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VOLUME ENTROPY OF HILBERT METRICS
AND LENGTH SPECTRUM OF HITCHIN

REPRESENTATIONS INTO PSL(3,R)

NICOLAS THOLOZAN

Abstract. This article studies the geometry of proper open convex
domains in the projective space RPn. These domains carry several
projective invariant distances, among which the Hilbert distance dH

and the Blaschke distance dB . We prove a thin inequality between those
distances: for any two points x and y in such a domain,

dB(x, y) < dH(x, y) + 1 .

We then give two interesting consequences. The first one answers to
a conjecture of Colbois and Verovic on the volume entropy of Hilbert
geometries: for any proper open convex domain in RPn, the volume of a
ball of radius R grows at most like e(n−1)R. The second consequence is
the following fact: for any Hitchin representation ρ of a surface group Γ
into PSL(3,R), there exists a Fuchsian representation j : Γ→ PSL(2,R)
such that the length spectrum of j is uniformly smaller than that of ρ.
This answers positively to a conjecture of Lee and Zhang in the three-
dimensional case.
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Introduction

An open domain in RPn is convex if its intersection with any projective
line is connected. It is called proper if its closure does not contain a projective
line.

The geometry of proper open convex domains in RPn has been extensively
studied since Hilbert introduced them as examples of metric spaces “whose
geodesics are straight lines” (see [15]). More precisely, Hilbert equipped any
proper open convex domain with a natural Finsler metric for which projec-
tive segments are geodesics. Moreover, this metric is a projective invariant
and therefore any projective transformation preserving such a domain is an
isometry with respect to the Hilbert metric. When the convex domain is a
ball, we recover the Klein model of the hyperbolic space.

The Hilbert metric seems to be the most natural metric on a proper open
convex domain in RPn, but it is not so easy to deal with. Indeed, it is (al-
most) never Riemannian and in many interesting cases it is not C2. Another
choice of a projectively invariant metric on such a domain is the Blaschke
metric (also known as the affine metric) that arises in the theory of affine
spheres developed by Blaschke, Calabi, Cheng and Yau. The definition of
the Blaschke metric relies on a deep theorem in analysis and may seem diffi-
cult to handle at first glance. The counterpart to this is that it is a smooth
Riemannian metric with nice curvature properties (see Theorem 0.5).

One may hope in general that the Blaschke metric is “close enough” to
the Hilbert metric so that all the good analytic properties of the Blaschke
metric give similar properties for the Hilbert metric.

0.1. A comparison lemma. Let us fix a proper open convex domain Ω in
RPn. Denote by hHΩ and hBΩ its Hilbert and Blaschke metrics, respectively,
and by dHΩ and dBΩ their associated distances. (Very often, we will omit to
index these objects by Ω.) In a recent paper, Benoist and Hulin proved that
Blaschke and Hilbert metrics are uniformly comparable.

Theorem 0.1 (Benoist–Hulin, [3]). There exists a positive constant Cn such
that, for any proper open convex domain Ω ⊂ RPn, one has

1

Cn
hHΩ ≤ hBΩ ≤ CnhHΩ .

The central result of this paper is a refinement of the right-hand inequality:

Main Lemma.
For any x, y ∈ Ω, we have

dB(x, y) < dH(x, y) + 1 .

Remark 0.2. Clearly, this lemma only refines Benoist–Hulin’s theorem when
dH(x, y) is big enough. In Subsection 2.1, we prove a refined version of the
Main Lemma where the additive constant is related to the multiplicative
constant of Theorem 0.1.

Remark 0.3. One may hope for a stronger inequality, namely dB ≤ dH .
However, computing both metrics when Ω is a square in RP2 shows that
this stronger inequality does not always hold.

We will now give two important consequences of the Main Lemma.
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0.2. Volume entropy of Hilbert metrics. Given a proper open convex
domain Ω ⊂ RPn there is no standard way to associate a volume form to its
Hilbert metric hH , but there is a natural class of volume forms.

We call a volume form vol on Ω uniform if there exists a constant K ≥ 1
such that for any point x ∈ Ω, one has

1

K
≤ volx

(
{u ∈ TxΩ | hH(u) ≤ 1}

)
≤ K .

Note that, according to Theorem 0.1, an example of such a volume form is
the one canonically associated with the Blaschke metric on Ω.

Denote by BH(x,R) the ball of radius R about x with respect to the
Hilbert metric on Ω.

Definition 0.4. The volume entropy of the Hilbert metric hH on Ω is defined
by

H(hH) = lim sup
R→+∞

1

R
logVol

(
BH(o,R)

)
,

where o is some base point in Ω and the volumeVol is computed with respect
to a uniform volume form vol on Ω.

It is not difficult to see that this definition does not depend on the volume
form vol, nor on the base point o. One can define in the same way the vol-
ume entropy of the Blaschke metric hB by replacing BH(o,R) by BB(o,R),
the ball of radius R about o with respect to hB. The volume entropy of
the Hilbert metric is sometimes called the volume entropy of Ω, but for our
purpose it is better to distinguish between the volume entropies of hB and
hH .

It is a well-known conjecture in Hilbert geometry that the volume entropy
of the Hilbert metric of a proper open convex domain in RPn is bounded from
above by n− 1. This conjecture seems to date back from a work of Colbois
and Verovic where it is proved that, if the boundary of Ω is sufficiently
regular, then the volume entropy of Ω is actually equal to n − 1 (see [10]).
This was later refined by Berck, Bernig and Vernicos in [5], where they also
proved the conjecture in dimension 2. Vernicos then recently proved in [24]
the conjecture in dimension 3.

In another direction, Crampon proved in [11] the conjecture in any di-
mension when assuming Ω is divisible and hyperbolic (i.e., preserved by a
discrete Gromov-hyperbolic group Γ acting cocompactly). In that case, the
volume entropy of the Hilbert metric is actually the topological entropy of
the geodesic flow on Ω/Γ.

Here we prove the conjecture in full generality:

Theorem A.
Let Ω be a proper open convex domain in RPn. Then the volume entropy of
the Hilbert metric on Ω satisfies

H
(
hH
)
≤ n− 1 .

