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Abstract 

ISOPOL – for “International Symposium on Problems of Listeria and Listeriosis” – 
meetings gather every three years since 1957 participants from all over the world and allow 
exchange and update on a wide array of topics concerning Listeria and listeriosis, ranging 
from epidemiology, diagnostic, and typing methods, to genomics, post-genomics, 
fundamental microbiology, cell biology and pathogenesis. The XIXth ISOPOL meeting took 
place in Paris from June 14th to 17th, 2016 at Institut Pasteur. We provide here a report of the 
talks that were given during the meeting, which represents an up-to-date overview of ongoing 
research on this important pathogen and biological model. 
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Since the original article published by EGD Murray, RA Webb and MBR Swann in 1926 
in the Journal of Pathology and Bacteriology [1], ninety years of research have raised Listeria 
monocytogenes among the most documented pathogenic bacteria and listeriosis among the 
best studied infectious diseases, at least in animal models (Fig. 1) [2-4]. 

 
Since 1957, a meeting entitled ISOPOL for “International Symposium on Problems of 

Listeria and Listeriosis” gathers every three years participants from all over the world and 
allows exchange and update on a wide array of topics concerning Listeria and listeriosis, 
ranging from epidemiology, diagnostic, and typing methods, to genomics, post-genomics, 
fundamental microbiology, cell biology and pathogenesis. Attendees include advanced 
scientists, students and post docs from academia, industry and public health agencies, i.e. 
fundamental microbiologists, medical microbiologists, veterinary microbiologists and public 
health specialists as well as researchers in cell biology and immunology. 

The XIXth ISOPOL meeting organized by one of us (PC), with an international committee 
(S. Barbuddhe, H. Bierne, S. Brisse, C. Buchrieser, T. Chakraborty, J. Farber, P. Glaser, E. 
Gouin, J. Kreft, M. Lecuit, P. Martin, D. Portnoy) took place from June 2016 14th to 17th in 
the Institut Pasteur, Paris, one of the birth places of microbiology. It successfully gathered 
360 scientists, including most of the experts in the field who were present during the whole 
meeting (Fig. 2).  

While immunology was the first discipline to focus on Listeria infection, in particular the 
induction of adaptive T cell immunity, adaptive immunity was not extensively represented 
during the conference, whereas infection biology including cell biology and virulence gene 
regulation, as well as innate immunity were discussed in detail. A large amount of presented 
results were post genomic studies, with genomic approaches benefitting also to strain 
genotyping procedures. 

Fig. 1. Listeriology timeline, showing the 
emergence of major areas of investigation 
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Fig. 2. ISOPOL XIX group picture. 

One of the highlights of the meeting was the HPR Seeliger award ceremony. This year, 
the award was given to Werner Goebel (Fig. 3), who has been working on Listeria since three 
decades. 

	  

We provide here summaries for most of the talks delivered during the meeting by invited 
lecturers, or by speakers selected after abstract submission. For confidentiality reasons on 
unpublished results, a few talks could unfortunately not be included in this report. 

Fig. 3. Seeliger Awardee 
Werner Goebel (centre) 
with H. Hof (left on the 
picture) and J. Kreft (right). 
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Keynote speakers of the opening session  

Fernando Baquero (Ramón y Cajal Institute for Health Research, Madrid, Spain) 
provided an overview of the resistome of Listeria monocytogenes (Lm). He first pointed out 
the difference between the extrinsic and intrinsic resistomes of Lm to antibiotics and 
underlined the intrinsic resistance to some antimicrobial agents such as clindamycin and the 
cephalosporins [reviewed in 5]. He then discussed the atypically small extrinsic resistome, i.e. 
resistance genes acquired through horizontal gene transfer, possibly from microorganisms 
sharing the same ecological niche. He reasoned that this is consistent with the small 
pangenome of Listeria, and the high synteny between different strains, pointing to an 
infrequent acquisition of foreign genes by Lm for its ecological diversification and evolution. 
Restricted access of Lm to foreign genes is also attested by the limited number of plasmids 
isolated from the bacterium to date and may also result from its impaired competence system 
[6] combined with the presence of CRISPR-mediated defence systems to defeat DNA 
invasion by phages. This low rate of integration of foreign genes in the Lm genome may 
reflect its strong adaptation to a stable environmental niche. Recent anecdotal reports of 
antimicrobial resistant strains of Lm remain to be confirmed.  

