
HAL Id: hal-01470885
https://ens.hal.science/hal-01470885

Submitted on 17 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security of Symmetric Primitives under Incorrect Usage
of Keys

Pooya Farshim, Claudio Orlandi, Răzvan Roşie

To cite this version:
Pooya Farshim, Claudio Orlandi, Răzvan Roşie. Security of Symmetric Primitives under Incorrect
Usage of Keys. IACR Transactions on Symmetric Cryptology, 2017, �10.13154/tosc.v2017.i1.449-473�.
�hal-01470885�

https://ens.hal.science/hal-01470885
https://hal.archives-ouvertes.fr

Security of Symmetric Primitives
under Incorrect Usage of Keys

Pooya Farshim1, Claudio Orlandi2 and Răzvan Roşie1

1 ENS, CNRS, INRIA & PSL Research University, Paris, France
2 Aarhus Univeristy, Aarhus, Denmark

pooya.farshim@gmail.com orlandi@cs.au.dk rosie@di.ens.fr

Abstract. We study the security of symmetric primitives under the incorrect usage
of keys. Roughly speaking, a key-robust scheme does not output ciphertexts/tags
that are valid with respect to distinct keys. Key-robustness is a notion that is
often tacitly expected/assumed in protocol design — as is the case with anonymous
auction, oblivious transfer, or public-key encryption. We formalize simple, yet strong
definitions of key robustness for authenticated-encryption, message-authentication
codes and PRFs. We show standard notions (such as AE or PRF security) guarantee
a basic level of key-robustness under honestly generated keys, but fail to imply key-
robustness under adversarially generated (or known) keys. We show robust encryption
and MACs compose well through generic composition, and identify robust PRFs as
the main primitive used in building robust schemes. Standard hash functions are
expected to satisfy key-robustness and PRF security, and hence suffice for practical
instantiations. We however provide further theoretical justifications (in the standard
model) by constructing robust PRFs from (left-and-right) collision-resistant PRGs.
Keywords: incorrect key usage · key-robustness · authenticated encryption · MAC ·
generic composition · collision-resistant PRF · collision-resistant PRG

1 Introduction
Cryptography is complex and hard to understand. While the wide and diverse landscape
of cryptographic notions of security is a useful resource for the academic community
(as it allows to describe exactly what kind of security a certain cryptographic scheme
guarantees – and implicitly which one it does not), this complexity often hinders the
ability of practitioners and users of cryptography to implement truly secure cryptographic
systems. In the eyes of the users, cryptography is often seen as an all-or-nothing process:
once cryptography is “turned on,” data gets encrypted and therefore the system is secure,
hopefully with as little fine print as possible. The shortcomings of this all-or-nothing
property has been shown by a long series of attacks on real-world cryptographic protocols.

The academic community is reacting to this real-world need with simpler and more
comprehensive notions of security. The most clear example of this is the introduction of
the notion of Authenticated Encryption (AE) [Rog02, RS06]. While early cryptography
considered confidentiality to be the only goal of encryption, over the years it has become
apparent that virtually every application requiring confidentiality would also benefit from
some form of authenticity guarantees. Therefore, instead of letting the users pick an
encryption and a MAC scheme (and combine them in appropriate ways), cryptographers
are currently designing schemes that guarantee all properties at once (cf. the CAESER
competition). Other examples in this direction are the study of misuse-resistant AE
schemes [RS06], which guarantee best possible security even in the presence of repeating

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Symmetric Cryptology Vol. 0, No.0, pp.1—25, DOI:XXXXXXXX

mailto:pooya.farshim@gmail.com
mailto:orlandi@cs.au.dk
mailto:rosie@di.ens.fr
http://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXXX

2 Security of Symmetric Primitives under Incorrect Usage of Keys

nonces, security under related-key attacks (RKAs) [Bih94, BK03], and security in the
presence of key-dependent messages [BRS02].

In this quest towards coming up with encryption schemes that are as ideally secure as
possible, we introduce the notion of key-robustness.1 In a nutshell, key-robustness looks at
a setting where multiple keys (possibly known and/or chosen by the adversary) are present
in the system. When using strong encryption, like authenticated encryption, it might be
tempting to assume that any given ciphertext would only be valid for a single secret key.
As we shall see, this may or may not be the case depending on the context. We start with
some motivating examples before discussing the details.
Example 1 – Storage Authenticity. In this application a user wants to encrypt some
data which is stored on an untrusted storage provider. To ensure authenticity of the data,
the user encrypts it using an AE scheme. Then the user stores the key on a different
storage provider. What happens now if the second storage provider is corrupt? It might
be tempting to think that, since the data is encrypted with AE, any tampering on the
key will be detected when the user decrypts the data with the key. This in unfortunately
not the case and as we discuss later, AE security alone does not guarantee authenticity of
the original data against an adversary that can tamper with the stored key. Note that
tampering with the key can be done with the knowledge of the original key.
Example 2 – Anonymous Communication. Most practical symmetric encryption
schemes have ciphertexts that look random, which in particular implies a form of key
anonymity: when given two ciphertexts c0, c1 it is hard to tell whether or not they were
generated using the same (unknown) secret key. Imagine a protocol with one sender
and several receivers, where each receiver shares a key ki with the sender. Anonymity
guarantees that if the sender broadcasts a ciphertext constructed using ki, then a different
receiver j should only learn that i 6= j and nothing else. At the same time, such protocols
often intuitively assume that at most one of the receivers will believe to be the intended
receiver, i.e., decryption will fail for all but one of the users. This is however not covered
by current security definitions. More generally, whenever user anonymity is a security
goal, it is likely that some form of robustness is also needed in order to avoid undesired
behavior [ABN10].
Example 3 – Oblivious Transfer. Consider the following protocol, for constructing a(3

2
)
-OT protocol using only

(3
1
)
-OTs: the sender picks 3 random keys k1, k2, k3 and inputs

the message x1 = (k2, k3), x2 = (k1, k3) and x3 = (k1, k2) to the OT. At the same time,
the sender sends encryptions of his messages under these keys, i.e., sends ci = E(ki,mi)
for i = 1..3. Now the receiver inputs the index of the message he does not want to learn to
the

(3
1
)
-OT and learns all keys except ki. Intuitively the fact that the messages are sent

only once (encrypted) should guarantee that the sender’s choice of messages is uniquely
defined. However, consider the following attack: the corrupt sender inputs x∗1 = (k2, k

∗)
(instead of x1) such that D(k∗, c3) = m∗3 with m∗3 6= m3 and m∗3 6= ⊥. This means that
the receiver will see two different versions of m3 depending on whether the receiver asked
for the pair (2, 3) or (1, 3). (This attack is an example of input-dependence and is a clear
breach of security since it cannot be simulated in the ideal world.) The attack described
here is a very simplified version on an actual attack described by [Lam16] on the private
set-intersection protocol of [DCW13]. A strong form of key-robustness for symmetric
encryption is also used to prove the security of the OT protocol presented in [CO15].

Our contributions. We give simple and strong definitions of key-robustness for a number
of symmetric primitives of interest. Starting with the work of Abdalla et al. [ABN10] and
Farshim et al. [FLPQ13] (which studied the notion of (key-)robustness in the public-key
setting) we develop appropriate notions for symmetric encryption, MACs, and PRFs. To

1We refrain from formally referring to this notion as robustness in order to avoid confusion with robust
AE schemes [HKR15]. In our discussions, however, we use robustness to ease readability.

Pooya Farshim, Claudio Orlandi and Răzvan Roşie 3

the best of our knowledge this is the first attempt in this direction (we note that [Moh10]
considers robustness and anonymity of hybrid encryption, but not for symmetric encryption
directly). As briefly mentioned above, our notion also formalizes the non-existence of
“unexpected collisions” in a cryptosystem over distinct keys, even when inputs (including
keys) are maliciously generated.

We consider both notions where the adversary has control over the keys and notions
where the keys are generated honestly. The strongest notion that we formulate is called
complete robustness and allows an adversary to generate the keys used in the system.
We show that whether the adversary is in control of the keys or not makes a significant
difference, by giving separations between the notions. While previous work in the public-
key setting also had to deal with adversarially generated keys that were also invalid, this
is not an issue in our setting, since in the symmetric world keys are often bit-strings of
some pre-specified length and can be easily checked for validity. By focusing on correctly
formed keys we can show equivalence between complete robustness and a syntactically
simpler notion, which we call full robustness.

By giving appropriate separating examples we show that AE security and strong
unforgeability do not provide full robustness. Before building fully robust schemes, we
first characterize the level of robustness that is enjoyed by AE-secure encryption and
strongly unforgeable MACs. For MACs we prove that as long as the two keys are honestly
generated and remain outside the view of the adversary the scheme is robust in the presence
of tag-generation and verification routines. Interestingly, AE-secure encryption schemes
achieve a higher level of robustness where both keys are honestly generated, but one is
provided to the adversary. Intuitively, this gap arises from the fact that the adversary
against the MAC can still choose a message with respect to which a common tag should
verify under two distinct keys, but in the encryption setting such an adversary is bound to
ciphertexts that are random and outside its control. Unfortunately these weaker notions
of security provide guarantees only if the keys are honestly and independently generated.
Therefore no guarantees are provided in applications where the adversary completely
controls the keys in the system (like the in the OT example before), where encryption
is performed using related keys, or when the scheme is used to encrypt key-dependent
messages (KDM). Full robustness, on the other hand, would be sufficient in such settings.

We then show that full robustness composes well: any fully robust symmetric encryption
when combined with a fully robust MAC results in a fully robust AE scheme. Analogous
composition results also hold for MAC-then-Encrypt and Encrypt-and-MAC. In these
transformations, however, the length of the key doubles (since independent keys are used
for encryption and MAC), while in practical AE schemes it is desirable to use a single
key for both tasks. Using a single key for both the encryption and MAC components not
only reduces storage, it increases security by only relying on the robustness of either of
its components. (We emphasize, however, that AE security of the generically composed
scheme with key reuse, although provable for some schemes, does not always hold.) We
show that this can be avoided by modifying the Encrypt-then-MAC transform to also
authenticate the encryption key. As long as the MAC component is both pseudorandom
and collision-resistant, we show this transform gives a robust and AE-secure scheme.
Simultaneous pseudorandomness and collision-resistance is an expected property from
standard hash functions (and is met by the random oracle). This provides the most
practical route to generically build robust encryption schemes. We caution, however, that
not all MACs would satisfy this requirement. In particular, we point out that CBC-MAC
fails to be fully robust, even when one of two honestly generated keys is in adversary’s
view.