As we said, the main ingredient in the proof of this theorem is the Main
Lemma. Indeed, this lemma implies the inequality

H
(
hH
)
≤ H

(
hB
)
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(see Lemma 2.7), and therefore the only thing to be proved is that H(hB) ≤
n − 1. This is a consequence of a famous theorem of Bishop for the vol-
ume entropy of Riemannian metrics (Theorem 2.8) together with the follow-
ing theorem of Calabi giving a lower bound for the Ricci curvature of the
Blaschke metric:

Theorem 0.5 (Calabi, [7]). The Ricci curvature of the Blaschke metric hB
on Ω satisfies

−(n− 1)hB ≤ Ricci(hB) ≤ 0 .

In the case where a Gromov-hyperbolic group Γ acts properly discontinu-
ously and cocompactly on Ω, Crampon proved that the entropy equals n−1
if and only if Ω is an ellipsoid and Γ a hyperbolic lattice. Using the present
work, Barthelmé, Marquis and Zimmer recently improved this result by re-
moving the a priori condition that Γ is Gromov-hyperbolic and by assuming
that it only acts with finite covolume (see [2]).

In general, the volume entropy equals n − 1 as soon as the boundary of
Ω is of class C1,1 (see [5]). One may expect that, converserly, the volume
entropy being equal to n − 1 implies a certain regularity of the boundary
of Ω.

0.3. Length spectrum of Hitchin representations into PSL(3,R). Let
g be an isometry of some metric space (X, d). We define the translation
length of g as the number

l(g) = lim
n→+∞

1

n
d(x, gn · x) ,

where x is a point in X (it does not depend on the choice of x).

Definition 0.6. The length spectrum of a representation ρ : Γ→ Isom(X, d)
is the function Lρ that associates to (the conjugacy class of) an element γ ∈ Γ
the translation length of ρ(γ).

We now assume that Γ is the fundamental group of a closed connected ori-
ented surface S of genus greater than 1. A representation ρ : Γ→ PSL(3,R)
is called a Hitchin representation if ρ is injective and ρ(Γ) divides a (neces-
sarily unique) open convex domain Ωρ in RP2, which means that ρ(Γ) acts
properly discontinuously and cocompactly on Ωρ. (The terminology “Hitchin
representation” will be explained in the next subsection.)

One can therefore define the length spectrum of a Hitchin representation
ρ : Γ→ PSL(3,R) by considering ρ as a representation of Γ into the isometry
group of (Ωρ, h

H).

Denote by H2 the hyperbolic plane. Recall that a representation j : Γ→
PSL(2,R) ∼= Isom+(H2) is Fuchsian if it is injective and acts properly discon-
tinuously on H2. The isomorphism PSL(2,R) ∼= SO0(2, 1) identifies Fuchsian
representations with those Hitchin representations into PSL(3,R) that divide
a disc in RP2.

Motivated by questions arising in anti-de Sitter geometry, the author re-
cently proved with Deroin a strong “domination” result for certain represen-
tations of a surface group.
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Theorem 0.7 (Deroin–Tholozan, [13]). Let ρ be a representation of Γ into
the isometry group of a complete, simply connected Riemannian manifold of
sectional curvature bounded from above by −1. Then there exists a Fuchsian
representation j : Γ→ PSL(2,R) such that

Lj ≥ Lρ .
Moreover, the inequality in this theorem can be made strict unless ρ itself

is “Fuchsian” in some very rigid sense. This applies mostly to representations
into Lie groups of rank 1 (seen as isometry groups of their symmetric spaces).
In the case of PSL(2,C), it gives a new proof of Bowen’s famous rigidity
theorem for the entropy of quasi-Fuchsian representations (see [6]).

The Main Lemma allows us to prove a similar result (but with reverse
inequality) for Hitchin representations into PSL(3,R).

Theorem B.
Let ρ be a Hitchin representation of Γ into PSL(3,R). Then either ρ is
Fuchsian or there exist a constant K > 1 and a Fuchsian representation
j : Γ→ PSL(2,R) such that

Lρ ≥ KLj .

The proof of theorem B will also use the Blaschke metric hB on Ωρ as an
intermediate object. Indeed, one starts by deducing from the Main Lemma
that the length spectrum of ρ with respect to hB is uniformly smaller than
the length spectrum of ρ with respect to the Hilbert metric on Ωρ (see Corol-
lary 3.2). Then one considers the unique complete metric hP on Ωρ which is
conformal to hB and whose curvature is −1. Calabi’s theorem (Theorem 0.5)
together with the classical Ahlfors–Schwarz–Pick lemma (Lemma 3.3) imply
the inequality

hB ≥ hP .

The action of ρ on (Ωρ, h
P ) is thus isometrically conjugated to a Fuchsian

representation j acting on H2 whose length spectrum will satisfy

Lj ≤ Lρ .

0.4. Hitchin representations in higher dimensions. We finish this in-
troduction by mentioning a possible generalization of Theorem B to Hitchin
representations in higher dimensions.

Let us still denote by S a closed connected oriented surface of genus greater
than 1 and by Γ its fundamental group. A representation of Γ into PSL(2,R)
induces in a natural way a representation into PSL(n,R) by post-composing
with the irreducible representation

ιn : PSL(2,R)→ PSL(n,R) .

By extension, we will say that a representation of Γ into PSL(n,R) is Fuch-
sian if it decomposes as ιn ◦ j, with j a Fuchsian representation of Γ into
PSL(2,R).

In [16], Hitchin described the connected components of Fuchsian repre-
sentations in the space of all representations of Γ into PSL(n,R). For this
reason, representations of Γ into PSL(n,R) that can be continuously de-
formed into Fuchsian representations are called Hitchin representations.
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In the special case where n = 3, Choi and Goldman gave a geometric
interpretation of Hitchin representations:

Theorem 0.8 (Choi–Goldman, [9]). A representation of the fundamental
group of a closed connected oriented surface of genus greater than 1 into
PSL(3,R) is Hitchin if and only if it divides a proper open convex domain
in RP2.

This explains the terminology we used in the previous paragraph.