Werner Goebel (Ludwig Maximilians University Munich, Germany) summarized the 
fundamentals of the intracellular Lm pathometabolism, which consists in a bipartite carbon 
metabolism where both glucose-6-phosphate and glycerol are taken up and used as carbon 
and energy sources essential for intracellular listerial growth. Activation of the host cell 
metabolism necessary for providing these compounds occurs once Lm reaches the 
intracellular stage, but the listerial factors triggering this activation are still ill-defined. 
Glucose-6-phosphate is mainly used by intracellular Lm to generate intermediates that serve 
anabolic purposes, such as cell wall and nucleotide biosynthesis [7]. Glycerol is preferentially 
utilized instead of glucose by intracellular Lm to ensure its ATP production, perhaps because 
excessive consumption of host cell glucose could result in metabolic stress of the host cell 
leading to its premature death. Other intracellular bacterial pathogens, such as Legionella, 
Chlamydia and enteroinvasive Escherichia coli show a bipartite metabolism as well, but these 
bacteria use different combinations of carbon sources, the production of which is induced in 
the host cell through distinct mechanisms [8]. 

Martin Loessner (Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland) 
presented the world of Listeria phages (Fig. 4), consisting mostly of temperate phages that 
belong to the Siphoviridae or Myoviridae. Among the few lytic phages, the A511 phage kills 
Listeria within minutes due to its endolysin, which degrades the Listeria cell wall. The 
Loessner lab has harnessed the exquisite binding capacities of the endolysin to Lm teichoic 
acids by isolating its cell wall binding (CBD) domain [9]. This opened the way to novel 
methods for labelling and enriching of Listeria, and allowed the detection of specific serovars 
[10]. These findings may provide simple and affordable Listeria diagnosis tests, enabling the 
search of Listeria in food or clinical isolates in a broader range of countries and settings [11]. 
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Seeliger Prize ceremony 

The Seeliger award is bestowed every three years at the ISOPOL meeting by the Heinz 
P.R. Seeliger Foundation to recognize an outstanding contribution to research on Listeria. 
This year, the Seeliger prize was awarded to Werner Goebel (Fig. 3).  

Jürgen Kreft (University of Würzburg, Germany) introduced the Seeliger prize with a 
documented historical perspective on listeriology, from the early report of a bacterium 
causing liver necrosis in rabbits by G. Hülphers in 1911 [12], to the onset of molecular 
research on virulence determinants and cellular microbiology at the end of the 1980s. He 
reminded us how, from a bacterium isolated sporadically from the fluids of infected patients 
and animals, it became a crucial tool for immunologists enabling the identification of cell-
mediated immunity by G. Mackaness [13], and was only confirmed as a food-borne pathogen 
in 1983 [14]. Through his discourse, it became apparent how Lm gradually became a model 
bacterial pathogen, allowing seminal findings in microbiology, infection biology, 
immunology and cell biology. 

Epidemiology and surveillance of Listeria and listeriosis 

The epidemiology and surveillance session of the meeting was the opportunity for a 
timely update about the detection and monitoring of listeriosis outbreaks, and counter-
measures that need to be taken. The session underlined the ongoing generalization of whole 
genome sequencing (WGS) for the identification of outbreaks, and of the use of multi-locus 
sequence typing (MLST) as a unifying language to define Lm strains. Several speakers 
illustrated the high resolution of WGS, compared to serotyping and pulse-field gel 
electrophoresis (PFGE), the strain typing methods that have been widely used for many years. 
The session clearly illustrated how WGS improves the definition of outbreaks versus sporadic 
cases, and allows for a more accurate linkage between patients, contaminated food isolates 
and processing plants.  

Peter Gerner-Smidt (Center for Disease Control and Prevention (CDC), Atlanta, USA) 
presented the genomics-based surveillance of listeriosis by CDC and its public health and 
food regulatory partners in the USA, combining epidemiological data from each reported 
patient in the Listeria initiative with information about the genome sequences of the 

Fig. 4. Transmission electron micrograph of a 
Listeria phage [Courtesy of J. Klumpp and M.J. 
Loessner, ETH Zürich, unpublished]. More than 
500 Listeria phages are known, all of which 
belong to Siphoviridae or Myoviridae. Among 
these, only a few are lytic phages. 
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thousands of Lm isolates from clinical cases and food [15]. He reported how the use of WGS 
of bacterial isolates allowed the identification of a larger number of outbreaks and their food 
source. He also pointed out that despite the extreme specificity of WGS for outbreak detection 
and case definition, solid epidemiological data remain critical to decipher the etiology of food 
contamination events.  

