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Multilinear Maps from Obfuscation

Martin R. Albrecht (RHUL) Pooya Farshim (QUB) Dennis Hofheinz (KIT)
Enrique Larraia (RHUL) Kenneth G. Paterson (RHUL)

October 20, 2016

Abstract

We provide constructions of multilinear groups equipped with natural hard problems from in-
distinguishability obfuscation, homomorphic encryption, and NIZKs. This complements known
results on the constructions of indistinguishability obfuscators from multilinear maps in the reverse
direction.

We provide two distinct, but closely related constructions and show that multilinear analogues
of the DDH assumption hold for them. Our first construction is symmetric and comes with a κ-linear
map e : Gκ −→ GT for prime-order groups G and GT . To establish the hardness of the κ-linear DDH
problem, we rely on the existence of a base group for which the (κ − 1)-strong DDH assumption
holds. Our second construction is for the asymmetric setting, where e : G1 × · · · × Gκ −→ GT for a
collection of κ+ 1 prime-order groups Gi and GT , and relies only on the standard DDH assumption
in its base group. In both constructions the linearity κ can be set to any arbitrary but a priori fixed
polynomial value in the security parameter.

We rely on a number of powerful tools in our constructions: (probabilistic) indistinguishability
obfuscation, dual-mode NIZK proof systems (with perfect soundness, witness indistinguishability
and zero knowledge), and additively homomorphic encryption for the group Z+

N. At a high level,
we enable “bootstrapping” multilinear assumptions from their simpler counterparts in standard
cryptographic groups, and show the equivalence of IO and multilinear maps under the existence of
the aforementioned primitives.

Keywords. Multilinear map, indistinguishability obfuscation, homomorphic encryption, decisional
Diffie–Hellman, Groth–Sahai proofs.
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1 Introduction

1.1 Main contribution

In this paper, we explore the relationship between multilinear maps and obfuscation. Our main
contribution is a construction of multilinear maps for groups of prime order equipped with nat-
ural hard problems, using indistinguishability obfuscation (IO) in combination with other tools,
namely NIZK proofs, homomorphic encryption, and a base group G0 satisfying a mild crypto-
graphic assumption. This complements known results in the reverse direction, showing that vari-
ous forms of indistinguishability obfuscation can be constructed from multilinear maps [GGH+13b,
CLTV15, Zim15]. The relationship between IO and multilinear maps is a very natural question to
study, given the rich diversity of cryptographic constructions that have been obtained from both
multilinear maps and obfuscation, and the apparent fragility of current constructions for multilin-
ear maps. More on this below.

We provide two distinct but closely related constructions. One is for multilinear maps in the
symmetric setting, that is non-degenerate multilinear maps e : G1κ −→ GT for groups G1 and GT
of prime orderN. Our construction relies on the existence of a base group G0 in which the (κ− 1)-
SDDH assumption holds—this states that, given a κ-tuple of G0-elements (g, gω, . . . , gω

κ−1
), we

cannot efficiently distinguish gω
κ

from a random element of G0. Under this assumption, we prove
that the κ-MDDH problem, a natural analogue of the DDH problem as stated below, is hard.

(The κ-MDDH problem, informal) Given a generator g1 of G1 and κ + 1 group elements

gai1 in G with ai←$ ZN, distinguish e(g1, . . . , g1)
∏κ+1
i=1 ai from a random element of GT .

This problem can be used as the basis for several cryptographic constructions [BS03] including, as
the by now the classic example of multiparty non-interactive key exchange (NIKE) [GGH13a].

Our other construction is for the asymmetric setting, that is multilinear maps e : G1×· · ·×Gκ −→
GT for a collection of κ groups Gi and GT all of prime order N. It uses a base group G0 in which
we require only that the standard DDH assumption holds. For this construction, we show that a
natural asymmetric analogue of the κ-MDDH assumption holds (wherein all but two of the κ + 1
group elements input to e come from distinct groups).

In Section 7, we also show the intractability of the rank problem for our construction for mul-
tilinear maps in the symmetric setting; this is a generalization of DDH-like problems to matrices
that has proven to be useful in cryptographic constructions [BHHO08, NS09, GHV12, BLMR13,
EHK+13].

At a high level, then, our constructions are able to “bootstrap” from rather mild assumptions in
a standard cryptographic group to much stronger multilinear assumptions in a group (or groups,
in the asymmetric setting) equipped with a κ-linear map. Here κ is fixed up-front at construction
time, but is otherwise unrestricted. Of course, such constructions cannot be expected to come “for
free,” and we need to make use of powerful tools including probabilistic IO (PIO) for obfuscating
randomized circuits [CLTV15], dual-mode NIZK proofs enjoying perfect soundness (for a binding
CRS), perfect witness indistinguishability (for a hiding CRS), and perfect zero knowledge, and
additive homomorphic encryption for the group (ZN,+) (or alternatively, a perfectly correct FHE
scheme). It is an important open problem arising from our work to weaken the requirements on,
or remove altogether, these additional tools.
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1.2 General approach

Our approach to obtaining multilinear maps in the symmetric setting is as follows (with many
details to follow in the main body).1 Let G0 with generator g0 be a group of prime order N in
which the (κ− 1)-SDDH assumption holds.

We work with redundant encodings of elements h of the base group G0 of the form h =
gx00 (gω0 )

x1 where gω0 comes from a (κ − 1)-SDDH instance; we write x = (x0, x1) for the vector
of exponents representing h. Then G1 consists of all strings of the form (h, c1, c2, π) where h ∈ G0,
ciphertext c1 is a homomorphic encryption under public key pk1 of a vector x representing h, ci-
phertext c2 is a homomorphic encryption under a second public key pk2 of another vector y also
representing h, and π is a NIZK proof showing consistency of the two vectors x and y, i.e., a proof
that the plaintexts x, y underlying c1, c2 encode the same group element h. Note that each element
of the base group G0 is multiply represented when forming elements in G1, but that equality of
group elements in G1 is easy to test. An alternative viewpoint is to consider (c1, c2, π) as being
auxiliary information accompanying element h ∈ G0; we prefer the perspective of redundant en-
codings, and our abstraction in Section 3 is stated in such terms. When viewed in this way, our
approach can be seen as closely related to the Naor–Yung paradigm for constructing CCA-secure
PKE [NY90].

Addition of two elements in G1 is carried out by an obfuscation of a circuit CAdd that is pub-
lished along with the groups. It has the secret keys sk1, sk2 hard-coded in; it first checks the respec-
tive proofs, then uses the additive homomorphic property of the encryption scheme to combine
ciphertexts, and finally uses the secret keys sk1, sk2 as witnesses to generate a new NIZK proof
showing equality of encodings. Note that the new encoding is as compact as that of the two input
elements.

The multilinear map on inputs (hi, ci,1, ci,2, πi) for 1 ≤ i ≤ κ is computed using the obfuscation
of a circuit CMap that has sk1 and ω hard-coded in. This allows CMap to “extract” full exponents

of hi in the form (xi,1 + ω · xi,2) from ci,1, and thereby compute the element g
∏
i(xi,1+ω·xi,2)

0 . This
is defined to be the output of our multilinear map e, and so our target group GT is in fact G0, the
base group. The multilinearity of e follows immediately from the form of the exponent.

In the asymmetric case, the main difference is that we work with different values ωi in each
of our input groups Gi. However, the groups are all constructed via redundant encodings, just as
above.

This provides a high-level view of our approach, but no insight into why the approach achieves
our aim of building multilinear maps with associated hard problems. Let us give some intu-
ition on why the κ-MDDH problem is hard in our setting. We transform a κ-MDDH tuple h =
((gai1 )

i≤κ+1, g
d
T ), where d is the product of the ai ∈ ZN, g1 is in the “encoded” form above, thus

g1 = (h1, c1, c2, π), and gT is a generator of GT = G0, into another κ-MDDH tuple h ′ with ex-
ponents a ′i = ai + ω for i ≤ κ. This means that the exponent of the challenge element in the
target group d ′ =

∏κ
1(ai +ω)aκ+1 can be seen as a degree κ polynomial inω. Therefore, with the

knowledge of the ai and a (κ − 1)-SDDH challenge, with ω implicit in the exponent, we are able
to randomize gd

′
T replacing gω

κ

T with a uniform value.
Nevertheless, in the preceding simplistic argument we have made two assumptions. The first

is that we are able to provide an obfuscation of a circuit C ′Map that has the same functionality as

1This version of the paper fixes a flaw that we found in the proof of Theorem 5.3. The construction of Section 4 has
been slightly modified, but it does not make use of stronger assumptions and has comparable efficiency.
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CMap over G1 without the explicit knowledge ofω. We resolve this by showing a way of evaluating
the κ-linear map on any elements of G1 using only the powers gω

i

0 for 1 ≤ i ≤ κ − 1, and vectors
extracted from the accompanying ciphertexts, and then applying IO to the two circuits.2

The second assumption we made is that we can indeed switch from h to h ′ without being
noticed. In other words, that the vectors xi, yi representing gai can be replaced (without being
noticed) with vectors h ′i whose second coordinate is always fixed. Intuitively this is based on the
IND-CPA security of the FHE scheme, but in order to give a successful reduction we also have to
change the circuit CAdd (since CAdd uses both decryption keys). We show two ways to do this:
one is based on probabilistic indistinguishability obfuscation [CLTV15], and the other uses only
(deterministic) indistinguishability obfuscation, and additionally exploits the specific structure of
a particular (pairing-based) NIZK implementation due to Groth and Sahai [GS08].

We note that in this work we do not construct graded encoding schemes as in [GGH13a]. That
is, we do not construct maps from Gi×Gj to Gi+j. On the other hand, our construction is noiseless
and is closer to multilinear maps as defined by Boneh and Silverberg [BS03].

1.3 Attacks on multilinear maps

Multilinear maps have been in a state of turmoil, with the discovery of attacks [CHL+15, HJ15,
CLR15, MF15, Cor15] against the GGH13 [GGH13a], CLT [CLT13] and GGH15 [GGH15] propos-
als, and a sequence of countermeasures and fixes [CLT15, CGH+15], which since have been bro-
ken, too. Hence, our confidence in constructions for graded encoding schemes (and thereby mul-
tilinear maps) has been shaken. On the other hand, when IO is constructed from graded encoding
schemes via Barrington’s theorem or dual-input straddling sets [GGH+13b, AB15, Zim15], then
none of the known attacks on graded encoding schemes seem to apply [CGH+15]. Indeed, when
building IO from multilinear maps one restricts the pool of available operations to an attacker
by fixing a circuit a priori which means that certain “interesting” elements cannot be (easily) con-
structed. Hence, currently it is perhaps more plausible to assume that IO exists than it is to assume
that secure multilinear maps exist. However, we stress that more cryptanalysis of IO constructions
is required to investigate what security they provide.

Moreover, even though current constructions for IO rely on graded encoding schemes, it is
not implausible that alternative routes to achieving IO without relying on multilinear maps will
emerge in due course. And setting aside the novel applications obtained directly from IO, multi-
linear maps, and more generally graded encoding schemes, have proven to be very fruitful as con-
structive tools in their own right (cf. [BS03, PTT10], resp., [FHPS13, GGH+13c, HSW13, GGSW13,
BWZ14, TLL14, BLR+15]). This rich set of applications coupled with the current uncertainty over
the status of graded encoding schemes and multilinear maps provides additional motivation to
ask what additional tools are needed in order to upgrade IO to multilinear maps. As an addi-
tional benefit, we upgrade (via IO) noisy graded encoding schemes to clean multilinear maps—
sometimes now informally called “dream” or “ideal” multilinear maps.

1.4 Related work

The closest related work to ours is that of Yamakawa et al. [YYHK14, YYHK15]; indeed, their work
was the starting point for ours. Yamakawa et al. construct a self-pairing map, that is a bilinear map

2This is not trivial since the new method should not lead to an exponential blow-up in κ.
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from G × G to G; multilinear maps can be obtained by iterating their self-pairing. Their work is
limited to the RSA setting. It uses the group of signed quadratic residues modulo a Blum integer
N, denoted QR+

N, to define a pairing function that, on input elements gx, gy in QR+
N, outputs g2xy.

In their construction, elements of QR+
N are augmented with auxiliary information to enable the

pairing computation—in fact, the auxiliary information for an element gx is simply an obfuscation
of a circuit for computing the 2xth power modulo ord(QR+

N), and the pairing is computed by
evaluating this circuit on an input gy (say). The main contribution of [YYHK14] is in showing that
these obfuscated circuits leak nothing about x or the group order.

A nice feature of their scheme is that the degree of linearity κ that can be accommodated is
not limited up-front in the sense that the pairing output is also a group element to which further
pairing operations (derived from auxiliary information for other group elements) can be applied.
However, the construction has several drawbacks. First, the element output by the pairing does
not come with auxiliary information.3 Second, the size of the auxiliary information for a product
of group elements grows exponentially with the length of the product, as each single product
involves computing the obfuscation of a circuit for multiplying, with its inputs already being
obfuscated circuits. Third, the main construction in [YYHK14] only builds hard problems for
the self-pairing of the computational type (in fact, they show the hardness of the computational
version of the κ-MDDH problem in QR+

N assuming that factoring is hard). Still, this is sufficient
for several cryptographic applications.

In contrast, our construction is generic with respect to its platform group. Furthermore, the
equivalent of the auxiliary information in our approach does not itself involve any obfuscation.
Consequently, the description of a product of group elements stays compact. Indeed, given per-
fect additive homomorphic encryption for (Zp,+), we can perform arbitrary numbers of group
operations in each component group Gi. It is an open problem to find a means of augmenting our
construction with the equivalent of auxiliary information in the target group GT , to make our mul-
tilinear maps amenable to iteration and thereby achieve graded maps as per [GGH13a, CLT13].

2 Preliminaries

2.1 Notation

We denote the security parameter by λ ∈ N and assume that it is implicitly given to all algorithms
in the unary representation 1λ. By an algorithm we mean a stateless Turing machine. Algorithms
are randomized unless stated otherwise and PPT as usual stands for “probabilistic polynomial-
time” in the (unary) security parameter. Given a randomized algorithmAwe denote the action of
running A on input(s) (1λ, x1, . . .) with fresh random coins r and assigning the output(s) to y1, . . .
by (y1, . . .)←$ A(1λ, x1, . . . ; r). For a finite set X, we denote its cardinality by |X| and the action of
sampling a uniformly random element x from X by x←$ X. Vectors are written in boldface x and
by slight abuse of notation, running algorithms on vectors of elements indicates component-wise
operation. Throughout the paper ⊥ denotes a special error symbol, and poly(·) stands for a fixed

3The authors of [YYHK14] state that such information can be added in their construction, but what would be needed
is the obfuscation of a circuit for computing 4xyth powers. The information available for building this would be
obfuscations of circuits for computing 2xth and 2yth powers, so an obfuscation of a composition of already obfuscated
circuits would be required. Strictly speaking then, the auxiliary information associated with elements output by their
pairing is of a different type to that belonging to the inputs, making it questionable whether “self-pairing” is the right
description of what is constructed in [YYHK14].
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polynomial. A real-valued function negl(λ) is negligible if negl(λ) ∈ O(λ−ω(1)). We denote the set
of all negligible functions by NEGL, and use negl(λ) to denote an unspecified negligible function.