One can define the length spectrum of a representation of Γ into PSL(n,R)
by looking at the action of PSL(n,R) on its symmetric space PSL(n,R)/PSO(n).
Indeed, this symmetric space carries several PSL(n,R)-invariant Finsler met-
rics (all of which are bi-Lipschitz equivalent to the symmetric Riemannian
metric). Among them, there is a unique PSL(n,R)-invariant Finsler metric
such that for any λ1 > . . . > λn with

∑
i λi = 0 the diagonal matrixe

λ1

. . .
eλn


has translation length 1

2(λ1 − λn). We shall then denote by Lρ the length
spectrum of a representation ρ : Γ→ PSL(n,R) with respect to this particu-
lar Finsler metric. In the case of Hitchin representations into PSL(3,R), one
recovers the length spectrum of ρ considered as a representation of Γ into
the isometry group of (Ωρ, h

H).

In a recent work, Lee and Zhang proved that Hitchin representations sat-
isfy the following property:

Theorem 0.9 (Lee–Zhang, [19]). If γ, γ′ are two curves on S that are
not homotopic to disjoint curves, then, for any Hitchin representation ρ :
π1(S)→ PSL(n,R), one has

(exp(2Lρ(γ))− 1) ·
(
exp(2Lρ(γ

′))− 1
)
> 1 .

This result is a slightly weaker version of the classical collar lemma for
Fuchsian representations. Moreover, Lee and Zhang conjectured the follow-
ing property of Hitchin representations:

Conjecture (Lee–Zhang). For any Hitchin representation ρ : Γ→ PSL(n,R),
there exists a Fuchsian representation j : Γ→ PSL(n,R) such that

Lj ≤ Lρ .

Theorem B answers positively to this conjecture when n = 3. As Lee and
Zhang pointed out, this implies a sharper version of the collar lemma:

Corollary C (Collar lemma for Hitchin representations into PSL(3,R)).
Let γ, γ′ be two curves on S that are not homotopic to disjoint curves. Then,
for any Hitchin representation ρ into PSL(3,R), one has

sinh(Lρ(γ)/2) · sinh(Lρ(γ
′)/2) > 1 .
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Labourie explained to us that the conjecture of Lee and Zhang cannot
hold anymore for n ≥ 4 as a consequence of several recent works on Hitchin
representations (see [19, Subsection 3.3]). The impossibility comes from
Hitchin representations into PSp(2k,R) and PSO(k, k+ 1). This leads us to
modify the conjecture of Lee and Zhang:

Conjecture.
• For any Hitchin representation ρ : Γ → PSL(2k,R), there exists a
Hitchin representation j : Γ→ PSp(2k,R) which satisfies

Lj ≤ Lρ , and
• for any Hitchin representation ρ : Γ → PSL(2k + 1,R), there exists
a Hitchin representation j : Γ→ SO0(k, k + 1) which satisfies

Lj ≤ Lρ .

Note that the irreducible representation of PSL(2,R) into PSL(3,R) iden-
tifies PSL(2,R) with SO0(2, 1). This modified conjecture would thus be a
generalization of Theorem B.

0.5. Content of the article. In Section 1, we recall the definitions of
Blaschke and Hilbert metrics. We then prove the Main Lemma and Theo-
rem A in Section 2. Finally, in Section 3, we focus on representations of sur-
face groups into PSL(3,R). We prove Theorem B and make several remarks
concerning the behaviour of the length spectrum of Hitchin representations
that are “far from being Fuchsian”. Courtois brought to our attention that
these remarks are essentially contained in the recent paper [23] by Nie.

0.6. Acknowledgements. I am thankful to Yves Benoist for enlightening
discussions, to Gilles Courtois for pointing out the paper of Xin Nie, and to
Constantin Vernicos for his careful reading of a previous version of this paper.
Finally, I would like to thank the referees for several thoughtful comments
that helped improve the quality of this paper.

1. Hilbert and Blaschke metrics

1.1. The Hilbert metric. Fix a proper open convex domain Ω in RPn.
Recall that the cross-ratio of four collinear points x1, x2, x3, x4 in RPn is the
number t = [x1, x2, x3, x4] such that (x1, x2, x3, x4) is mapped to (0, 1,∞, t)
by a homography.

Given any two distinct points x and y in Ω, let a and b be the intersection
points of the projective line passing through x and y with the boundary of
Ω (so that x is between a and y).

Definition 1.1. The Hilbert distance between x and y is defined by

dHΩ (x, y) =
1

2
log[a, x, b, y] .

It is well-known (although not trivial) that this formula indeed defines
a distance on Ω. Moreover, this distance is infinitesimally generated by a
Finsler metric. More precisely, let us define

hHΩ,x(u) =
1

2

d2

dt2 |t=0
dHΩ (x, x+ tu)2



8 NICOLAS THOLOZAN

for any point x in Ω and any vector u ∈ Tx(Ω). Then, at any point x, the
square root of the function hHΩ,x is a norm on TxΩ, and for any y, z ∈ Ω, we
have

dHΩ (y, z) = inf
γ

∫ 1

0

√
hHΩ (γ′(t))dt ,

where the infimum is taken over all C1 paths from y to z. The function hHΩ
is called the Hilbert metric of Ω.

The Hilbert metric is a projective invariant: if Ω is a proper open convex
domain in RPn and g is a projective transformation, then the Hilbert metric
of g(Ω) is g∗hHΩ . In particular, every projective transformation g satisfying
g(Ω) = Ω is an isometry for (Ω, hHΩ ). When Ω is an ellipsoid, it is preserved
by a subgroup of PSL(n+ 1,R) conjugated to PSO(n, 1), which implies that
hHΩ is Riemannian and (Ω, hHΩ ) is isometric to the hyperbolic space Hn.

From now on we will write hH instead of hHΩ without risk of confusion.
The shape of the unit ball for the Hilbert metric at a point x ∈ Ω mirrors
in some sense the shape of the boundary of Ω viewed from x. This implies
that hH often has low regularity and is never Riemannian unless Ω is an
ellipsoid. In many intersesting examples it is therefore almost impossible to
use only analysis to study the metric hH . This motivates the introduction
of an auxiliary Riemannian metric, called the Blaschke metric, which is also
projectively invariant and has better differential properties.