Jeffrey M. Farber (University of Guelph, Ottawa, Canada) recapitulated the main food 
items that present a high risk of Lm contamination for humans. He illustrated the importance 
of high-risk food such as particular meat, dairy and vegetable products by presenting their 
involvement in past outbreaks [16]. He also pointed to more unexpected sources of listeriosis, 
including water tanks contaminated by swallows. He reminded the audience that failure of 
basic sanitation measures in industry can have severe consequences, and discussed the 
specific case of food served in hospitals, where particular care should be applied to food 
preparation, in light of its consumption by particularly vulnerable individuals.  

Eva Møller Nielsen (Statens Serum Institute, Copenhagen, Denmark) presented the recent 
shift of typing methods from PFGE to WGS in the Danish reference laboratory and how this 
shift in genotyping strategy impacted on Lm surveillance by improving the definition of cases 
during outbreaks and by providing more confidence in incriminating the food sources [17]. 
This strategy proved particularly useful to track back contamination during a deadly outbreak 
of listeriosis which arose from Danish delicatessen in 2013-2014 [18]. 

Henriette De Valk (Public Health France, Saint Maurice, France) presented the French 
organization for the surveillance of listeriosis [manuscript in preparation]. The systematic 
reporting of clinical cases combined with real-time genotyping of the corresponding Lm 
isolates allows the detection of phylogenetically related clusters of epidemic samples. Recent 
food consumption by patients is reviewed and case-case epidemiological studies are then 
performed by comparing cluster cases with unrelated ones, aiming at defining the statistical 
probability that particular food items are associated with cluster cases. Trace back 
investigations and environmental and food investigations are then carried out for all foods 
associated with the outbreak strains. H. De Valk also commented on how the whole genome 
sequencing approach of genotyping impacts these investigations by defining strain 
phylogenetic relationships in a much more precise way than the previously used PFGE 
method. 

 Kathie Grant (Public Health England (PHE), London, UK) presented the molecular 
genotyping strategy based on WGS deployed in Public Health England (PHE). The strategy 
combines MLST-based and SNP-based approaches to define the genotype of strains. Most 
notably, a nomenclature system known as ‘SNP address’ has been devised to provide a 
phylogenetic-rich naming system of genotypes, thus allowing epidemiologists to define and 
investigate putative clusters of cases at different depths of genetic divergence [19]. This 
original approach provides the flexibility that is needed to account for the varying amounts of 
heterogeneity of Lm isolates observed during single-strain outbreaks. She also illustrated how 
this strategy contributes to identify food products associated with disease transmission in the 
UK [20]. Here again, the complexity of such identification processes benefits significantly 
from the advent of WGS applied to all sampled isolates from contaminated food and patients. 

Listeria genomics and post-genomics 

Sylvain Brisse (Institut Pasteur, Paris, France) presented the latest knowledge on the 
phylogenetic diversity of Lm and illustrated the strong structuration of this species into 
lineages and sublineages. He discussed how the data from various strain typing methods used 
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in research and surveillance laboratories can be compared and interpreted in light of the 
population structure and evolution of lineages [21]. He reported on the worldwide distribution 
of the major clonal groups [22], and hinted at differences of relative frequencies of these 
groups in food and clinical samples [23]. Finally, he illustrated how whole genome sequence 
data can be harnessed using publicly accessible bioinformatics tools, and how this approach 
provides high resolution in epidemiology and population biology studies. He argued that 
harmonization of WGS-based typing strategies and the use of a unified nomenclature of 
clonal groups will ease international surveillance and allow tracking Lm strains as they spread 
globally [24].    

Martin Wiedmann (Cornell University, USA) summarized recent progress on the 
phylogenetic diversity and taxonomy of the genus Listeria. He illustrated how the study of 
other Listeria species provides evolutionary context to improve the understanding of Lm. 
Furthermore, he discussed the implications of the discovery of novel Listeria species, 
suggesting that the use of Listeria spp. as indicators may not be appropriate for detection or 
diagnostic purposes. He showed how the 17 current Listeria species can be classified into four 
groups, and discussed the pros and cons of their taxonomic reclassification as four genera (Fig. 
5) [25]. He presented how the diversification of the genus was accompanied by the evolution 
of important characteristics such as acquisition of flagellar genes, metabolism of 
ethanolamine and cobalamin, and the expansion of the internalin gene family.  

 

Fig. 5. Phylogenomic tree of Listeria species [adapted from 25]. The two pathogenic species 
Listeria monocytogenes and Listeria ivanovii are highlighted in purple letters. The proposed novel 
genera names are displayed on the right. This tree does not include yet Listeria goaensis, the 
newcomer to be proposed by T. Chakraborty and S. Barbuddhe. 

