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VOLUME ENTROPY OF HILBERT METRICS AND LENGTH SPECTRUM OF HITCHIN REPRESENTATIONS INTO PSL(3, R)

This article studies the geometry of proper open convex domains in the projective space RP n . These domains carry several projective invariant distances, among which the Hilbert distance d H and the Blaschke distance d B . We prove a thin inequality between those distances: for any two points x and y in such a domain,

We then give two interesting consequences. The first one answers to a conjecture of Colbois and Verovic on the volume entropy of Hilbert geometries: for any proper open convex domain in RP n , the volume of a ball of radius R grows at most like e (n-1)R . The second consequence is the following fact: for any Hitchin representation ρ of a surface group Γ into PSL(3, R), there exists a Fuchsian representation j : Γ → PSL(2, R) such that the length spectrum of j is uniformly smaller than that of ρ. This answers positively to a conjecture of Lee and Zhang in the threedimensional case.

Introduction

An open domain in RP n is convex if its intersection with any projective line is connected. It is called proper if its closure does not contain a projective line.

The geometry of proper open convex domains in RP n has been extensively studied since Hilbert introduced them as examples of metric spaces "whose geodesics are straight lines" (see [START_REF] Hilbert | Über die gerade linie als kürzeste verbindung zweier punkte[END_REF]). More precisely, Hilbert equipped any proper open convex domain with a natural Finsler metric for which projective segments are geodesics. Moreover, this metric is a projective invariant and therefore any projective transformation preserving such a domain is an isometry with respect to the Hilbert metric. When the convex domain is a ball, we recover the Klein model of the hyperbolic space.

The Hilbert metric seems to be the most natural metric on a proper open convex domain in RP n , but it is not so easy to deal with. Indeed, it is (almost) never Riemannian and in many interesting cases it is not C 2 . Another choice of a projectively invariant metric on such a domain is the Blaschke metric (also known as the affine metric) that arises in the theory of affine spheres developed by Blaschke, Calabi, Cheng and Yau. The definition of the Blaschke metric relies on a deep theorem in analysis and may seem difficult to handle at first glance. The counterpart to this is that it is a smooth Riemannian metric with nice curvature properties (see Theorem 0.5).

One may hope in general that the Blaschke metric is "close enough" to the Hilbert metric so that all the good analytic properties of the Blaschke metric give similar properties for the Hilbert metric. Theorem 0.1 (Benoist-Hulin, [START_REF] Benoist | Cubic differentials and finite volume convex projective surfaces[END_REF]). There exists a positive constant C n such that, for any proper open convex domain Ω ⊂ RP n , one has

1 C n h H Ω ≤ h B Ω ≤ C n h H Ω .
The central result of this paper is a refinement of the right-hand inequality:

Main Lemma.

For any x, y ∈ Ω, we have

d B (x, y) < d H (x, y) + 1 .
Remark 0.2. Clearly, this lemma only refines Benoist-Hulin's theorem when d H (x, y) is big enough. In Subsection 2.1, we prove a refined version of the Main Lemma where the additive constant is related to the multiplicative constant of Theorem 0.1.

Remark 0.3. One may hope for a stronger inequality, namely d B ≤ d H . However, computing both metrics when Ω is a square in RP 2 shows that this stronger inequality does not always hold.

We will now give two important consequences of the Main Lemma. 0.2. Volume entropy of Hilbert metrics. Given a proper open convex domain Ω ⊂ RP n there is no standard way to associate a volume form to its Hilbert metric h H , but there is a natural class of volume forms. We call a volume form vol on Ω uniform if there exists a constant K ≥ 1 such that for any point x ∈ Ω, one has

1 K ≤ vol x {u ∈ T x Ω | h H (u) ≤ 1} ≤ K .
Note that, according to Theorem 0.1, an example of such a volume form is the one canonically associated with the Blaschke metric on Ω.

Denote by B H (x, R) the ball of radius R about x with respect to the Hilbert metric on Ω.

Definition 0.4. The volume entropy of the Hilbert metric h H on Ω is defined by

H(h H ) = lim sup R→+∞ 1 R log Vol B H (o, R) ,
where o is some base point in Ω and the volume Vol is computed with respect to a uniform volume form vol on Ω.

It is not difficult to see that this definition does not depend on the volume form vol, nor on the base point o. One can define in the same way the volume entropy of the Blaschke metric h B by replacing B H (o, R) by B B (o, R), the ball of radius R about o with respect to h B . The volume entropy of the Hilbert metric is sometimes called the volume entropy of Ω, but for our purpose it is better to distinguish between the volume entropies of h B and h H .

It is a well-known conjecture in Hilbert geometry that the volume entropy of the Hilbert metric of a proper open convex domain in RP n is bounded from above by n -1. This conjecture seems to date back from a work of Colbois and Verovic where it is proved that, if the boundary of Ω is sufficiently regular, then the volume entropy of Ω is actually equal to n -1 (see [START_REF] Colbois | Hilbert geometry for strictly convex domains[END_REF]). This was later refined by Berck, Bernig and Vernicos in [START_REF] Berck | Volume entropy of hilbert geometries[END_REF], where they also proved the conjecture in dimension 2. Vernicos then recently proved in [START_REF] Vernicos | Approximability of convex bodies and volume entropy in Hilbert geometry[END_REF] the conjecture in dimension 3.

In another direction, Crampon proved in [START_REF] Crampon | Entropies of compact strictly convex projective manifolds[END_REF] the conjecture in any dimension when assuming Ω is divisible and hyperbolic (i.e., preserved by a discrete Gromov-hyperbolic group Γ acting cocompactly). In that case, the volume entropy of the Hilbert metric is actually the topological entropy of the geodesic flow on Ω/Γ.