We then ask if feasibility results for robustness in the public-key setting can be translated
to the symmetric setting. This turns out not to be the case. The main reason for this is
that in the asymmetric setting the public key can be used as mechanism to commit to its

4 Security of Symmetric Primitives under Incorrect Usage of Keys

associated secret key. In the symmetric case, on the other hand, there is no such public
information. It might be tempting to think that one can just commit to the secret key
and append it to the ciphertext. Unfortunately this approach cannot be proven secure due
to a circular key-dependency between the encryption and the commitment components.
To give a provably secure construction, we construct appropriate commitments that can
be used in this setting. This requires a right-injective PRG, that can be in turn based
on one-way permutations. This result relies on the one-time security of the MAC and its
collision-resistance, which once again we base on right-injective PRGs.

We finally study constructions of collision-resistant and robust PRFs (which can be
immediately converted to collision-resistant and robust MACs). We first show that any
robust PRF can be converted into a fully collision-resistant PRF using a right-injective
PRG and a parallel application of a pseudorandom permutation. Next we identify of
left/right collision-resistant (LRCR) PRGs as both a necessary and a sufficient assumption
for building robust PRFs. In an LRCR PRG, no adversary should be able to find
collisions over the left or right halves of the outputs of the PRG. We show that the GGM
construction [Gol01] converts any LRCR PRG into a fully robust PRF. We then give
an instantiation of left/right collision-resistant PRGs based on DDH to justify them in
the standard model. The resulting PRG, however, is not GGM-friendly (as input and
output spaces do not match). We show how to convert it into a GGM-friendly PRG via
pairwise-independent permutations and regular collision-resistant hash functions. The
first can be based on injective linear maps, while the latter can be based on claw-free
permutations. Our work leaves open the task of constructions of LRCR PRGs from generic
assumptions such as one-way functions/permutations or collision resistance.

2 Preliminaries

Notation. We denote the security parameter by λ ∈ N and assume it is implicitly given
to all algorithms in the unary representation 1λ. By an algorithm we mean a stateless
Turing machine. Algorithms are randomized unless stated otherwise, and ppt as usual
stands for “probabilistic polynomial-time,” in the security parameter (rather than the total
length of its inputs). Given a randomized algorithm A we denote the action of running
A on input(s) (1λ, x1, . . .) with uniform random coins r and assigning the output(s) to
(y1, . . .) by (y1, . . .)←←A(1λ, x1, . . . ; r). For a finite set S, we denote its cardinality by |S|
and the action of sampling a uniformly at random element x from X by x←←X. We define
[k] := {1, . . . , k}. A real-valued function ε(λ) is negligible if ε(λ) ∈ O(λ−ω(1)). We denote
the set of all negligible functions by Negl. Throughout the paper ⊥ stands for a special
error symbol. We use || to denote the concatenation of binary strings.

Pseudorandom generators. A pseudorandom generator PRG with domain D and
range R is a deterministic algorithm that on input a point x ∈ D outputs a value y ∈ R.
We define the advantage of an adversary A against PRG as

Advprg
PRG,A(λ) := 2 · Pr

[
PRGAPRG(λ)

]
− 1 ,

where the game PRGAPRG(λ) is shown in Figure 1 (top left). A PRG is secure if the above
advantage function is negligible for every ppt adversary A. In what follows, we assume D
and R come with algorithms for sampling elements, which by slight abuse of notation we
denote by D(1λ) and R(1λ). We allow for arbitrary domain and range in this definition to
allow for the analysis of our constructions later on.

Pseudorandom functions. A PRF is a pair of algorithms (Gen,PRF), where Gen
is a randomized algorithm that on input the security parameter 1λ generates a key K in
some key space K. We will assume that this algorithm simply outputs a random keys in

Pooya Farshim, Claudio Orlandi and Răzvan Roşie 5

PRGA
PRG(λ):

b←←{0, 1}
x←←D(1λ); y ← PRG(x)
if b = 0 then y←←R(1λ)
b′←←A(y)
return (b′ = b)

PRFA
PRF(λ):

b←←{0, 1}; L← ∅
K←←Gen(1λ)
b′←←APrf(1λ)
return (b′ = b)

Proc. Prf(M):
if M ∈ L then return ⊥
T ← PRF(K ,M)
if b = 0 then T←←{0, 1}|T|

L← L ∪ {M}
return T

AEA
AE(λ):

b←←{0, 1}; L← ∅
K←←Gen(1λ)
b′←←AEnc,Dec(1λ)
return (b′ = b)

Proc. Enc(M):
C←←Enc(K ,M)
if b = 0 then C←←{0, 1}|C|

L← L ∪ {C}
return C

Proc. Dec(C):
if C ∈ L then return ⊥
M ← Dec(K ,C)
if b = 0 then M ← ⊥
return M

SUFA
MAC(λ), $UFA

MAC(λ) :

b←←{0, 1}; L← ∅
K←←Gen(1λ)
b′←←ATag,Ver(1λ)
return (b′ = b)

Proc. Tag(M):
T←←Tag(K ,M)
if b = 0 then T←←{0, 1}|T|

L← L ∪ {(M ,T)}
return T

Proc. Ver(M ,T):
if (M ,T) ∈ L then return ⊥
d← Ver(K ,M ,T)
if b = 0 then d← 0
return d

Figure 1: Games defining the security of pseudorandom generators (top left), pseudorandom
functions (top right), authenticated encryption (middle), and pseudorandom and strongly
unforgeable message authentication codes (down). The PRF, AE, and $UF notions entail
strong notions of key anonymity for each primitive. IND$ security is a weakening of AE
security where the adversary is not allowed to call the decryption oracle. The standard
strong unforgeability game omits the boxed statement from the Tag procedure.

{0, 1}λ. Algorithm PRF is deterministic and given K as input and a point x ∈ D outputs
a value y ∈ R. We define the advantage of an adversary A against PRF as

Advprf
PRF,A(λ) := 2 · Pr

[
PRFAPRF(λ)

]
− 1 ,

where game PRFAPRF(λ) is shown in Figure 1 (top right). A PRF is secure if the above
advantage function in negligible for every ppt adversary A.

Authenticated encryption. An authenticated encryption scheme AE is a triple
of algorithms AE := (Gen, Enc, Dec) such that: (1) Gen(1λ) is the randomized
key-generation algorithm that on input the security parameter 1λ outputs a key K ;
(2) Enc(K ,M ; R) is the randomized encryption algorithm that on input a key K , a
plaintext M and possibly random coins R outputs a ciphertext C ; (3) Dec(K ,C) is the
deterministic decryption algorithm that on input a key K and a ciphertext C , outputs
a plaintext M or the special error symbol ⊥. We call a scheme AE (perfectly) correct
(for message space {0, 1}∗) if for all λ ∈ N, all K←←Gen(1λ), all M ∈ {0, 1}∗ and all
C←←Enc(K ,M) we have that Dec(K ,C) = M . We define the advantage of an adversary
A against AE as

Advae
AE,A(λ) := 2 · Pr

[
AEAAE(λ)

]
− 1 ,

where game AEAAE(λ) is shown in Figure 1 (middle). An AE scheme is secure if the above
advantage function in negligible for every ppt adversary A. This is the standard definition
of security for AE schemes [RS06, HK07]. An alternative security definition would come
with a challenge oracle that on input two messages (M0,M1) of same length, returns an
encryption of Mb. This definition is weaker that AE security as the latter already implies
a strong form of anonymity due to the pseudorandomness of ciphertexts, whereas this is

6 Security of Symmetric Primitives under Incorrect Usage of Keys

not necessary the case for the left-right-based definition.2

Message-authentication codes. A message-authentication code (MAC) is a triple of
algorithms MAC := (Gen, Tag, Ver) defined as follows: (1) Gen(1λ) is the randomized
key generation algorithm that on input the security parameter 1λ outputs a key K .
(2) Tag(K ,M ; R) is the randomized tagging algorithm that on input a key K , a plaintext
M and possibly random coins R, outputs a tag T . (3) Ver(K ,M ,T) is the deterministic
verification algorithm that on input a key K , a plaintext M and a tag T , outputs a bit.
We call a MAC scheme (perfectly) correct (for message space {0, 1}∗) if for all λ ∈ N,
all K←←Gen(1λ), all M ∈ {0, 1}∗ and all T←←Tag(K ,M), the verification is successful:
Ver(K ,M ,T) = 1. We define the advantage of an adversary A against a MAC as

Adv$uf
MAC,A(λ) := 2 · Pr

[
$UFAMAC(λ)

]
− 1 ,

where game $UFAMAC(λ) is shown in Figure 1. This game strengthens the standard strong
unforgeability for MACs, which is shown in the same figure omitting the boxed statement,
in a number of aspects. First, Ver outputs the error symbol only when the pair (M ,T)
was generated via the Tag procedure and therefore pseudorandom MACs are also strongly
unforgeable. Second, the definition implies the tags are pseudorandom and hence they
fully hide the messages and the keys that were used to generate them. Stated differently,
pseudorandom MACs are both confidential and anonymous in the sense that they hide
both the message and the key that is used to generate a tag. Finally, since Tag does not
repeat T for repeated messages, it implies a notion of unlinkability.

Feasibility of pseudorandom MACs. Given a PRF, consider scheme MAC whose
key-generation algorithm is identical to that of the PRF and whose tag-generation and
verification algorithms operate as

Tag(K ,M ; R) := R||PRF(K ,M ||R), Ver(K ,M , (R||T)) := (T ?= PRF(K ,M ||R)) .

We call such message authentication codes randomized MACs. It is straightforward to
prove that this MAC satisfies our strong security notion for MACs given above.

Encrypt-then-MAC. Recall that in the Encrypt-then-MAC paradigm, one first encrypts
a message M and finally authenticates the resulting ciphertext using a MAC. If the
underlying encryption AE in this transform is AE-secure without access to decryption
oracle (a.k.a. IND$ secure) and the MAC used is pseudorandom, the encryption scheme
is AE secure [BN08].

3 Definitions
Informally, in a robust scheme no unexpected collisions in the input/output behavior of
the system exists. For instance, in the case of encryption no adversary should be able to
compute a ciphertext that decrypts correctly under two distinct keys. This notion was first
formulated in the asymmetric setting [ABN10, FLPQ13] and we adapt it to symmetric
encryption, MACs, and PRFs in this section.

