical variables, there are no
tricky cross-effects due to the gradient of temperature. For this reason we will follow
the second method, buttressed by our experience with the hydrodynamic example,
and find it to be an easier calculation.

With the change of variables (ε, ρ, m, B∗) −→ (σ, ρ, m, B∗), the functional
derivatives of any functional f become

δ f
δε
−→ 1

T
δ f
δσ

;
δ f
δm
−→ δ f

δm
− v

T
δ f
δσ

;
δ f

δB∗
−→ δ f

δB∗
− B

T
δ f
δσ

.

The interesting affinities in terms of the new variables will change and, just like
for the hydrodynamic case, we develop them with the temperature away from the
derivatives. Developed in this way, we directly see the cross effect that we want to
vanish.

Now we list the terms for any functional f . First, we have the ε and m responses,
which are the same as those for hydrodynamics,

∇
(

δ f
δε

)
−→ ∇

(
1
T

δ f
δσ(y)

)
(21)

and

∇
(

δ f
δm

)
−→ ∇

(
δ f
δm

)
− 1

T
δ f
δσ
∇v−∇

(
1
T

δ f
δσ

)
⊗ v . (22)

Similarly, the conductivity will rise from the magnetic response,

∇×
(

δ f
δB∗

)
−→ ∇×

(
δ f

δB∗

)
− 1

T
δ f
δσ
∇× B−∇

(
1
T

δ f
δσ

)
× B

= ∇×
(

δ f
δB∗

)
− 1

T
δ f
δσ

j + B×∇
(

1
T

δ f
δσ

)
. (23)
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Response to f Explicit formula Geometrical type Index for L̂

RT( f ) ∇
(

1
T

δ f
δσ

)
1-tensor T

Rv( f ) ∇
(

δ f
δm

)
− 1

T
δ f
δσ∇v 2-tensor v

RB( f ) ∇×
(

δ f
δB∗

)
− 1

T
δ f
δσ j 1-tensor B

Rj( f ) ∇
[

1
ρ∇×

(
δ f

δB∗

)]
− 1

T
δ f
δσ∇

(
j
ρ

)
2-tensor j

RT2( f ) ∇
(

1
ρ B×∇

(
1
T

δ f
δσ

))
2-tensor T2

Table 1. The several kinds of thermodynamic responses, including their tensor
character, for dissipative extended magnetohydrodynamics.

Using (23) for the new affinity, the current viscosity will change into

∇
(

1
ρ
∇×

(
δ f

δB∗

))
−→ ∇

[
1
ρ
∇×

(
δ f

δB∗

)
− 1

T
δ f
δσ

j
ρ
+

1
ρ

B×∇
(

1
T

δ f
δσ

)]
= ∇

(
1
ρ
∇×

(
δ f

δB∗

))
− 1

T
δ f
δσ
∇
(

j
ρ

)
(24)

−∇
(

1
T

δ f
δσ

)
⊗ j

ρ
+∇

(
1
ρ

B×∇
(

1
T

δ f
δσ

))
.

Lastly, the term with the second derivative of the temperature becomes

∇
(

1
ρ

B×∇
(

δ f
δε

))
−→ ∇

(
1
ρ

B×∇
(

1
T

δ f
δσ

))
. (25)

From our knowledge of the form of the brackets in the thermodynamic variables
and the determination of the affinities in the dynamical coordinates (σ, ρ, m, B∗), we
can re-write the general bracket. In particular, upon replacing the densities of the
general bracket of (15) by expressions (21) – (25) above, a bracket with many terms
is generated. For efficiency, we will directly develop the temperature terms from the
different affinities and add a T factor when it makes things easier. We denote by
L̂ the phenomenological tensor in these new coordinates, with indices denoting the
processes as explained in table 1 while, as before, we suppress tensorial indices that
should be clear from context. Thus, the bracket has the following form:

( f , g) =
∫

Ω

T
T Rα( f ) L̂αβ Rβ(g) ,

where α and β are summed over the process index set {T, v, B, j, T2} and the
responses Rα are explicitly given in table 1. These responses may be 1- or 2-tensors
and are contracted with the phenomenological tensors that are of appropriate rank;
e.g., if Rα is a a-tensor and Rβ is a b-tensor, then L̂αβ is a (a + b)-tensor.