Here we prove the conjecture in full generality:

Theorem A.
Let Ω be a proper open convex domain in RP n . Then the volume entropy of the Hilbert metric on Ω satisfies

H h H ≤ n -1 .
As we said, the main ingredient in the proof of this theorem is the Main Lemma. Indeed, this lemma implies the inequality

H h H ≤ H h B
(see Lemma 2.7), and therefore the only thing to be proved is that H(h B ) ≤ n -1. This is a consequence of a famous theorem of Bishop for the volume entropy of Riemannian metrics (Theorem 2.8) together with the following theorem of Calabi giving a lower bound for the Ricci curvature of the Blaschke metric: Theorem 0.5 (Calabi,[START_REF] Calabi | Complete affine hyperspheres I[END_REF]). The Ricci curvature of the Blaschke metric h B on Ω satisfies

-(n -1)h B ≤ Ricci(h B ) ≤ 0 .
In the case where a Gromov-hyperbolic group Γ acts properly discontinuously and cocompactly on Ω, Crampon proved that the entropy equals n -1 if and only if Ω is an ellipsoid and Γ a hyperbolic lattice. Using the present work, Barthelmé, Marquis and Zimmer recently improved this result by removing the a priori condition that Γ is Gromov-hyperbolic and by assuming that it only acts with finite covolume (see [START_REF] Barthelmé | Entropy rigidity of Hilbert and Riemannian metrics[END_REF]).

In general, the volume entropy equals n -1 as soon as the boundary of Ω is of class C 1,1 (see [START_REF] Berck | Volume entropy of hilbert geometries[END_REF]). One may expect that, converserly, the volume entropy being equal to n -1 implies a certain regularity of the boundary of Ω. 0.3. Length spectrum of Hitchin representations into PSL(3, R). Let g be an isometry of some metric space (X, d). We define the translation length of g as the number

l(g) = lim n→+∞ 1 n d(x, g n • x) ,
where x is a point in X (it does not depend on the choice of x).

Definition 0.6. The length spectrum of a representation ρ : Γ → Isom(X, d) is the function L ρ that associates to (the conjugacy class of) an element γ ∈ Γ the translation length of ρ(γ).

We now assume that Γ is the fundamental group of a closed connected oriented surface S of genus greater than 1. A representation ρ : Γ → PSL(3, R) is called a Hitchin representation if ρ is injective and ρ(Γ) divides a (necessarily unique) open convex domain Ω ρ in RP 2 , which means that ρ(Γ) acts properly discontinuously and cocompactly on Ω ρ . (The terminology "Hitchin representation" will be explained in the next subsection.)

One can therefore define the length spectrum of a Hitchin representation ρ : Γ → PSL(3, R) by considering ρ as a representation of Γ into the isometry group of (Ω ρ , h H ).

Denote by H 2 the hyperbolic plane. Recall that a representation j : Γ → PSL(2, R) ∼ = Isom + (H 2 ) is Fuchsian if it is injective and acts properly discontinuously on H 2 . The isomorphism PSL(2, R) ∼ = SO 0 (2, 1) identifies Fuchsian representations with those Hitchin representations into PSL(3, R) that divide a disc in RP 2 .

Motivated by questions arising in anti-de Sitter geometry, the author recently proved with Deroin a strong "domination" result for certain representations of a surface group. Theorem 0.7 (Deroin-Tholozan, [START_REF] Deroin | Dominating surface group representations by Fuchsian ones[END_REF]). Let ρ be a representation of Γ into the isometry group of a complete, simply connected Riemannian manifold of sectional curvature bounded from above by -1. Then there exists a Fuchsian representation j : Γ → PSL(2, R) such that

L j ≥ L ρ .
Moreover, the inequality in this theorem can be made strict unless ρ itself is "Fuchsian" in some very rigid sense. This applies mostly to representations into Lie groups of rank 1 (seen as isometry groups of their symmetric spaces). In the case of PSL(2, C), it gives a new proof of Bowen's famous rigidity theorem for the entropy of quasi-Fuchsian representations (see [START_REF] Bowen | Hausdorff dimension of quasi-circles[END_REF]).

The Main Lemma allows us to prove a similar result (but with reverse inequality) for Hitchin representations into PSL(3, R).

Theorem B.

Let ρ be a Hitchin representation of Γ into PSL(3, R). Then either ρ is Fuchsian or there exist a constant K > 1 and a Fuchsian representation

j : Γ → PSL(2, R) such that L ρ ≥ KL j .
The proof of theorem B will also use the Blaschke metric h B on Ω ρ as an intermediate object. Indeed, one starts by deducing from the Main Lemma that the length spectrum of ρ with respect to h B is uniformly smaller than the length spectrum of ρ with respect to the Hilbert metric on Ω ρ (see Corollary 3.2). Then one considers the unique complete metric h P on Ω ρ which is conformal to h B and whose curvature is -1. Calabi's theorem (Theorem 0.5) together with the classical Ahlfors-Schwarz-Pick lemma (Lemma 3.3) imply the inequality h B ≥ h P . The action of ρ on (Ω ρ , h P ) is thus isometrically conjugated to a Fuchsian representation j acting on H 2 whose length spectrum will satisfy L j ≤ L ρ . 0.4. Hitchin representations in higher dimensions. We finish this introduction by mentioning a possible generalization of Theorem B to Hitchin representations in higher dimensions.

Let us still denote by S a closed connected oriented surface of genus greater than 1 and by Γ its fundamental group. A representation of Γ into PSL(2, R) induces in a natural way a representation into PSL(n, R) by post-composing with the irreducible representation

ι n : PSL(2, R) → PSL(n, R) .
By extension, we will say that a representation of Γ into PSL(n, R) is Fuchsian if it decomposes as ι n • j, with j a Fuchsian representation of Γ into PSL(2, R).

In [START_REF] Hitchin | Lie groups and Teichmüller space[END_REF], Hitchin described the connected components of Fuchsian representations in the space of all representations of Γ into PSL(n, R). For this reason, representations of Γ into PSL(n, R) that can be continuously deformed into Fuchsian representations are called Hitchin representations.

In the special case where n = 3, Choi and Goldman gave a geometric interpretation of Hitchin representations: Theorem 0.8 (Choi-Goldman, [START_REF] Choi | Convex real projective structures on closed surfaces are closed[END_REF]). A representation of the fundamental group of a closed connected oriented surface of genus greater than

1 into PSL(3, R) is Hitchin if and only if it divides a proper open convex domain in RP 2 .
This explains the terminology we used in the previous paragraph.