2.2 Homomorphic public-key encryption

CIRCUITS. A polynomial-sized deterministic circuit family C := {Cλ}λ∈N is a sequence of sets of
poly(λ)-sized circuits for a fixed polynomial poly. We assume that for all λ ∈ N, all circuits C ∈ Cλ
share a common input domain ({0, 1}λ)a(λ), where a(λ) is a the arity of the circuit family, and
codomain {0, 1}λ. A randomized circuit family is defined similarly except that the circuits now
also take random coins r ∈ {0, 1}r(λ). To make the coins used by a circuit explicit (e.g., to view a
randomized circuit as a deterministic one) we write C(x; r).

SYNTAX AND COMPACTNESS. A tuple of PPT algorithms Π := (Gen,Enc,Dec,Eval) is called a ho-
momorphic public-key encryption (HPKE) scheme for deterministic circuit family C = {Cλ}λ∈N of
arity a(λ) if (Gen,Enc,Dec) is a conventional public-key encryption scheme with message space
{0, 1}λ and Eval is a deterministic algorithm that on input a public key pk a circuitC ∈ Cλ and cipher-
texts c1, . . . , ca(λ) outputs a ciphertext c. We require HPKE schemes to be compact in the sense that
the outputs of Eval have a size that is bounded by a polynomial function of the security parameter
(and independent of the size of the circuit). Without loss of generality, we assume that secret keys
of an HPKE scheme are the random coins used in key generation. This will allow us to check key
pairs for validity.

CORRECTNESS. We require the following perfect correctness requirements from a HPKE scheme.
(1) Scheme Π := (Gen,Enc,Dec) is perfectly correct as a PKE scheme; that is for any λ ∈ N, any
(sk, pk)←$ Gen(1λ), any m ∈ {0, 1}λ, and any c←$ Enc(m, pk) we have that Dec(c, sk) = m. (2) The
evaluation algorithm in also perfectly correct in the sense that for any λ ∈ N, any (sk, pk)←$ Gen(1λ),
any mi ∈ {0, 1}λ for i ∈ [a(λ)], any ci←$ Enc(mi, pk), anyC ∈ Cλ and any c←Eval(pk, C, c1, . . . , ca(λ))
we have that Dec(c, sk) = C(m1, . . . ,ma(λ)).

We note that although most proposals in the literature for HPKE are not perfectly correct, this is
usually assumed in the literature (cf. [GGI+14]). Indeed, it is plausible that perfectly correct HPKE
can be achieved from standard HPKE constructions by adapting the probability distribution of
the noise to a bounded distribution and by applying worst-case bounds in all steps. Moreover,
in this work we will only need a mod-p additively homomorphic scheme of arity 2, traditionally
known as a singly homomorphic PKE scheme for (Zp,+). Formally, such a scheme corresponds
to a family of circuits of arity 2which add two λ-bit numbers modulo λ-bit primes p.

SECURITY. The IND-CPA security of an HPKE scheme is defined identically to a standard PKE
scheme without reference to the Dec and Eval algorithms. Formally, we require that for any legit-
imate PPT adversary A := (A1,A2),

Advind-cpa
Π,A (λ) := 2 · Pr

[
IND-CPAAΠ (λ)

]
− 1 ∈ NEGL ,

where game IND-CPAAΠ (λ) is shown in Figure 1 (left). Adversary A is legitimate if it outputs two
messages of equal lengths.

2.3 Obfuscators

SYNTAX AND CORRECTNESS. A PPT algorithm Obf is called an obfuscator for (deterministic or
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randomized) circuit class C = {Cλ}λ∈N if Obf on input the security parameter 1λ and the descrip-
tion of a (deterministic or randomized) circuit C ∈ Cλ outputs a deterministic circuit C. For
deterministic circuits, we require Obf to be perfectly correct in the sense the circuits C and C
are functionally equivalent; that is, that for all λ ∈ N, all C ∈ Cλ, all C←$ Obf(1λ, C), and all
mi ∈ {0, 1}λ for i ∈ [a(λ)] we have that C(m1, . . . ,ma(λ)) = C(m1, . . . ,ma(λ)). For randomized
circuits, the authors of [CLTV15] define correctness via computational indistinguishability of the
outputs of C and C. For our constructions we do not rely on this property and instead require
that C and C are functionally equivalent up to a change in randomness; that is, for all λ ∈ N, all
C ∈ Cλ, all C←$ Obf(1λ, C) and all mi ∈ {0, 1}λ for i ∈ [a(λ)] we require there is an r such that
C(m1, . . . ,ma(λ)) = C(m1, . . . ,ma(λ); r). In this paper by correctness we refer to this latter property.
We note that the construction from [CLTV15] is correct as it relies on a correct (indistinguishability)
obfuscator (and a PRF to internally generate the required random coins).

SECURITY. The security of an obfuscator Obf requires that for any legitimate PPT adversary A :=
(A1,A2)

Advind
Obf,A(λ) := 2 · Pr

[
INDAObf(λ)

]
− 1 ∈ NEGL ,

where game IND is shown in Figure 1 (middle). Depending on the notion of legitimacy different
security notions for the obfuscator emerge; we consider two such notions below.

FUNCTIONALLY EQUIVALENT SAMPLERS. We call (the first phase of) A a functionally equivalent
sampler if for any (possibly unbounded) distinguisher D

Adveq
A,D(λ) := Pr

[
C0(x) 6= C1(x) : (C0, C1, st)←$ A1(1λ); x←$ D(C0, C1, st)

]
∈ NEGL .

The security notion associated with equivalent samplers is called indistinguishability. We call an
obfuscator meeting this level of security an indistinguishability obfuscator [GGH+13b] and use IO
instead of Obf to emphasize this.

X-IND SAMPLERS [CLTV15]. Roughly speaking, the first phase of A is an X-IND sampler if there
is a set X of size at most X such that the circuits output byA are functionally equivalent outside X
and furthermore withinX the outputs of the two sampled circuits are indistinguishable. Formally,
letX(·) be a function such thatX(λ) ≤ 2λ for all λ ∈ N. We callA anX-IND sampler if there is a setXλ
of size at most X(λ) such that the following two conditions holds: (1) for all (possibly unbounded)
D the advantage function below is negligible

Adveq$
A,D(λ) := Pr

[
C0(x; r) 6= C1(x; r)∧ x /∈ Xλ : (C0, C1, st)←$ A1(1λ); (x, r)←$ D(C0, C1, st)

]
.

(2) For all non-uniform PPT distinguishers D := (D1,D2)

X(λ) ·Advsel-ind
A,D (λ) := X(λ) · Pr

[
Sel-INDDA(1

λ)
]
∈ NEGL ,

where game Sel-INDDA(1λ) is shown in Figure 1 (right). This game has a static (or selective) flavor
asD1 chooses a differing-input x before it gets to see the challenge circuit pair. We call an obfuscator
meeting this level of security a probabilistic indistinguishability obfuscator [CLTV15] and use PIO
instead of Obf to emphasize this.
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IND-CPAAΠ(λ):
(sk, pk)←$ Gen(1λ)
(m1,m1, st)←$ A1(pk)
b←$ {0, 1}
c←$ Enc(m, pk)
b ′←$ A2(c, st)
Return (b = b ′)

INDAObf(λ):
(C0, C1, st)←$ A1(1λ)
b←$ {0, 1}

C←$ Obf(1λ, Cb)
b ′←$ A2(C, st)
Return (b = b ′)

Sel-INDDA(λ):
(x, z)←$ D1(1λ)
(C0, C1, st)←$ A1(1λ)
b←$ {0, 1}; r←$ {0, 1}r(λ)

y← Cb(x; r)
b ′←$ D2(y,C0, C1, st, z)
Return (b = b ′)

Figure 1: Left: IND-CPA security of a (homomorphic) PKE scheme. Middle: Indistinguishability security of an obfus-
cator. Right: Static-input (aka. selective) X-IND property of A := (A1,A2).

2.4 Dual-mode NIZK proof systems

In our constructions we will be relying on special types of non-interactive zero-knowledge proof
systems [GS08]. These systems have “dual-mode” common reference string (CRS) generation
algorithms that produce indistinguishable CRSs in the “binding” and “hiding” modes. They also
enjoy perfect completeness in both modes, are perfectly sound and extractable in the binding
mode, and perfectly witness indistinguishable (WI) and zero-knowledge (ZK) in the hiding mode.
The standard prototype for such schemes are pairing-based Groth–Sahai proofs [GS08], and using
a generic NP reduction to the satisfiability of quadratic equations we can obtain a suitable proof
system for any NP language.4 We formalize the syntax and security of such proof systems next.

SYNTAX. A relation with setup is a pair of PPT algorithms (S,R) such that S(1λ) outputs (gpk, gsk)
and R(gpk, x,w) is a ternary relation and outputs a bit b ∈ {0, 1}. A dual-mode non-interactive
zero-knowledge (NIZK) proof system Σ for (S,R) consists of five algorithms as follows. (1) Algo-
rithm BCRS(gpk, gsk) outputs a (binding) common reference string crs and an extraction trapdoor
tdext; (2) HCRS(gpk, gsk) outputs a (hiding) common reference string crs and a simulation trap-
door tdzk; (3) Prove(gpk, crs, x,w) on input crs, an instance x, and a witness w, outputs a proof π;
(4) Verify(gpk, crs, x, π) on input a bit string crs, an instance x, and a proof π, outputs accept or
reject; (5) WExt(tdext, x, π) on input an extraction trapdoor, an instance x, and a proof π, outputs
a witness w; and (6) Sim(tdzk, crs, x) on input the simulation trapdoor tdzk, the CRS crs, and an
instance x, outputs a simulated proof π. We require a dual-mode NIZK to meet the following
requirements.

CRS INDISTINGUISHABILITY. The common reference strings generated through BCRS(gpk, gsk)
and HCRS(gpk, gsk) are computationally indistinguishable. We denote the distinguishing advan-
tage of a PPT adversary A in the relevant security game by Advcrs

Σ,A(λ).

PERFECT COMPLETENESS UNDER BCRS/HCRS. For any λ ∈ N, any (gpk, gsk)←$ S(1λ), any
crs←$ BCRS(gpk, gsk), any (x,w) such that R(gpk, x,w) = 1, and any π←$ Prove(gpk, crs, x,w)
we have that Verify(gpk, crs, x, π) = 1. We require this property to also hold for any choice of
crs←$ HCRS(gpk, gsk).

4We note that extraction in Groth–Sahai proofs does not for all types of statements recover a witness. (Instead, for
some types of statements, only gwi for a witness variable wi ∈ Zp can be recovered.) Here, however, we will only
be interested in witnesses w = (w1, . . . , wn) ∈ {0, 1}n that are bit strings, in which case extraction always recovers w.
(Specifically, extraction will recover gwi for all i, and thus all wi.)
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PERFECT SOUNDNESS UNDER BCRS. For any λ ∈ N, any (gpk, gsk)←$ S(1λ), any common refer-
ence string crs←$ BCRS(gpk, gsk), any x for which for all w ∈ {0, 1}∗, we have R(gpk, x,w) = 0,
and any π ∈ {0, 1}∗ we have that Verify(gpk, crs, x, π) = 0.

PERFECT EXTRACTABILITY UNDER BCRS. For any λ ∈ N, any (gpk, gsk)←$ S(1λ), any (crs, tdzk)←$

BCRS(gpk, tdext), any (x, π) with Verify(gpk, crs, x, π) = 1, and for w←$ WExt(tdext, x, π), we al-
ways have that R(gpk, x,w) = 1.

PERFECT WI UNDER HCRS. For any λ ∈ N, any (gpk, gsk)←$ S(1λ), any (crs, tdzk)←$ HCRS(gpk,
gsk), any (x,wb) such that R(gpk, x,wb) = 1 for b ∈ {0, 1}, we have that πb←$ Prove(gpk, crs, x,wb)
for b ∈ {0, 1} are identically distributed.

PERFECT ZK UNDER HCRS. For any λ ∈ N, any (gpk, gsk)←$ S(1λ), any (crs, tdzk)←$ HCRS(gpk,
gsk), any (x,w) such that R(gpk, x,w) = 1, we have that π0←$ Prove(gpk, crs, x,w) and π1←$

Sim(tdzk, x) are identically distributed.

2.5 Hard membership problems

Finally, we will use languages with hard membership problems. More specifically, we say that a
family L = {Lλ} of families Lλ = {L} of languages L ⊆ U in a universe U = Uλ has a hard subset
membership problem if the following holds. Namely, we require that no PPT algorithm can, given
L←$ Lλ, efficiently distinguish between x←$ L and x←$ U.

3 Multilinear Groups with Non-unique Encodings

Before presenting our constructions, we formally introduce what we mean by a multilinear group
(MLG) scheme. Our abstraction differs from that of Garg, Gentry and Halevi [GGH13a] in that our
treatment of MLG schemes is a direct adaptation of the “dream” MLG setting (called the “cryp-
tographic” MLG setting in [BS03]) to a setting where group elements have non-unique encodings.
In our abstraction, on top of the procedures needed for generating, manipulating and checking
group elements, we introduce an equality procedure which generalizes the equality relation for
groups with unique encodings.

SYNTAX. A multilinear group (MLG) scheme Γ consists of six PPT algorithms as follows.

Setup(1λ, 1κ): This is the setup algorithm. On input the security parameter 1λ and the multilin-
earity 1κ, it outputs the group parameters pp. These parameters include generators g1, . . . , gκ+1,
identity elements 11, . . . ,1κ+1, and integers N1, . . . , Nκ+1, which will represent group orders.
(Generators, identity elements and group orders are discussed below.) We assume pp is pro-
vided to the various algorithms below.

Vali(h): This is the validity testing algorithm. On input (the group parameters), a group index 1 ≤
i ≤ κ+1 and a string h ∈ {0, 1}∗, it returns b ∈ {0, 1}. We define Gi, which is also parameterized
by pp, as the set of all h for which Vali(h) = 1. We write h ∈ Gi when Vali(h) = 1 and refer to
such strings as group elements (since we will soon impose a group structure on Gi). We require
that the bit strings in Gi have lengths that are polynomial in 1λ and κ, a property that we refer
to as compactness.
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Eqi(h1, h2): This is the equality algorithm. On input two valid group elements h1, h2 ∈ Gi, it
outputs a bit b ∈ {0, 1}. We require Eqi to define an equivalence relation. We say that the group
has unique encodings if Eqi simply checks the equality of bit strings. We write Gi(h) for the set
of all h ′ ∈ Gi such that Eqi(h, h

′) = 1; for any such h, h ′ in Gi we write h = h ′; sometimes we
write h = h ′ in Gi for clarity. Since “=” refers to equality of bit strings as well as equivalence
under Eqi we will henceforth write “as bit strings” when we mean equality in that sense. We
require |Gi/Eqi|, the number of equivalence classes into which Eqi partitions Gi, to be finite
and equal to Ni (where Ni comes from pp). Note that equality algorithms Eqi for 1 ≤ i ≤ κ
can be derived from one for Eqκ+1 using the multilinear map e defined below, provided Nκ+1
is prime. We assume throughout the paper that various algorithms below return ⊥ when run
on invalid group elements.