The work of [FLPQ13] refines and strengthens the original definitions of robust-
ness [ABN10]. The central security notion introduced in [FLPQ13] is complete robustness
(CROB), a notion that contains three sub-notions of full robustness (FROB), key-less ro-
bustness (KROB) and mixed robustness (XROB). These, roughly speaking, correspond to
three possible ways finding a colliding ciphertext using either the encryption or decryption

2 The left-right-based definition can be modified to imply a left-right notion of key anonymity. The
resulting game, however, is both more cumbersome to work with and weaker than standard AE security.

Pooya Farshim, Claudio Orlandi and Răzvan Roşie 7

algorithms of the scheme. That is, for some K1,K2,M1,M2,R1,R2,C1,C2 at least one of
the checks

Enc(K1,M1; R1) = Enc(K2,M2; R2), or Dec(K1,C1) = Dec(K2,C1), or

Dec(K2,Enc(K1,M1; R1)) = M2,

pass when K1 6= K2. The last condition can be made stronger: one expects that
Enc(K1,M1;R1) would decrypt to ⊥ under an unrelated key K2. The middle check
can be also made stronger by only checking that the outputs are both valid. We formalize
the resulting notions next.

Robustness. We define the advantage of an adversary A in the CROB games against an
encryption scheme AE as

Advcrob
AE,A(λ) := Pr

[
CROBAAE(λ)

]
,

where game CROBAAE(λ), is shown in Figure 2 (top). Similarly, for a message authentication
code MAC we define

Advcrob
MAC,A(λ) := Pr

[
CROBAMAC(λ)

]
,

where CROBAMAC(λ) is shown in Figure 2 (bottom).

CROBA
AE(λ):

L← ∅
ε←←AEnc,Dec(1λ)
for (K1,M1,C1), (K2,M2,C2) ∈ L do
if (C1 = C2 6= ⊥) ∧ (K1 6= K2) ∧ (M1 6= ⊥ ∧M2 6= ⊥)

return 1
return 0

Proc. Enc(K ,M ,R):
C ← Enc(K ,M ; R)
L← L ∪ (K ,M ,C)

Proc. Dec(K ,C):
M ← Dec(K ,C)
L← L ∪ (K ,M ,C)

CROBA
MAC(λ):

L← ∅
ε←←ATag,Ver(1λ)
for (K1,M1,T1), (K2,M2,T2) ∈ L do
if (T1 = T2 6= ⊥) ∧ (K1 6= K2) then
return 1

return 0

Proc. Tag(K ,M ,R):
T ← Tag(K ,M ; R)
L← L ∪ (K ,M ,T)

Proc. Ver(K ,M ,T):
b← Ver(K ,M ,T)
if b = 1 then L← L ∪ (K ,M ,T)

Figure 2: Complete robustness for symmetric encryption (top) and MAC (bottom).

Farshim et al. [FLPQ13] give pair-wise separations among the three sub-notions men-
tioned above, showing they are all incomparable and hence should be (implicitly) included
in the CROB notion. Some of these separations use invalid keys, as key pairs in the
public-key setting cannot be necessarily checked for validity. This issue disappears in our
setting as the key space is {0, 1}k, a set which is trivially checkable for validity. This fact
simplifies relations among notions (which we study in detail in Appendix A). Analogues of
the FROB notion [FLPQ13] for AE and MAC turn out to be equivalent to our strongest
notions above. We formalize FROB in Figure 3 (left) for AE and (middle) for MACs, and
summarize this discussion is under Theorem 1. Figure 3 (right) also includes our definition
of robustness for PRFs with advantage function

Advfrob
PRF,A(λ) := Pr

[
FROBAPRF(λ)

]
.

8 Security of Symmetric Primitives under Incorrect Usage of Keys

FROBA
AE(λ):

(C ,K1,K2)←←A(1λ)
if K1 = K2 return 0
M1 ← Dec(K1,C)
M2 ← Dec(K2,C)
return (M1 6= ⊥ ∧M2 6= ⊥)

FROBA
MAC(λ):

(T ,K1,M1,K2,M2)←←A(1λ)
if K1 = K2 return 0
d1 ← Ver(K1,M1,T)
d2 ← Ver(K2,M2,T)
return (d1 = d2 = 1)

FROBA
PRF(λ):

(K1,M1,K2,M2)←←A(1λ)
if K1 = K2 return 0
T1 ← PRF(K1,M1)
T2 ← PRF(K2,M2)
return (T1 = T2)

Figure 3: Games defining full robustness for a symmetric encryption scheme AE (left), a
message authentication code MAC (middle) and a pseudorandom function PRF (right).

As we shall see, from a foundational perspective, robust PRFs underlie feasibility of
robustness for many symmetric primitives.

Collision resistance. Complete robustness strengthens to unkeyed collision resistance
when the case K1 = K2 is not ruled out. For MACs, (unkeyed) collision-resistance
states that it should be hard to come up with (K1,M1,R1) 6= (K2,M2,R1) such that
Tag(K1,M1; R1) = Tag(K2,M2; R1). Similarly, (unkeyed) collision resistance of PRFs
requires that PRF(K1,M1) 6= PRF(K2,M2) for (K1,M1) 6= (K2,M2). The standard
notion of keyed collision resistance, on the other hand, imposes that keys are equal,
K1 = K2, and are honestly generated. (Note that unforgeable MACs and pseudorandom
PRFs are always keyed collision-resistant.)

KROB

XROB

FROB

SROB

SFROB

CROB

SUF

AE

Theorem 1

Prop. 4.2, 5.2

Prop. 4.3, 5.3

Prop. 4.4, 5.4

Prop. 4.5, 5.5

Theorem 2

Theorem 2

Prop. 6.3, 7.3 6

Prop. 6.2, 7.2 6
6 Prop. 6.1, 7.1

Figure 5: Relations among notions of robustness (with key validity) for AE and MAC
schemes. XROB and KROB are formalized in Appendix A, and SFROB and SROB are
formalized in Section 4. A crossed arrow entails a separation; see Appendix B.

Theorem 1 (Robustness with key validity). Let AE be a perfectly correct symmetric
encryption scheme that checks keys for validity during encryption. Then AE is CROB
secure if and only if it is FROB secure. Similarly, a perfectly correct message authentication
code MAC whose tag-generation algorithm checks keys for validity is CROB secure if and
only if it is FROB secure.

Proof. The proof is simple and we give an example for one case. Suppose that adversary
A wins the CROB game by finding a collision between the outputs of encryption. In other
words A finds (K1,M1, R1,K2,M2, R2) such that:

Enc(K1,M1;R1) = Enc(K2,M2;R2) .

This means that K1 and K2 are valid. Now consider an FROB adversary that computes
C := Enc(K1,M1;R1) and outputs (C,K1,K2). By the perfect correctness of the scheme

Pooya Farshim, Claudio Orlandi and Răzvan Roşie 9

for valid keys it must be the case that Dec(K1, C) = M1 and Dec(K2, C) = M2, which
wins the FROB game.

Other cases are dealt similarly, by either computing a colliding ciphertexts using Enc
or a colliding tag using Tag. We provide the details in Appendix A.

Throughout the paper we assume that keys are checkable for validity and that they
are indeed checked for validity in all algorithms. Hence we will only use FROB security
to establish CROB security in the subsequent sections. We limit our study to schemes
that have perfect correctness (as defined under syntax). Correctness with all but negligible
probability would allow for artificial attacks and separations. As an example, consider an
encryption scheme that, when invoked with a special random tape computes the identity
function – this is allowed since the probability of hitting that random tape is negligible
and at the same time gives an easy way to break robustness.

4 Robustness, AE Security, and Unforgeability
We show that standard AE-secure encryption schemes offer a basic level of resilience
against incorrect usage of keys. The level of robustness offered corresponds to a setting
where the adversary does not get to choose any keys. Instead, two keys are honestly
generated and the adversary is given oracle access to encryption and decryption algorithms
under both keys. The notion for MACs is similar where oracle access to tag-generation and
verification algorithms under honestly generated keys are provided to the adversary. This
notions which we call strong robustness (SROB) are shown in Figure 6 (without boxed
variables). This nomenclature follows the original notion of strong robustness by Abdalla
et al. [ABN10]. We also define semi-full robustness (SFROB) as one where the adversary
gets to see one of the keys (as shown in Figure 6 with boxed variables).

SFROBAAE(λ) :

K1,K2←←Gen(1λ)
C←←AEnc,Dec(1λ, K2)
M1 ← Dec(C ,K1)
M2 ← Dec(C ,K2)
return (M1 6= ⊥ ∧M2 6= ⊥)

Proc. Enc(i,M):
return Enc(Ki,M)

Proc. Dec(i,C):
return Dec(Ki,C)

SFROBAMAC(λ):

K1,K2←←Gen(1λ)
(T,M1,M2)←←ATag,Ver(1λ, K2)
d1 ← Ver(K1,T,M1)
d2 ← Ver(K2,T,M2)
return (d1 ∧ d2)

Proc. Tag(i,M):
return Tag(Ki,M)

Proc. Ver(i,M,T):
return Ver(Ki,M,T)

Figure 6: Games defining strong robustness (SROB) and semi-full robustness (SFROB)
for symmetric encryption (left) and MACs (right). The boxed statements are included in
the boxed games.

Theorem 2. Any authentication scheme AE that is AE-secure is also SFROB-secure.
Any strongly unforgeable (and in particular pseudorandom) scheme MAC, on the other
hand, is (only) SROB-secure. More precisely, for any adversary A against the SFROB
security of the AE scheme, there is an adversary B against the AE security of the scheme
such that

Advsfrob
AE,A(λ) ≤ 3 ·Advae

AE,B(λ) .

Moreover, for any adversary A against the SROB-security of the MAC there is an adversary
B against the SUF-security of the scheme such that

Advsrob
MAC,A(λ) ≤ 3 ·Advsuf

AE,B(λ) .

Furthermore, there exist a pseudorandom MAC that is not SFROB-secure.

10 Security of Symmetric Primitives under Incorrect Usage of Keys

Proof. First, we prove the implication from AE security to SFROB. Let G0 be the SFROB
game. We assume without loss of generality that the adversary in G0 never queries the
Enc(2, ·) and Dec(2, ·) oracles as it has access to K2, and that it never queries an output
of Enc(1, ·) to Dec(1, ·) as it already knows the answer.