One can define the length spectrum of a representation of Γ into PSL(n, R) by looking at the action of PSL(n, R) on its symmetric space PSL(n, R)/PSO(n). Indeed, this symmetric space carries several PSL(n, R)-invariant Finsler metrics (all of which are bi-Lipschitz equivalent to the symmetric Riemannian metric). Among them, there is a unique PSL(n, R)-invariant Finsler metric such that for any λ 1 > . . . > λ n with i λ i = 0 the diagonal matrix

   e λ 1 . . . e λn    has translation length 1 2 (λ 1 -λ n ).
We shall then denote by L ρ the length spectrum of a representation ρ : Γ → PSL(n, R) with respect to this particular Finsler metric. In the case of Hitchin representations into PSL(3, R), one recovers the length spectrum of ρ considered as a representation of Γ into the isometry group of (Ω ρ , h H ).

In a recent work, Lee and Zhang proved that Hitchin representations satisfy the following property: Theorem 0.9 (Lee-Zhang, [START_REF] Lee | Collar lemma for Hitchin representations[END_REF]). If γ, γ are two curves on S that are not homotopic to disjoint curves, then, for any Hitchin representation ρ :

π 1 (S) → PSL(n, R), one has (exp(2L ρ (γ)) -1) • exp(2L ρ (γ )) -1 > 1 .
This result is a slightly weaker version of the classical collar lemma for Fuchsian representations. Moreover, Lee and Zhang conjectured the following property of Hitchin representations:

Conjecture (Lee-Zhang). For any Hitchin representation ρ : Γ → PSL(n, R), there exists a Fuchsian representation j : Γ → PSL(n, R) such that

L j ≤ L ρ .
Theorem B answers positively to this conjecture when n = 3. As Lee and Zhang pointed out, this implies a sharper version of the collar lemma:

Corollary C (Collar lemma for Hitchin representations into PSL(3, R)). Let γ, γ be two curves on S that are not homotopic to disjoint curves. Then, for any Hitchin representation ρ into PSL(3, R), one has

sinh(L ρ (γ)/2) • sinh(L ρ (γ )/2) > 1 .
Labourie explained to us that the conjecture of Lee and Zhang cannot hold anymore for n ≥ 4 as a consequence of several recent works on Hitchin representations (see [START_REF] Lee | Collar lemma for Hitchin representations[END_REF]Subsection 3.3]). The impossibility comes from Hitchin representations into PSp(2k, R) and PSO(k, k + 1). This leads us to modify the conjecture of Lee and Zhang:

Conjecture.

• For any Hitchin representation ρ : Γ → PSL(2k, R), there exists a Hitchin representation j : Γ → PSp(2k, R) which satisfies

L j ≤ L ρ , and
• for any Hitchin representation ρ : Γ → PSL(2k + 1, R), there exists a Hitchin representation j : Γ → SO 0 (k, k + 1) which satisfies

L j ≤ L ρ .
Note that the irreducible representation of PSL(2, R) into PSL(3, R) identifies PSL(2, R) with SO 0 (2, 1). This modified conjecture would thus be a generalization of Theorem B. 0.5. Content of the article. In Section 1, we recall the definitions of Blaschke and Hilbert metrics. We then prove the Main Lemma and Theorem A in Section 2. Finally, in Section 3, we focus on representations of surface groups into PSL(3, R). We prove Theorem B and make several remarks concerning the behaviour of the length spectrum of Hitchin representations that are "far from being Fuchsian". Courtois brought to our attention that these remarks are essentially contained in the recent paper [START_REF] Nie | Entropy degeneration of convex projective surfaces[END_REF] by Nie. 0.6. Acknowledgements. I am thankful to Yves Benoist for enlightening discussions, to Gilles Courtois for pointing out the paper of Xin Nie, and to Constantin Vernicos for his careful reading of a previous version of this paper. Finally, I would like to thank the referees for several thoughtful comments that helped improve the quality of this paper. Recall that the cross-ratio of four collinear points

x 1 , x 2 , x 3 , x 4 in RP n is the number t = [x 1 , x 2 , x 3 , x 4 ] such that (x 1 , x 2 , x 3 , x 4 ) is mapped to (0, 1, ∞, t) by a homography.
Given any two distinct points x and y in Ω, let a and b be the intersection points of the projective line passing through x and y with the boundary of Ω (so that x is between a and y).

Definition 1.1. The Hilbert distance between x and y is defined by

d H Ω (x, y) = 1 2 log[a, x, b, y] .
It is well-known (although not trivial) that this formula indeed defines a distance on Ω. Moreover, this distance is infinitesimally generated by a Finsler metric. More precisely, let us define

h H Ω,x (u) = 1 2 d 2 dt 2 |t=0 d H Ω (x, x + tu) 2
for any point x in Ω and any vector u ∈ T x (Ω). Then, at any point x, the square root of the function h H Ω,x is a norm on T x Ω, and for any y, z ∈ Ω, we have

d H Ω (y, z) = inf γ 1 0 h H Ω (γ (t))dt ,
where the infimum is taken over all C 1 paths from y to z. From now on we will write h H instead of h H Ω without risk of confusion. The shape of the unit ball for the Hilbert metric at a point x ∈ Ω mirrors in some sense the shape of the boundary of Ω viewed from x. This implies that h H often has low regularity and is never Riemannian unless Ω is an ellipsoid. In many intersesting examples it is therefore almost impossible to use only analysis to study the metric h H . This motivates the introduction of an auxiliary Riemannian metric, called the Blaschke metric, which is also projectively invariant and has better differential properties.

1.2. The Blaschke metric. The price to pay for defining the Blaschke metric is a construction which is much more elaborate and relies on an existence theorem for solutions of certain Monge-Ampère equations. Let Ω be a proper open convex domain in RP n . Then the Blaschke metric is the second fundamental form of a certain smooth hypersurface in R n+1 asymptotic to the cone over Ω, called the affine sphere. The definition we give here is not the usual one and is adapted from [3, Definition 2.1].