1.2. The Blaschke metric. The price to pay for defining the Blaschke
metric is a construction which is much more elaborate and relies on an exis-
tence theorem for solutions of certain Monge–Ampère equations. Let Ω be a
proper open convex domain in RPn. Then the Blaschke metric is the second
fundamental form of a certain smooth hypersurface in Rn+1 asymptotic to
the cone over Ω, called the affine sphere. The definition we give here is not
the usual one and is adapted from [3, Definition 2.1].

Denote by L the restriction to Ω of the tautological R-line bundle over
RPn and by ξ a nowhere vanishing smooth section of L. One can see ξ(Ω)
as a smooth hypersurface in Rn+1 transverse to the lines passing through
the origin. Let E denote the pull-back of the tangent bundle of Rn+1 by ξ.
Then E writes as a direct sum

E = TΩ⊕ L ,

where TΩ is identified with its image by dξ (see Figure 1).
Now, the bundle E inherits from Rn+1 a volume form ω and a flat linear

connection ∇. For any vector fields X and Y on Ω, one can write

∇XY = ∇ξXY + h(X,Y )ξ ,

where ∇ξ is a linear connection on TΩ and h is a symmetric bilinear form
on Ω.

Remark 1.2. In practical terms, the second fundamental form h can be com-
puted in the following way: if u : (−ε, ε) → Ω is a smooth curve, then one
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can write
d2

dt2 |t=0
ξ(u(t)) = Aξ(u(0)) +Bv

for some constants A and B, and where v is a tangent vector to ξ(Ω) at
ξ(u(0)). The number A only depends on the first derivative of u at 0 and
we have

h

(
d

dt |t=0
u(t)

)
= A .

We say that the hypersurface ξ(Ω) has positive Hessian if h is positive
definite and is proper if the map ξ : Ω→ Rn+1 is proper.

Definition 1.3. The hypersurface ξ(Ω) is a hyperbolic affine sphere of affine
curvature −1 asymptotic to Ω if ξ(Ω) is proper, has positive Hessian, and

|ω(X1, . . . , Xn, ξ(x))| = 1

for any point x ∈ Ω and any orthonormal basis (X1, . . . , Xn) of (Tx(Ω), hx).

Finding a hyperbolic affine sphere asymptotic to Ω boils down to solving
some Monge-Ampère equation on Ω with boundary conditions. This allowed
Cheng and Yau to prove the following important result:

Theorem 1.4 (Cheng–Yau, [8]). For any proper open convex domain Ω in
RPn, there is a unique (up to reflection through the origin) hyperbolic affine
sphere ξ(Ω) ⊂ (Rn+1, ω) asymptotic to Ω.

The metric h on Ω associated with the unique affine sphere is then called
the Blaschke metric and is denoted by hB. Moreover, Cheng and Yau proved
that the affine sphere and the Blaschke metric are analytic. The metric hB
defines a distance dB on Ω that we call the Blaschke distance.

Remark 1.5. The hyperbolic affine sphere asymptotic to Ω depends on the
choice of the volume ω on Rn+1 in a very simple way. If ω is multiplied by
λ > 0, then the affine sphere is transformed by the homothety centered at
the origin of ratio λ−

1
n+1 and the Blaschke metric is unchanged.

Proposition 1.6. When the convex Ω is an ellipsoid, the hyperbolic affine
sphere asymptotic to Ω is a hyperboloid and the Blaschke metric hB coincides
with the Hilbert metric hH (see Figure 1).

Proof. When Ω is an ellipsoid, the Blaschke metric and the hyperbolic affine
sphere asymptotic to Ω are both preserved by the group of projective trans-
formations of Ω, which is isomorphic to SO(n, 1). The conclusion follows
from the fact that the orbits of SO(n, 1) on Rn+1 are hyperboloids, and
that the action on Ω is transitive on unit tangent vectors for the Blaschke
metric. �

2. Comparison between Hilbert and Blaschke metrics

In this section, we prove the Main Lemma and obtain theorem A as a
consequence.
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Figure 1. When Ω is a disc in RP2, the hyperbolic affine
sphere asymptotic to Ω is a hyperboloid.

2.1. Proof of the Main Lemma. Let Ω be a proper open convex domain
in RPn. If u is a non-zero vector in Rn+1, we denote by [u] its projection in
RPn.

Let e1 and e2 be two non-zero vectors in Rn+1 whose projections [e1] and
[e2] in RPn are distinct points of ∂Ω. We now restrict to the plane generated
by these directions.

We parametrize the projective segment between [e1] and [e2] by{
[ete1 + e−te2], t ∈ R

}
.

The intersection of the hyperbolic affine sphere asymptotic to Ω with the
plane generated by e1 and e2 is thus parametrized by{

u(t) = et+α(t)e1 + e−t+α(t)e2, t ∈ R
}

for some smooth function α : R→ R.

One easily verifies that for any t1, t2 ∈ R we have

dH([u(t1)], [u(t2)]) = |t1 − t2|

which yields

hH
(

d

dt
[u(t)]

)
= 1

for any t ∈ R. In other words, t 7→ [u(t)] is a geodesic for the Hilbert metric
on Ω.

Let us now compute hB
(

d
dt [u(t)]

)
.

Lemma 2.1. For any t ∈ R, we have

hB
(

d

dt
[u(t)]

)
= α′′(t)− α′2(t) + 1 .
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Proof. By definition of hB (see Remark 1.2), we can write

u′′(t) = hB
(

d

dt
[u(t)]

)
u(t) +B(t)u′(t) .

On the other hand, we compute

u′(t) = (α′(t) + 1)et+α(t)e1 + (α′(t)− 1)e−t+α(t)e2

and

u′′(t) =
(
α′′(t) + (α′(t) + 1)2

)
et+α(t)e1 +

(
α′′(t) + (α′(t)− 1)2

)
e−t+α(t)e2 .