Now, it only remains to find the phenomenological coefficients. For this, we
write the various equations of extended magnetohydrodynamics and identify the
terms. We remark that thanks to the Onsager relations, the phenomenological tensor
is symmetric and when we determine a term we automatically know its dual term.
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We could use this to shorten calculations, but for completeness we will write out
all the terms and discover these symmetries. Proceeding, we see the momentum
equation gets the dissipative term

T (m,S) = ∇ ·
[

1
T

L̂vT∇T + L̂vv∇v + L̂vvj

+ L̂vj∇
(

j
ρ

)
+ L̂vT2∇

(
1

ρT
B×∇T

) ]
= ∇ ·

[
Λvv∇v + Λvj∇

(
j
ρ

)]
.

Thus, we identify the nonvanishing phenomenological coefficients L̂vv = Λvv and
L̂vj = Λvj. Next, for the magnetic field, we get

T (B∗,S) = −∇×
[

1
T

L̂BT∇T + L̂Bv∇v + L̂BBj + L̂Bj∇
(

j
ρ

)

+ L̂BT2∇
(

1
ρT

B×∇T
)]

+∇×
(

1
ρ
∇ ·

[
1
T

L̂jT∇T + L̂jv∇v + L̂jBj + L̂jj∇
(

j
ρ

)

+ L̂jT2∇
(

1
ρT

B×∇T
)])

= ∇×
[
−
(
ηjjj + ηjT∇T

)
+

1
ρ
∇ ·

(
Λjv∇v + Λjj∇

(
j
ρ

))]
.

Thus, the only nonvanishing coefficients are L̂BT = TηjT, L̂BB = ηjj, L̂jv = Λjv, and
L̂jj = Λjj. Finally, using the previous results, the entropy equation yields

T (σ,S) = ∇
[

1
T2 L̂TT∇T +

1
T

L̂Tv∇v +
1
T

L̂TBj +
1
T

L̂Tj∇
(

j
ρ

)

+
1
T

L̂TT2∇
(

1
ρT

B×∇T
)]

+
1

T2∇T ·
[

1
T

L̂TT∇T + L̂Tv∇v + L̂TBj + L̂Tj∇
(

j
ρ

)

+ L̂TT2∇
(

1
ρT

B×∇T
)]

+
1
T
∇v : Πv +

1
T
∇
(

j
ρ

)
: Πv +

1
T

j · Jj

+
1
T
∇ ·

(
B
ρ
×∇ ·

[
1
T

L̂T2T∇T + L̂T2v∇v + L̂T2Bj + L̂T2j∇
(

j
ρ

)
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+ L̂T2T2∇
(

1
ρT

B×∇T
)])

= ∇ ·
(
ηTjj + ηTT∇T

)
+

1
T
∇T ·

(
ηTjj + ηTT∇T

)
+

1
T

j · Jj

+
1
T
∇v : Πv +

1
T
∇
(

j
ρ

)
: Πj .

Then, the nonvanishing coefficients are L̂TT = T2ηTT and LTB = TηTj. Observe from
the above; indeed the Onsager relations hold.

From the tensor L̂, one could change coordinates back and obtain the tensor L.
This is an easy computation, but not of our interest here. Similarly, one could have
computed the tensor L before changing coordinates to get the tensor L̂.