Opi(h1, h2): This algorithm defines the group operation. On input two valid group elements
h1, h2 ∈ Gi it outputs h ∈ Gi. We write h1h2 in place of Opi(h1, h2) for simplicity. We require
that Opi respect the equivalence relations Eqi, meaning that if h1 = h2 in Gi and h ∈ Gi,
then h1h = h2h in Gi. We also demand that h1h2 = h2h1 in Gi (commutativity), for any third
h3 ∈ Gi we require h1(h2h3) = (h1h2)h3 in Gi (associativity) and h11i = h1 in Gi.
The algorithm Op gives rise to an exponentiation algorithm Expi(h, z) that on input h ∈ Gi
and z ∈ N outputs an h ′ ∈ Gi such that h ′ = h · · ·h in Gi with z occurrences of h. When no h
is specified, we assume h = gi. This algorithm runs in polynomial time in the length of z. We
denote Expi(h, z) by hz and define h0 := 1i. Note that under the definition ofNi for any h ∈ Gi
we have that Expi(h,Ni) = 1i.5 This in turn leads to an inversion algorithm Invi(h) that on
input h ∈ Gi outputs hNi−1. We insist that gi in fact has order Ni, so that (the equivalence
class containing) gi generates Gi/Eqi. We do not treat the case where the Ni are unknown but
the formalism is easily extended to include it by adding an explicit inversion algorithm and by
replacing Ni in pp with an approximation (which may be needed for sampling purposes). The
above requirements ensure that Gi/Eqi acts as an Abelian group of order Ni with respect to
the operation induced by Opi, with identity (the equivalence class containing) 1i, and inverse
operation Invi.

We use the bracket notion [EHK+13] to denote an element h = gxi in Gi with [x]i. When using
this notation, we will write the group law additively. This notation will be convenient in the
construction and analysis of our MLG schemes. For example, [z]i + [z ′]i succinctly denotes
Opi(Exp(gi, z),Exp(gi, z ′)). Note that when writing [z]i it is not necessarily the case that z is
explicitly known.

e(h1, . . . , hκ): This the multilinear map algorithm. For κ group elements hi ∈ Gi as input, it
outputs hκ+1 ∈ Gκ+1. We demand that for any 1 ≤ j ≤ κ and any h ′j ∈ Gj

e(h1, . . . , hjh ′j, . . . , hκ) = e(h1, . . . , hj, . . . , hκ)e(h1, . . . , h ′j , . . . , hκ) in Gκ+1 .

We also require the map to be non-degenerate in the sense that for some tuple of elements as
input the multilinear map outputs an element of Gκ+1 outside the equivalence class of 1κ+1.
(This implies that e is surjective onto Gκ+1/Eqκ+1 when Ni is prime, but need not imply sur-
jectivity when Nκ+1 is composite.) We call an MLG scheme symmetric if the group algorithms

5However, note that Ni need not be the least integer with this property.
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are independent of the group index for 1 ≤ i ≤ κ and e is invariant under permutations of its
inputs. That is, for any permutation π : [κ] −→ [κ] we have

e(h1, . . . , hκ) = e(hπ(1), . . . , hπ(κ)) in Gκ+1 .

We refer to all the other cases as being asymmetric. To distinguish the target group we fre-
quently write GT instead of Gκ+1 (and similarly for 1T and gT in place of 1κ+1 and gκ+1) as its
structure in our construction will be different from that of the source groups G1, . . . ,Gκ.

Sami(z): This is the sampling algorithm. On input z ∈ N it outputs h ∈ Gi whose distribution
is “close” to that of uniform over the equivalence class Gi(gzi ). Here “close” is formalized via
computational, statistical or perfect indistinguishability. We also allow a special input ε to this
algorithm, in which case the sampler is required to output a uniformly distributed h ∈ Gi
together with a z such that h ∈ Gi(gzi ). When outputting z is not required, we say that Sami(ε)
is discrete-logarithm oblivious. Note that for groups with unique encodings these algorithms
trivially exist. For notational convenience, for a known a we define [a]i to be an element
sampled via Sami(a).

Some applications also rely on the following algorithm which provides a canonical bit string
for the group elements within a single equivalence class.

Exti(h): This is the extraction algorithm. On input h ∈ Gi it outputs a string s ∈ {0, 1}poly(λ). We
demand that for any h1, h2 ∈ Gi with h1 = h2 in Gi we have that Exti(h1) = Exti(h2) (as bit
strings). We also require that for [z]i←$ Sami(ε), the distribution of Exti([z]i) is uniform over
{0, 1}poly(λ). For groups with unique encodings this algorithm trivially exists.

COMPARISON WITH GGH. Our formalization differs from that of [GGH13a] which defines a graded
encoding scheme. The main difference is that a graded encoding scheme defines bilinear maps
ei,j : Gi × Gj −→ Gi+j. Using this algorithm, one can implement Eqi for any 1 ≤ i ≤ κ from
Eqκ+1 as follows (if ei,j is injective). To check the equality of h1, h2 ∈ Gi call ei,κ+1−i(h, gκ+1−i)
for h = h1, h2 to map these elements to the target group and check equality there using Eqκ+1.
Similarly, Exti(h) can be constructed from Extκ+1(h) and 1j for all Gj. (Note that for extraction
we need a canonical string rather than a canonical group element.) Moreover, the abstraction and
construction of graded encodings schemes in [GGH13a] do not provide any validity algorithms;
these are useful in certain adversarial situations such as CCA security and signature verification.
Further, all known candidate constructions of graded encoding schemes are noisy and only permit
a limited number of operations. Finally, the known candidate graded encoding schemes do not
permit sampling for specific values of z, but rather only permit sampling elements with a z that is
only known up to its equivalence class.

SYNTACTIC EXTENSIONS. Although our syntax does not treat the cases of graded [GGH13a,
CLT13], exponentially multilinear, or self-pairing [YYHK14] maps, it can be modified to capture
these variants. We briefly outline the required modifications. For graded maps, we require the
existence of a map that on input hi ∈ Gi for indices i = i1, . . . , i` with t :=

∑`
i=1 ij ≤ κ outputs a

group element in Gt. This map is required to be multilinear in each component. For exponential
(aka. unbounded) linearity, we provide the linearity κ in its binary representation to the Setup
algorithm. We also include procedures for generator and identity element generation.6 Proper

6It is also more natural to work with unbounded maps in the graded setting as otherwise we would have to provide
an exponential number of inputs and hence assume “default” values rather than being able to include them all in pp.
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self-pairing maps correspond to a setting where the group algorithms are independent of the
group index for 1 ≤ i ≤ κ + 1 (including the target index κ + 1), and the group generators and
identity elements are all identical. Observe that a proper self-pairing would induce a graded en-
coding scheme of unbounded linearity; recall from the introduction that the scheme of Yamakawa
et al. [YYHK14] does not meet this definition because of the growth in the size of its auxiliary
information.

4 The Construction

We now present our construction of an MLG scheme Γ according to the syntax introduced in
Section 3. In the later sections we will consider special cases of the construction and prove the
hardness of analogues of the multilinear DDH problem under various assumptions.

We rely on the following building blocks in our MLG scheme. (1) A cyclic group G0 of some
order N0 with generator g0 and identity 10; formally we think of this as a 1-linear MLG scheme
Γ0 with unique encodings in which e is trivial; the algorithm Val0 implies that elements of G0 are
efficiently recognizable. (2) A general-purpose obfuscator Obf. (3) An additively homomorphic
public-key encryption scheme Π := (Gen,Enc,Dec,Eval) with plaintext space ZN (alternatively,
a perfectly correct HPKE scheme). (4) A dual-mode NIZK proof system. (5) A family T D of
(families of) languages TD which has a hard subset membership problem, and such that all TD
have efficiently computable witness relations with unique witnesses.7 (See Section 2 for more
formal definitions.)

We reserve variables and algorithms with index 0 for the base scheme Γ0; we also writeN = N0.
We require that the algorithms of Γ0 except for Setup0 and Sam0 are deterministic. We will also
use the bracket notation to denote the group elements in G0. For example, we write [z]0, [z

′]0 ∈
G0 for two valid elements of the base group and [z]0 + [z ′]0 ∈ G0 for Op0([z]0, [z

′]0). Variables
with nonzero indices correspond to various source and target groups. Given all of the above
components, our MLG scheme Γ consists of algorithms as detailed in the sections that follow.

4.1 Setup

The setup algorithm for Γ samples parameters pp0←$ Setup0(1
λ) for the base MLG scheme, gen-

erates two encryption key pairs (pkj, skj)←$ Gen(1λ) (j = 1, 2), and a matrix W = (ω1, . . . ,ωk)
t ∈

Zκ×`N where κ is the linearity and ` ∈ {2, 3} is a parameter of our construction. It sets

gpk := (pp0, pk1, pk2, [W]0,TD, y) ,

where [W]0 denotes a matrix of G0 elements that entry-wise is written in the bracket notation,
TD←$ T D, and y is not in TD. In our MLG scheme we set N1 = · · · = Nκ+1 := N, where N is
the group order implicit in pp0. The setup algorithm then generates a common reference string
crs = (crs ′, y) where crs ′←$ BCRS(gpk, gsk) for a relation (S,R) that will be defined in Section 4.2.
It also constructs two obfuscated circuits CMap and CAdd which we will describe in Sections 4.3
and 4.4. For 1 ≤ i ≤ κ, the identity elements 1i and group generators gi are sampled using

7An example of such a language is the Diffie–Hellman language TD = {(gr1, g
r
2) | r ∈ N} in a DDH group with

generators g1, g2. In particular, a suitable trapdoor language imposes no additional computational assumption in our
upcoming security proof.
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Sami(0) and Sami(xi) respectively for algorithm Sami described in Section 4.5 with xi ∈ [N] that
is co-prime to N. We emphasize that this approach is well defined since the operation of Sami is
defined independently of the generators and the identity elements and depends only on gpk and
crs. We set 1κ+1 = 10 and gκ+1 = g0. The scheme parameters are

pp := (gpk, crs, CMap, CAdd, g1, . . . , gκ+1,11, . . . ,1κ+1) .

We note that this algorithm runs in polynomial time in λ as long as κ is polynomial in λ.

4.2 Validity and equality

The elements of Gi for 1 ≤ i ≤ κ are tuples of the form h = ([z]0, c1, c2, π) where c1, c2 are en-
cryptions of vectors from Z`N under , pk1, pk2, respectively (encryption algorithm Enc extends from
plaintext space ZN to Z`N in the obvious way) and where π is a NIZK to be defined below. We refer
to (c1, c2, π) as the auxiliary information for [z]0. The elements of Gκ+1 are just those of G0.

The NIZK proof system that we use corresponds to the following inclusive disjunctive relation
(S,R := R1 ∨ R2). Algorithm S(1λ) outputs gpk = (pp0, pk1, pk2, [W]0,TD) as defined above and
sets gsk = (sk1, sk2). Relation R1 on input gpk, tuple ([z]0, c1, c2), and witness (x,y, r1, r2, sk1, sk2)
accepts iff [z]0 ∈ G0, the representations of [z]0 as x,y ∈ Z`N are valid with respect to [W]0 in the
sense that

[z]0 = [〈x,ωi〉]0 ∧ [z]0 = [〈y,ωi〉]0 ,

(where 〈·, ·〉 denotes inner product) and the following ciphertext validity condition (with respect
to the inputs to the relation) is met:

(c1 = Enc(x, pk1; r1)∧ c2 = Enc(x, pk2; r2))
∨

(pk1, sk1) = Gen(sk1)∧ (pk2, sk2) = Gen(sk2)
∧ x = Dec(c1, sk1)∧ y = Dec(c2, sk2))

Recall that we have assumed the secret key of the encryption scheme to be the random coins
used in Gen. Note that the representation validity check can be efficiently performed “in the
exponent” using [W]0 and the explicit knowledge of x and y. Note also that for honestly generated
keys and ciphertexts the two checks in the expression above are equivalent (although this not
generally the case when ciphertexts are malformed).

Relation R2 depends on the language TD, and on input gpk, tuple ([z]0, c1, c2), and witness wy
accepts iff wy is a valid witness to y ∈ TD. (Note that R2 completely ignores ([z]0, c1, c2).)

For 1 ≤ i ≤ κ, the Vali algorithm for Γ , on input ([z]0, c1, c2, π), first checks that the first
component is in G0 using Val0 and then checks the proof π; if both tests pass, it then returns
>, else ⊥. Observe that for an honest choice of crs = (crs ′, y), the perfect completeness and the
perfect soundness of the proof system ensure that only those elements which pass relation R1 are
accepted. Algorithm Valκ+1 just uses Val0.

The equality algorithm Eqi of Γ for 1 ≤ i ≤ κ first checks the validity of the two group ele-
ments passed to it and then returns true iff their first components match, according to Eq0, the
equality algorithm from the base scheme Γ0. Algorithm Eqκ+1 just uses Eq0. The correctness of
this algorithm follows from the perfect completeness of Σ.
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4.3 Group operations

We provide a procedure that, given as inputs h = ([z]0, c1, c2, π) and h ′ = ([z ′]0, c ′1, c
′
2, π
′) ∈ Gi,

generates a tuple representing the product h · h ′. This, in particular, will enable our multilinear
map to be run on the additions of group elements whose explicit representations are not neces-
sarily known. We exploit the structure of the base group as well as the homomorphic properties
of the encryption scheme to “add together” the first three components. We then use (sk1, sk2) as
a witness to generate a proof π ′′ that the new tuple is well formed. (For technical reasons we
check the validity of h and h ′ in two different ways: using proofs π, π ′, and also explicitly using
(sk1, sk2). Note that, although useful in the analysis, the explicit check is redundant by the perfect
soundness of the proof system under a binding crs ′.)

In pp we include an obfuscation of the CAdd circuit shown in Figure 2 (top), and again we
emphasize that steps 5a or 5b are never reached with a binding crs ′ (but they may be reached with
a hiding crs ′ later in the analysis). Either an IO or a PIO will be used to obfuscate this circuit. Note
that although we have assumed the evaluation algorithm to be deterministic, algorithm Prove is
randomized and we need to address how we deal with its coins. When using PIO to obfuscate
CAdd, the obfuscator directly deals with the needed randomness.8 When using IO, a random (but
fixed) set of coins will be hardwired into the circuit and hence the same set of coins will be used
for all inputs. (As we shall see, when using IO the proof system has to satisfy extra structural
requirements; these ensure that using the same coins throughout does not compromise security.)
The Opi algorithm for 1 ≤ i ≤ κ runs the obfuscated circuit on i, the input group elements.
Algorithm Opκ+1 just uses Op0 as usual. The correctness of this algorithm follows from those of
Γ0 and Π, the completeness of Σ and the correctness, in our sense of, (the possibly probabilistic)
obfuscator Obf; see Section 2 for the definitions.

4.4 The multilinear map

The multilinear map for Γ , on input κ group elements hi = [zi]i = ([zi]0, ci,1, ci,2, πi), uses sk1 to
recover the representation xi. It then uses the explicit knowledge of the matrix W to compute the
output of the map as

e([z1]1, . . . , [zκ]κ) :=

[
k∏
i=1

〈xi,ωi〉

]
κ+1

.

Recalling that Gκ+1 is nothing other than G0, and gκ+1 = g0, the output of the map is just the G0-
element (g0)

∏k
i=1〈xi,ωi〉. The product in the exponent can be efficiently computed over ZN for any

polynomial level of linearity κ and any ` as it uses xi and ωi explicitly. The multilinearity of the
map follows from the linearity of each of the multiplicands in the above product (and the com-
pleteness of Σ, the correctness of Π, and the correctness of the (possibly probabilistic) obfuscator
Obf). An obfuscation CMap of the circuit implementing this operation (see Figure 2, bottom) will
be made available through the public parameters and e is defined to run this circuit on its inputs.