To obtain the coordinates of u′′(t) in the basis (u(t), u′(t)), we invert the
matrix

A(t) =

(
et+α(t) (α′(t) + 1)et+α(t)

e−t+α(t) (α′(t)− 1)e−t+α(t)

)
.

We get

A−1(t) =
1

−2e2α(t)

(
(α′(t)− 1)e−t+α(t) −(α′(t) + 1)et+α(t)

−e−t+α(t) et+α(t)

)
.

The coordinates of u′′(t) in the basis (u(t), u′(t)) are thus given by

A−1(t)

( (
α′′(t) + (α′(t) + 1)2

)
et+α(t)(

α′′(t) + (α′(t)− 1)2
)
e−t+α(t)

)
,

which yields

hB
(

d

dt
[u(t)]

)
= −1

2

[
(α′(t)− 1)

(
α′′(t) + (α′(t) + 1)2

)
− (α′(t) + 1)

(
α′′(t) + (α′(t)− 1)2

)]
= α′′(t)− α′2(t) + 1 .

�

Let us now prove that α′ is bounded by 1. More precisely, we show that

Proposition 2.2. If we have hB ≥ ChH for some constant C ∈ [0, 1], then

α′2 ≤ 1− C .

In order to prove this proposition, we will use the following classical
lemma:

Lemma 2.3. Let f and g be two functions of class C1 on an interval [t0, t1),
and let H : R→ R be a smooth function. Suppose that we have

f ′(t) = H(f(t))

and
g′(t) ≥ H(g(t))

for all t ∈ [t0, t1).
If g(t0) ≥ f(t0), then g(t) ≥ f(t) for all t ∈ [t0, t1).
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Proof. For any ε > 0 small enough, denote by fε the unique solution on
[t0, t1) of the equation

f ′ε = H(fε)− ε
with initial condition fε(t0) = f(t0) − ε. Assume by contradiction that
g(t) ≤ fε(t) for some t ∈ [t0, t1). Since g(t0) > f(t0) − ε = fε(t0), one can
define

tm = min{t ∈ [t0, t1) | g(t) = fε(t)} > t0 .

For all t ∈ [t0, tm], we have

g(t) ≥ fε(t) ,
which implies that

g′(tm) ≤ f ′ε(tm) .

This contradicts the fact that

g′(tm) ≥ H(g(tm))

> H(g(tm))− ε = H(fε(tm))− ε = f ′ε(tm) .

Therefore, g > fε on [t0, t1). Taking the limit when ε goes to 0, we obtain

g ≥ f
on [t0, t1). �

Proof of Proposition 2.2. Since hB
(

d
dt [u(t)]

)
= α′′ − α′2 + 1 by Lemma 2.1

and since hH
(

d
dt [u(t)]

)
= 1, we have

α′′ − α′2 + 1 ≥ C ,

which we can write

(1) α′′ ≥ α′2 − β2 ,

where β =
√

1− C.
Assume by contradiction that

α′(t0) > β

for some t0 ∈ R. By Lemma 2.3, Inequality (1) implies that the function f
defined as the unique solution of the ordinary differential equation

f ′ = f2 − β2

with initial condition
f(t0) = α′(t0)

satisfies
f(t) ≤ α′(t)

for all t ≥ t0.
It is now a simple exercise to compute explicitly the function f . When

β > 0, one finds

f(t) = β

(
1 +De2β(t−t0)

1−De2β(t−t0)

)
,

where

D =
α′(t0)− β
α′(t0) + β

∈ (0, 1) .
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In particular, f(t) goes to +∞ when t goes to

tmax = t0 −
1

2β
log(D) > t0 .

This contradicts the fact that

f(t) ≤ α′(t) ≤ sup
t0≤u≤tmax

α′(u)

for all t ∈ [t0, tmax).
Similarly, if we had α′(t0) < −β for some t0 ∈ R, we would obtain that

f(t) goes to −∞ as t goes to some time tmin < t0, which would contradict
the fact that α′ is bounded on [tmin, t0]. We thus conclude that

α′2 ≤ β2 = 1− C .

When β = 0, we find

f(t) =
f(t0)

1− f(t0)(t− t0)

and the rest of the proof is the same.
�

Finally, we prove a sharper version of the Main Lemma.

Lemma 2.4. Let C ∈ [0, 1]. If we have hB ≥ ChH , then

dB(x, y) ≤ dH(x, y) +
√

1− C
for all points x, y ∈ Ω.

Since the Blaschke metric is positive, we immediately obtain dB ≤ dH +
1 by applying Lemma 2.4 with C = 0. Nevertheless, thanks to Benoist–
Hulin’s theorem (Theorem 0.1), Lemma 2.4 shows that the latter inequality
is actually strict, which proves the Main Lemma.

Proof of Lemma 2.4. Given t1 < t2 ∈ R, the distance dB ([u(t1)], [u(t2)])
is bounded from above by the length of the path {[u(t)], t ∈ [t1, t2]} with
respect to the Blaschke metric. We thus have

dB([u(t1)], [u(t2)])2 ≤

(∫ t2

t1

√
hB
(

d

dt
[u(t)]

)
dt

)2

≤ (t2 − t1)

∫ t2

t1

hB
(

d

dt
[u(t)]dt

)
(by Cauchy–Schwarz inequality)

≤ (t2 − t1)

∫ t2

t1

(α′′(t)− α′2(t) + 1)dt (by Lemma 2.1)

≤ (t2 − t1)
(
t2 − t1 + α′(t2)− α′(t1)

)
.

Now, since α′(t2)− α′(t1) ≤ 2β by Proposition 2.2, we obtain

dB([u(t1)], [u(t2)]) ≤ (t2 − t1)

√
1 + 2

β

t2 − t1
≤ t2 − t1 + β = dH([u(t1)], [u(t2)]) + β .
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(We used the classical inequality:
√

1 + x ≤ 1 + x
2 .) We have thus proved

that
dB(x, y) ≤ dH(x, y) +

√
1− C

for any two points x and y on the projective segment joining [e1] and [e2].
Finally, since [e1] and [e2] were arbitrarily chosen in ∂Ω, this concludes

the proof of Lemma 2.4 and hence that of the Main Lemma. �

Remark 2.5. So far, we didn’t really use that hB is the Blaschke metric
on Ω. Indeed, Lemma 2.4 still holds if we replace hB by any metric defined
as the second fundamental form of some hypersurface with positive Hessian
asymptotic to Ω. However, we don’t know any other metric than hB to which
it would be interesting to apply this lemma.