4.3. Metriplectic Framework

We are now able to write the dissipative part of the metriplectic bracket for extended
magnetohydrodynamics. From our calculations, we have found the following
bracket for any functionals f and g:

( f , g) =
∫

Ω
d3y

T
T

[
∇
(

1
T

δ f
δσ(y)

)
·
{

T2ηTT∇
(

1
T

δg
δσ(y)

)

+ TηTj

(
∇×

(
δg

δB∗(y)

)
− 1

T
δg

δσ(y)
j
)}

+

(
∇×

(
δ f

δB∗(y)

)
− 1

T
δ f

δσ(y)
j
)
·
{

TηjT∇
(

1
T

δg
δσ(y)

)

+ ηjj

(
∇×

(
δg

δB∗(y)

)
− 1

T
δg

δσ(y)
j
)}

+

(
∇
(

δ f
δm(y)

)
− 1

T
δ f

δσ(y)
∇v
)

:

{
Λvv

(
∇
(

δg
δm(y)

)
− 1

T
δg

δσ(y)
∇v
)

+ Λvj

(
∇
(

1
ρ
∇× δg

δB∗(y)

)
− 1

T
δg

δσ(y)
∇
(

j
ρ

))}

+

(
∇
(

1
ρ
∇× δ f

δB∗(y)

)
− 1

T
δ f

δσ(y)
∇
(

j
ρ

))
:

{
Λjv

(
∇
(

δg
δm(y)

)
− 1

T
δg

δσ(y)
∇v
)

(26)

+ Λjj

(
∇
(

1
ρ
∇× δg

δB∗(y)

)
− 1

T
δg

δσ(y)
∇
(

j
ρ

))}]
.

When this bracket of (26) is subtracted from the Poisson bracket of (5) one
obtains the complete metriplectic geometrical formulation of dissipative extended
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magnetohydrodynamics.
In closing this section let us discuss the forms of the several dissipative

tensors. Throughout this work, we have made no hypotheses on the forms of the
various tensors nor on their dependencies on any variables or on phenomenological
coefficients. Our only requirement was that there be no cross-effects between
different tensor-types of responses, a property that comes from space-parity
symmetry [40]. Yet, physical symmetries will impose other constraints [40, 1]. Time-
reversal symmetry will give the Onsager relations that we have already evoked but
not used. Moreover, Galilean symmetry will constrain the form and dependency
of the tensors. Only the magnetic field can provide directional dependence in the
tensors. Anisotropy in Hamiltonian magnetofluids can be introduced by adding a |B|
dependence to the internal energy u [41, 16]. Pairing this with anisotropic dissipation
would be an interesting avenue to explore in the future. Without anisotropy, the
2-tensors would reduce to scalars while the 4-tensors would decompose into a
symmetrization operator, an anti-symmetricization operator, and a trace operator.

Another constraint is the nonnegativity, which assures the second law of
thermodynamics. If we decompose the various tensors into several scalars, the
onnegativity constraint leads to nonnegative scalars for direct effects (as distinct from
cross effects) and bounds on the norm of the cross-effect scalars by the geometric
means of the two direct-effect scalars of the same kind.

We have seen that the construction of the brackets does not require physical
symmetries, which provides interesting insight; viz. the bracket formalism is more
general than the physics at hand. Symmetries only restrict the form of the bracket;
there is still freedom to select any dependance of the scalars on the phase space and
anisotropy due to magnetic directional dependance.

5. Dissipation in the Lagrangian Picture – an Example of Metriplectic Reduction

5.1. Lagrangian Picture

So far, the formalisms of this paper, both Hamiltonian and dissipative, have been in
terms of the Eulerian (spatial) picture of fluid mechanics. Thus, a natural question to
ask is what would our results look like in the Lagrangian picture, where one tracks
fluid elements. For the Hamiltonian part, the relationship between the Eulerian
and Lagrangian pictures is well understood for neutral fluid mechanics (see e.g.
[2] for review), magnetohydrodynamics [26], and extended magnetohydrodynamics
[35]. In the Lagrangian picture one has a canonical Poisson bracket, as expected for
a particle-like theory, that reduces to a noncanonical Poisson bracket like the one
of equation (5) in the Eulerian picture. However, the form of dissipation in the
Lagrangian picture that reduces to the dissipative bracket is not evident. Indeed,
the lions share of out-of-equilibrium thermodynamics is studied within the Eulerian
picture.