Denote by L the restriction to Ω of the tautological R-line bundle over RP n and by ξ a nowhere vanishing smooth section of L. One can see ξ(Ω) as a smooth hypersurface in R n+1 transverse to the lines passing through the origin. Let E denote the pull-back of the tangent bundle of R n+1 by ξ. Then E writes as a direct sum

E = T Ω ⊕ L ,
where T Ω is identified with its image by dξ (see Figure 1). Now, the bundle E inherits from R n+1 a volume form ω and a flat linear connection ∇. For any vector fields X and Y on Ω, one can write

∇ X Y = ∇ ξ X Y + h(X, Y )ξ
, where ∇ ξ is a linear connection on T Ω and h is a symmetric bilinear form on Ω.

Remark 1.2. In practical terms, the second fundamental form h can be computed in the following way: if u : (-ε, ε) → Ω is a smooth curve, then one can write

d 2 dt 2 |t=0 ξ(u(t)) = Aξ(u(0)) + Bv
for some constants A and B, and where v is a tangent vector to ξ(Ω) at ξ(u(0)). The number A only depends on the first derivative of u at 0 and we have

h d dt |t=0 u(t) = A .
We say that the hypersurface ξ(Ω) has positive Hessian if h is positive definite and is proper if the map ξ : Ω → R n+1 is proper.

Definition 1.3. The hypersurface ξ(Ω) is a hyperbolic affine sphere of affine curvature -1 asymptotic to Ω if ξ(Ω) is proper, has positive Hessian, and

|ω(X 1 , . . . , X n , ξ(x))| = 1
for any point x ∈ Ω and any orthonormal basis (X 1 , . . . , X n ) of (T x (Ω), h x ).

Finding a hyperbolic affine sphere asymptotic to Ω boils down to solving some Monge-Ampère equation on Ω with boundary conditions. This allowed Cheng and Yau to prove the following important result: Theorem 1.4 (Cheng-Yau, [START_REF] Cheng | On the regularity of the Monge-Ampère equation det ∂ 2 u ∂x i ∂x j = f (x, u)[END_REF]). For any proper open convex domain Ω in RP n , there is a unique (up to reflection through the origin) hyperbolic affine sphere ξ(Ω) ⊂ (R n+1 , ω) asymptotic to Ω.

The metric h on Ω associated with the unique affine sphere is then called the Blaschke metric and is denoted by h B . Moreover, Cheng and Yau proved that the affine sphere and the Blaschke metric are analytic. The metric h B defines a distance d B on Ω that we call the Blaschke distance.

Remark 1.5. The hyperbolic affine sphere asymptotic to Ω depends on the choice of the volume ω on R n+1 in a very simple way. If ω is multiplied by λ > 0, then the affine sphere is transformed by the homothety centered at the origin of ratio λ -1 n+1 and the Blaschke metric is unchanged.

Proposition 1.6. When the convex Ω is an ellipsoid, the hyperbolic affine sphere asymptotic to Ω is a hyperboloid and the Blaschke metric h B coincides with the Hilbert metric h H (see Figure 1).

Proof. When Ω is an ellipsoid, the Blaschke metric and the hyperbolic affine sphere asymptotic to Ω are both preserved by the group of projective transformations of Ω, which is isomorphic to SO(n, 1). The conclusion follows from the fact that the orbits of SO(n, 1) on R n+1 are hyperboloids, and that the action on Ω is transitive on unit tangent vectors for the Blaschke metric.

Comparison between Hilbert and Blaschke metrics

In this section, we prove the Main Lemma and obtain theorem A as a consequence. Let e 1 and e 2 be two non-zero vectors in R n+1 whose projections [e 1 ] and [e 2 ] in RP n are distinct points of ∂Ω. We now restrict to the plane generated by these directions.

We parametrize the projective segment between [e 1 ] and [e 2 ] by [e t e 1 + e -t e 2 ], t ∈ R .

The intersection of the hyperbolic affine sphere asymptotic to Ω with the plane generated by e 1 and e 2 is thus parametrized by u(t) = e t+α(t) e 1 + e -t+α(t) e 2 , t ∈ R for some smooth function α : R → R.

One easily verifies that for any t 1 , t 2 ∈ R we have 

d H ([u(t 1 )], [u(t 2 )]) = |t 1 -t 2 | which yields h H d dt [u(t)] =
u (t) = h B d dt [u(t)] u(t) + B(t)u (t) .
On the other hand, we compute u (t) = (α (t) + 1)e t+α(t) e 1 + (α (t) -1)e -t+α(t) e 2 and u (t) = α (t) + (α (t) + 1) 2 e t+α(t) e 1 + α (t) + (α (t) -1) 2 e -t+α(t) e 2 .

To obtain the coordinates of u (t) in the basis (u(t), u (t)), we invert the matrix

A(t) = e t+α(t)
(α (t) + 1)e t+α(t) e -t+α(t) (α (t) -1)e -t+α(t) .

We get

A -1 (t) = 1 -2e 2α(t) (α (t) -1)e -t+α(t) -(α (t) + 1)e t+α(t)
-e -t+α(t) e t+α(t) .

The coordinates of u (t) in the basis (u(t), u (t)) are thus given by

A -1 (t) α (t) + (α (t) + 1) 2 e t+α(t) α (t) + (α (t) -1) 2 e -t+α(t) ,
which yields

h B d dt [u(t)] = - 1 2 (α (t) -1) α (t) + (α (t) + 1) 2 -(α (t) + 1) α (t) + (α (t) -1) 2 = α (t) -α 2 (t) + 1 .
Let us now prove that α is bounded by 1. More precisely, we show that Proposition 2.2. If we have h B ≥ Ch H for some constant C ∈ [0, 1], then

α 2 ≤ 1 -C .
In order to prove this proposition, we will use the following classical lemma: Lemma 2.3. Let f and g be two functions of class C 1 on an interval [t 0 , t 1 ), and let H : R → R be a smooth function. Suppose that we have

f (t) = H(f (t)) and g (t) ≥ H(g(t))
for all t ∈ [t 0 , t 1 ).

If g(t 0 ) ≥ f (t 0 ), then g(t) ≥ f (t) for all t ∈ [t 0 , t 1 ).