Lemma 2.4 is “sharper” than the Main Lemma in the sense that it explicitly
links the upper bound of dB with the lower bound of hB. If we apply it to
the particular case C = 1, we obtain the following corollary:

Corollary 2.6. Let Ω be a proper open convex domain in RPn. Denote by
hH and hB its Hilbert and Blaschke metrics, respectively. If we have

hB ≥ hH ,

then
hB = hH

and Ω is an ellipsoid.

Proof. By lemma 2.4, if we have hB ≥ hH , then dB ≤ dH . But this yields
hB ≤ hH by the very definition of dH and dB. Hence we get hB = hH .
The Hilbert metric hH is therefore Riemannian, which implies that Ω is an
ellipsoid (see Subsection 1.1).

�

2.2. Volume entropy of Hilbert and Blaschke metrics. Recall that
the volume entropy of the Hilbert metric hH is defined by

H(hH) = lim sup
R→+∞

1

R
logVol

(
BH(o,R)

)
,

where o is any base point in Ω and Vol is the volume with respect to any
uniform volume form vol on Ω. According to Theorem 0.1, one can choose
vol to be the volume form induced by the Blaschke metric hB.

Lemma 2.7. We have
H(hH) ≤ H(hB) .

Proof. For any R > 0, denote by BH(o,R) and BB(o,R) the balls of radius
R about o with respect to the Hilbert and Blaschke metrics, respectively.
According to the Main Lemma, we have

BH(o,R) ⊂ BB(o,R+ 1) .

Therefore
Vol(BH(o,R)) ≤ Vol(BB(o,R+ 1)) ,
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and hence

H(hH) = lim sup
R→+∞

1

R
logVol

(
BH(o,R)

)
≤ lim sup

R→+∞

1

R+ 1
logVol

(
BB(o,R+ 1)

)
≤ H(hB) .

�

Now, in order to prove Theorem A, let us recall a famous theorem of
Bishop:

Theorem 2.8 (Bishop). If g is a smooth Riemannian metric on a manifold
M whose Ricci curvature is bounded from below by −(n− 1), then for all R,

Volg(Bg) ≤ VolHn(BHn) ,

where Bg and BHn denote arbitrary balls of radius R in M and Hn, respec-
tively.

Since Calabi’s theorem (Theorem 0.5) insures that the Ricci curvature
of the metric hB is bounded from below by −(n − 1), Bishop’s theorem
(Theorem 2.8) implies that H(hB) ≤ n − 1 (the volume entropy of Hn).
Since H(hH) ≤ H(hB) by Lemma 2.7, this finishes the proof of Theorem A.

3. The two-dimensional case and surface group
representations

In this section, we make use of the Main Lemma to study the length spec-
trum of Hitchin representations of surface groups into PSL(3,R). We prove
Theorem B and describe the behaviour of this length spectrum “far away”
from the Fuchsian locus.

Let us first recall the following definition:

Definition 3.1. The translation length of an isometry g of a metric space
(X, d) is the number

l(g) = lim
n→+∞

1

n
d(x, gn · x) ,

where x is any point of X.

If Ω is a proper open convex domain in RPn and g a projective trans-
formation which satisfies g(Ω) = Ω, let us denote by lH(g) and lB(g) the
translation lengths of g considered as an isometry of (Ω, hH) and (Ω, hB),
respectively. As a consequence of the Main Lemma, we easily obtain the
following corollary:

Corollary 3.2. Let Ω be a proper open convex domain in RPn and g a
projective transformation which satisfies g(Ω) = Ω. Then we have

lB(g) ≤ lH(g) .
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Proof. By the Main Lemma, we have

1

n
dB(x, gn · x) ≤ 1

n
dH(x, gn · x) +

1

n

for any positive integer n. Then, passing to the limit when n goes to +∞,
we get

lB(g) ≤ lH(g) .

�

Let us now specialize this result to divisible proper open convex domains
in dimension 2.

3.1. Proof of Theorem B. Fix a closed connected oriented surface S of
genus greater than 1. Denote by Γ its fundamental group and consider a
Hitchin representation

ρ : Γ→ PSL(3,R) .

According to Choi-Goldman’s theorem (Theorem 0.8), ρ(Γ) acts freely, prop-
erly discontinuously and cocompactly on a proper open convex domain Ωρ ⊂
RP2.

The Blaschke metric hB on Ωρ is preserved by ρ and thus induces a Rie-
mannian metric on

Ωρ/ρ(Γ) ∼= S

that we still denote by hB. By Poincaré–Koebe’s uniformization theorem,
there exists a unique complete Riemannian metric hP on Ωρ conformal to hB
and of constant curvature −1. Moreover, this metric is also invariant under
the action of ρ(Γ). Let us also denote by hP the induced metric on Ωρ/ρ(Γ).

We now recall the following classical fact, sometimes refered to as the
Ahlfors–Schwarz–Pick lemma (see [25] for a fairly general version).

Lemma 3.3. Let h and h′ be two conformal Riemannian metrics on a closed
surface. If we have κ(h) ≤ κ(h′) ≤ 0, then either h′ = h or there exists a
constant K > 1 such that h′ ≥ Kh.

This lemma applies in particular to h = hP and h′ = hB since the curva-
ture of hB is bounded between −1 and 0 according to Theorem 0.5.

On the other hand, since the convex Ωρ with the metric hP is locally
isometric to the hyperbolic plane H2 and since ρ is injective and acts prop-
erly discontinuously on Ωρ, we can find a Fuchsian representation j : Γ →
PSL(2,R) for which there is a (ρ, j)-equivariant isometry from (Ωρ, h

P ) to
H2.