In G1 we modify the winning condition of G0 as follows. When the adversary returns
a ciphertext C , instead of checking that Dec(C ,K1) 6=⊥ and Dec(C ,K2) 6=⊥, the game
checks if C was one of the ciphertexts that was returned from the Enc(1, ·) oracle and
that Dec(C ,K2) 6=⊥. The games G0 and G1 are identical unless A outputs a ciphertext
C that was not obtained from the Enc(1, ·) oracle, but decrypts correctly (call this event
E). We bound the probability of E via the AE as follows. For any distinguishing A,
we define an algorithm B that picks a random key K2, runs A(K2), and answers its
queries using its own equivalent pair of oracles. When A terminates with C , algorithm
B queries C to its decryption oracle to get M1 and also computes M2 ← Dec(C ,K2). It
returns (M1 6=⊥ ∧M2 6=⊥). If B’s decryption oracle is fake and implements ⊥, algorithm
B will always return 0. If B’s decryption oracle is real, algorithm B runs A according
to the environment of G0 and G1, and will output 1 whenever E happens. Hence
Pr[GA0]− Pr[GA1] ≤ Pr[E] = Advae

AE,B(λ).
In G2 we replace Enc(1, ·) and Dec(1, ·) with the $ and ⊥ procedures respectively.

(As in G1 we still use the list of ciphertexts and K2 for the winning condition.) The
distance between G1 and G2 can be bounded via the AE game as follows. Consider an AE
adversary B that generates an independent key K2 and runs a distinguishing adversary
A(K2). Algorithm B answers A’s oracle queries using the oracles provided to it. When A
terminates with a ciphertext C , algorithm B performs the winning check and outputs its
result. Algorithm B runs A with respect to the real or replaced procedures according to
the real or fake procedures that it gets. The output of B is identical to that of A in the
two games. Hence Pr[GA1]− Pr[GA2] ≤ Advae

AE,B(λ).
In G2, the adversary has essentially no control over C and we show its advantage is

small. For this we will rely on the AE game once more (but now implicitly with respect
to the second key). G2 can only be won if Dec(K2,C) 6=⊥ for at least one of q distinct
random strings C obtained from the $ oracle. Consider an AE adversary B that generates
q such random C and queries them to its Dec oracle and outputs 1 if and only if one of
the answers is non-⊥. Adversary B always outputs 0 when the oracle implements ⊥. On
the other hand, when the oracle implements the real decryption routine, the probability
of B outputting 1 is exactly the probability that Dec(K2,C) =⊥ for one of the random
C and key K2. This means Pr[GA2] ≤ Advae

AE,B(λ). The first part of the theorem follows
from that last (in)equalities.

We now prove the second part of the Theorem 2. We first note that via a simple hybrid
argument, unforgeability with respect to two keys reduces to unforgeability with respect
to a single key with loss 2 in advantage. We also assume, without loss of generality, that
an adversary in G0 := SROB does not query Ver on any (i,M ,T) where T is an output
of Tag(i,M); the answer is always 1 for such queries.

In G1 we replace the Ver(1, ·, ·) and Ver(2, ·, ·) procedures with the ⊥ procedure. We
also replace the computation of Ver(Ki,T ,M) for i = 1, 2 in the winning condition with 0
unless T was output by both Tag(1, ·) and Tag(2, ·) procedures. Hence G0 and G1 are
identical unless A outputs a tag T that was not output by both tag-generation oracles
and yet verifies under both keys. Call this event E. The probability of event E can be
bounded via the (single-key) SUF game as follows. Algorithm B generates a key K2. It
uses its own oracles and K2 to simulate the oracles for A. When A terminates with a tag
(T ,M1,M2), algorithm B queries (T ,M1) to its verification oracle and returns 1 iff the
result was not 0. Algorithm B will always output 0 when the oracle is 0 (i.e., when it is
fake). If its oracles are real, B runs A according to the environments of G0 and G1, and
whenever E happens it returns 1. Hence, Pr[GA0]− Pr[GA1] ≤ Pr[E] = Advsuf

MAC,B(λ).

Pooya Farshim, Claudio Orlandi and Răzvan Roşie 11

The advantage of any adversary A in G1 can be bounded, once again, by the two-
key SUF game as follows. Consider any adversary against the two-key SUF game as
follows. Algorithm B runs A and answers its oracle queries using its own oracles. When A
terminates with a tag (T ,M1,M2), algorithm B checks for which i this tag was not obtained
from Tag(i, ·) (if both, it chooses either i). Algorithm B the queries Ver(i,T ,Mi) and
returns 1 iff the result is not 0. Note that B never outputs 1 when its oracles are fake.
However, when its oracles are real B runs A according to the rules of G1 and it returns 1
whenever A wins. Hence, Pr[GA2] ≤ 2 ·Advsuf

MAC,B(λ). The second part of the theorem
follows.

Interestingly, MAC security (including pseudorandomness) does not imply SFROB
security for MACs. (And the above theorem is, in a sense, “sharp.”) Indeed, given a
pseudorandom MAC consider a modified scheme whose verification procedure on input
M = K and any tag always passes. This MAC can be still shown to be pseudorandom
(without access to K), but fails to be SFROB as any tag T obtained under K1 for, say,
message 0 would be also valid with respect to K2 if message M2 := K2. Note, however,
that since any AE scheme is a pseudorandom MAC, the result for AE schemes shows
SFROB-secure MACs can be built via authenticated encryption.

In the above proof we showed that for MACs, SROB is strictly weaker than SFROB,
and hence it also weaker than CROB. We next prove that SFROB is weaker than CROB
for AE schemes. We show a stronger result that not all AE schemes, even those obtained
via Encrypt-then-MAC, are CROB.

Proposition 1. There exist an authenticated encryption scheme obtained via the Encrypt-
then-MAC transform that is not CROB secure (but SFROB secure as shown in Theorem 2).

Proof. Consider any symmetric encryption scheme whose decryption algorithm never
outputs ⊥. (A natural example is a scheme whose encryption algorithm evaluates a
PRF at a random point and masks the message with the result: Enc(Ke,M ; R) :=
R||PRF(Ke,R) ⊕M .) Then the AE scheme obtained by applying the EtM transform
using such an encryption scheme and any MAC (even robust ones) will not be CROB
secure. For a random MAC key Km and random and distinct encryption keys Ke1 ,Ke2

consider an attacker that computes C←←Enc(Ke1 , 0) and T←←Tag(Km,C) and outputs(
(C ||T), (Ke1 ||Km), (Ke2 ||Km)

)
. The ciphertext (C ||T) will decrypt to a valid message

under the distinct keys (Ke1 ||Km) and (Ke2 ||Km) as the tag T is always checked against
Km and the base encryption scheme does not have invalid ciphertexts.

The attack described above applies against authenticated encryption schemes that follow
the EtM transform and use independent keys for the encryption and MAC components.
If the same key is used for both the encryption and authentication components (and
assuming the AE security of the composed construction), the above attack no longer works.
Artificial counterexamples, however, still exist. As before, consider a MAC that verifies
whenever M = K irrespectively of its input tag. Such a MAC, when combined with any
encryption scheme whose decryption never returns ⊥ gives rise to a separating example
between CROB and SFROB for AE schemes. Here the attacker gets K2, sets C := K2,
computes a tag T = Tag(K1,C) and outputs ((C ||T),K1,K2). Now the verification of T
for C with K1 always passes. It also passes with respect to K2 and K2 = C . Since Dec
never outputs ⊥ in the base scheme, C also decrypts under both keys.

FROB insecurity of CBC-MAC. We conclude this section showing that the popular
CBC-MAC is not FROB (or even SFROB) secure as the block cipher used in CBC-MAC
is invertible. In CBC-MAC, a tag is generated as Ci = E(K,Ci−1 ⊕Mi), with C0 := IV
for some fixed IV . To attack the (semi-)full robustness of CBC-MAC, for two random keys
K1,K2 take any plaintext M , generate T ← E(K1,M1 ⊕ IV), compute M ′2 ← D(K2,T),

12 Security of Symmetric Primitives under Incorrect Usage of Keys

and set M2 := M ′2⊕IV . Now (T ,K1,M1,K2,M2) constitutes a break against the (semi-)full
robustness of CBC-MAC.

5 Constructions
We now prove two positive results for obtaining robust encryption through generic compo-
sition.

Theorem 3 (Robustness for generic composition). The AE schemes obtained through
either Encrypt-then-Mac (EtM), Encrypt-and-MAC (EaM), or MAC-then-Encrypt (MtE)
(with independent keys) are CROB secure as long as their encryption and MAC components
are CROB secure. Moreover, the AE scheme obtained through EtM, EaM or MtE when
reusing the same key for encryption and authentication is CROB secure as long as either
the encryption or the MAC component is CROB secure.

Proof. We provide the proofs for the three cases separately.

EtM composition. Suppose a CROB adversary A outputs a tuple ((C ||T), (Ke1 ||Km1),
(Ke2 ||Km2)) winning the CROB game against the generically composed scheme with
distinct keys. Since (Ke1 ,Km1) 6= (Ke2 ,Km2) there are two possibilities to consider:

Case Ke1 6= Ke2 : then (C ,Ke1 ,Ke2) wins the CROB game against encryption, as C
would have decrypted correctly with respect to both keys for A to be successful.

Case Km1 6= Km2 : then (T ,Km1 ,C ,Km2 ,C) wins the CROB game for MAC as T would
have to be a valid tag with respect to C and two distinct keys.

We conclude that for adversaries B1 and B2, Advcrob
EtM,A(λ) ≤ Advcrob

AE,B1
(λ)+Advcrob

MAC,B2
(λ).

When the keys are reused, we can apply both branches of the reduction above. This proves
CROB security of the composed scheme assuming CROB for either the AE or MAC
component of the scheme and get Advcrob

EtM,A(λ) ≤ Advcrob
AE,B1

(λ) and Advcrob
EtM,A(λ) ≤

Advcrob
MAC,B2

(λ).