Metriplectic Framework and Dissipative Extended MHD 27

Let us briefly recall the Lagrangian picture. In this picture one follows a
continuum of particles, labeled by a and then obtains a flow ϕ(a, t) that gives the
position of the particle, a fluid element, labeled by a ∈ Ω at time t ∈ R. The
configuration space is then the space of the diffeomorphisms of the space Ω. Its
cotangent space then defines the momentum π and the cotangent bundle will be
the phase space. In the Hamiltonian setting of the Lagrangian picture, one attaches
attributes to a fluid element (see e.g. [26]), viz. mass density ρ0(a), entropy density
σ0(a), and for magnetohydrodynamics, the magnetic field B0(a). Then, from ρ0 and
σ0 we may infer a temperature T0(a). Using the Lagrange to Euler map, the flow is
used to obtain the Eulerian velocity field v and the attributes are transformed into
their well-known Eulerian counterparts that satisfy the usual equations for the ideal
fluid and/or magnetohydrodynamics.

When dissipation is included, we no longer expect attributes to remain
independent of time. For example, the initial entropy σ0(a, t) obtains time
dependence, which is consistent with the Eulerian version of this quantity no longer
being conserved in the Eulerian picture. Our goal is to find the Lagrangian equations
that determine this time dependence, consistence with our Eulerian metriplectic
dynamics.

For extended magnetohydrodynamics the situation is more complicated. Given
that our derivation of section 2 starts from two-fluid theory, we expect there to be two
displacement variables. While ϕ(a, t) will give a center-of-mass displacement, just as
for magnetohydrodynamics, we now have ϕd(a, t) that will evaluate the difference
of positions between of ions and electrons of a same label. More precisely, we define
ϕd as the additional advection of the magnetic field, which will become clearer when
we look at the equations of motion. Conjugate to ϕd, we have a momentum variable
πd(a, t).

The Lagrange to Euler map will be given by the following expressions:

ρ(x, t) =
∫

Ω
d3a ρ0(a)δΩ

(
x− ϕ(a, t)

)
,

σ(x, t) =
∫

Ω
d3a σ0(a, t)δΩ

(
x− ϕ(a, t)

)
,

m(x, t) =
∫

Ω
d3a π(a, t)δΩ

(
x− ϕ(a, t)

)
,

where recall δΩ is the Dirac distribution. Observe, contrary to the usual reduction
expressions (e.g. [2, 26]), that the attribute σ0 here has explicit time dependence, but
since we are not allowing particle production this is not the case for ρ0. The magnetic
field is trickier, but if the displacement variation ϕd is well defined, the magnetic field
is advected as a 2-form by ϕ + ϕd [28], and we have

B(x, t) =
∫

Ω
d3a (dϕ + dϕd)B0(a, t) δΩ

(
x− ϕ(a, t)− ϕd(a, t)

)
, (27)

and again observe B0 has explicit time dependence.
From the form of the Lagrange to Euler map above, we see that given the set

of variables (ϕ, ϕd, π, πd) and known attributes (ρ0, σ0, B0), the Eulerian variables
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are uniquely determined. However, because of relabeling symmetry and the split
between orbit behavior and attribute dynamics, the inverse is not true; i.e. given the
Eulerian variables, the Lagrangian (ϕ, ϕd, π, πd) and attributes (ρ0, σ0, B0) are not
uniquely determined. Consequently, like the usual case for Hamiltonian reduction,
the Lagrange to Euler map is a reduction. Our goal is to find expressions in the
Lagrangian picture that reduce to the known Eulerian equations of the metriplectic
dynamical systems that we have described in this paper. This is an example of
metriplectic reduction, an idea that was introduced in [17].

Here we will choose a particular section that accomplishes metriplectic
reduction, even though it is implicit and has a degree of arbitrariness. In particular,
as mentioned above, we will choose a most natural one, where the dissipation
changes the attributes, the fluid element labeled properties, and not the dynamical
displacements. For example, irreversible processes will make σ0 depend on time and
increase without altering the form of advection.