Lemma 3.3 together with Corollary 3.2 then imply the following:

Corollary 3.4. Either ρ is Fuchsian or there exists a constant K > 1 such
that

Lρ ≥ KLj ,

where Lρ denotes the length spectrum of ρ with respect to the Hilbert metric
on Ωρ.
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Proof. If we have hB = hP , then Ωρ is a disc (this can be deduced for instance
from [4]) and ρ is itself Fuchsian. Otherwise, there is a constant K > 1 such
that hB ≥ KhP by Lemma 3.3. Let γ be any element of Γ and denote by
lP (γ), lB(γ) and lH(γ) the translation lengths of ρ(γ) with respect to the
metrics hP , hB and hH , respectively. We then have

lB(γ) ≥ KlP (γ) = KLj(γ)

since the action of ρ(Γ) on (Ωρ, h
P ) is isometrically conjugated to the action

of j(Γ) on H2. On the other hand, Corollary 3.2 yields

lB(γ) ≤ lH(γ) = Lρ(γ) .

Thus, we obtain
Lρ ≥ KLj .

�

This concludes the proof of Theorem B. Finally, let us prove Corollary C.

Proof of Corollary C. Let γ and η be two elements of Γ = π1(S) represented
by two curves that are not freely homotopic to disjoint curves. Let ρ :
Γ → PSL(3,R) be a Hitchin representation. By Theorem B, there exists a
Fuchsian representation j such that Lj ≤ Lρ. The classical collar lemma
(see [17]) then asserts that

sinh

(
Lj(γ)

2

)
· sinh

(
Lj(η)

2

)
> 1 ,

which yields

sinh

(
Lρ(γ)

2

)
· sinh

(
Lρ(η)

2

)
> 1 .

�

3.2. Asymptotic behaviour of the length spectrum. We end this sec-
tion with a description of the asymptotic behaviour of the length spectrum
away from the Fuchsian locus. The following results are consequences of the
work of Loftin and Benoist–Hulin (see [22] and [3]). As Courtois pointed
out to us, they are essentially contained in the recent paper [23] by Nie (al-
though Nie actually focuses on the entropy of Hitchin representations into
PSL(3,R)).

Let Ω be a proper open convex domain in RPn and ξ(Ω) the hyperbolic
affine sphere asymptotic to Ω. With the notations of Subsection 1.2, the
linear connection∇ξ does not preserve hB in general. The difference between
∇ξ and the Levi–Civita connection of hB is called the Pick tensor of Ω.
Denote it by P , and define

A(X,Y, Z) = hB(P (X,Y ), Z) .

Then the tensor A is symmetric in X,Y, Z.

Proposition 3.5 (see [3], Lemma 4.8). Let Ω be a proper open convex do-
main in RP2 equipped with the conformal structure induced by hB. Then the
tensor A is the real part of a holomorphic cubic differential, called the Pick
form of Ω.
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Now, let S be a closed connected surface of genus greater than 1, Γ its
fundamental group, and ρ a Hitchin representation of Γ into PSL(3,R). Let
Ωρ ⊂ RP2 be the proper open convex domain divided by ρ. Then the Pick
form of Ωρ and the conformal class of the Blaschke metric on Ωρ are both
preserved by ρ(Γ) and thus induce a conformal structure and a holomorphic
cubic differential on Ωρ/ρ(Γ) ∼= S. Loftin and Labourie proved that this
actually gives a parametrization of the space of Hitchin representations of Γ
into PSL(3,R):

Theorem 3.6 (Labourie [18], Loftin [20]). Let J be a conformal structure on
S and Φ a holomorphic cubic differential on (S, J). Then there is a unique
(up to conjugacy) Hitchin representation ρ = ρ(J,Φ) of Γ into PSL(3,R) for
which there exists a ρ-equivariant homeomorphism from the universal cover
of S to Ωρ sending J to the conformal class of the Blaschke metric on Ωρ

and Φ to the Pick form of Ωρ.

Remark 3.7. Generalizing this theorem of Loftin and Labourie, Benoist and
Hulin recently gave in [4] a parametrization of all proper open convex do-
mains in RP2 that are Gromov-hyperbolic. Dumas and Wolf also gave in
[14] a similar parametrization for convex polygons in RP2.

Let J be a conformal structure on S and Φ a holomorphic cubic differential
on (S, J). According to the theorem of Loftin and Labourie (Theorem 3.6),
for each t > 0, there exists a unique (up to conjugacy) Hitchin representation
ρt : Γ→ PSL(3,R) such that (S, J, tΦ) identifies with the quotient Ωρt/ρt(Γ)
endowed with the conformal structure of its Blaschke metric and its Pick
form.

Let us denote by hBt the Blaschke metric associated with the pair (J, tΦ).
Loftin proved the following:

Theorem 3.8 (Loftin, [22]). Let S′ be the complement of the zeros of Φ
in S. Denote by hP the conformal Riemannian metric of curvature −1 on
(S, J) and by σt the positive function defined by

hBt = σ2
t h

P

for each t > 0. Then
σt

t1/3
→

t→+∞
21/6|Φ|1/3

uniformly on every compact subset of S′. (Here, |Φ| is the pointwise norm
of Φ with respect to the metric hP .)

Using relatively simple estimates, we obtain a similar behaviour for the
length spectrum of the Hitchin representation ρt : Γ→ PSL(3,R) associated
with (J, tΦ).

Theorem 3.9. For each t > 0, let ρt : Γ → PSL(3,R) be the Hitchin
representation associated with (J, tΦ), and let j : Γ → PSL(2,R) be the
Fuchsian representation uniformizing (S, J). Then there are some positive
constants A and B such that

At1/3Lj ≤ Lρt ≤ Bt1/3Lj
for all t > 0.
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Proof. Let us use the notations of Theorem 3.8. For each t > 0, the Hilbert
metric hHt on Ωρt is preserved by ρt and thus induces a Finsler metric on
S ∼= Ωρt/ρt(Γ) that we still denote by hHt . By construction of ρt, the metric
hP on S is the unique metric of constant curvature −1 that is conformal
with respect to the complex structure J . It does not depend on t and all the
metrics hBt are in the same conformal class.