EaM composition. Suppose a CROB adversary A outputs a tuple ((C ||T), (Ke1 ||Km1),
(Ke2 ||Km2)) winning the CROB game against the EaM generically composed scheme
with distinct keys. Since (Ke1 ,Km1) 6= (Ke2 ,Km2), as for the EtM transform, if: (1)
Ke1 6= Ke2 , we have that (C ,Ke1 ,Ke2) wins the CROB game against encryption, as C
would have decrypted correctly with respect to both keys for A to be successful; (2) for
the second case we let M1 ← Dec(Ke1 ,C) and M2 ← Dec(Ke2 ,C); when Km1 6= Km2 ,
then (T ,Km1 ,M1,Km2 ,M2) wins the CROB game for MAC as T would have to be
a valid tag with respect to M1,M2 and both keys for A to be successful. Thus for
adversaries B1 and B2, the advantage of A can be bounded as follows Advcrob

EaM,A(λ) ≤
Advcrob

AE,B1
(λ) + Advcrob

MAC,B2
(λ). When the keys are reused, the same argument as in the

previous case applies.

MtE composition. Let a CROB adversary A output a tuple (C , (Ke1 ||Km1), (Ke2 ||Km2))
winning the CROB game against the MtE generically composed scheme with distinct keys.
Since (Ke1 ,Km1) 6= (Ke2 ,Km2), as for the EtM transform, if: (1) Ke1 6= Ke2 , we have
that (C ,Ke1 ,Ke2) wins the CROB game against encryption, as C would have decrypted
correctly with respect to both keys for A to be successful. Thus we assume Ke1 = Ke2

and let (M ||T) ← Dec(Ke1 ,C); (2) when Km1 6= Km2 then (T ,Km1 ,M ,Km2 ,M) wins
the CROB game for MAC as T would have to be a valid tag with respect to M and
both keys for A to be successful. (Note that the same tag is obtained after decryption).

Pooya Farshim, Claudio Orlandi and Răzvan Roşie 13

Therefore for adversaries B1 and B2 the advantage of A is bounded as Advcrob
MtE,A(λ) ≤

Advcrob
AE,B1

(λ) + Advcrob
MAC,B2

(λ). When the keys are reused, the same argument as in the
first case applies.

Some CAESAR candidates follow the generic composition paradigm but incorporate
various optimizations to reduce computation, bandwidth and keying material. This means
that a strategy similar to Theorem 3 can be used to carry out robustness proofs for them.
We leave a provable security treatment of the robustness of the CAESAR candidates to
future work.

To instantiate the components in Theorem 3, we start by observing that randomizing a
CROB-secure PRF gives a pseudorandom MAC that is CROB secure. Indeed, a success-
ful CROB adversary against this randomized PRF outputs a tuple (T ,K1,M1,K2,M2)
with T = (R, Y) such that PRF(K1,M1||R) = Y = PRF(K2,M2||R), which means
(Y,K1,M1||R,K2,M2||R) wins the CROB game against PRF.

An analogous route for directly building a CROB secure encryption scheme from a
CROB secure PRF does not go through as the decryption algorithm of such schemes
would never return ⊥. However, by using a common PRF in both the encryption and
MAC components we safely reuse the keys across encryption and MAC. More precisely,
given a CROB-secure PRF, the following scheme is both CROB and AE secure

Enc(K ,M ; R) := (R,PRF(K ,R)⊕M ,PRF(K ,PRF(K ,R)⊕M)))
Dec(K , (R,C ,T)) := if PRF(K ,C) = T return PRF(K ,R)⊕ C else return ⊥ .

By our theorem above, this scheme is CROB as long as the PRF is CROB. An alternative
and practical route for achieving robustness makes use of a random oracle to instantiate
the MAC as it can be easily shown to be CROB and also allows secure reuse of keys with
any scheme.

The above raises the question if robustness can be achieved without key reuse or random
oracles. Such an approach is sometimes recommended as it allows for modular proofs of
AE security. Below we give a transform akin to EtM that also authenticates the encryption
key and which results in a scheme that is both AE and CROB secure. We give the details
of the transform in Figure 7.

Gen(1λ):
Ke←←Gene(1λ)
Km←←Genm(1λ)
return (Ke,Km)

Enc((Ke,Km),M):
C←←Enc(Ke,M)
T←←Tag(Km, (C ||Ke))
return (C ,T)

Dec((Ke,Km), (C ||T)):
if Ver(Km, (C ||Ke),T) = 0 return ⊥
M ← Dec(Ke,C)
return M

Figure 7: The modified EtM transform that authenticated the encryption key via a
collision-resistant MAC.

Theorem 4. Suppose AE = (Gene,Enc,Dec) is IND$ secure (see Figure 1) and
MAC = (Genm,Tag,Ver) is pseudorandom. Then the scheme AE = (Gen,Enc,Dec)
in Figure 7 is AE secure. Furthermore, this scheme is CROB secure if MAC is collision
resistant.

Proof. For CROB, consider an adversary that outputs ((C ||T), (Ke||Km), (K ′e||K ′m)) such
that (C ||T) decrypts to valid messages under both keys. Then the tag T must also verify
under both Km and K ′m. This however constitutes an attack on the collision resistance of
MAC unless Km = K ′m and Ke = K ′e.

For AE security, we follow the standard path as follows. Let G0 be the AE with real
procedure. In G1 we compute T in the Enc procedure by replacing T with random bit
strings, and also replace the Dec procedure with the ⊥ procedure. We can bound the

14 Security of Symmetric Primitives under Incorrect Usage of Keys

difference between G0 and G1 using a direct reduction to the pseudorandomness of MAC:
Pr[GA0]− Pr[GA1] ≤ Adv$uf

MAC,B1
(λ). In G2 we replace the ciphertext components in the

outputs of the Enc procedure with random strings. Again, using a reduction to the IND$
security of AE we can bound the difference between games G1 and G2: Pr[GA2]−Pr[GA3] ≤=
Advind-$

AE,B2
(λ). Finally note that G2 is the AE with fake procedures which translates to:

Advae
AE,A(λ) = Pr[GA0]− Pr[GA2] ≤ Adv$uf

MAC,B1
(λ) + Advind-$

SE,B2
(λ).

5.1 The symmetric ABN transform
The starting point for our second construction is the transform introduced by Abdalla et
al. [ABN10] (henceforth, the ABN transform) to convert any PKE scheme into one that is
also completely robust as shown in [FLPQ13]. Roughly speaking in the ABN transform
one commits to the public key during encryption, encrypts the decommitment along with
the plaintext, and includes the commitment as part of the ciphertext. The commitment is
then checked against the public key in the decryption algorithm. The transform is shown
in Figure 8. ABN relies on a commitment scheme (CPG,Com,Ver) and operates in the
CRS model via a common parameter-generation algorithm CPG.

PKSetup(1λ):
crs←←CPG(1λ)
return crs

PKGen(1λ):
(pk, sk)←←PKGen(1λ)
return (pk, sk)

PKEnc(crs, pk,M):
(com,dec)←←Com(crs, pk)
C←←PKEnc(pk, (M ,dec))
return (C , com)

PKDec(crs, pk, sk, (C , com)):
(M ,dec)← PKDec(K ,C)
if Ver(crs, pk, com,dec) then

return M
return ⊥

Figure 8: The ABN transform [ABN10] for public-key encryption.

We ask if an analogue of ABN, perhaps in the CRS model, can be also formulated
for symmetric encryption. In this setting there is no public key and a natural alternative
would be to commit to the secret key instead. This however results in a key-dependent
message being encrypted as the decommitment dec is computed based on the encryption
key K . Furthermore, the commitment string com must be pseudorandom to accomplish
AE security.

One can attempt to repair the ABN transform as follows. First, use a commitment
scheme with pseudorandom commitments. Any collision-resistant PRF is equivalent to
such a commitment scheme, where crs = ε (assuming the PRF does not use a CRS) and
Com(M ||K) outputs (PRF(K ,M),K) as the (com,dec) pair. The verification algorithm
simply checks the commitment by recomputing the PRF using K and M . This scheme
is computationally hiding down to the pseudorandomness of PRF. Furthermore, it is
computationally binding down to its collision resistance. This technique still does not
resolve the key-dependency issue. Although in this scheme the decommitment string is
simply a random PRF key independent of the encryption key, a circular dependency
between the encryption key and the PRF key exists which prevents a proof to go through.
(Recall that in the public-key setting this issue does not arise as the public key is a
key-dependent value that is available “for free.”)

To fix these issues we compute a string that acts as a “public labeling” of the encryption
key, and which does not hurt the security of the scheme. We first expand K using a
PRG, use its left-half in encryption, and commit to its right-half as the public labeling.
For this, we must however ensure that different keys give always rise to different public
labellings. This can be achieved if the PRG is collision resistant (for example injective)
on the right-half of outputs. Such PRGs can be based on one-way permutations via Yao’s

Pooya Farshim, Claudio Orlandi and Răzvan Roşie 15

transform [Yao82]. Indeed, assuming π is a one-way permutation and HC is a hardcore
predicate for it [GL89], we get a right-injective PRG via

PRG(x) := HC(x)||HC(π(x))|| . . . ||HC(π|x|−1(x))||π|x|(x) .

Observe the last part in this PRG is a permutation, which provides the required injectivity.
This results in the transform shown in Figure 9.

Gen(1λ):
Ke←←Gene(1λ)
return Ke

Enc(Ke,M):
Km←←Genm(1λ)
(K1

e ||K2
e)← PRG(Ke)

C←←Enc(K1
e , (M ||Km))

T←←Tag(Km, (C ||K2
e))

return (C ||T)

Dec(Ke, (C ||T)):
(K1

e ||K2
e)← PRG(Ke)

(M ||Km)← Dec(K1
e ,C)

if Ver(Km, (C ||K2
e),T) = 0

return ⊥
return M

Figure 9: The modified EtM transform for obtaining CROB security.

Theorem 5. Suppose AE = (Gene,Enc,Dec) is IND$ secure, MAC = (Genm,Tag,Ver)
is pseudorandom, and PRG is secure. Then the scheme AE = (Gen,Enc,Dec) in Fig-
ure 9 is AE secure. Furthermore, this scheme is CROB secure as long as MAC is collision
resistant and PRG is right collision resistant.

Proof. Suppose that an adversary computes a ciphertext (C ||T) that decrypts correctly
under two keys Ke 6= K ′e. The fact that Ke 6= K ′e together with the right collision resistance
of PRG implies that K 2

e 6= K ′e
2. This then can be used to break the collision resistance of

MAC using the pair (Km, (C||K 2
e)) and (K ′m, (C||K ′e

2)) where Km and K ′m are computed
by decrypting C using the left halves K1

e and K ′e
1 of the PRG output, respectively.