5.2. Relations for Change of Variables

In order to find our brackets in the Lagrangian picture, we must use the functional
chain rule. This is done by comparing Lagrangian and Eulerian variations. However,
unlike the usual case of Hamiltonian reduction we include attribute variation. As for
Hamiltonian reduction, we have the measure d3a in the Lagrangian picture and d3x
in the Eulerian picture. These two volume forms differ by a factor of the determinant
of the flow ϕ. Generalizing the method of [28], a direct calculation now gives
links between functional derivatives of a functional f of Eulerian variables and its
counterpart f̂ of Lagrangian variables,

δ f̂
δπ

(a, t) =
δ f
δm

(ϕ(a, t), t) ,

δ f̂
δσ0

(a, t) =
δ f
δσ

(ϕ(a, t), t) ,

δ f̂
δB0

(a, t) = (dϕ + dϕd)
T δ f

δB
((ϕ + ϕd)(a, t), t) ,

where AT is the transposed operator of A. For extended magnetohydrodynamics,
we need the functional derivative with respect to B∗ and not B. A change of variable
gives

δ f
δB
−→ δ f

δB∗
+ µχ2∇×

(
1
ρ
∇× δ f

δB∗

)
.

Using the fact that µ is of order one, we can invert this relation as a perturbative
development in µ. Finally, at order one, we get:

δ f
δB∗

(ϕ(a, t) + ϕd(a, t), t) = (dϕ + dϕd)
−1,T δ f̂

δB0
(a, t)
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− µχ2∇×
(

1
ρ
∇× (dϕ + dϕd)

−1,T δ f̂
δB0

(a, t)

)
,

where the gradients are with respect to x = ϕ(a, t).
To be able to perform the change of variables in the Eulerian bracket, we have to

express some variables in terms of Lagrangian ones. One can see that T will become
T0 and v will become π/ρ0. The Eulerian gradient will transform to the Lagrangian
gradient by ∇x f (ϕ(a)) = (dϕ)−1∇a f̂ (a). Finally, the electrical current will become

j((ϕ + ϕd)(a, t), t) = ∇x × B((ϕ + ϕd)(a, t), t)

= (dϕ + dϕd)
−1∇a × (dϕ + dϕd)(B0(a, t)) .

From these relations, we have all that is needed to unreduce, i.e. express the brackets
in terms of the Lagrangian variables.

Upon effecting this procedure, the Hamiltonian part becomes the canonical
bracket,

{ f , g} =
∫

Ω
d3a

(
δ f
δϕ
· δg

δπ
− δg

δϕ
· δ f

δπ
+

δ f
δϕd
· δg

δπd
− δg

δϕd
· δ f

δπd

)
.

This result is not surprising given the develpment of [28], where the Eulerian bracket
is derived from this canonical bracket for extended magnetohydrodynamics. Let
us now turn to the dissipative part, which we will first work out explicitly for
hydrodynamics.

5.3. Lagrangian Dissipation for Hydrodynamics

To make things simple, in this subsection we will first deal with hydrodynamics, i.e.
we only consider the usual viscosity and heat conductivity, dropping the magnetic
part, which is tedious and presents a subtlety that we will address later. For
hydrodynamics, the change of variables is direct and gives

( f , g) =
∫

Ω
d3a

T0

T

[
∇
(

1
T0

δ f
δσ0(a)

)
· T2

0 ηT0T0∇
(

1
T0

δg
δσ0(a)

)
+

(
∇
(

δ f
δπ(a)

)
− 1

T0

δ f
δσ0(a)

∇
(

π

ρ0

))
: Λππ

(
∇
(

δg
δπ(a)

)
− 1

T0

δg
δσ0(a)