We define the length spectrum of the metrics hHt , hBt , and hP as the
functions LHt , LBt and LP from Γ to R+ associating to an element γ the
infimum of the lengths of closed curves on S freely homotopic to γ, where the
lengths are measured with respect to the metrics hHt , hBt and hP , respectively.
We thus have LHt = Lρt and LP = Lj , since the action of ρt(Γ) on (Ωρt , h

P )
is isometrically conjugated to the action of j(Γ) on H2.1

By Benoist–Hulin’s theorem (Theorem 0.1), there exists a positive con-
stant C independent of t such that

1

C
hHt ≤ hBt ≤ ChHt .

It follows that
1

C
Lρt ≤ LBt ≤ CLρt .

It is therefore enough to find upper and lower bounds for the length spec-
trum LBt in terms of LP = Lj .

Let σt : S → R∗+ be such that hBt = σ2
t h

P . The function σt satisfies the
following partial differential equation:

∆ log(σt) = 1 + σ2
t − 2t2σ−4

t |Φ| ,
where ∆ denotes the Laplace operator of the metric hP .

Given a point xm where σt achieves its maximum, we have ∆ log(σt)(xm) ≤
0. We deduce that

σt(xm)6 + σt(xm)4 ≤ 2t2|Φ(xm)|2 ,
which implies that

σt(xm) ≤ 21/6t1/3 ‖Φ‖1/3∞ ,

where ‖Φ‖∞ = supx∈S |Φ(x)|.
Since σt achieves its maximum at xm, we obtain

σt ≤ 21/6t1/3 ‖Φ‖1/3∞
on S, and therefore

LBt ≤ 21/6 ‖Φ‖1/3∞ t1/3LP .

To find a lower bound of LBt , we use the inequality

(2) σt ≥ t1/3|Φ|1/3 ,
1Here we use the fact that for every point x in S̃ = Ωρt and every γ ∈ Γ,

inf
y∈S̃

d(y, γ · y) = lim
n→+∞

1

n
d(x, γn · x) ,

where d is one of the lifted distances on S̃ associated with hHt , hBt or hP . Though it is not
a general fact, it is well known that it holds for Hilbert metrics on open strictly convex
domains in RPn with C1 boundary (see [12, Theorem 3.3]) and for Hadamard manifolds
(see [1, Lemma 6.6, Point 2, page 83]).
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which comes from the fact that the curvature κ = −1 + 2 |Φ|
2

σ6 of the metric
hBt = σ2

t h
P is non-positive (see for instance [4, Proposition 3.3]).

Let us fix ε > 0 and chose η > 0 such that |Φ| ≥ ε outside of an η-
neighbourhood (for the metric hP ) of the zeros of Φ. We can choose ε and η
small enough so that if x and y are two distinct zeros of the lift of Φ to the
universal cover S̃ of S, then

dP
(
BP (x, η), BP (y, η)

)
≥ 2η ,

where dP and BP denote the distance and balls with respect to the metric
hP .

Let γ be a closed geodesic for the metric hBt . Let us decompose γ into
segments that stay close to a zero of Φ and segments that go from one zero
to another. Indeed, we can decompose the path γ into 2n segments [Ai, Bi]

and [Bi, Ai+1] (with An = A0) such that, if Ãi, B̃i denote the lifts of Ai, Bi
along a lift of γ to the universal cover, we have

• Ãi and B̃i are at distance η of the same zero of Φ̃,
• B̃i and Ãi+1 are in the η-neighborood of two distinct zeros of Φ̃
and the path ]Bi, Ai+1[ remains outside of the η-neighborhood of the
zeros of Φ.

Let dBt denote the distance associated with the metric hBt . We have

LBt (γ) =
n−1∑
i=0

dBt (Ãi, B̃i) + dBt (B̃i, Ãi+1) ≥
n−1∑
i=0

dBt (B̃i, Ãi+1) .

Since |Φ| ≥ ε along [Bi, Ai+1], we obtain, thanks to Inequality (2):

dBt (B̃i, Ãi+1) ≥ ε1/3t1/3dP (B̃i, Ãi+1) .

Finally, since dP (B̃i, Ãi+1) ≥ 2η and dP (Ãi, B̃i) ≤ 2η, we have

dP (B̃i, Ãi+1) ≥ 1

2

(
dP (Ãi, B̃i) + dP (B̃i, Ãi+1)

)
.

Putting all this together, we obtain

LBt (γ) ≥ 1

2
ε1/3t1/3

n−1∑
i=0

dP (Ãi, B̃i) + dP (B̃i, Ãi+1)

≥ 1

2
ε1/3t1/3Lj(γ) .

This gives the required lower bound of the length spectrum LBt and concludes
the proof of Theorem 3.9. �

Finally, by compactness, one can choose the same constants A and B in
Theorem 3.9 for all pairs (J,Φ) for which (S, J) lies in a compact subset
of the moduli space of Riemann surfaces homeomorphic to S and Φ satis-
fies ‖Φ‖J = 1. Denoting by ρ(J,Φ) the Hitchin representation of Γ into
PSL(2,R) associated with the pair (J,Φ), we get the following:

Corollary 3.10. For any compact subset K of the moduli space of Riemann
surfaces homeomorphic to S, there exists some constant C(K) > 1 such that
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for any pair (J,Φ) with (S, J) ∈ K, we have
1

C(K)
‖Φ‖1/3J Lj ≤ Lρ(J,Φ) ≤ C(K) ‖Φ‖1/3J Lj .

Remark 3.11. In [26], Zhang constructs sequences of Hitchin representa-
tions of Γ into PSL(3,R) whose entropy goes to 0, although the translation
lengths of some curves on the surface S remain bounded. According to Corol-
lary 3.10, those sequences are associated with pairs (Jn,Φn), where (S, Jn)
leaves every compact subset of the moduli space (otherwise the whole length
spectrum of ρ(Jn,Φn) would go to infinity).

Remark 3.12. Loftin studied in [21] the asymptotic behaviour of Hitchin
representations of Γ into PSL(3,R) associated with pairs (Jn,Φn), where
(S, Jn) leaves every compact subset of the moduli space. It is likely that his
results will give a more precise description of the behaviour of the length
spectrum on the whole Hitchin component.
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