AE security can be proven in the standard way as follows. Let G0 be the AE game
with respect to the real encryption and decryption oracles. In G1 we replace the outputs
of the PRG with truly random bit strings. This transition can be justified using the
security of PRG: Pr[GA0]− Pr[GA1] ≤ Advprg

PRG,B1
(λ) . In G2 we replace T with random

tags and decryption with the ⊥ oracle. A direction reduction to $UF security the MAC
can be used to bound this transition: Pr[GA1] − Pr[GA2] ≤ Adv$uf

MAC,B2
(λ). In G3 we

replace C with random strings via the IND$ security of the AE. Now note that G3
corresponds to the AE game with respect to the fake encryption and decryption oracles:
Pr[GA2]− Pr[GA3] ≤ Advind$

AE,B3
(λ).

One advantage of the second transform is that it only relies on the pseudorandomness
of MAC with freshly generated keys. This in turns allows for simple instantiation of it.
For a right collision-resistant PRG, let

PRG(K) = PRG0(K)||PRG1(K) with (`0, `1) := (|PRG0(K)|, |PRG1(K)|) .

Then we compute a MAC on a (hashed) message M with |M | = `1 as:

Tag(K ,M) := (M ||0`0)⊕
(
PRG0(K)||PRG1(K)

)
.

The collision resistance of this MAC follows from the fact that the right (and collision-
resistant) half of PRG is output in the clear.

6 Robust and Collision-Resistant PRFs
We now turn to the problem of constructing robust and collision-resistant PRFs. For
practical purposes, it is a reasonable assumption that a keyed hash function acts as a PRF

16 Security of Symmetric Primitives under Incorrect Usage of Keys

when used with a random and unknown key, and is also an unkeyed collision-resistant
function.3 Hence, a practical hash function can be used to instantiate the transformations
in the previous section.

Gen(1λ):
K←←{0, 1}n
return K

PRF(K ,M):
(K1||K2)← PRG(K)
C1 ← PRP(K1,M)
C2 ← PRF(K2,C1)
return (C1||C2)

Figure 10: Collision-resistant PRF
from a key-injective PRF. Keys are
derived via a right-injective length-
doubling PRG.

We ask if collision-resistant PRFs can be
based on simpler assumptions in the standard
model. One method to immediately obtain
collision-resistant PRFs would be to use a com-
biners. Roughly speaking, a hash function com-
biner is a transform that takes two (ore more)
hash functions as input and outputs a hash func-
tion that is secure if either hash function is se-
cure. For example, concatenation is a combiner
for collision resistance. Fischlin et al. [FLP14]
give a multi-property combiner for hash func-
tion that is above to simultaneously preserve
multiple security properties of input hash func-
tions, including collision-resistance and pseudorandomness. This raises an alternative route
to obtain collision-resistant/robust PRFs based on multi-property hash combiners. The
construction of Fischlin et al. [FLP14], however, considers keyed collision resistance which
is not sufficient for our purposes. Furthermore, a modification to unkeyed hash functions
results in key dependency issues (somewhat similarly to the ABN transform) which then
prevents a security proof.

Our first result is a simple transform that converts any CROB-secure PRF into a
fully collision-resistant PRF. In this transform, which is shown in Figure 10, we use a
length-doubling PRG that is collision resistant on the right half of its output. We expand
a key K to (K1||K2) via a PRG, use K2 in a key-injective PRF and K1 in a pseudorandom
permutation to guarantee collision resistance over both keys and inputs. Key-injective
PRF [CMR98, Fis99] is a weakening of FROB where it is required that M1 = M2, i.e., it
should be infeasible to find K1 6= K2 such that PRF(K1,M) = PRF(K2,M). We will
also use a pseudorandom permutation PRP to ensure injectivity over messages.

Proposition 2. The PRF construction in Figure 10 is collision-resistant (and in particular
CROB) if the underlying PRF is key-injective and the PRG is right collision-resistant.
Furthermore, the construction is PRF secure if the PRG, PRF, and PRP are secure.

Proof. We first prove collision resistance. Suppose an adversary outputs (K ,M) 6= (K ′,M ′)
such that PRF(K ,M) = PRF(K ′,M ′). Let (K1,K2) ← PRG(K) and (K ′1,K ′2) ←
PRG(K ′). Then by construction:

PRF(K2,C) = PRF(K ′2,C) where C = PRP(K1,M) = PRP(K ′1,M ′)

This means that the adversary breaks the assumed key-injectivity property of the PRF
unless K2 = K ′2 (note that the PRF is run on the same input). But K2 = K ′2 implies
that we also have K = K ′ as otherwise the adversary would break the right collision-
resistance property of the PRG. This however means that K1 = K ′1. Now since PRP is a
permutation over this key, collisions can only occur if M = M ′. This, however, contradicts
the assumption that (K ,M) 6= (K ′,M ′).

The proof of PRF security is standard and proceeds as follows.
G1 : This is the PRF experiment with b = 0, where the outputs are computed using the

PRF.
G2 : In this game, instead of outputs of PRG we use random and independent K1 and

K2. The distance to the previous game can be bounded via the security of PRG.
This step decouples the two keys.

3And indeed the random oracle meets this simultaneous security requirement.

Pooya Farshim, Claudio Orlandi and Răzvan Roşie 17

G3 : In this game we replace the outputs of the PRF with random strings. The distance
to the previous game can be bounded via the PRF security of the PRF.

G4 : In this game we replace the outputs of the PRP with random strings. The distance
to the previous game can be bounded via the security of the PRP. This game
corresponds to PRF experiment with b = 1.
Therefore, for any A there are B1, B2 and B3 such that

Advprf
PRF,A

(λ) ≤ Advprg
PRG,B1

(λ) + Advprf
PRF,B2

(λ) + Advprf
PRP,B3

(λ) .

We now prove that the key-injective PRF used above can be based on length-doubling
PRGs that achieve collision-resistance both on the left and the right halves of their outputs.
That is, when for any efficient A the probability

Pr
[
(K1,K2)←←A(1λ); (K i

0,K i
1)← PRG(K i); return (K1

0 = K2
0 ∨K1

1 = K2
1) ∧K1 6= K2]

is negligible. We call such a PRG left-right collision-resistant (LRCR). The next lemma
build on results from [CMR98, Fis99] shows that the GGM construction [GGM86] when
instantiated with an LRCR-secure PRG is key-injective. Recall that the GGM construction
defines a PRF as

PRF(K , [M0, . . . ,Mn]) := PRGMn
(PRGMn−1(. . .PRGM1(K) . . .)) ,

where Mi denotes the i-th bit of M , PRG0(X) the left half of the output of PRG(K)
and PRG1(K) its right half. The difference with [CMR98, Fis99] is that we do not rely
on a CRS (a.k.a. tribe-key) but rely on the stronger LRCR security of the PRG.

Proposition 3. The GGM construction when instantiated with a left/right collision-
resistant PRG results in a key-injective pseudorandom function.

Proof. The pseudorandomness proof is identical to that of the GGM. We prove key-
injectivity. Let

yij = PRGMi(PRGMi−1(. . .PRGM1(Kj) . . .))

be the i-th intermediate value for key j. Suppose an adversary finds (K1,K2,M =
[M1, . . . ,Mn]) with K1 6= K2 such that yn1 = yn2 . Now either yn−1

1 6= yn−1
2 or yn−1

1 = yn−1
2 .

In the first case a collision is found and we are done. In the second case we look at yn−2
1

and yn−2
2 and so on. If we reach y1

1 and y1
2 and a collision is yet to be found then, since

K1 6= K2, this is the collision for the PRG.

Finally, we show that left/right collision-resistant PRGs can be built in the standard
model (without the use of ROs). Consider the function G : Z3

p −→ G6 for a group G of
order p generated by g [BCP02]:

G(x1, x2, x3) := (gx1 , gx1x2 , gx2x3 , gx2 , gx1x3 , gx3) .

We start by observing that this function is indeed injective on its left and right halves
of output. Suppose there exists (x1, x2, x3) 6= (y1, y2, y3) such that (gx1 , gx1x2 , gx2x3) =
(gy1 , gy1y2 , gy2y3). Then by comparing the first elements, we must have x1 = y1, which
in conjunction with the equality of second components implies x2 = y2. This together
with the equality of third components implies x3 = y3. Injectivity for the right half of the
outputs is shown similarly.

The outputs of G when run on random inputs are indistinguishable from a random
element of G6 under the DDH assumption. To see this, we start with (gx1 , gx1x2 , gx2x3 ,
gx2 , gx1x3 , gx3) and replace gx1x2 with gz1 using DDH applied to (gx1 , gx2 , gx1x2) and

18 Security of Symmetric Primitives under Incorrect Usage of Keys

PRG(s):
(a0, b0, a1, b1, x)← PRG0(s)
if (a0 = 0 ∨ a1 = 0) then return ⊥
(x0, x1)← G(x)
s0 ← H((a0, b0)||π((a0, b0), x0)); s1 ← H((a1, b1)||π((a1, b1), x1))
return s0||s1

Figure 11: A length-doubling left/right collision resistant PRG : {0, 1}n → {0, 1}2n, based
on a regular collision-resistant hash H : {0, 1}3·3(n+l) → {0, 1}n, a pairwise-independent per-
mutation π : {0, 1}3(n+l) → {0, 1}3(n+l), a LRCR-secure PRG G : {0, 1}3n → {0, 1}2·3(n+l)

and a PRG0 : {0, 1}n → {0, 1}4·3(n+l)+3n right injective over the last 3n bits.

generating an x3 to simulate the remaining elements. Next we replace gx2x3 with gz2 via
DDH applied to (gx2 , gx3 , gx2x3) and generate an x1 to simulate the remaining elements.
We finally replace gx1x3 with gz2 using DDH.

The outputs of G, however, are not GGM-friendly as they lie in G which may be
encoded as strings that are longer than 2 · |(x1, x2, x3)|. Furthermore these outputs are not
uniformly distributed. Rather the outputs are indistinguishable from some distribution
D ×D on {0, 1}3(n+l) × {0, 1}3(n+l), where l is the length of the bits needed to represent
the group elements.

Following [Dod05, DS05], we address these issues by applying in parallel a collision-
resistant extractor to the outputs of G in two steps: (1) we apply a pairwise-independent
permutation to bring the output distribution close to uniform; (2) we then use a collision-
resistant, regular hash function to compress the result down to n bits without losing
uniformity of the outputs. A pairwise-independent permutation π can be instantiated as

π((a, b), X) := a ·X + b where a, b←←{0, 1}3(n+l), a 6= 0

(where the · and + operations are defined over an extension field). A function H : D −→ R is
regular if its outputs are uniformly distributed over R for uniform inputs in D, equivalently
for all y ∈ R it holds |H−1(y)| = |D|/|R|. Regular, collision-resistant hash functions can
be obtained from claw-free permutations [CMR98].