Proof. For any ε > 0 small enough, denote by f ε the unique solution on [t 0 , t 1 ) of the equation

f ε = H(f ε ) -ε with initial condition f ε (t 0 ) = f (t 0 ) -ε. Assume by contradiction that g(t) ≤ f ε (t) for some t ∈ [t 0 , t 1 ). Since g(t 0 ) > f (t 0 ) -ε = f ε (t 0 ), one can define t m = min{t ∈ [t 0 , t 1 ) | g(t) = f ε (t)} > t 0 . For all t ∈ [t 0 , t m ], we have g(t) ≥ f ε (t) , which implies that g (t m ) ≤ f ε (t m )
. This contradicts the fact that

g (t m ) ≥ H(g(t m )) > H(g(t m )) -ε = H(f ε (t m )) -ε = f ε (t m ) .
Therefore, g > f ε on [t 0 , t 1 ). Taking the limit when ε goes to 0, we obtain

g ≥ f on [t 0 , t 1 ). Proof of Proposition 2.2. Since h B d dt [u(t)] = α -α 2 + 1 by Lemma 2.1 and since h H d dt [u(t)] = 1, we have α -α 2 + 1 ≥ C , which we can write (1) α ≥ α 2 -β 2 ,
where β = √ 1 -C. Assume by contradiction that α (t 0 ) > β for some t 0 ∈ R. By Lemma 2.3, Inequality (1) implies that the function f defined as the unique solution of the ordinary differential equation

f = f 2 -β 2 with initial condition f (t 0 ) = α (t 0 ) satisfies f (t) ≤ α (t) for all t ≥ t 0 .
It is now a simple exercise to compute explicitly the function f . When β > 0, one finds

f (t) = β 1 + De 2β(t-t 0 ) 1 -De 2β(t-t 0 ) ,
where

D = α (t 0 ) -β α (t 0 ) + β ∈ (0, 1) .
In particular, f (t) goes to +∞ when t goes to

t max = t 0 - 1 2β log(D) > t 0 .
This contradicts the fact that

f (t) ≤ α (t) ≤ sup t 0 ≤u≤tmax α (u)
for all t ∈ [t 0 , t max ).

Similarly, if we had α (t 0 ) < -β for some t 0 ∈ R, we would obtain that f (t) goes to -∞ as t goes to some time t min < t 0 , which would contradict the fact that α is bounded on [t min , t 0 ]. We thus conclude that

α 2 ≤ β 2 = 1 -C .
When β = 0, we find

f (t) = f (t 0 ) 1 -f (t 0 )(t -t 0 )
and the rest of the proof is the same.

Finally, we prove a sharper version of the Main Lemma.

Lemma 2.4. Let C ∈ [0, 1]. If we have h B ≥ Ch H , then d B (x, y) ≤ d H (x, y) + √ 1 -C
for all points x, y ∈ Ω.

Since the Blaschke metric is positive, we immediately obtain d B ≤ d H + 1 by applying Lemma 2.4 with C = 0. Nevertheless, thanks to Benoist-Hulin's theorem (Theorem 0.1), Lemma 2.4 shows that the latter inequality is actually strict, which proves the Main Lemma.

Proof of Lemma 2.4. Given t 1 < t 2 ∈ R, the distance d B ([u(t 1 )], [u(t 2 )]
) is bounded from above by the length of the path {[u(t)], t ∈ [t 1 , t 2 ]} with respect to the Blaschke metric. We thus have

d B ([u(t 1 )], [u(t 2 )]) 2 ≤ t 2 t 1 h B d dt [u(t)] dt 2 ≤ (t 2 -t 1 ) t 2 t 1 h B d dt [u(t)]dt (by Cauchy-Schwarz inequality) ≤ (t 2 -t 1 ) t 2 t 1 (α (t) -α 2 (t) + 1)dt (by Lemma 2.1) ≤ (t 2 -t 1 ) t 2 -t 1 + α (t 2 ) -α (t 1 ) . Now, since α (t 2 ) -α (t 1 ) ≤ 2β by Proposition 2.2, we obtain d B ([u(t 1 )], [u(t 2 )]) ≤ (t 2 -t 1 ) 1 + 2 β t 2 -t 1 ≤ t 2 -t 1 + β = d H ([u(t 1 )], [u(t 2 )]) + β .
(We used the classical inequality: 

√ 1 + x ≤ 1 + x 2 .)
H(h H ) = lim sup R→+∞ 1 R log Vol B H (o, R) ,
where o is any base point in Ω and Vol is the volume with respect to any uniform volume form vol on Ω. According to Theorem 0.1, one can choose vol to be the volume form induced by the Blaschke metric h B .

Lemma 2.7. We have

H(h H ) ≤ H(h B ) .
Proof. For any R > 0, denote by B H (o, R) and B B (o, R) the balls of radius R about o with respect to the Hilbert and Blaschke metrics, respectively. According to the Main Lemma, we have

B H (o, R) ⊂ B B (o, R + 1) . Therefore Vol(B H (o, R)) ≤ Vol(B B (o, R + 1)) ,
and hence

H(h H ) = lim sup R→+∞ 1 R log Vol B H (o, R) ≤ lim sup R→+∞ 1 R + 1 log Vol B B (o, R + 1) ≤ H(h B ) .
Now, in order to prove Theorem A, let us recall a famous theorem of Bishop:

Theorem 2.8 (Bishop). If g is a smooth Riemannian metric on a manifold M whose Ricci curvature is bounded from below by -(n -1), then for all R,

Vol g (B g ) ≤ Vol H n (B H n ) ,
where B g and B H n denote arbitrary balls of radius R in M and H n , respectively. Since Calabi's theorem (Theorem 0.5) insures that the Ricci curvature of the metric h B is bounded from below by -(n -1), Bishop's theorem (Theorem 2.8) implies that H(h B ) ≤ n -1 (the volume entropy of H n ). Since H(h H ) ≤ H(h B ) by Lemma 2.7, this finishes the proof of Theorem A.

The two-dimensional case and surface group representations

In this section, we make use of the Main Lemma to study the length spectrum of Hitchin representations of surface groups into PSL(3, R). We prove Theorem B and describe the behaviour of this length spectrum "far away" from the Fuchsian locus.

Let us first recall the following definition: Definition 3.1. The translation length of an isometry g of a metric space (X, d) is the number

l(g) = lim n→+∞ 1 n d(x, g n • x) ,
where x is any point of X.