8Typically, the obfuscated circuit will have a PRF key hardwired in and derives the required randomness by applying
the PRF to the circuit inputs.
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CIRCUIT CAdd[gpk, crs, sk1, sk2, tdext; r](i, h, h ′):
1. if ¬Vali(h)∨ ¬Vali(h ′) return ⊥
2. parse ([z]0, c1, c2, π)← h and ([z ′]0, c ′1, c

′
2, π

′)← h ′

3. [z ′′]0 ← [z]0 + [z ′]0; c ′′1 ← c1 + c ′1; c ′′2 ← c2 + c ′2
4. // explicit validity check of h, h ′

4.1 x← Dec(c1, sk1) , y← Dec(c2, sk2)
x ′ ← Dec(c ′1, sk1) , y ′ ← Dec(c ′2, sk2)

4.2a if ([z]0 6= [〈x,ωi〉]0)∨ ([z]0 6= [〈y,ωi〉]0) goto 5a
4.2b else if ([z ′]0 6= [〈x ′,ωi〉]0)∨ ([z ′]0 6= [〈y ′,ωi〉]0)

goto 5b
4.2c else goto 5c // h, h ′ are valid

5a. // h is invalid
5a.1 w ′y←$ WExt(tdext, ([z]0, c1, c2), π)
5a.2 if ¬R2(gpk, (([z]0, c1, c2)), w ′y) return ⊥
5a.3 π ′′ ← Prove(gpk, crs, ([z ′′]0, c ′′1 , c

′′
2 ), w

′
y; r)

5b.repeat 5a with h ′ // only h ′ is invalid
5c. π ′′ ← Prove(gpk, crs, ([z ′′]0, c ′′1 , c

′′
2 ), (sk1, sk2); r)

6. return ([z ′′], c ′′1 , c
′′
2 , π

′′)

CIRCUIT CMap[gpk, crs,W, sk1](h1, . . . , hκ):
1. for i = 1 . . . κ

1.1 if ¬Vali(hi) return ⊥
1.2 ([zi]0, ci,1, ci,2, πi)← hi
1.3 xi ← Dec(ci,1, sk1)

2. zκ+1 ←∏k
i=1〈xi,ωi〉 (mod N)

3. return [zκ+1]κ+1

Figure 2: Top: Circuit for addition of group elements. Explicit randomness r is used with an IO and is inter-
nally generated when using a PIO. Bottom: Circuit implementing the multilinear map. Recall that here gpk =
(pp

0
, pk

1
, pk

2
, [W]0,TD, y).

4.5 Sampling and extraction

Given vectors x and y in Z`N satisfying 〈x,ωi〉 = 〈y,ωi〉, we set [z]0 := [〈y,ωi〉]0 (which can be
computed using [W]0 and explicit knowledge of x) and

[z]i ← (
[z]0, c1 = Enc(x, pk1; r1), c2 = Enc(y, pk2; r2),
π = Prove(gpk, crs, ([z]i, c1, c2), (x,y, r1, r2)

)
.

If W is explicitly known the vectors x and y can take arbitrary forms subject to validity. This
matrix, however, is only implicitly known, and in our sampling procedure we set x = y = (z, 0)
when ` = 2 and x = y = (z, 0, 0) when ` = 3. (We call these the canonical representations.) Note
that the outputs of the sampler are not statistically uniform within Gi([z]i). Despite this, under the
IND-CPA security of the encryption scheme it can be shown that the outputs are computationally
close to uniform.

Since the target group has unique encodings, as noted in Section 3, an extraction algorithm
for all groups can be derived from one for the target group. The latter can be implemented by
applying a universal hash function to the group elements in GT , for example.
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κ-SwitchAΓ (λ):
pp←$ Setup(1λ, 1κ)
((x0,y0), (x1,y1), i, st)←$ A1(pp,W)

b←$ {0, 1}; r1, r2←$ ({0, 1}r(λ))|x0|

c1 ← Enc(xb, pk1; r1); c2 ← Enc(yb, pk2; r2)
π←$ Prove(gpk, crs, ([z]0, c1, c2), (x,y, r1, r2,⊥,⊥))
b ′←$ A2

(
([〈xb,ωi〉]0, c1, c2, π), st

)
Return (b = b ′)

Figure 3: Game formalizing the indistinguishability of encodings with an equivalence class. This game is specific to
our construction Γ . An adversary is legitimate if z = 〈xb,ωi〉 = 〈yb,ωi〉 for b ∈ {0, 1}. We note that A gets explicit
access to matrix W generated during setup.

5 Indistinguishability of Encodings

In this section we will prove two theorems that are essential tools in establishing the intractability
of the κ-MDDH for our MLG scheme Γ constructed in Section 4. These theorems, roughly speak-
ing, state that valid encodings of elements within a single equivalence class are computationally
indistinguishable. We formalize this property via the κ-Switch game shown in Figure 3. This game
lets an adversary A choose an element [z]i ∈ Gi by producing two valid representations (x0,y0)
and (x1,y1) for it. The adversary is given an encoding of [z]i generated using (xb,yb) for a random
b, and has to guess the bit b. In this game, besides access to pp, which contains the obfuscated
circuits for the group operation and the multilinear map, we also provide the matrix W in the
clear to the adversary. This strengthens the κ-Switch game and is needed for our later analysis.

To prove that the advantage of A in the κ-Switch game is negligible we rely on the security
of the obfuscator, the IND-CPA security of the encryption scheme, and the security of the NIZK
proof system. Depending on the type of the obfuscator and proof system used, we show indis-
tinguishability of encodings in two incomparable ways: (1) using a probabilistic obfuscator that is
secure against X-IND adversaries and a dual-mode NIZK as defined in Section 2.4; and (2) using
a (standard) indistinguishability obfuscator for deterministic circuits and a dual-mode NIZK that
is required to satisfy a “witness-translation” property that we formalize in Section 5.2.

5.1 Using probabilistic indistinguishability obfuscation

The indistinguishability of encodings using the first set of assumptions above is conceptually sim-
pler to prove and we start with this case. Intuitively, the IND-CPA security of the encryption
scheme will ensure that the encryptions of the two representations are indistinguishable. This
argument, however, does not immediately work as the parameters pp contain component CAdd
that depends on both decryption keys. We deal with this by finding an alternative implementa-
tion of this circuit without the knowledge of the secret keys, in the presence of a slightly different
public parameters (which are computationally indistinguishable to those described in Section 4).
The next lemma, roughly speaking, says that provided parameters pp include an instance y ∈ TD,
then there exists an alternative implementation ĈAdd that does not use the secret keys, and whose
obfuscation is indistinguishable to that of CAdd of Figure 2 (top) for an adversary that knows the
secret keys. It relies on the security of the obfuscator and the security of the NIZK proof system.
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Lemma 5.1 (CAdd without decryption keys). Let PIO be a secure obfuscator for X-IND samplers, and
Σ be a dual-mode NIZK proof system. Additionally, let parameters p̃p sampled as in Section 4 but with
ỹ ∈ TD, and let p̂p sampled as p̃p but with a hiding CRS ĉrs ′, and an obfuscation of circuit ĈAdd of
Fig. 4 (bottom). Then, for any PPT adversary A there are ppt adversaries B1 and B2 of essentially the same
complexity as A such that for all λ ∈ N

Pr[A(p̃p, sk1, sk2) = 1 : (sk1, sk2)←$ Gen(1λ)] − Pr[A(p̂p, sk1, sk2) = 1 : (sk1, sk2)←$ Gen(1λ)]
≤ 2 ·Advind

PIO,B1(λ) + Advcrs
Σ,B2(λ).

Proof. The crucial observation is that a witness wy to ỹ ∈ TD is also a witness to x ∈ R, and
therefore ĈAdd can use wy instead of sk1, sk2 to produce the output proof π ′′. Below we provide
descriptions of the transformation fromCAdd to ĈAdd, and let Wi denote the event thatA in Gamei
outputs 1.

Game0 : We start with (a PIO obfuscation of) circuit CAdd of Fig. 2 and with p̃p including ỹ ∈ TD
and a binding crs ′.

Game1 : The circuit has witness wy to ỹ ∈ TD hard-coded. If some input reaches the “invalid”
branches, CAdd does not extract a witness from the corresponding proof, but instead uses wy
to generate proof π ′′ (see Fig. 4 (top)). Note that Game1 requires no extraction trapdoor tdext
anymore.

We claim that |Pr[W0(λ)] − Pr[W1(λ)]| ≤ Advind
PIO,B1(λ).

By construction, the only difference between the games is that in Game1 proof π ′′, with respect
to invalid (input) encodings, is generated using hard-coded witness wy to y ∈ TD. Since wy is
unique, and the CRS crs ′ guarantees perfect soundness, this leads to identical behavior of CAdd
in Game 0. Hence this hop is justified by PIO.

Game2 : The CRS ĉrs ′ included in the public parameters is now hiding (such that the generated
proofs are perfectly witness-indistinguishable). We have that

|Pr[W1(λ)] − Pr[W2(λ)]| ≤ Advcrs
Σ,B2(λ),

where B2 is a PPT algorithm against the indistinguishability of binding and hiding CRS’s.

Game3 : Here, output proofs π ′′ for those inputs entering the “valid” branch (step 5b of Fig. 4
(top)) use wy (and not sk1, sk2) as witness. In particular, this game does not need to perform
a explicit validity check (using sk1, sk2) anymore, and therefore the addition circuit can be de-
scribed as in Fig. 4 (bottom).

We claim that |Pr[W2(λ)] − Pr[W3(λ)]| ≤ Advind
PIO,B1(λ).

By constrution the only difference between both games is that, the public parameters in Game2
contain a PIO obfuscation ofCAdd, and in Game3 contain a PIO obfuscation of ĈAdd of Fig. 4. In
Lemma 5.2 we prove that these circuit variants are given by an X-IND sampler, and therefore
their PIO obfuscations are indistinguishable.
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CIRCUIT CAdd[gpk, crs, sk1, sk2, wy; r](i, h, h ′):
1. if ¬Vali(h)∨ ¬Vali(h ′) return ⊥
2. parse ([z]0, c1, c2, π)← h and ([z ′]0, c ′1, c

′
2, π

′)← h ′

3. [z ′′]0 ← [z]0 + [z ′]0; c ′′1 ← c1 + c ′1; c ′′2 ← c2 + c ′2
4. // explicit validity check of h, h ′

4.1 x← Dec(c1, sk1) , y← Dec(c2, sk2)
x ′ ← Dec(c ′1, sk1) , y ′ ← Dec(c ′2, sk2)

4.2a if ([z]0 6= [〈x,ωi〉]0)∨ ([z]0 6= [〈y,ωi〉]0)
or ([z ′]0 6= [〈x ′,ωi〉]0)∨ ([z ′]0 6= [〈y ′,ωi〉]0)
goto 5a

4.2c else goto 5b
5a. // h or h’ invalid

5a.1 π ′′ ← Prove(gpk, crs, ([z ′′]0, c ′′1 , c
′′
2 ), wy; r)

5b. // h and h’ valid
5b.1 π ′′ ← Prove(gpk, crs, ([z ′′]0, c ′′1 , c

′′
2 ), (sk1, sk2); r)

6. return ([z ′′], c ′′1 , c
′′
2 , π

′′)

CIRCUIT ĈAdd[gpk, crs, wy; r](i, h, h ′):
1. if ¬Vali(h)∨ ¬Vali(h ′) return ⊥
2. parse ([z]0, c1, c2, π)← h, and ([z ′]0, c ′1, c

′
2, π

′)← h ′

3. [z ′′]0 ← [z]0 + [z ′]0; c ′′1 ← c1 + c ′1; c ′′2 ← c2 + c ′2
4. π ′′ ← Prove(gpk, crs, ([z ′′]0, c ′′1 , c

′′
2 ), wy; r)

5. return ([z ′′], c ′′1 , c
′′
2 , π

′′)

Figure 4: Circuits for addition of group elements used in Lemma 5.1. p̂p includes gpk = (pp
0
, pk

1
, pk

2
, [W]0,TD, ỹ)

where ỹ ∈ TD (also includes a hiding CRS ĉrs ′). Both circuits also have hard-coded (the) witness wy to ỹ ∈ TD. Top:
sk1, sk2 are used to produce π ′′ on valid inputs. Bottom: wy is always used to produce π ′′.

Lemma 5.2 (X-IND sampling). Let Σ be a dual-mode NIZK proof system for the relation (S,R) defined
in Section 4.2. Suppose Σ is perfectly witness-indistinguishable under a hiding CRS. Let A1 be a sampler
which outputs circuits (CAdd, ĈAdd) of Fig. 4. (Both circuits have the system parameters hard-coded in.)
Then any A := (A1,A2) for a PPT A2 is X-IND for (the optimal) X, the size of the domain of the circuits.
More precisely, for any (possibly unbounded) distinguisherD ′ and for any PPT distinguisherD = (D1,D2)
and any λ ∈ N,

Adveq$
A,D ′(λ) = 0 and Advsel-ind

A,D (λ) = 0 .

Proof. The first equality is immediate as X is set to be the entire domain of the circuits. The second
equality follows from the perfect witness-indistinguishability property of the proof system. In-
deed, the only difference between the two circuits is that, for those inputs that are valid encodings,
CAdd uses decryption keys sk1,sk2 as witness to generate the output proof π ′′ ← Prove(gpk, crs, ([z ′′]0,
c ′′1 , c

′′
2 ), (sk1, sk2); r), and ĈAdd uses witness wy to y ∈ TD (with y in the public parameters) to gen-

erate the proof π̂ ′′ ← Prove(gpk, crs, ([z ′′]0, c ′′1 , c
′′
2 ), wy; r). The WI property with a hiding ĉrs guar-

antees that π ′′ and π̂ ′′ are identically distributed, and hence so are the outputs of CAdd and ĈAdd.
Note that no random coins are hardwired into these circuits—we are in the PIO setting—and fresh
coins are used to compute the circuits’ outputs.

With Lemma 5.1 we can invoke IND-CPA security, and via a sequence of games obtain the
result stated below. The proof can be found in Appendix A.1; we will give a high-level overview
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of the proof below (see also Fig. 5).

Theorem 5.3 (Switching encodings using PIO). Let Γ be the MLG scheme constructed in Section 4,
where PIO is secure for X-IND samplers, Π is an IND-CPA-secure encryption scheme, and Σ is a dual-
mode NIZK proof system. Then, encodings of equivalent group elements are indistinguishable. More pre-
cisely, for any PPT adversary A and all λ ∈ N, there are ppt adversaries B1, B2, B3 and B4 of essentially
the same complexity as A such that for all λ ∈ N

Advκ-switch
Γ,A (λ) ≤ 3 ·Advsm

TD,B1 + 7 ·Advind
PIO,B2(λ) + 3 ·Advcrs

Σ,B3(λ) + 2 ·Advind-cpa
Π,B4 (λ) .

Furthermore B2 is an X-IND sampler for any function X(λ).

Proof sketch. The proof of this theorem proceeds via a sequence of 9 games as follows.