We define the required LRCR-secure and GGM-friendly PRG in Figure 11, where
PRG0 is a right-injective PRG and G(x) = (x0, x1) is a LRCR-secure PRG (for example
the one above obtained from DDH).

Theorem 6. The PRG in Figure 11 is LRCR-secure and a secure PRG if PRG0 is
secure, G is secure with respect to the output distribution of D with min-entropy at least
3n, H is a regular and collision-resistant hash function, and π is a pairwise-independent
permutation.

Proof. We first show PRG is LRCR secure. Let PRG(s) = s0||s1. Suppose that an
adversary outputs s 6= s′ such that sd = s′d for some d = 0, 1. Let d = 0. So either the
adversary can be used to break the collision resistance of H or ((a0, b0), π((a0, b0), x0)) =
((a′0, b′0), π((a′0, b′0), x′0)). Therefore (a0, b0) = (a′0, b′0) and π((a0, b0), x0) = π((a′0, b′0), x′0).
Since π((a0, b0), ·) is a permutation we must have that x0 = x′0. This contradicts the
LRCR security of G unless x = x′. This in turns means that a collision on the right side
(corresponding to x) of the output of PRG0 is found unless s = s′. The case d = 1 is
dealt with similarly. This concludes the proof of LRCR security.

We now turn to the pseudorandomness of the PRG. If H is regular, its outputs are
uniform when fed with uniform inputs. Hence, we show the outputs of π are uniform. We
prove this by first replacing the key (a0, b0) (and respectively, (a1, b1)) of π with truly
random keys using the security of PRG0. We then replace x0 (and respectively x1) with
random strings sampled according to the distribution D on {0, 1}3(n+l). This follows

Pooya Farshim, Claudio Orlandi and Răzvan Roşie 19

from the security of G. Note that the distribution D has min-entropy at least 3n by the
injectivity of group exponentiation.

Dodis and Smith [DS05, Prop. 11] show a left-over hash lemma for composition
with functions: for H a regular collision-resistant hash function with output length
` ≤ t−2 log(1

ε), where t is the min-entropy of the input source D to a pairwise-independent
permutation π, the statistical distance between H(π(D)) and H(U) is at most ε. Applying
this result to our setting with ε := 2−n, we get that setting ` ≤ 3n− 2 log(1

ε) = n would
result in uniform outputs. This matches the output length of H and concludes the proof
of security of PRG.

Remark. We note that LRCR security is also necessary for building key-injective PRFs
as any key-injective PRF would immediately give rise to an LRCR-secure PRG by setting
the seed to the PRF key and the outputs of the PRG to those of the PRF evaluated at two
points. We leave the possibility of basing LRCR-secure PRGs on generic assumptions, such
as one-way functions/permutations or collision-resistance, to future work. We, however,
observe that collision resistant does not seem to be a necessary condition as the left or
right halves of the PRG do not need to be compressing.

Acknowledgments. Farshim was supported by grant ANR-14-CE28-0003 (Project EnBid).
Orlandi was supported by the Danish Independent Research Council and COST Action
IC1306. Roşie was supported by European Union’s Horizon 2020 research and innovation
programme under grant agreement No H2020-MSCA-ITN-2014-643161 ECRYPT-NET.

References
[ABN10] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In

Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 480–497.
Springer, Heidelberg, February 2010.

[BCP02] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Dynamic group
Diffie-Hellman key exchange under standard assumptions. In Lars R. Knudsen,
editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 321–336. Springer,
Heidelberg, April / May 2002.

[Bih94] Eli Biham. New types of cryptoanalytic attacks using related keys (extended
abstract). In Tor Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS,
pages 398–409. Springer, Heidelberg, May 1994.

[BK03] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key
attacks: RKA-PRPs, RKA-PRFs, and applications. In Eli Biham, editor,
EUROCRYPT 2003, volume 2656 of LNCS, pages 491–506. Springer, Heidelberg,
May 2003.

[BN08] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. Journal of
Cryptology, 21(4):469–491, October 2008.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the
block-cipher-based hash-function constructions from PGV. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 320–335. Springer, Heidelberg,
August 2002.

[CMR98] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-way
probabilistic hash functions (preliminary version). In 30th ACM STOC, pages
131–140. ACM Press, May 1998.

20 Security of Symmetric Primitives under Incorrect Usage of Keys

[CO15] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer.
In Kristin E. Lauter and Francisco Rodríguez-Henríquez, editors, LATIN-
CRYPT 2015, volume 9230 of LNCS, pages 40–58. Springer, Heidelberg, August
2015.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection
meets big data: an efficient and scalable protocol. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 789–800. ACM
Press, November 2013.

[Dod05] Yevgeniy Dodis. On extractors, error-correction and hiding all partial infor-
mation. In IEEE Information Theory Workshop on Theory and Practice in
Information-Theoretic Security, 2005., pages 74–79. IEEE, 2005.

[DS05] Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial
information. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC,
pages 654–663. ACM Press, May 2005.

[Fis99] Marc Fischlin. Pseudorandom function tribe ensembles based on one-way
permutations: Improvements and applications. In Jacques Stern, editor, EU-
ROCRYPT’99, volume 1592 of LNCS, pages 432–445. Springer, Heidelberg,
May 1999.

[FLP14] Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. Robust multi-property
combiners for hash functions. Journal of Cryptology, 27(3):397–428, July 2014.

[FLPQ13] Pooya Farshim, Benoît Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia.
Robust encryption, revisited. In Kaoru Kurosawa and Goichiro Hanaoka,
editors, PKC 2013, volume 7778 of LNCS, pages 352–368. Springer, Heidelberg,
February / March 2013.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, 33(4):792–807, October 1986.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In 21st ACM STOC, pages 25–32. ACM Press, May 1989.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cam-
bridge University Press, Cambridge, UK, 2001.

[HK07] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened
key encapsulation. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of
LNCS, pages 553–571. Springer, Heidelberg, August 2007.

[HKR15] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust authenticated-
encryption AEZ and the problem that it solves. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages
15–44. Springer, Heidelberg, April 2015.

[Lam16] Mikkel Lambæk. Breaking and fixing private set intersection protocols. Cryptol-
ogy ePrint Archive, Report 2016/665, 2016. http://eprint.iacr.org/2016/
665.

[Moh10] Payman Mohassel. A closer look at anonymity and robustness in encryption
schemes. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS,
pages 501–518. Springer, Heidelberg, December 2010.

http://eprint.iacr.org/2016/665
http://eprint.iacr.org/2016/665

Pooya Farshim, Claudio Orlandi and Răzvan Roşie 21

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijay-
alakshmi Atluri, editor, ACM CCS 02, pages 98–107. ACM Press, November
2002.

[RS06] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the
key-wrap problem. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 373–390. Springer, Heidelberg, May / June 2006.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In 23rd FOCS, pages 80–91. IEEE Computer Society Press, November
1982.

Appendices
A Relations among Notions of Robustness
For completeness and comparison with prior work we introduce symmetric analogues of
mixed-robustness (XROB) and keyless-robustness (KROB) for AE schemes in Figure 12
below. This follow the definitions of [FLPQ13] in the context of public-key encryption.

XROBA
AE(λ):

(M1,K1,R1,C2,K2)←←A(1λ)
C1 ← Enc(K1,M1; R1)
M2 ← Dec(K2,C2)
if M1 6= ⊥ ∧M2 6= ⊥ ∧K1 6= K2∧

C1 = C2 6= ⊥ return 1
return 0

KROBA
AE(λ):

(M1,K1,R1,M2,K2,R2)←←A(1λ)
C1 ← Enc(K1,M1; R1)
C2 ← Enc(K2,M2; R2)
if M1 6= ⊥ ∧M2 6= ⊥ ∧K1 6= K2∧

C1 = C2 6= ⊥ return 1
return 0

Figure 12: Mixed robustness (XROB) and key-less robustness (KROB) for AE.

We study relations among notions of robustness for AE schemes below.

Proposition 4. Let AE be an encryption scheme.
1. AE is FROB secure if and only if it is CROB secure.
2. If AE is FROB secure, then it is also XROB secure.
3. If AE is XROB secure, then it is also KROB secure.
4. If AE is FROB secure, then it is also SFROB secure.
5. If AE is SFROB secure, then it is also SROB secure.

Proof. (1) FROB ⇐⇒ CROB. (“⇐”) Assume the existence of an adversary that wins
the FROB game. Then this adversary also wins the CROB game by querying the FROB
winning tuples to the Dec oracle. (“⇒”) First, from (2) and (3) we have that a FROB
scheme is also KROB and XROB. Then, note that a pair of winning tuples for the CROB
game can arise in one of three possible ways: (1) Both tuples were added to the list through
decryption queries. This directly translates into a winning output for a FROB adversary;
(2) Both tuples were added to the list through encryption queries. This translates into a
winning output for a KROB adversary; (3) One tuple was added to the list through an
encryption query and the other through a decryption query. This translates into a winning
output for an XROB adversary.

22 Security of Symmetric Primitives under Incorrect Usage of Keys

Algorithm B(1λ):
1. (M1,K1,R1,C2,K2)←←A(1λ)
2. C1 ← Enc(K1,M1; R1)
3. return (C1,K1,K2)

Figure 13: FROB⇒ XROB.

(2) FROB =⇒ XROB. We proceed as
in the previous case. We build an adversary
B that wins the FROB game in Figure 13.
B runs A to obtain an XROB winning tuple
(M1,K1,R1,C2,K2) that fulfills the XROB
constraints: C1 = Enc(K1,M1; R1) =
C2 ∧Dec(K2,C2) 6= ⊥. Then B computes
C1 ← Enc(K1,M1; R1) and uses the tuple
(C1,K1,K2) to win the FROB game: both tuples Dec(K1,C1) and Dec(K2,C2) will return
6= ⊥, given that C is a valid ciphertext. Therefore Advfrob

AE,B(λ) = Advxrob
AE,A(λ).

Algorithm B(1λ):
1. (M1,K1,R1,M2,K2,R2)←←A(1λ)
2. C2 ← Enc(K2,M2; R2)
3. return (M1,K1,R1,C2,K2)

Figure 14: XROB⇒ KROB.