If Ω is a proper open convex domain in RP n and g a projective transformation which satisfies g(Ω) = Ω, let us denote by l H (g) and l B (g) the translation lengths of g considered as an isometry of (Ω, h H ) and (Ω, h B ), respectively. As a consequence of the Main Lemma, we easily obtain the following corollary:

Corollary 3.2.
Let Ω be a proper open convex domain in RP n and g a projective transformation which satisfies g(Ω) = Ω. Then we have l B (g) ≤ l H (g) .

Proof. By the Main Lemma, we have

1 n d B (x, g n • x) ≤ 1 n d H (x, g n • x) + 1 n
for any positive integer n. Then, passing to the limit when n goes to +∞, we get l B (g) ≤ l H (g) .

Let us now specialize this result to divisible proper open convex domains in dimension 2. According to Choi-Goldman's theorem (Theorem 0.8), ρ(Γ) acts freely, properly discontinuously and cocompactly on a proper open convex domain

Ω ρ ⊂ RP 2 .
The Blaschke metric h B on Ω ρ is preserved by ρ and thus induces a Riemannian metric on

Ω ρ /ρ(Γ) ∼ = S
that we still denote by h B . By Poincaré-Koebe's uniformization theorem, there exists a unique complete Riemannian metric h P on Ω ρ conformal to h B and of constant curvature -1. Moreover, this metric is also invariant under the action of ρ(Γ). Let us also denote by h P the induced metric on Ω ρ /ρ(Γ).

We now recall the following classical fact, sometimes refered to as the Ahlfors-Schwarz-Pick lemma (see [START_REF] Wolpert | A generalization of the Ahlfors-Schwarz lemma[END_REF] for a fairly general version). Lemma 3.3. Let h and h be two conformal Riemannian metrics on a closed surface. If we have κ(h) ≤ κ(h ) ≤ 0, then either h = h or there exists a constant K > 1 such that h ≥ Kh.

This lemma applies in particular to h = h P and h = h B since the curvature of h B is bounded between -1 and 0 according to Theorem 0.5.

On the other hand, since the convex Ω ρ with the metric h P is locally isometric to the hyperbolic plane H 2 and since ρ is injective and acts properly discontinuously on Ω ρ , we can find a Fuchsian representation j : Γ → PSL(2, R) for which there is a (ρ, j)-equivariant isometry from (Ω ρ , h P ) to H 2 . Lemma 3.3 together with Corollary 3.2 then imply the following:

Corollary 3.4. Either ρ is Fuchsian or there exists a constant K > 1 such that

L ρ ≥ KL j ,
where L ρ denotes the length spectrum of ρ with respect to the Hilbert metric on Ω ρ .

Proof. If we have h B = h P , then Ω ρ is a disc (this can be deduced for instance from [START_REF] Benoist | Cubic differentials and hyperbolic convex sets[END_REF]) and ρ is itself Fuchsian. Otherwise, there is a constant K > 1 such that h B ≥ Kh P by Lemma 3.3. Let γ be any element of Γ and denote by l P (γ), l B (γ) and l H (γ) the translation lengths of ρ(γ) with respect to the metrics h P , h B and h H , respectively. We then have

l B (γ) ≥ Kl P (γ) = KL j (γ)
since the action of ρ(Γ) on (Ω ρ , h P ) is isometrically conjugated to the action of j(Γ) on H 2 . On the other hand, Corollary 3.2 yields

l B (γ) ≤ l H (γ) = L ρ (γ) .
Thus, we obtain

L ρ ≥ KL j .
This concludes the proof of Theorem B. Finally, let us prove Corollary C.

Proof of Corollary C. Let γ and η be two elements of Γ = π 1 (S) represented by two curves that are not freely homotopic to disjoint curves. Let ρ : Γ → PSL(3, R) be a Hitchin representation. By Theorem B, there exists a Fuchsian representation j such that L j ≤ L ρ . The classical collar lemma (see [START_REF] Keen | Collars on Riemann surfaces[END_REF]) then asserts that

sinh L j (γ) 2 • sinh L j (η) 2 > 1 , which yields sinh L ρ (γ) 2 • sinh L ρ (η) 2 > 1 .
3.2. Asymptotic behaviour of the length spectrum. We end this section with a description of the asymptotic behaviour of the length spectrum away from the Fuchsian locus. The following results are consequences of the work of Loftin and Benoist-Hulin (see [START_REF] Loftin | Flat metrics, cubic differentials and limits of projective holonomies[END_REF] and [START_REF] Benoist | Cubic differentials and finite volume convex projective surfaces[END_REF]). As Courtois pointed out to us, they are essentially contained in the recent paper [START_REF] Nie | Entropy degeneration of convex projective surfaces[END_REF] by Nie (although Nie actually focuses on the entropy of Hitchin representations into PSL(3, R)).

Let Ω be a proper open convex domain in RP n and ξ(Ω) the hyperbolic affine sphere asymptotic to Ω. With the notations of Subsection 1.2, the linear connection ∇ ξ does not preserve h B in general. The difference between ∇ ξ and the Levi-Civita connection of h B is called the Pick tensor of Ω. Denote it by P , and define

A(X, Y, Z) = h B (P (X, Y ), Z) .
Then the tensor A is symmetric in X, Y, Z. Theorem 3.6 (Labourie [START_REF] Labourie | Flat projective structures on surfaces and cubic holomorphic differentials[END_REF], Loftin [START_REF] Loftin | Affine spheres and convex RP n -manifolds[END_REF]). Let J be a conformal structure on S and Φ a holomorphic cubic differential on (S, J). Then there is a unique (up to conjugacy) Hitchin representation ρ = ρ(J, Φ) of Γ into PSL(3, R) for which there exists a ρ-equivariant homeomorphism from the universal cover of S to Ω ρ sending J to the conformal class of the Blaschke metric on Ω ρ and Φ to the Pick form of Ω ρ . Remark 3.7. Generalizing this theorem of Loftin and Labourie, Benoist and Hulin recently gave in [START_REF] Benoist | Cubic differentials and hyperbolic convex sets[END_REF] a parametrization of all proper open convex domains in RP 2 that are Gromov-hyperbolic. Dumas and Wolf also gave in [START_REF] Dumas | Polynomial cubic differentials and convex polygons in the projective plane[END_REF] a similar parametrization for convex polygons in RP 2 .