Game0 : This is the κ-Switch game. The public parameters pp contain a no-instance y /∈ TD, a
binding crs ′, CAdd is constructed using (sk1, sk2) andCMap using sk1 (see Fig. 2). The ciphertexts
c1 and c2 contain xb and yb for a random bit b.

Game1 : This game generates the public parameters p̃p so that include a yes-instance y ∈ TD. The
difference to the previous game can be bounded via the hardness of deciding membership to
TD.

Game2 : The public parameters p̂p change so that include a hiding ĉrs ′, and a (PIO) obfuscation
of circuit ĈAdd, see Fig. 4. (Recall that this circuit uses the witness wy to y ∈ TD to produce the
output proofs π̃ ′′, and therefore the simultaneous knowledge of decryption keys sk1,sk2 is not
needed anymore.) By Lemma 5.1 the difference with the previous game can be bounded by
PIO and CRS indistinguishability.

Game3 : This games generates c2 by encrypting y1, even when b = 0. We can bound the difference
in any adversary’s success probability via the IND-CPA advantage of Πwith respect to pk2 (the
reduction will know (pk1, sk2) so as to be able to construct CMap.)

Game4: The public parameters are changed back to p̃p, so that include a binding crs ′, and a (PIO)
obfuscation of circuitCAdd of Figure 2 (top). The difference with the previous game is bounded
again with Lemma 5.1.

Game5 : Now a no-instance y /∈ TD is included in the public parameters pp. This game is justified
by the hardness of deciding membership to TD.

Game6 : This game uses sk2 (in place of sk1) in the generation of CMap circuit. In this transition
we rely on the security of Obf and the perfect soundness of Σ. Perfect soundness implies
consistency of the two representations underlying c1, c2 (recall that this means they represent
the same group element with respect to W). We then get that the two circuits (using sk1, and
sk2, respectively) are funcitonally equivalent. We can then use the IO security of Obf to justify
the switch from using sk1 to using sk2. (Note tht for any function X, any obfuscator that is for
X-IND samplers is also secure as an indistinguishability obfuscator.) Note that in this game it
is crucial that the crs ′ is in the binding mode.

Game7 : This game, similarly to Game1 switches to public parameters p̃p with a yes-instance
y ∈ TD. The analysis is as before.
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Game8 : This game, similarly to Game2, includes in p̂p a hiding ĉrs ′, and a (PIO) obfuscation of
circuit ĈAdd (see Fig. 4). The analysis is as before.

Game9 : This game generates c1 by encrypting x1, even when b = 0. The analysis is as in Game3.

Observe that the challenge encoding in Game9 is independent of the random bit b and the ad-
vantage of any (possibly unbounded) adversary A is 0. Collecting bounds on the probabilities
involved in the various game hops concludes the proof.

public CAdd CMap c1 (b = 0) c2 (b = 0)
G. parameters knows knows contains contains remark
0 pp sk1,sk2, tdext sk1 (x0, y0) (x0, y0)
1 p̃p sk1,sk2, tdext sk1 (x0, y0) (x0, y0) TD indist.

2 p̂p wy sk1 (x0, y0) (x0, y0) Lemma 5.1

3 p̂p wy sk1 (x0, y0) (x1, y1) IND-CPA

4 p̃p sk1,sk2, tdext sk1 (x0, y0) (x1, y1) Lemma 5.1
5 pp sk1,sk2, tdext sk1 (x0, y0) (x1, y1) TD indist.

6 pp sk1,sk2, tdext sk2 (x0, y0) (x1, y1) PIO

7 p̃p sk1,sk2, tdext sk2 (x0, y0) (x1, y1) TD indist.

8 p̂p wy sk2 (x0, y0) (x1, y1) Lemma 5.1

9 p̂p wy sk2 (x1, y1) (x1, y1) IND-CPA

Figure 5: Outline of the proof steps of Theorem 5.3. b is the random bit of the κ-Switch game (see Figure 3). Changing
between pp and p̃p is justified by the hardness of deciding membership of TD, and changing between p̃p and p̂p by
Lemma 5.1. The hops relying on PIO use the perfect completness and the perfect soundness under binding crs ′ to
argue function equivalence of CMap.

5.2 Doing without probabilistic obfuscation

In contrast to the PIO-based approach from Section 5.1, here we will only use (deterministic) in-
distinguishability obfuscation, but a stronger notion of NIZK proof system. Concretely, our proof
works for any dual-mode NIZK proof system that enjoys perfect completeness, perfect sound-
ness and extraction under BCRS, perfect WI under HCRS (as defined in Section 2.4), and meets
a number of extra structural requirements as we detail below. These requirements are fulfilled
by Groth–Sahai proofs [GS08] based on the DDH or k-Linear assumption, and we are in fact not
aware of other suitable proof systems. Still, we find it convenient to state only the abstract prop-
erties that we require for the our result in this section.

The proof system Σ = (HCRS,BCRS,Prove,Verify,Sim) is required to satisfy the following
structural properties.
Proof structure : Proofs π output by Prove or Sim have the form π = (πcom, πopen). We call πcom

the commitment part and πopen the opening part of π.
Commitment parts output by Prove : The commitment part πcom of a proof generated by Prove

is a (probabilistic) commitment to the respective witnessw ∈ {0, 1}`. (Recall that we can restrict
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ourselves to witnesses that are bit strings of a length ` = p(|x|) for a fixed and public polynomial
p.) That is, we can write

πcom = Com(gpk, crs, w; r)

for a fixed commitment algorithm Com and Prove’s random coins r. Furthermore, Prove uses
no random coins beyond those used for Com.

Homomorphic property of commitment parts : The commitment algorithm Com used by Prove
and Sim is homomorphic in the following sense: for every gpk, every hiding crs (generated by
HCRS), and all w,w ′ ∈ {0, 1}`, there exists a value ∆ = ∆(w,w ′), such that

∀r : Com(gpk, crs, w; r) = Com(gpk, crs, w ′; r+ ∆) , (?)

where we assume that the random coins of Com form a (finite) group whose operation is
denoted by “+”. In other words,w-commitments and 0`-commitments not only have the same
distribution, they also only differ by a fixed shift in the random coins of Com. We furthermore
require that ∆ can be efficiently computed from w, w ′, and the simulation trapdoor tdzk.

SUITABILITY OF GROTH–SAHAI PROOFS. We briefly comment on the suitability of the NIZK proof
system of Groth and Sahai [GS08].9 The dual nature of the proof system, and its perfect complete-
ness, perfect soundness, perfect extractability, and perfect witness-indistinguishability and perfect
zero-knowledge are already proven in [GS08]. (However, cf. Footnote 4.) Moreover, it is easy to
verify the syntactic requirements above.

To see (?), it is necessary to take a look at the specific structure of the commitment algorithm
Com from [GS08]. Specifically, when committing to a single bit b, commitments from [GS08] have
the form

Com(gpk, crs, b; r) =
(
b · u0 +

n∑
i=1

ri · ui
)
,

for publicly known vectors ui of group elements (contained in crs), and random coins ri ∈ Zq for
the order q of the underlying group. (Commitments to bit strings w can be generated in a bitwise
fashion.) When crs is produced by HCRS, then u0 ∈ 〈u1, . . . ,un〉. Then, a commitment to b = 1

differs from a commitment to b = 0 by an additive shift ∆ = (∆1, . . . , ∆n) ∈ Znq of random coins
with u0 =

∑
i∆iui. Note that this shift does not depend on r. This shows (?).

THE DETERMINISTIC CIRCUIT CAdd. We now comment on a necessary slight tweak to the multi-
linear map construction itself. Namely, in order to facilitate a later use of (?), we adapt the way IO
generates obfuscations of CAdd. Recall that we can view CAdd as a deterministic circuit that takes
as inputs (among other things) random coins r, and outputs (among other things) a NIZK proof
π = Prove(gpk, crs, x,w; r) for a fixed witness w hardwired into CAdd. For our purposes, we use a
slight variation of CAdd that instead generates π as Prove(gpk, crs, x,w;R), where R is a uniformly
random value that is hardwired into CAdd. When we want to make the choice of R explicit, we also
write CRAdd.

Theorem 5.4 (Switching encodings using IO). Let IO be an indistinguishability obfuscator, Π an
IND-CPA encryption scheme, andΣ the specific dual-mode NIZK proof system of Groth and Sahai (see [GS08]).
Let Γ be the MLG scheme of Section 4 obtained using these primitives. Then, for any PPT adversaryA, there
exist PPT adversaries B1, B2, B3 and B4 of essentially the same complexity as A such that for all λ ∈ N

9In fact [GS08] presents different variants of their proof system in prime-order and composite-order groups. Here
we refer to the prime-order variants.
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Advκ-switch
Γ,A (λ) ≤ 3 ·Advsm

TD,B1(λ) + 7 ·Advind
IO,B2(λ) + 3 ·Advcrs

Σ,B3(λ) + 2 ·Advind-cpa
Π,B4 (λ) .

Proof. The proof of Theorem 5.4 proceeds like that of Theorem 5.3, except of course in those steps
that use the security of the probabilistic indistinguishability obfuscator PIO.

There are two types of such steps (resp. changes of CMap or CAdd): in the first type, functional
equivalence is fully preserved (even when viewing CAdd as a deterministic circuit). This type of
change occurs in the hop from Game0 to Game1 in the proof of Lemma 5.1, and in the hop from
Game5 to Game6 in the proof of Theorem 5.3. Since the corresponding deterministic circuits are
functionally equivalent (in case of CAdd = CRAdd: when the same value of R is used), the security
of IO can be directly utilized.

The second type of steps occurs in the hop from Game2 to Game3 in the proof of Lemma 5.1.
More concretely, these games, which in the IO setting are slightly different, are as described below.

Game ′2 : The public parameters include, among other things, an IO obfuscation of the top circuit
of Fig. 4, (albeit with the change we impose to CAdd in the IO setting). This circuit generates
outputs proofs (if the input encodings are valid) using witness sk1,sk2.

Game ′3 : The public parameters include, among other things, an IO obfuscation of the bottom
circuit of Fig. 4 (albeit with the change we impose to CAdd in the IO setting). This circuit
generates proofs using always witness wy.

We now argue that
|Pr[W ′

2(λ)] − Pr[W
′
3(λ)]| ≤ Advind

IO,B1(λ),

where W ′
i denotes the event that A in Game ′i outputs 1. Using (?), the change results in a circuit

that is functionally equivalent to the circuit from Game ′3 when run with a suitably shifted random
input R+ ∆. By our setup of CAdd, we can express this shift through the hardwired coins as

CRAdd,3 ≡ CR+∆Add,2 ,

where CAdd,i denotes the circuit CAdd from Game ′i , ∆ = ∆((sk1, sk2), wy) is the appropriate shift
vector from (?), and ≡ denotes functional equivalence. Hence, our change in Game ′3 can be jus-
tified with a reduction to the (deterministic) indistinguishability property of IO. Specifically, a
suitable circuit sampler A1 (as in Section 2.3) would sample circuits C1 := CRAdd,1 and C2 := CR+∆Add,0
for a uniform R, and a ∆ generated from the corresponding witnesses (sk1, sk2) and wy. (We note
that during this reduction, we can of course assume (sk1, sk2) and wy to be known.)

We would like to highlight that Game ′3 itself still chooses a uniform R to prepare proofs. In
particular, Game ′3 does not explicitly compute any ∆ value as in (?), and hence does not make
use of the corresponding witness (sk1, sk2). (The value ∆ is only explicitly computed during the
reduction to the indistinguishability property of IO.)

The remaining parts of the proof of Theorem 5.3 (including the proof of Lemma 5.1) apply
unchanged.
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DDHAΓ0(λ):
pp←$ Setup0(1

λ, 10)
b←$ {0, 1}
x, y, z←$ ZN
if b = 1 then
z← x · y

b ′←$ A(pp, [x]0, [y]0, [z]0)
Return (b = b ′)

q-SDDHAΓ0(λ):
pp←$ Setup0(1

λ, 10)
q← q(λ); b←$ {0, 1}
x, z←$ ZN
if b = 1 then
z← xq+1

b ′←$A(pp, [x]0, . . . , [xq]0, [z]0)
Return (b = b ′)

(κ, I)-MDDHAΓ (λ):
pp←$ Setup(1λ, 1κ)
b←$ {0, 1}
a1, . . . , aT , z←$ ZN
if b = 1 then
[z]T ← e([a1]1, . . . , [ai]i)aT

b ′←$ A(pp, {[ai]j}(i,j)∈I, [z]T )
Return (b = b ′)

Figure 6: Left: The DDH problem. Middle: The strong DDH problem. Right: The multilinear DDH problem, where I
specifies the available group elements. By slight abuse of notation, repeated use of [ai]i denotes the same sample.

6 The Multilinear DDH Problem

In this section we show that natural multilinear analogues of the decisional Diffie–Hellman (DDH)
problem are hard for our MLG scheme Γ from Section 4. We will establish this for two specific
Setup algorithms which give rise to symmetric and asymmetric multilinear maps in groups of
prime order N. (See Section 3 for the formal definition.) In the symmetric case, we will base
hardness on the q-strong DDH problem [BBS04] and in the asymmetric case on the standard DDH
problem.

6.1 Intractable problems

We start by formalizing the hard problems that we will be relying on and those whose hard-
ness we will be proving. We do this in a uniform way using the language of group schemes of
Section 3. Informally, the DDH problem requires the indistinguishability of gxy from a random
element given (gx, gy) for random x and y, the q-SDDH problem requires this for gx

q+1
given

(gx, gx
2
, . . . , gx

q
) and the κ-MDDH problem, whose hardness we will be establishing, generalizes

the standard bilinear DDH problem (and its variants) and requires this for ga1···aκ+1T in the presence
of (ga1 , . . . , gaκ+1).

THE DDH PROBLEM. We say that a group scheme Γ0 is DDH intractable if

Advddh
Γ0,A(λ) := 2 · Pr

[
DDHAΓ0(λ)

]
− 1 ∈ NEGL ,

where game DDHAΓ0(λ) is shown in Figure 6 (left).

THE q-SDDH PROBLEM. For q ∈ N we say that a group scheme Γ0 is q-SDDH intractable if

Advq-sddh
Γ0,A (λ) := 2 · Pr

[
q-SDDHAΓ0(λ)

]
− 1 ∈ NEGL ,

where game q-SDDHAΓ0(λ) is shown in Figure 6 (middle).

THE (κ, I)-MDDH PROBLEM. For κ ∈ N we say that an MLG scheme Γ is κ-MDDH intractable
with respect to the index set I if

Adv(κ,I)-mddh
Γ,A (λ) := 2 · Pr

[
(κ, I)-MDDHAΓ (λ)

]
− 1 ∈ NEGL ,

where game (κ, I)-MDDHAΓ (λ) is shown in Figure 6 (right). Here I is a set of ordered pairs of
integers (i, j) with 1 ≤ i ≤ κ + 1, 1 ≤ j ≤ κ. The adversary is provided with challenge group
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elements [ai]j for (i, j) ∈ I, so that its challenge elements may lie in any combination of the groups.
The standard MDDH problem corresponds to the case where

I = I∗ := {(1, 1), . . . , (κ, κ), (κ+ 1, κ)} .