∇
(

π

ρ0

))]
, (28)

where we have supressed the explicit time dependence of π and σ0. Here
ηT0T0 = 1

|dϕ−1|
(dϕ−1)TκTTdϕ−1 and Λππ = 1

|dϕ−1|
(dϕ−1)TΛvvdϕ−1, with |dϕ| the

determinant of the endomorphism dϕ at each point. To be clear, the multiplication
here is composition, and for the 4-tensor Λ, the contraction is with the first index of
each pair, the one linked with the gradient. Hence, these tensors change as 2-form
densities under the mapping ϕ.
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Observe, the form of (28) is the same as that for the Eulerian picture, so that the
equations will remain the same. Yet, the phenomenological tensors change. They
will depend on time and reflect the variation of the physical proximity of labels
at near points. Let us highlight that even with constant scalar phenomenological
tensors in the Eulerian picture (a common assumption), in the Lagrangian picture
they will become general time-dependent tensors, unless the displacement ϕ only
generates orthogonal transformations, which is coherent physically. Here again, one
can see the strength of considering geometrical tools like tensors rather that assuming
a particular form like a scalar, which does not exploit the full geometrical structure.

Adding the purely magnetic terms, as opposed to cross terms, is also
straightforward for magnetohydrodynamics, with or without the Hall term, and
for the full extended magnetohydrodynamics models. Yet, the expressions are
complicated, consequently, we will not write them here. However, the cross terms,
magnetic with nonmagnetic, bring new ideas that will be explored in subsection 5.4.

5.4. Nonlocality in the Lagrangian Picture

Consider now the magnetic cross effects. While the other variables change with ϕ

or ϕ + ϕd directly, allowing an easy change of variables, the cross-effects between a
magnetic variable and a nonmagnetic variable changes in one of the responses (cf.
table 1) with ϕ while the response changes with ϕ + ϕd. Because there is a product
between them, changing variables brings complications. Indeed, we will see that
this complication breaks locality in the Lagrangian picture. But first, let us look our
general bracket once more.

Recall, for a general non-equilibrium system we saw in section 3 that we have a
dissipative bracket of equation (15). This bracket can be rewritten as follows:

( f , g) =
1
T

∫
Ω

d3x
∫

Ω
d3y

δ f
δζα(x)

Lαβ(x, y)
δg

δζβ(y)
,

where Lαβ(x, y) := ∇x∇y
(

LαβδΩ(x− y)
)
. Note, L could also depend explicitly on

space and on any variable of the phase space but, for concision, we do not exhibit
these dependencies. A generalization of the bracket could then be to allow L to be
a general tensor of distributions. So, why do we have such a special form? First,
having only gradient factors∇x∇y in this distribution is roughly the linear response
assumption of out-of-equilibrium thermodynamics. Second, assuming that we have
such a Dirac distribution means that the interactions between the variations of f and
g exist only at the same point. Saying it another way, the value ( f , g)(x) depends only
on the values of f and g in an arbitrarily small neighborhood of x. This assumption
amounts to the assumption of the locality of the interactions.

The complication with cross-terms between magnetic and nonmagnetic terms
in extended magnetohydrodynamics arises because different factors in a term do not
transform with the same displacement. One is transformed by ϕ+ ϕd while the other
is transformed by ϕ. Then, what change of variables do we do? Actually, both. The
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idea is to express the bracket in its more general form, with two integrals, and to
change both variables with their associated displacements. For simplicity, we will
only show how this works for the thermoelectric effect, which has the bracket cross
term,

( f , g)T :=
∫

Ω
d3y

T
T ∇

(
1
T

δ f
δσ(y)

)
· TηTj

(
∇×

(
δg

δB∗(y)

)
− 1

T
δg

δσ(y)
j
)

.