Let J be a conformal structure on S and Φ a holomorphic cubic differential on (S, J). According to the theorem of Loftin and Labourie (Theorem 3.6), for each t > 0, there exists a unique (up to conjugacy) Hitchin representation ρ t : Γ → PSL(3, R) such that (S, J, tΦ) identifies with the quotient Ω ρt /ρ t (Γ) endowed with the conformal structure of its Blaschke metric and its Pick form.

Let us denote by h B t the Blaschke metric associated with the pair (J, tΦ). Loftin proved the following: Theorem 3.8 (Loftin, [START_REF] Loftin | Flat metrics, cubic differentials and limits of projective holonomies[END_REF]). Let S be the complement of the zeros of Φ in S. Denote by h P the conformal Riemannian metric of curvature -1 on (S, J) and by σ t the positive function defined by

h B t = σ 2 t h P for each t > 0. Then σ t t 1/3 → t→+∞ 2 1/6 |Φ| 1/3
uniformly on every compact subset of S . (Here, |Φ| is the pointwise norm of Φ with respect to the metric h P .)

Using relatively simple estimates, we obtain a similar behaviour for the length spectrum of the Hitchin representation ρ t : Γ → PSL(3, R) associated with (J, tΦ). Theorem 3.9. For each t > 0, let ρ t : Γ → PSL(3, R) be the Hitchin representation associated with (J, tΦ), and let j : Γ → PSL(2, R) be the Fuchsian representation uniformizing (S, J). Then there are some positive constants A and B such that

At 1/3 L j ≤ L ρt ≤ Bt 1/3 L j for all t > 0.
Proof. Let us use the notations of Theorem 3.8. For each t > 0, the Hilbert metric h H t on Ω ρt is preserved by ρ t and thus induces a Finsler metric on S ∼ = Ω ρt /ρ t (Γ) that we still denote by h H t . By construction of ρ t , the metric h P on S is the unique metric of constant curvature -1 that is conformal with respect to the complex structure J. Given a point x m where σ t achieves its maximum, we have ∆ log(σ t )(x m ) ≤ 0. We deduce that

σ t (x m ) 6 + σ t (x m ) 4 ≤ 2t 2 |Φ(x m )| 2 , which implies that σ t (x m ) ≤ 2 1/6 t 1/3 Φ 1/3 ∞ , where Φ ∞ = sup x∈S |Φ(x)|.
Since σ t achieves its maximum at x m , we obtain

σ t ≤ 2 1/6 t 1/3 Φ 1/3
∞ on S, and therefore

L B t ≤ 2 1/6 Φ 1/3 ∞ t 1/3 L P . To find a lower bound of L B t , we use the inequality (2) σ t ≥ t 1/3 |Φ| 1/3 , 1 
Here we use the fact that for every point x in S = Ωρ t and every γ ∈ Γ,

inf y∈ S d(y, γ • y) = lim n→+∞ 1 n d(x, γ n • x) ,
where d is one of the lifted distances on S associated with h H t , h B t or h P . Though it is not a general fact, it is well known that it holds for Hilbert metrics on open strictly convex domains in RP n with C 1 boundary (see [START_REF] Crampon | Finitude géométrique en géométrie de Hilbert[END_REF]Theorem 3.3]) and for Hadamard manifolds (see [START_REF] Ballmann | Manifolds of nonpositive curvature[END_REF]Lemma 6.6, Point 2, page 83]).

which comes from the fact that the curvature κ = -1 + 2 |Φ| 2 σ 6 of the metric h B t = σ 2 t h P is non-positive (see for instance [START_REF] Benoist | Cubic differentials and hyperbolic convex sets[END_REF]Proposition 3.3]). Let us fix ε > 0 and chose η > 0 such that |Φ| ≥ ε outside of an ηneighbourhood (for the metric h P ) of the zeros of Φ. We can choose ε and η small enough so that if x and y are two distinct zeros of the lift of Φ to the universal cover S of S, then d P B P (x, η), B P (y, η) ≥ 2η , where d P and B P denote the distance and balls with respect to the metric h P .

Let γ be a closed geodesic for the metric h B t . Let us decompose γ into segments that stay close to a zero of Φ and segments that go from one zero to another. Indeed, we can decompose the path γ into 2n segments [A i , B i ] and [B i , A i+1 ] (with A n = A 0 ) such that, if Ãi , Bi denote the lifts of A i , B i along a lift of γ to the universal cover, we have Putting all this together, we obtain

L B t (γ) ≥ 1 2 ε 1/3 t 1/3 n-1 i=0 d P ( Ãi , Bi ) + d P ( Bi , Ãi+1 ) ≥ 1 2 ε 1/3 t 1/3 L j (γ) .
This gives the required lower bound of the length spectrum L B t and concludes the proof of Theorem 3.9.

Finally, by compactness, one can choose the same constants A and B in Theorem 3.9 for all pairs (J, Φ) for which (S, J) lies in a compact subset of the moduli space of Riemann surfaces homeomorphic to S and Φ satisfies Φ J = 1. Denoting by ρ(J, Φ) the Hitchin representation of Γ into PSL(2, R) associated with the pair (J, Φ), we get the following: Corollary 3.10. For any compact subset K of the moduli space of Riemann surfaces homeomorphic to S, there exists some constant C(K) > 1 such that for any pair (J, Φ) with (S, J) ∈ K, we have 1 C(K)

Φ 1/3 J L j ≤ L ρ(J,Φ) ≤ C(K) Φ 1/3 J L j .
Remark 3.11. In [START_REF] Zhang | The degeneration of convex RP 2 structures on surfaces[END_REF], Zhang constructs sequences of Hitchin representations of Γ into PSL(3, R) whose entropy goes to 0, although the translation lengths of some curves on the surface S remain bounded. According to Corollary 3.10, those sequences are associated with pairs (J n , Φ n ), where (S, J n ) leaves every compact subset of the moduli space (otherwise the whole length spectrum of ρ(J n , Φ n ) would go to infinity).