6.2 The symmetric setting

We describe a special variant of our general construction in Section 4 which gives rise to a sym-
metric MLG scheme as defined in Section 3. Recall that in the construction a matrix W was chosen
uniformly at random in Zκ×`N . We set ` := 2 and sample W = (ω1, . . . ,ωκ)

t by setting ωi = (1,ω)
for a random ω ∈ ZN. The generators and identity elements for all groups are set to be a single
value generated for the first group. These modifications ensure that the scheme algorithms are
independent of the index for 1 ≤ i ≤ κ and that e is invariant under all permutations of its inputs.

The following lemma, which provides a mechanism to compute polynomial values “in the
exponent,” will be helpful in the security analysis of our constructions.

Lemma 6.1 (Horner in the exponent). Let ω = (ω0,ω1,ω2) ∈ ZN, and xi = (xi,0, xi,1, xi,2) ∈ Z3N for
i = 1 . . . κ. Define zi := 〈xi,ω〉. Then given only the implicit values [ωi0ω

j
1ω

k
2 ]T , for all i, j, k such that

i+ j+ k = κ and the explicit values xi the element [z1 · · · zn]T can be efficiently computed.

Proof. Let

P(ω0,ω1,ω2) :=

κ∏
i=1

(xi,0 ·ω0 + xi,1 ·ω1 + xi,2 ·ω2) =
∑

i+j+k=κ

pijk ·ωi0ω
j
1ω

k
2 ,

Clearly, if all pijk are known then [P(ω)]T can be computed using [ωi0ω
j
1ω

k
2 ]T with polynomially

many operations. (There are O(κ2) summands above.) To obtain these values we apply Horner’s
rule. Define

Pi(ω0,ω1,ω2) :=

{
1 if i = 0 ;
(xi,0 ·ω0 + xi,1 ·ω1 + xi,2 ·ω2) · Pi−1(ω0,ω1,ω2) otherwise.

The coefficients of Pκ are the required pijk values. Let ti denote the number of terms in Pi. It takes
at most 3ti multiplications and ti − 1 additions in ZN to compute the coefficients of Pi from Pi−1
and xi. Since ti ∈ O(κ2), at most O(κ3) many operations in total are performed. We note that the
lemma generalizes to any (constant) `with computational complexity O(κ`).

We prove the following result formally in Appendix A.2 and give an overview of the proof
here. Below I = I∗ denotes the index set with all the second components being 1.

Theorem 6.2 ((κ − 1)-SDDH hard =⇒ symmetric (κ, I∗)-MDDH hard). Let Γ∗ denote scheme Γ of
Section 4 constructed using base group Γ0 and an indistinguishability obfuscator IO with modifications as
described above, and let κ ∈ N. Then for any PPT adversary A there are ppt adversaries B1, B2 and B3 of
essentially the same complexity as A such that for all λ ∈ N

Adv(κ,I∗)-mddh
Γ∗,A (λ) ≤ 2 ·Adv(κ−1)-sddh

Γ0,B1 (λ) + Advind
IO,B1(λ) + (κ+ 1) ·Advκ-switch

Γ∗,B3 (λ) +
κ− 1

N(λ)
.
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Proof. In our reduction, the value ω used to generate W will play the role of the implicit value in
the SDDH problem instance. We therefore change the implementation of CMap to one that does not
know ω in the clear and only uses the implicit values [ωi]0 (recall that in our construction GT is
just G0, so these elements come from the SDDH instance). Such a circuit C∗Map can be efficiently
implemented using Horner’s rule above. In more detail, C∗Map has [ωi]T hard-coded in, recovers
xi from its inputs using sk1, and then applies Lemma 6.1 with (ω0,ω1,ω2) := (1,ω, 0) to evaluate
the multilinear map.

The proof proceeds along a sequence of κ+ 6 games as follows.

Game0 : This is the κ-MDDH problem (Figure 6, right). We use xi and yi to denote the represen-
tation vectors of ai generated within the sampler SamI(i)(ai), where (i, I(i)) ∈ I.

Game1–Gameκ : In these games we gradually switch the representations of [ai]1 for i ∈ [κ] so that
they are of the form (ai −ω, 1). Each hop can be bounded via the Switch game. (We have not
(yet) changed the representation of [aκ+1]1.)

Gameκ+1 : This game introduces a conceptual change: the ai for i ∈ [κ] are generated as ai +ω.
Note that the distributions of these values are still uniform and that the exponent of the MDDH
challenge when b = 1 is

aκ+1 ·
κ∏
i=1

(ai +ω) .

This game prepares us for embedding a (κ−1)-SDDH challenge and then to stepwise random-
ize the exponent above.

Gameκ+2 : This game switches CMap to C∗Map as defined above. We use indistinguishability ob-
fuscation and the fact that these circuits are functionally equivalent to bound this hop. We are
now in a setting whereω is only implicitly known.

Gameκ+3 : This game replaces [ωκ]0 with a random value [τ]0 in C∗Map and the computation of the
challenge exponent. This hop can be bounded via the (κ − 1)-SDDH game. Note that at this
point the exponent is not information-theoretically randomized as τ is used within C∗Map.

Gameκ+4 : This game sets the representation of [aκ+1]1 to (aκ+1 −ω, 1). Once again, this hop can
be bounded by the Switch game.

Gameκ+5 : This game introduces a conceptual change analogous to that in Gameκ+1 for aκ+1. Note
that a linear factor (aκ+1 +ω) is introduced in this game. This will help to fully randomize the
exponent next.

Gameκ+6 : Analogously to Gameκ+3, this game replaces [ωκ]0 with a random value [σ]0. We
bound this hop using the (κ− 1)-SDDH game.
In Gameκ+6, irrespective of the value of b ∈ {0, 1}, the challenge is uniformly and indepen-

dently distributed as σ remains outside the view of the adversary. Hence the advantage of any
(unbounded) adversary in this game is 0. This concludes the sketch proof.

6.3 The asymmetric setting

We describe a second variant of the construction in Section 4 that results in an asymmetric MLG
scheme. We set ` := 2 and choose the matrix W = (ω1, . . . ,ωκ)

t by setting ωi := (1,ωi) for
randomωi ∈ ZN.
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The following theorem shows that for index set I = {(i, I(i)) : 1 ≤ i ≤ κ + 1} given by an
arbitrary function I : [κ + 1] −→ [κ] of range at least 3, this construction is (κ, I)-MDDH in-
tractable under the standard DDH assumption in the base group, the security of the obfuscator,
and the κ-Switch game in Section 5. We present the proof intuition here and leave the details to
Appendix A.3.

Theorem 6.3 (DDH hard =⇒ asymmetric (κ, I∗)-MDDH hard). Let Γ∗ denote scheme Γ of Section 4
constructed using base group Γ0 and an indistinguishability obfuscator IO with modifications as described
above. Let κ ≥ 3 be a polynomial and I∗ as above. Then for any PPT adversary A there are ppt adversaries
B1, B2 and B3 such that for all λ

Adv(κ,I∗)-mddh
Γ∗,A (λ) ≤ 2 ·Advddh

Γ0,B1(λ) + 2 ·Advind
IO,B2(λ) + 3 ·Advκ-switch

Γ∗,B3 (λ) +
κ+ 1

N(λ)
.

Proof. The general proof strategy is similar to that of the symmetric case, and proceeds along a
sequence of 8 games as follows.

Game0 : This is the (κ, I)-MDDH problem. Without loss of generality we assume that I(i) = i for
i ∈ [3].

Game1–Game3 : In these games we gradually switch the representation vectors of [ai]i for i =
1, 2, 3 to those of the form (ai−ωi, 1). Each of these hops can be bounded via the Switch game.

Game4 : This game introduces a conceptual change and generates ai as ai +ωi. The exponent of
the MDDH challenge when b = 1 is

(a1 +ω1)(a2 +ω2)(a3 +ω3) ·
κ+1∏
j≥4
aj .

Game5 : In this game we change the implementation of CMap to one which uses all but two of
the ωi explicitly, the remaining two implicitly, and additionally [ω1ω2]0, i.e., ω1ω2 given im-
plicitly in the exponent. The new circuit C∗Map will be implemented using Horner’s rule and is
functionally equivalent to the original circuit used in the scheme. We invoke the IO security of
the obfuscator to conclude the hop. This game prepares us to embed a DDH challenge next.

Game6 : In this game we replace all the occurrences of [ω1ω2]0 with a random [τ]0 and the cor-
responding implicit values. We bound the distinguishing advantage in this hop down to the
DDH game.

Game7 : Similarly to Game5, we change the implementation of C∗Map using [τω3]0 and argue via
indistinguishability of obfuscations for functionally equivalent circuits.

Game8 : Finally, using the hardness of DDH, we replace all the occurrences of [τω3]0 with a
random [σ]0.

In Game8, irrespective of the value of b ∈ {0, 1}, the challenge is uniformly and independently
distributed as σ remains outside the view of the adversary. Hence the advantage of any (possibly
unbounded) adversary in this game is 0.
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(κ,m,n, r0, r1)-RANKAΓ (λ):
pp←$ Setup(1λ, 1κ)
b←$ {0, 1}

M0←$ Rkr0(Z
m×n
N ); M1←$ Rkr1(Z

m×n
N )

b ′←$ A(pp, [Mb])
Return (b = b ′)

Figure 7: The RANK problem parameterized by integers κ,m, n, r0 and r1.

7 The Rank Problem

The RANK problem is a generalization of DDH-like problems to matrices and has proven to be
very useful in cryptographic constructions [BHHO08, NS09, GHV12, BLMR13, EHK+13]. Here
we consider the problem in groups with non-unique encodings equipped with a multilinear map.
Our main result is to show that, subject to certain restrictions, the intractability of the rank problem
for our construction of an MLG scheme Γ from Section 4 follows from that of the q-SDDH problem
for Γ0.

7.1 Formalization of the problem

Let pp denote the public parameters of such an MLG scheme, obtained by running Setup with
input (1λ, 1κ). For simplicity, we focus on the case where N is prime. Let Rkr(Zm×nN ) denote the
set of m × n matrices over ZN of rank r, where necessarily r ≤ min(m,n). We use a variant
of our construction in Section 4, setting ` := 3 and sampling W = (ω1, . . . ,ωκ)

t ∈ Zκ×3N where
ωi = (1,ω,ω2) forω←$ ZN. Note that this results in a symmetric pairing and henceforth we omit
subscripts from source group elements. Let [M] denote a matrix whose (i, j)th entry contains an
encoding of the form [mi,j] = ([mi,j]0, ci,j,1, ci,j,2, πi,j), withmi,j ∈ ZN.

THE (κ,m,n, r0, r1)-RANK PROBLEM. For κ,m,n, r0, r0 ∈ N we say that an MLG scheme Γ is
(κ,m,n, r0, r1)-RANK intractable if

Adv(κ,m,n,r0,r1)-rank
Γ,A (λ) := 2 · Pr

[
(κ,m,n, r0, r1)-RANKAΓ (λ)

]
− 1 ∈ NEGL ,

where game (κ,m,n, r0, r1)-RANKAΓ (λ) is shown in Figure 7.
In the presence of a κ-linear map the rank problem is easy for any r0 < r1 < κ, since the de-

terminants of all the rb-minors can be expressed as forms of degree at most κ, and the multilinear
map can be used to distinguish their images in the target group. However, this does not invali-
date the plausibility of the rank problem for κ ≤ r0 < r1; indeed there are known reductions to the
DDH, the decision linear and the 2-MDDH problems [BHHO08, NS09, GHV12].

We show that for our construction in Section 4, with the modification introduced above, the
rank problem is indeed hard provided κ ≤ r0 < r1. A standard hybrid argument shows that it is
sufficient to establish this for r1 := r0 + 1, with a polynomial loss in the security. Our main result
is stated below. The full proof can be found in Appendix A.4.

Theorem 7.1 (SDDH =⇒ RANK). Let Γ denote scheme Γ of Section 3 with ` := 3 and with respect to
the base group Γ0 and an indistinguishability obfuscator IO. Let κ,m,n, r be integers with r ≥ κ. Then for
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any PPT adversary A there are ppt adversaries B1, B2 and B3 of essentially the same complexity as A such
that for all λ ∈ N

Adv(κ,m,n,r,r+1)-RANK
Γ,A (λ) ≤

2κ−1∑
q=1

Advq-sddh
Γ0,B1 (λ) + Advind

IO,B2(λ) + (mn) ·Advκ-switch
Γ,B3 (λ) +

1

N(λ)
.

7.2 Proof intuition

The main difficulty comes in generating consistent encodings of a rank r challenge matrix [M]
throughout its gradual transformation into a rank r + 1 challenge matrix. Contrast this with the
MDDH reduction of Section 6, where the challenge that is transformed lives in the target group
—a group with unique encodings. As we will see below, having encodings that are represented
also with respect toω2 will help to overcome this problem and embed a 1-SDDH tuple.

EMBEDDING THE SDDH CHALLENGE. To reduce the rank problem to 1-SDDH, consider the fol-
lowing matrix

[W]0 =

[
[1]0 [ω]0
[ω]0 [τ]0

]
,

which is formed from an 1-SDDH challenge. We will exploit the fact that if τ = ω2 then W has
rank 2, and if τ is uniform then it has rank 2with overwhelming probability in λ.

LIFTING.To obtain an m × n matrix M of rank r ≥ κ or r + 1 we can use the standard trick of
embedding the identity matrix Ir−1 in the diagonal:

M =

S
Ir−1

0

 ,
where 0 denotes padding with zeroes from ZN to bring the matrix up to the required size. More-
over, via the random self-reducibility of the rank problem the structure in M can be removed. An
important point worth mentioning is that after the randomization we are still able to generate an
encoded matrix [M] even whenω and τ are only known in the exponent.

BREAKING CORRELATION WITH CMap. We follow a similar strategy to break the dependency be-
tween CMap and ω. Using the powers [h]0 = ([1]0, [ω]0, . . . , [ω

2κ]0) we build circuit functionally
equivalent to CMap, indeed a circuit that outputs[

κ∏
i

(xi,0 + xi,1ω+ xi,2ω
2)

]
T

via Lemma 6.1 (recall that GT = G0), and invoke the security of the obfuscator. We then use
the q-SDDH assumptions for 2 ≤ q ≤ 2κ − 1 in G0 to gradually transform [h]0 into [q]0 =
([1]0, [ω]0, [ω

2]0, [τ3]0, . . . , [τ2κ]0) and embed a 1-SDDH tuple in the challenge matrix [M] as ex-
plained above.

29



Acknowledgements

Albrecht, Larraia and Paterson were supported by EPSRC grant EP/L018543/1. Hofheinz was
supported by DFG grants HO 4534/2-2 and HO 4534/4-1.

References

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order
graded encoding. In Dodis and Nielsen [DN15], pages 528–556.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew
Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidel-
berg, August 2004.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure
encryption from decision Diffie-Hellman. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 108–125. Springer, Heidelberg, August 2008.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic PRFs and their applications. In Canetti and Garay [CG13a], pages
410–428.

[BLR+15] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe Zim-
merman. Semantically secure order-revealing encryption: Multi-input functional en-
cryption without obfuscation. In Oswald and Fischlin [OF15], pages 563–594.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324:71–90, 2003.

[BWZ14] Dan Boneh, Brent Waters, and Mark Zhandry. Low overhead broadcast encryp-
tion from multilinear maps. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 206–223. Springer, Heidelberg,
August 2014.

[CG13a] Ran Canetti and Juan A. Garay, editors. CRYPTO 2013, Part I, volume 8042 of LNCS.
Springer, Heidelberg, August 2013.