(3) XROB =⇒ KROB. The intu-
ition behind the proof is that an adver-
sary breaking KROB can be used to con-
struct an XROB winning tuple simply by
encrypting part of the output obtained
from the KROB adversary. The reduc-
tion is shown in Figure 14. Let A be
an adversary having a non-negligible advantage against the KROB game. We build
an adversary B that wins the XROB game as follows: B begins by running A to ob-
tain a KROB winning tuple (M1,K1,R1,M2,K2,R2) that fulfills the KROB constraint:
C1 ← Enc(K1,M1; R1) ∧ C2 ← Enc(K2,M2; R2) ∧ C1 = C2. Next, B computes
C2 ← Enc(K2,M2; R2) and creates the tuple (M1,K1,R1,C2,K2) to win the XROB
game; we state that C1 ← Enc(K1,M1; R1) 6= ⊥ because it is part of a KROB tuple while
Dec(K2,C2) 6= ⊥ returns a valid message with non-negligible probability. We conclude
that Advxrob

AE,B(λ) = Advkrob
AE,A(λ).

Algorithm B(1λ):
1. (K1,K2)←←Gen(1λ)
2. C←←AEnc,Dec(1λ,K2)
3. return (C1,K1,K2)

Figure 15: FROB⇒ SFROB.

(4) FROB =⇒ SFROB. As in the
previous cases, we build an adversary B
that wins the FROB game in Figure 15. B
samples K1,K2 uniformly at random and
runs A and answers its oracle queries using
the keys. When A returns C ; then, B con-
structs an FROB winning tuple (C ,K1,K2)
that fulfills the constraints: M1 ← Dec(K1,C)∧M2 ← Dec(K2,C)∧M1 6= ⊥∧M2 6= ⊥. B
simply returns (C ,K1,K2) to win the FROB game. Therefore Advfrob

AE,B(λ) = Advsfrob
AE,A(λ).

(5) SFROB =⇒ SROB. This follows from a trivial reduction as the games are
identical except that an SROB adversary does not get to see K2.

We define mixed-robustness (XROB) and keyless-robustness (KROB) for MACs in
Figure 16 below.

XROBA
MAC(λ):

(M1,K1,R1,M2,K2,T2)←←A(1λ)
T1 ← Tag(K1,M1; R1)
b2 ← Ver(K2,M2,T2)
if M1 6= ⊥ ∧M2 6= ⊥ ∧K1 6= K2∧
b2 = 1 ∧ T1 = T2 6= ⊥ return 1

return 0

KROBA
MAC(λ):

(M1,K1,R1,M2,K2,R2)←←A(1λ)
T1 ← Tag(K1,M1; R1)
T2 ← Tag(K2,M2; R2)
if M1 6= ⊥ ∧M2 6= ⊥ ∧K1 6= K2∧

T1 = T2 6= ⊥ return 1
return 0

Figure 16: Mixed robustness (XROB) and key-less robustness (KROB) for MAC.

Pooya Farshim, Claudio Orlandi and Răzvan Roşie 23

Proposition 5. Let MAC be a message authentication code.
1. A MAC is FROB secure if an only if it is CROB secure.
2. If MAC is FROB secure, then it is also XROB secure.
3. If MAC is XROB secure, then it is also KROB secure.
4. If MAC is FROB secure, then it is also SFROB secure.
5. If MAC is SFROB secure, then it is also SROB secure.

The proofs are omitted as they are virtually identical to those of Proposition 4.

B Separations among Notions of Robustness
We show separating examples to further clarify the level of robustness offered by various
notions. In particular we show that FROB is a strict strengthening of XROB, which itself
is a strict strengthening of KROB. We also show SFROB is incomparable to KROB and
that SROB is incomparable to XROB. Hence FROB is the only robustness notion that
encompasses all these notions.

Consistently with our previous discussions, all our counterexamples scheme will have
valid keys and preserve full correctness. Although not formally required, we also give
separating examples that do not affect AE security for AE scheme or SUF security for
MACs.

Proposition 6. Suppose there is a scheme AE which is both AE and FROB secure.
1. There exists a scheme AE that is AE and SFROB secure but not KROB secure.
2. There exists a scheme AE that is AE and KROB secure but not XROB secure.
3. There exists a scheme AE that is AE and XROB secure but not FROB secure.

Proof. (1) SFROB 6=⇒ KROB. Consider scheme AE whose encryption on keys 0k and
1k always uses the key 1k. Decryption also always uses 1k on these two keys. This scheme
is not KROB as ciphertexts for the same plaintext and randomness on these two keys
collide. But it remains SUF and SFROB as 0k or 1k will be used in these games with
negligible probability.

(2) KROB 6=⇒ XROB. Let PRF be a PRF with outputs in {0, 1}k \ {0k, 1k}. Such
PRFs can be easily constructed by modifying outputs whenever they happen to be 0k or
1k to, say, 01k−1. Consider scheme AE that operates as follows. The modified encryption
algorithm first expands K via a right-injective PRG to (Kf ,Ke) and then computes

Enc(K ,M ; R) := B||Enc(Ke,M ; R) ,

where B := K if K ∈ {0k, 1k} and B := PRF(Kf ,Enc(Ke,M ; R)) otherwise. The
modified decryption returns message 0 on the special keys whenever the output is ⊥. This
scheme is not XROB as any correctly generated ciphertext in the range of key 0k will also
decrypt to a valid message under key 1k.

But the scheme is still KROB. Indeed, since encryption has disjoint ranges for keys
0k and 1k and K 6= 0k, 1k (due to B and range of PRF), a KROB attack must exploit
two keys that are both not 0k or 1k. However such an attack would translate to one on
the base scheme as PRG is right injective. This scheme is also still AE secure, as it is
essentially an “Encrypt-then-MAC” construction. (Note that we do not need to rely on
the PRG for a separating example that does not need to preserve AE security.)

(3) XROB 6=⇒ FROB. Let PRF be a PRF with outputs in {0, 1}k \ {0k} as above.
Consider scheme AE that operates as follows. The modified encryption algorithm first
expands K via a right-injective PRG to (Kf ,Ke) and then

Enc(K ,M ; R) := B||Enc(Ke,M ; R) ,

24 Security of Symmetric Primitives under Incorrect Usage of Keys

where B := PRF(Kf ,Enc(Ke,M ; R)) otherwise. The modified decryption on keys 0k and
1k, decrypts the second part of the ciphertext, and if it is ⊥ and B = 0k, it returns 0.
This scheme is not FROB as any ciphertext beginning with B = 0k will decrypt to a valid
message under keys 0k and 1k.

This scheme, however, is still XROB secure. Encryption under any key will not result
in a ciphertext that begins with B = 0k. Hence an XROB must have B 6= 0k in its
ciphertext. Such an XROB attack must have the second components of the ciphertext
matching too. This then translates to an XROB on the base scheme AE as modified
decryption is equivalent to the original one when B 6= 0k. This scheme is also AE secure,
as it is an Encrypt-then-MAC construction and a random key will hit 0k and 1k with
negligible probability.

Note that only valid keys are used in the above attacks, and that the modified schemes
all remain perfectly correct.

We do not prove that there exists an AE scheme that is XROB secure but not
SROB secure as SROB security is already implied by AE security. Without AE security,
counterexamples similar to those given above exist.

We give similar separations for MACs. We recall that (by Theorem 2) a KROB secure
MAC is SROB secure.

Proposition 7. Let MAC be a MAC that is SUF and FROB secure.
1. There exists a scheme MAC that is SUF and SFROB secure but not KROB secure.
2. There exists a scheme MAC that is SUF and KROB secure but not XROB secure.
3. There exists a scheme MAC that is SUF and XROB secure but not FROB secure.

Proof. (1) SFROB 6=⇒ KROB. Consider scheme MAC whose verification always passes
on keys 0k and 1k and whose tag generation on these keys always returns 0. This scheme
is trivially not KROB secure as tags on 0k and 1k always collide. But it remains SUF and
SFROB as a random key will be 0k or 1k with only a negligible probability.

(2) KROB 6=⇒ XROB. Consider scheme MAC that operates as

Tag(K ,M ; R) := B||Tag(K ,M ; R) ,

where B := 00 if K = 0k, B := 01 if K = 1k, and B := 10 otherwise. The modified
verification algorithm first checks that B = 10 if K 6∈ {0k, 1k} and that B = 00 if K = 0k,
and the verifies the rest of the tag. However, when K = 1k it accepts any tag value that
starts with B = 01 or B = 00.

This scheme is not XROB. An adversary can win this game by outputting

(M1,K1,R1,M2,K2,T2) := (0, 0k, 0|R1|, 1k, 00|T1) ,

where T1 := Tag(K1,M1; R1). Indeed, 00|T1 will verify under K1 = 0k and M1 = 0 as it
is a correctly generated tag value for these inputs. It will also verify under K2 = 1k as the
leading bits are ignored for this key upon verification.

This scheme is still KROB. To see this note that the scheme has disjoint tag ranges
for keys 0k and 1k and that KROB security at all other keys are not affected. The SUF
security of the scheme is also not affected as the scheme checks the attached bits upon
verification for random keys (keys 0k, 1k are used in the SUF game with only a negligible
probability).

(3) XROB 6=⇒ FROB. Consider scheme MAC that operates as

Tag(K ,M ; R) := 0||Tag(K ,M ; R) .

The modified verification algorithm passes if B = 0 and the rest of the tag verifies or if
B = 1. This scheme is clearly not FROB as any tag starting with a 1 will always verify

Pooya Farshim, Claudio Orlandi and Răzvan Roşie 25

under any key. However, The modified scheme is still XROB. Indeed a tag that verifies
under two keys, one of which is in the range of Tag, must begin with 0. For tag values
that start with a 0, the scheme is FROB and hence also XROB. The modified scheme is
also SUF as keys 0k and 1k will be used in SUF with negligible probability.

Note that only valid keys are used in the above counterexamples, and the modified
schemes are also perfectly correct.

Using similar ideas, it can be also shown that there is a MAC which is SUF and XROB
secure but not SFROB secure. Without SUF security a counterexample between XROB
and SROB can be also given.

	Introduction
	Preliminaries
	Definitions
	Robustness, AE Security, and Unforgeability
	Constructions
	The symmetric ABN transform

	Robust and Collision-Resistant PRFs
	Appendices
	Relations among Notions of Robustness
	Separations among Notions of Robustness