Remark 3.12. Loftin studied in [START_REF] Loftin | The compactification of the moduli space of convex RP 2 surfaces, I[END_REF] the asymptotic behaviour of Hitchin representations of Γ into PSL(3, R) associated with pairs (J n , Φ n ), where (S, J n ) leaves every compact subset of the moduli space. It is likely that his results will give a more precise description of the behaviour of the length spectrum on the whole Hitchin component.
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 1 A comparison lemma. Let us fix a proper open convex domain Ω in RP n . Denote by h H Ω and h B Ω its Hilbert and Blaschke metrics, respectively, and by d H Ω and d B Ω their associated distances. (Very often, we will omit to index these objects by Ω.) In a recent paper, Benoist and Hulin proved that Blaschke and Hilbert metrics are uniformly comparable.
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 1 Hilbert and Blaschke metrics 1.1. The Hilbert metric. Fix a proper open convex domain Ω in RP n .

Figure 1 .

 1 Figure 1.When Ω is a disc in RP 2 , the hyperbolic affine sphere asymptotic to Ω is a hyperboloid.
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 1 Proof of Theorem B. Fix a closed connected oriented surface S of genus greater than 1. Denote by Γ its fundamental group and consider a Hitchin representation ρ : Γ → PSL(3, R) .
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 35 (see[START_REF] Benoist | Cubic differentials and finite volume convex projective surfaces[END_REF],Lemma 4.8). Let Ω be a proper open convex domain in RP 2 equipped with the conformal structure induced by h B . Then the tensor A is the real part of a holomorphic cubic differential, called the Pick form of Ω. Now, let S be a closed connected surface of genus greater than 1, Γ its fundamental group, and ρ a Hitchin representation of Γ into PSL(3, R). Let Ω ρ ⊂ RP 2 be the proper open convex domain divided by ρ. Then the Pick form of Ω ρ and the conformal class of the Blaschke metric on Ω ρ are both preserved by ρ(Γ) and thus induce a conformal structure and a holomorphic cubic differential on Ω ρ /ρ(Γ) ∼ = S. Loftin and Labourie proved that this actually gives a parametrization of the space of Hitchin representations of Γ into PSL(3, R):

•

  Ãi and Bi are at distance η of the same zero of Φ,• Bi and Ãi+1 are in the η-neighborood of two distinct zeros of Φ and the path ]B i , A i+1 [ remains outside of the η-neighborhood of the zeros of Φ.Let d Bt denote the distance associated with the metric h B t . We have , Ãi+1 ) .Since |Φ| ≥ ε along [B i , A i+1 ],we obtain, thanks to Inequality (2):d B t ( Bi , Ãi+1 ) ≥ ε 1/3 t 1/3 d P ( Bi , Ãi+1 ) .Finally, since d P ( Bi , Ãi+1 ) ≥ 2η and d P ( Ãi , Bi ) ≤ 2η, we have d P ( Bi , Ãi+1 ) ≥ 1 2 d P ( Ãi , Bi ) + d P ( Bi , Ãi+1 ) .

  The function h H Ω is called the Hilbert metric of Ω.The Hilbert metric is a projective invariant: if Ω is a proper open convex domain in RP n and g is a projective transformation, then the Hilbert metric of g(Ω) is g * h H Ω . In particular, every projective transformation g satisfying g(Ω) = Ω is an isometry for (Ω, h H Ω ). When Ω is an ellipsoid, it is preserved by a subgroup of PSL(n + 1, R) conjugated to PSO(n, 1), which implies that h H

Ω is Riemannian and (Ω, h H Ω ) is isometric to the hyperbolic space H n .

  for any two points x and y on the projective segment joining [e 1 ] and [e 2 ].Finally, since [e 1 ] and [e 2 ] were arbitrarily chosen in ∂Ω, this concludes the proof of Lemma 2.4 and hence that of the Main Lemma.Remark 2.5. So far, we didn't really use that h B is the Blaschke metric on Ω. Indeed, Lemma 2.4 still holds if we replace h B by any metric defined as the second fundamental form of some hypersurface with positive Hessian asymptotic to Ω. However, we don't know any other metric than h B to which it would be interesting to apply this lemma. Lemma 2.4 is "sharper" than the Main Lemma in the sense that it explicitly links the upper bound of d B with the lower bound of h B . If we apply it to the particular case C = 1, we obtain the following corollary: Corollary 2.6. Let Ω be a proper open convex domain in RP n . Denote by h H and h B its Hilbert and Blaschke metrics, respectively. If we have h

				We have thus proved
	that	d B (x, y) ≤ d H (x, y) +	√	1 -C

B ≥ h H , then h B = h H

and Ω is an ellipsoid. Proof. By lemma 2.4, if we have h B ≥ h H , then d B ≤ d H . But this yields h B ≤ h H by the very definition of d H and d B . Hence we get h B = h H . The Hilbert metric h H is therefore Riemannian, which implies that Ω is an ellipsoid (see Subsection 1.1). 2.2. Volume entropy of Hilbert and Blaschke metrics. Recall that the volume entropy of the Hilbert metric h H is defined by

  It does not depend on t and all the metrics h B t are in the same conformal class. We define the length spectrum of the metrics h H t , h B t , and h P as the functions L H t , L B t and L P from Γ to R + associating to an element γ the infimum of the lengths of closed curves on S freely homotopic to γ, where the lengths are measured with respect to the metrics h H t , h B t and h P , respectively. We thus have L H t = L ρt and L P = L j , since the action of ρ t (Γ) on (Ω ρt , h P ) is isometrically conjugated to the action of j(Γ) on H 2 . 1 CL ρt . It is therefore enough to find upper and lower bounds for the length spectrum L B t in terms of L P = L j . Let σ t : S → R * + be such that h B t = σ 2 t h P . The function σ t satisfies the following partial differential equation: ∆ log(σ t ) = 1 + σ 2 t -2t 2 σ -4 t |Φ| , where ∆ denotes the Laplace operator of the metric h P .

	By Benoist-Hulin's theorem (Theorem 0.1), there exists a positive con-
	stant C independent of t such that
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