[CG13b] Ran Canetti and Juan A. Garay, editors. CRYPTO 2013, Part II, volume 8043 of LNCS.
Springer, Heidelberg, August 2013.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji,
Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing with-
out low-level zeroes: New MMAP attacks and their limitations. Cryptology ePrint
Archive, Report 2015/596, 2015. http://eprint.iacr.org/2015/596.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 3–12.
Springer, Heidelberg, April 2015.

30



[CLR15] Jung Hee Cheon, Changmin Lee, and Hansol Ryu. Cryptanalysis of the new CLT
multilinear maps. Cryptology ePrint Archive, Report 2015/934, 2015. http:
//eprint.iacr.org/.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Canetti and Garay [CG13a], pages 476–493.

[CLT15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear maps
over the integers. In Gennaro and Robshaw [GR15], pages 267–286.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of
probabilistic circuits and applications. In Dodis and Nielsen [DN15], pages 468–497.

[Cor15] Jean-Sebastien Coron. Cryptanalysis of GGH15 multilinear maps. Cryptology ePrint
Archive, Report 2015/1037, 2015. http://eprint.iacr.org/.

[DN15] Yevgeniy Dodis and Jesper Buus Nielsen, editors. TCC 2015, Part II, volume 9015 of
LNCS. Springer, Heidelberg, March 2015.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic
framework for Diffie-Hellman assumptions. In Canetti and Garay [CG13b], pages
129–147.

[FHPS13] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks.
Programmable hash functions in the multilinear setting. In Canetti and Garay
[CG13a], pages 513–530.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 1–17. Springer, Heidelberg, May 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[GGH+13c] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-
based encryption for circuits from multilinear maps. In Canetti and Garay [CG13b],
pages 479–499.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Dodis and Nielsen [DN15], pages 498–527.

[GGI+14] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam
Smith. Using fully homomorphic hybrid encryption to minimize non-interative zero-
knowledge proofs. Journal of Cryptology, pages 1–24, 2014.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th ACM STOC, pages 467–476. ACM Press, June 2013.

31



[GHV12] David Galindo, Javier Herranz, and Jorge L. Villar. Identity-based encryption with
master key-dependent message security and leakage-resilience. In Sara Foresti, Moti
Yung, and Fabio Martinelli, editors, ESORICS 2012, volume 7459 of LNCS, pages 627–
642. Springer, Heidelberg, September 2012.

[GR15] Rosario Gennaro and Matthew J. B. Robshaw, editors. CRYPTO 2015, Part I, volume
9215 of LNCS. Springer, Heidelberg, August 2015.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages
415–432. Springer, Heidelberg, April 2008.

[HJ15] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. Cryptology ePrint Archive,
Report 2015/301, 2015. http://eprint.iacr.org/2015/301.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (lev-
eled) multilinear maps and identity-based aggregate signatures. In Canetti and Garay
[CG13a], pages 494–512.

[MF15] Brice Minaud and Pierre-Alain Fouque. Cryptanalysis of the new multilinear map
over the integers. Cryptology ePrint Archive, Report 2015/941, 2015. http:
//eprint.iacr.org/.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In Shai
Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 18–35. Springer, Heidel-
berg, August 2009.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd ACM STOC, pages 427–437. ACM Press, May 1990.

[OF15] Elisabeth Oswald and Marc Fischlin, editors. EUROCRYPT 2015, Part II, volume 9057
of LNCS. Springer, Heidelberg, April 2015.

[PTT10] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Optimal
authenticated data structures with multilinear forms. In Marc Joye, Atsuko Miyaji,
and Akira Otsuka, editors, PAIRING 2010, volume 6487 of LNCS, pages 246–264.
Springer, Heidelberg, December 2010.

[TLL14] Fei Tang, Hongda Li, and Bei Liang. Attribute-based signatures for circuits from
multilinear maps. In Sherman S. M. Chow, Jan Camenisch, Lucas Chi Kwong Hui,
and Siu-Ming Yiu, editors, ISC 2014, volume 8783 of LNCS, pages 54–71. Springer,
Heidelberg, October 2014.

[YYHK14] Takashi Yamakawa, Shota Yamada, Goichiro Hanaoka, and Noboru Kunihiro. Self-
bilinear map on unknown order groups from indistinguishability obfuscation and its
applications. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II,
volume 8617 of LNCS, pages 90–107. Springer, Heidelberg, August 2014.

32



[YYHK15] Takashi Yamakawa, Shota Yamada, Goichiro Hanaoka, and Noboru Kunihiro. Self-
bilinear map on unknown order groups from indistinguishability obfuscation and its
applications. Cryptology ePrint Archive, Report 2015/128, 2015. http://eprint.
iacr.org/2015/128.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Oswald and Fischlin [OF15],
pages 439–467.

A Full Proofs from the Main Body

A.1 Proof of Theorem 5.3: Indistinguishability of encodings using PIO

Proof. We consider a chain of 10 games, with Game0 the κ-Switch game, such that in the last game
the challenge encoding is drawn independently of the bit b. Below we let Wi denote the event that
Gamei outputs 1.

Game0 : The original Switch game.

Game1 : As Game0 but now the public parameters p̃p are changed so that include a yes-instance
y ∈ TD. We have that

|Pr[W0(λ)] − Pr[W1(λ)]| ≤ Advsm
TD,B1(λ),

where TD is a language where is hard to decide membership.

Game2 : The public parameters p̂p change so that include a hiding ĉrs ′, and a (PIO) obfuscation
of circuit ĈAdd (see Fig. 4 (bottom)). Recall that this circuit uses the witness wy to y ∈ TD to
produce the output proofs π̃ ′′. Therefore the simultaneous knowledge of decryption keys sk1,sk2
is not needed anymore. By Lemma 5.1 we have that

|Pr[W1(λ)] − Pr[W2(λ)]| ≤ 2 ·Advind
PIO,B2(λ) + Advcrs

Σ,B3

Game3 : As Game2, but, if b = 0 the challenge encoding is generated by mixing the representation
vectors w.r.t public key pk2. Thus, on A’s response (z, (x0,y0), (x1,y1)), in this game we set
c0 ← Enc(x0, pk1; r1), and c1 ← Enc(y1, pk2; r2).

Claim A.1. |Pr[W2(λ)] − Pr[W3(λ)]| ≤ Advind-cpa
Π,B4 (λ).

Proof Claim A.1. Consider the following PPT distinguisher B4 against the IND-CPA security of
the encryption scheme Π, with respect to key pair (pk2, sk2). The distinguisher runs exper-
iment Game2 using A as a subroutine with the following differences: when it receives A’s
vectors (xj,yj) (in Z`p for j = 0, 1) it submits (y0,y1) to the IND-CPA challenger. It gets back
c∗ = Enc(yr∗ , pk2). Next, B4 generates c1 ← Enc(x0, pk1), and sets c2 = c∗; the proof π on in-
stance x = ([z]i, c1, c2) is generated using the simulation trapdoor of the proof system. Namely,
π←$ Sim(crs, x, tdzk). Finally, B4 outputs what A outputs.

Algorithm B4 perfectly simulates the challenger in experiment Game2 if r∗ = 0 and in exper-
iment Game3 if r∗ = 1. This follows from (1) (x, π) is a valid encoding, indeed ciphertext c∗

contains an encryption of yr∗ , such that [z]i = [〈yr∗ ,ωi〉]i; and (2) real and simulated proofs are
identically distributed under (the hiding) ĉrs ′ included in p̂p.
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Game4: The public parameters are changed back to p̃p, so that include a binding crs ′, and a (PIO)
obfuscation of circuit CAdd of Fig. 2 (top). (p̃p also include a yes-instance y ∈ TD.) Again by
Lemma 5.1 we have that

|Pr[W3(λ)] − Pr[W4(λ)]| ≤ 2 ·Advind
PIO,B2(λ) + Advcrs

Σ,B3 .

Game5 : As Game4 but now the public parameters pp are changed back to the original one de-
scribed in Section 4 so that include a no-instance y /∈ TD. We have that

|Pr[W4(λ)] − Pr[W5(λ)]| ≤ Advsm
TD,B1(λ),

where TD is a language where is hard to decide membership.

Game6 : As Game5, but now the challenger constructs a different circuit CMap with the second
encryption secret key hard-coded. Thus, the extracted vector is set to yi ← Dec(ci,1, sk2). We
claim that

|Pr[W5(λ)] − Pr[W6(λ)]| ≤ Advind
PIO,B1(λ).

The variants of the CMap circuit described in the games extract (possibly different) encoding
vectors x∗i , y∗i , respectively, for any adversarial input x∗ = (x∗1, . . . , x

∗
k). Observe that the i-th

argument x∗i = (i, [zi]0, ci,1, ci,2, πi) has a non-rejecting proof πi iff ([zi]0, ci,1, ci,2) passes relation
R1. (In other words, the ciphertexts encrypt representation vectors of the same [zi]0.) It follows,
from the perfect completeness and perfect soundness of the proof system with a binding CRS,
that these variants behave identically on any (possibly malformed) input x∗. Therefore the
variants are functionally equivalent and hence trivially drawn by an X-IND sampler, so that
their PIO obfuscations are indistinguishable.

Game7 : As Game6 but now the public parameters p̃p are changed so that include a yes-instance
y ∈ TD. We have that

|Pr[W6(λ)] − Pr[W7(λ)]| ≤ Advsm
TD,B1(λ),

where TD is a language where is hard to decide membership.

Game8 : The public parameters p̂p change so that include a hiding ĉrs ′, and a (PIO) obfuscation
of circuit ĈAdd (see Fig. 4 (bottom)). By Lemma 5.1 we have that

|Pr[W7(λ)] − Pr[W8(λ)]| ≤ 2 ·Advind
PIO,B2(λ) + Advcrs

Σ,B3

Game9 : As Game8, but, if b = 0 the challenge encoding is generated by mixing the representation
vectors w.r.t public key pk1. Thus, on A’s response (z, (x0,y0), (x1,y1)), in this game we set
c0 ← Enc(x1, pk1; r1), and c1 ← Enc(y1, pk2; r2). Using a similar argument as in Claim A.1 we
have that

|Pr[W8(λ)] − Pr[W9(λ)]| ≤ Advind-cpa
Π,B4 (λ).

Finally, Pr[W9(λ)] = 1/2 because the challenge encoding is generated using the same pair of
representation vectors (x1,y1) regardless of the bit b. The proof of the theorem is concluded by
collecting the terms above.
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(κ, I∗)-MDDHAΓ (λ):
pp←$ Setup(1λ, 1κ)
b←$ {0, 1}; z←$ ZN
a1, . . . , aκ+1←$ ZN
if b = 1 then z← a1 · · ·aκ+1
b ′←$ A(pp, {[ai]j}(i,j)∈I∗ , [z]T )
Return (b = b ′)

Figure 8: The symmetric multilinear DDH problem for our MLG scheme. Here I∗ = {(1, 1), . . . , (κ + 1, 1)}.

A.2 Proof of Theorem 6.2: Hardness of symmetric MDDH

Proof. We show via a chain of games, starting with the symmetric κ-MDDH problem, such that
the last game chooses the challenge at random and independently of the guess bit b. Below we let
Wi denote the event that Gamei outputs 1.

Game0 : The κ-MDDH problem as shown in Figure 8. Here there is only one source group.

Games for 1 ≤ s ≤ κ : As Games−1, the difference is that the representation vectors (xs,ys) of the
s-th challenge encoding [as] are given by

xs,0 = ys,0 = as −ω and xs,1 = ys,1 = 1 .

Thus, in game s ′ ≥ s the second coordinate of the s-th encoding vectors are always fixed. Using
a similar argument as in Claim A.2 (see the proof of Theorem 6.3) we have that

|Pr[Ws−1(λ)] − Pr[Ws(λ)]| ≤ Advκ-switch
Γ,B (λ) for 1 ≤ s ≤ κ .

Gameκ+1 : The i-th source exponent is changed to a ′i = ai +ω for randomly chosen ai ∈ ZN and
i ≤ κ. This means that the target exponent for b = 1 is

d = (a1 +ω) · · · (aκ +ω) · aκ+1 (1)

The distribution from which the first κ exponents a ′i are drawn has not changed, and indeed is
the uniform distribution. Therefore Pr[Wκ(λ)] = Pr[Wκ+1(λ)].

Gameκ+2 : The differences with the previous game are two-fold.

First, for case b = 1 the challenge group element [d]T is generated as in Lemma 6.1. Thus, we
first write Equation (1) as

d = P(ω) · aκ+1 , (2)

where P is a degree κ polynomial whose coefficients p = (p0, . . . , pκ) are computed using the
iterative rule of Lemma 6.1, with (xi,0, xi,1, 0) = (ai, 1, 0). Then [d]T is obtained by evaluating P
at pointω in the exponent using group elements ([1]T , [ω]T , . . . , [ω

κ]T ).

The other difference is that we obfuscate a different circuit C∗Map which has the powers [ωi]T
hard-coded, for 1 ≤ i ≤ κ . This new circuit extracts the encoding vectors xi from the inputs,
as usual, then it computes the coefficients of P as explained above, and evaluates it at ω in the
exponent.
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Lemma 6.1 implies that (1) both circuits are functionally equivalent, and (2) C∗Map is of size
poly(λ). We conclude that obfuscations of these two variants are indistinguishable. Or putting
it differently:

|Pr[Wκ+1(λ)] − Pr[Wκ+2(λ)]| ≤ Advind
IO,B(λ) .

Gameκ+3 : Here a different challenge [d]T is generated. We now regard the (κ + 1)-vector p of
Equation (2) as a multivariate ZN-polynomial P in κ unknowns. The challenger samples ran-
domω, τ in ZN and sets

[d]T = aκ+1 · [P(ω,ω2, . . .ωκ−1, τ)]T , (3)

where P is evaluated in the exponent. Also, the circuit C∗Map has hard-coded [τ]T and [ωi]T for
1 ≤ i ≤ κ − 1. We emphasize that in this game, for challenge bit b = 1, the random variables
sampling d and (an obfuscation of) CMap are not independent (in case b = 0 they are).

We claim that
|Pr[Wκ+2(λ)] − Pr[Wκ+3(λ)]| ≤ Adv(κ−1)-sddh

Γ0,B (λ) .

This follows because to simulate both games it suffices to know [τ]T and [ωi]T in the exponent.
Thus, an adversary B against (κ − 1)-SDDH on receiving challenge ([ωi]0)i≤κ−1, [τ]0) can sim-
ulate experiment Gameκ+2 if τ = ωκ, or experiment Gameκ+3 if τ is random. (Recall that GT =
G0.)

Gameκ+4 : The last source encoding aκ+1 is generated with representation vectors xκ+1 = yκ+1 =
(aκ+1 −ω, 1). Using a similar argument as Claim A.2 we have that

|Pr[Wκ+3(λ)] − Pr[Wκ+4(λ)]| ≤ Advκ-switch
Γ∗,B (λ) .

(Technically, the circuit CMap in game Switch is a κ-linear map, and at this point of the trans-
formation C∗Map is not necessarily linear. However, a closer look to the proof of Theorem 5.3
shows that no linearity assumption is made on the CMap circuit.)