The other terms can be treated similarly.
With the two integrals and a change of the left coordinate with ϕ and the right

coordinate with ϕ + ϕd, the bracket becomes the following in the Lagrangian picture:

( f , g)T =
∫

Ω
d3a

∫
Ω

d3b
T0(a)T0(b)
T ∇a

(
1

T0(a)
δ f

δσ0(a)

)
· ηT0 j0(

∇b ×
(
(dϕ + dϕd)

−1,T δ f
δB0

(b)

− µχ2∇b ×
(

1
ρ
(dϕ + dϕd)

−1∇b × (dϕ + dϕd)
−1,T δ f

δB0
(b)
))

− 1
T0(b)

δg
δσ0(b)

∇b × (dϕ + dϕd)(B0(b))

)
,

where

ηT0 j0 = (dϕ−1)TκTjd(ϕ + ϕd)
−1 δΩ(ϕ(a)− (ϕ + ϕd)(b))
|dϕ−1||d(ϕ + dϕd)−1| .

The important point to realize here is that if ϕd does vanish, then the bracket
reduces to a bracket of the same form as that for hydrodynamics. But if ϕd does not
vanish, then the locality assumption breaks. How should this be interpreted? Well,
ϕd is roughly the inertia of the electrons. Thus, this nonlocality is saying that ions
and electrons located at the same space point will interact (locality in the Eulerian
picture) but that these two kinds of particles do not come from the same label, for
they do not have the same dynamics (nonlocality in the Lagrangian picture). Thus,
for magnetohydrodynamics and even Hall magnetohydrodynamics, where electron
inertia is neglected, locality is saved in the Lagrangian picture; in the equations, ϕd is
identically zero. On the other hand, in extended magnetohydrodynamics, locality is
broken in the Lagrangian picture.

It is interesting to see how a more general bracket, which might have appeared
useless, appears naturally in a physical system. Studying more precisely the
consequences of such a nonlocality would be a useful avenue for future work. This
study also sheds light on the physical consequences of electron inertia.

6. Conclusion

In this paper, we have derived a conservative yet dissipative form of extended
magnetohydrodynamics from two-fluid theory. We have seen that natural
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dissipation and cross-effects appear, including a new current viscosity. We have seen
that this current viscosity is small, explaining why it is mostly neglected. Yet, we have
explained it physically and described consequences of its associated cross effects.

We have also constructed a general metriplectic framework for any fluid-like
non-equilibrium thermodynamic system and presented a systematic way to derive
the dissipative brackets. The main idea was to use conserved thermodynamic
variables, which are natural in this context but differ from the usual Hamiltonian
variables, which explains why they are not usually used. As an example, we
re-discovered and generalized the hydrodynamic bracket of [10] using this new
framework.

With the hydrodynamic experience, we derived for the first time the metriplectic
bracket for full dissipative extended magnetohydrodynamics. We also explained the
geometric generality of our result, freeing us from any dependence on the phase
space variables or the direction of the magnetic field, thereby obtaining more general
equations than typically used for this model.

Finally, we used these geometrical tools to study this model in the Lagrangian
picture. In this picture, we still have a natural bracket, but two generalizations appear
naturally. First, the geometry of the phenomenological tensor becomes general and
time-dependent. This allows for the description when scalar phenomenological
tensors are no longer a good approximation. Second, the locality assumption can
break, and then we must consider a more general form of dissipative bracket. This
occurs for extended magnetohydrodynamics, because the ions and electrons have
separate dynamics.
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[13] Grmela M and Öttinger H C 1997 Physical Review E 56
[14] Edwards B J 1998 Journal of Non-Equilibrium Thermodynamics 23 301–333
[15] Morrison P J 1998 Journal of Physics Conference Series 169 012006
[16] Kimura K and Morrison P J 2014 Physics of Plasmas 21 082101
[17] Materassi M and Morrison P J 2018 Cybernetics and Physics 7 78–86
[18] Gay-Balmaz F and Yoshimura H 2017 Journal of Geometry and Physics 111 169–193
[19] Gay-Balmaz F and Yoshimura H 2017 Journal of Geometry and Physics 111 194–212
[20] Eldred C and Gay-Balmaz F 2018 Single and double generator bracket formulations of

geophysical fluids with irreversible processes pre-print
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