Gameκ+5 : The last source exponent is sampled as a ′κ+1 = aκ+1 +ω for a randomly chosen aκ+1.
This means that, for a known τ in ZN, the challenge d in Equation (3) can be written as

[d]T = (aκ+1 +ω) · [P(ω,ω2, . . .ωκ−1, τ)]T
= aκ+1 · [P(ω,ω2, . . .ωκ−1, τ)]T + [Qτ(ω,ω

2, . . . ,ωκ)]T

where the coefficients p of polynomial P are computed as explained in Gameκ+2, and polyno-
mial Qτ is given by coefficients q = (0, p0 + τpκ, p1, . . . , pκ−1).

Since a ′κ+1 and d (for case b = 1) are distributed as in the previous game we have that
Pr[Wκ+4(λ)] = Pr[Wκ+5(λ)].

Gameκ+6 : The last game samples the challenge [d]T for case b = 1 as

[d]T = aκ+1 · [P(ω,ω2, . . .ωκ−1, τ)]T + [Qτ(ω,ω
2, . . . , σ)]T .

Here σ is a random fresh value in ZN. A (κ − 1)-SDDH challenge ([ωi]0)i≤κ−1, [σ]0) can be
used to emulate the challenger in Gameκ+4 if σ = ωκ, or in Gameκ+5 if σ is random. The
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(κ, I∗)-MDDHAΓ (λ):
pp←$ Setup(1λ, 1κ)
b←$ {0, 1}; z←$ ZN
a1, . . . , aκ+1←$ ZN a1, . . . , aκ+1←$ ZN
if b = 1 then z← a1 · · ·aκ+1
b ′←$ A(pp, {[ai]j}(i,I(i)), [z]T )
Return (b = b ′)

Figure 9: The asymmetric multilinear DDH problem for our MLG scheme. Here I is a function defining the index set
I = (i, I(i)).

latter follows again from the fact that, if τ is given in the clear, knowing ωi, σ in the exponent
suffices to generate [d]T , since P and Qτ are evaluated in the exponent. (Recall that GT = G0.)
This shows:

|Pr[Wκ+5(λ)] − Pr[Wκ+6(λ)]| ≤ Adv(κ−1)-sddh
Γ0,B (λ) .

To conclude, to see that Pr[Wκ+6] ≤ 1/2 + negl(λ) it suffices to show that if the challenge bit is
b = 1, the exponent target challenge d is randomly distributed. This follows because the last
coefficient of Qτ, namely pκ−1 given by

pκ−1 =

κ∑
i=1

 ∏
1≤j 6=i≤κ

aj


has no inverse in ZN with probability negl(λ) := (κ − 1)/N(λ) provided N is prime. Now, for any
fixed τ and (ωi)1≤i≤κ, the map Qτ + aκ+1P(ω, . . . ,ωκ−1, τ) defines a bijection over ZN which acts
on uniform σ. It follows that [d]T is distributed uniformly in GT .

A.3 Proof of Theorem 6.3: Hardness of asymmetric MDDH

Proof. Let κ ≥ 3 and I : [κ+1] −→ [κ] be any function of range with size at least 3. Slightly abusing
notation, we set I = (i, I(i)) for 1 ≤ i ≤ κ+ 1.

We show a chain of games, starting with the asymmetric (κ, I)-MDDH problem, such that
the last game chooses the challenge encoding at random and independently of the challenge bit
b. Below we let Wi denote the event that Gamei outputs 1. For simplicity, and without loss of
generality, we assume that I(i) = i for i = 1, 2, 3.

Game0 : The asymmetric (κ, I)-MDDH problem as shown in Figure 9.

Games for s = 1, 2, 3 : Similar to Games−1 with the difference that the representation vectors (xs,ys)
of the source encoding [as]s are given by

xs,0 = ys,0 = as −ωs and xs,1 = ys,1 = 1 .

Thus, in game s ′ ≥ s the second coordinates of the s-th encoding vectors are always fixed.

Claim A.2. |Pr[Ws−1(λ)] − Pr[Ws(λ)]| ≤ Advκ-switch
Γ,B (λ).
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Proof. Consider the following PPT adversary (B1,B2) against game κ-Switch of Figure 3. B1
outputs ((xs−1,ys−1), (xs,ys), s, st) representing a uniform value as in ZN, where (xs−1,ys−1)
is as in Games−1 and (xs,ys) as in Games. B1 can form these vectors because it knows ma-
trix W and as explicitly. Next B2 receives an encoding [as]s that has embedded in it vector
(xs+b−1,ys+b−1) for a random bit b, and uses [as]s to simulate Games+b−1. Last, B2 outputs
what A outputs.

Game4 : We change the first three source exponents to a ′i = ai+ωi for randomly chosen ai ∈ ZN.
This means that the target exponent for b = 1 is

d = (a1 +ω1)(a2 +ω2) · (a3 +ω3) · aI(4) · · ·aI(κ+1) .

Here we use the fact that |Rng(I)| ≥ 3. The first three elements a ′i are drawn from the uniform
distribution, and their respective representation vectors are (ai, 1) so Pr[W3(λ)] = Pr[W4(λ)].

Game5 : The implementation of CMap is changed. Now it has hard-coded

[ω1]0, [ω2]0, [τ]0,ω3,ωI(4) . . . ,ωI(κ) where τ = ω1ω2 .

The polynomial P(w1, . . . , wκ) =
∏κ
i=1(xi,0+xi,1wi) on point (ωI(1), . . . ,ωI(κ)) can be evaluated

in the exponent knowing [ω1]0, [ω2]0, [ω1ω2]0, and explicitωI(i) for i ≥ 3with I(i) 6= 1, 2. Since
the output of the original CMap is exactly [P(ω(I(1), . . . ,ωI(κ))]T we conclude that

|Pr[W4(λ)] − Pr[W5(λ)]| ≤ Advind
IO,B(λ) .

Game6 : The challenge target d is set to

d = (a1a2 +ω1a2 +ω2a1 + τ)(a3 +ω3)aI(4) . . . aI(κ+1) ,

where τ is a fresh random value in ZN, and CMap has hard-coded

[ω1]0, [ω2]0, [τ]0, ω3, ωI(4), . . . , ωI(κ) .

We note that the circuit is different to the previous one. More concretely, if xi = (xi,0, xi,1) is
the first representation vector of the ith input [z]i, the new C∗Map outputs the evaluation of the
following function at point (τ,ωI(1), . . . ,ωI(κ)):

f(τ,w1, . . . , wκ) = (x1,1x2,0w1 + x1,0x2,1w2 + x1,1x2,1τ+ x1,0x2,0)(x3,0 + x3,1w3)

κ∏
i≥4

(xi,0 + xi,1wi) .

Here it is enough to know [ω1]0, [ω2]0, and [τ]0 to compute [f(τ,ωI(1), . . . ,ωI(κ))]T . Also, note
that if τ = ω1ω2 then this is precisely the output of CMap in the previous game. Thus, a DDH
challenge ([ω1]0, [ω2]0, [τ]0) can be used to generate the pair ([d]T , C∗Map)

10 as in Game5 if
τ = ω1ω2, or as in Game6 if τ is random. This shows:

|Pr[W5(λ)] − Pr[W6(λ)]| ≤ Advddh
Γ0,B(λ) .

10Here, [d]T and C∗Map are still correlated via [τ]0. This is why we cannot stop at Game6.
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Game7 : Circuit C∗Map has hard-coded

ω1, ω2, [τ]0, [σ]0, [ω3]0, ωI(4), . . . , ωI(κ), where σ = τω3 .

Here it suffices to know [τ]0, [σ]0, and [ω3]0 to evaluate [f(τ,ωI(1), . . . ,ωI(κ))]T , so we have

|Pr[W6(λ)] − Pr[W7(λ)]| ≤ Advind
IO,B(λ) .

Game8 : Random σ ∈ ZN is sampled and the challenge target exponent d is set to

(σ+ a1a2a3 + a1a2ω3 + a2a3ω1 + a2ω1ω3 + a1a3ω2 + a1ω2ω3 + a3τ) · aI(4) · · ·aI(κ+1) (4)

The circuitC∗Map has hard-coded the same values as in the previous game. (The functionality of
the circuit changes since now σ is arbitrary, but the algorithm remains the same.) Once again,
a DDH challenge ([τ]0, [ω3]0, [σ]0) can be used to generate the pair ([d]T , C∗Map) as in Game7 if
σ = τω3, or as in Game8 if σ is random, therefore

|Pr[W7(λ)] − Pr[W8(λ)]| ≤ Advddh
Γ0,B(λ) .

To conclude, we have Pr[W8(λ)] ≤ 1/2 + negl(λ). To see this, we argue that d is randomly
distributed in ZN for challenge bit b = 1 with overwhelming probability in λ as follows: if N is
prime, then

∏κ+1
j=1 aI(j) has an inverse in ZN, and therefore d in Equation 4 seen as a function of σ

and parametrized by τ and aI(j) defines a bijection in ZN with overwhelming probability. Thus, if
σ is uniform so is d.

A.4 Proof of Theorem 7.1: Hardness of RANK

Proof. Let S = ((a, b)(c, d))t and W = ((α,β), (β, γ))t be two matrices in Z2×2N , where N is prime.
Then if a, b, and c are nonzero, it is easy to verify that the matrix

S =

[
a b− β

c

c+ β
b d− αγ

abc

]
has determinant

det(S) = det(S) +
1

bc
det(W) . (5)

Now, we give a sequence of games starting with the RANK game, and finishing with a game
sampling matrices of rank r + 1 with overwhelming probability in λ, independently of the guess
bit b. Below we let Wi the event that Gamei outputs 1.

Game0 : The original (κ,m,n, r, r+1)-RANK problem for r ≥ κ, the game is as shown in Figure 10.

Games for 1 ≤ s ≤ mn : To ease notation let us index these games with (i, j), where 1 ≤ i ≤ m,
and 1 ≤ j ≤ n. The (i, j)th game, if b = 0, encodes a random matrix [M] of rank rwith a variant
of Sam algorithm that uses the following representation vectors

xi,j = yi,j =


(mi,j, 0, 0) if (i, j) = (1, 1) or i > 2 or j > 2 ;
(mi,j −ω, 1, 0) if (i, j) = (1, 2) or (i, j) = (2, 1) ;

(mi,j −ω
2, 0, 1) if (i, j) = (2, 2) .
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(κ,m,n, r, r+ 1)-RANKAΓ (λ):
pp←$ Setup(1λ, 1κ)
b←$ {0, 1}

M←$ Rkr+b(Zm×nN )
parsemi,j ←M
for (i, j) ∈ [m]× [n]

[mi,j]←$ Sam(mi,j)
b ′←$ A(pp, [M])
return (b ′ = b)

Figure 10: The rank problem in the symmetric setting.

Here ω is the random ZN-value defining the public matrix [W]0 of pp. What changes in these
games is that the representation vectors are sampled with the last two coordinates set to 0 or 1.
Using a similar argument as in Claim A.2 (see the proof of Theorem 6.2) we have that

|Pr[Ws−1(λ)] − Pr[Ws(λ)]| ≤ Advκ-switch
Γ,B (λ) .

Gamemn+1 : In this game, if b = 0, the encoded matrix [M] is generated as follows. Let S =
((a, b), (c, d))t be a matrix of rank 1with a, b, c ∈ Z∗N, and let

S =

[
a b− ω

c

c+ ω
b d− ω2

abc

]
We use S to form the following matrix in Zm×nN

M =

S
Ir−1

0

 (6)

where Ir−1 is the identity matrix of order r − 1. Next, we obtain the encoded matrix [M] as
specified in the previous games, and finally we set [M] = L[M]R, where L, R are two random
invertible matrices of dimensionsm×m and n×n, respectively; observe that the last step can
be done using Op and the explicit knowledge of the invertible matrices.

We have that
Pr[Wmn(λ)] = Pr[Wmn+1(λ)] .

To see this is enough to show that M is randomly distributed over the set ofm× nmatrices of
rank r.

To this end we first argue that M has rank r. This follows from two observations: (1) ma-
trix S has rank 1 applying Equation 5 on matrices S and W = ((1,ω), (ω,ω2))t; observe that
det(W) = 0, and (2) by construction, M has rank r if S has rank 1.

Next we use the random self-reducibility of the rank problem. Concretely, [M] is distributed as
in Gamemn because the left (resp., right) action of invertible matricesGLm(ZN) (resp.,GLn(ZN))
is transitive in the set of ZN-matrices of dimensionm× n and rank r.
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Gamemn+2 : Here (the obfuscation of) circuit C∗Map included in pp has hard-coded the tuple [h]0 =
([1]0, [ω]0, . . . [ω

2κ]0), and it uses the algorithm of Lemma 6.1 to evaluate the κ-linear map. We
have that

|Pr[Wmn+1(λ)] − Pr[Wmn+2(λ)]| ≤ Advind
IO,B(λ) .

This follows from the fact that circuits CMap, knowing ω in the clear, and C∗Map, knowing the
powers [ωi]0, are functionally equivalent. The other crucial observation is that to generate
an encoding of minor [S] it suffices to know [1]0, [ω]0, [ω2]0 and matrix S. For example, the
representation vectors of [s2,1]0 = c[1]0 + 1

b [ω]0 are x1,2 = y1,2 = (c,−b, 0).

Gamemn+s+2 for 1 ≤ s ≤ 2(κ− 1) : In Gamemn+2+s we hard-code into C∗Map the tuple

[hs]0 = ([1]0, [ω]0, . . . , [ω
2κ−s]0, [τ2κ−s+1]0, [τ2κ−s+2]0, . . . , [τ2κ]0) ,

where τ2κ−s+j are fresh random values in ZN. Observe that now C∗Map does not implement
a κ-linear map. An attacker against (2κ − s)-SDDH can embed a challenge tuple [q]0 =
([1]0, [ω]0, . . . , [ω

2κ−s]0, [τ2κ−s+1]0) in the first 2κ − s + 1 positions of [hs]0. Then, if τ2κ−s+1 =
ω2κ−s+1 this simulates Gamemn+s+1, otherwise it simulates Gamemn+s+2. This shows

|Pr[Wmn+s+1(λ)] − Pr[Wmn+s+2(λ)]| ≤ Adv(2κ−s)-sddh
Γ0,B (λ) for 1 ≤ s ≤ 2(κ− 1) .

Gamemn+2κ+1 : Here we hard-code [h2κ−1]0 in C∗Map and the minor S is set to

S =

[
a b− ω

c

c+ ω
b d− τ2

abc

]
for a random fresh value τ2 in ZN (with [τ2]0 included in [h2κ−1]0). As observed in the descrip-
tion of Gamemn+2, an encoding [S] (with respect to ω and τ2) can be generated only with the
knowledge of [1]0, [ω]0, [τ2]0 and matrix S. So we can embed a 1-SDDH challenge to simulate
Gamemn+2κ or Gamemn+2κ+1. Thus

|Pr[Wmn+2κ(λ)] − Pr[Wmn+2κ+1(λ)]| ≤ Adv1-sddh
Γ0,B (λ) .

To conclude, to see that Pr[Wmn+2κ+1(λ)] ≤ 1/2+negl(λ) we apply Equation 5 again to matrices
S and W = ((1,ω), (ω, τ2)) to argue that minor S has rank 2 with overwhelming probability over
the choice of τ2 (concretely τ = ω2 with probability negl(λ) := 1/N(λ)). Therefore M has rank
r+ 1 for guess bit b = 0 also with overwhelming probability in λ.
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