Mario Hupfeld (ETH Zürich, Switzerland) described a novel CRISPR/Cas II subtype 
from the recently sequenced Listeria ivanovii subsp. londoniensis WSLC 30167 [26], which 
efficiently confers its bacterial host with acquired immunity against bacteriophages, and could 
be used as a bioengineering tool in other Listeria species in the future.  
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Trinad Chakraborty (Justus-Liebig University of Giessen, Germany) presented on the 
genomics and evolution of virulence in Listeria species. He recapitulated the phylogenetic 
diversity of Listeria species and lineages within Lm, and reported on the relevance of novel 
models such as Galleria mellonella larvae or Drosophila melanogaster cells for virulence 
studies [27]. Together with Sukhadeo Barbuddhe (Indian Council of Agricultural Research, 
Raipur, India), he highlighted the isolation of a novel Listeria species from a mangrove 
swamp environment, Listeria goaensis. Even though phylogenetically distant from L. 
monocytogenes and L. ivanovii, this species displays haemolytic properties, and is more 
virulent than L. innocua in the Galleria melonella infection model. Its genome is highly 
dynamic, marked by phage invasions, and harbours two large plasmids. It does not carry the 
canonical Listeria Pathogenicity Island (LIPI), but isolated virulence genes such as 
lecithinases, and polymorphic toxin systems that could contribute to virulence. More broadly, 
S. Barbuddhe provided us with an overview of the epidemiology of listeriosis in India, and 
pointed out a single predominant L. monocytogenes serotype 4b clone persisting across the 
country over a longer period of time [28]. He illustrated the diversity of Listeria species and 
serovars among patients and in newly-explored habitats, such as mangroves, mosquitoes and 
flies. 

Listeria in the environment, processing plants and food 

Pascal Piveteau (INRA, Université de Bourgogne-Franche-Comté, Dijon, France) 
discussed the ecology of Listeria monocytogenes in the soil environment. By assessing 
Listeria population dynamics and transcriptomics along time in a variety of soil habitats, he 
analysed the contribution of abiotic factors, and of resident soil bacterial communities, on the 
fate of the Lm strain EGD-e. For example, the proportion of clay in soil was found to 
influence the presence of Lm. In addition to the influence of inherent soil parameters such as 
pH or texture, a high diversity of microbial species in the soil microcosm can act as a 
biological barrier against L. monocytogenes [29]. Transcriptome studies in soil demonstrated 
the overexpression of dedicated nutrient transport and utilization systems. A prominent role of 
the Agr communication system for Lm transcriptional regulation and adaptation in soil was 
also reported [30,31]. 

Mickaël Desvaux (INRA, Clermont-Ferrand, France) reported on the role played by 
Listeria SecA2-dependent secretion pathways in its ability to colonize surfaces. He 
emphasized that this non-essential SecA paralogue in the Sec pathway controls the secretion 
of proteins important for bacterial adhesion and cell differentiation [32], with a significant 
impact on bacterial sedimentation, as well as biofilm architecture at ambient temperature [33]. 

Sophia Kathariou (North Carolina State University, Raleigh, USA) provided an 
overview of current knowledge on molecular mechanisms allowing Lm isolates to resist 
quaternary ammonium disinfectants and heavy metals. She underlined the strong genetic 
investment of Lm in efflux systems for these compounds and highlighted the heavy influence 
of horizontal gene transfer in the acquisition of resistance determinants such as the bcrABC 
and cadAC cassettes conferring resistance to benzalkonium chloride and cadmium, 
respectively, harboured on the large plasmid pLM80 [34]. The actual impact of these transfers 
on virulence and the ability to survive and persist in environmental reservoirs and food-
processing environments remains to be evaluated.  

Taran Skjerdal (Norwegian Veterinary Institute, Norway) presented the STARTEC 
decision support tool for food producers, which is a prototype tool developed in an EU 
financed project with the same name. One of the main messages was that, from the viewpoint 
of food producers, food safety is only one component of a complex set of process 



  ISOPOL XIX – June 14-17 2016 

 9 

management issues, which also include quality and cost of food production. Food 
contamination control must therefore be considered within this broader context, and a 
multidisciplinary decision support tool can help to tackle the tradeoff between safety and 
other criteria as well as to establish performance objectives [35]. 

Sophie Roussel (Anses, France) presented the genetic diversity of 1,700 Lm strains 
isolated from food samples in France. She reported that the serotypic group IIA is dominant 
(54% of Lm isolates) and discussed the association of specific genotypic groups (defined 
based on PFGE or MLST) with particular food matrices [36]. Damien Michelon from the 
same institute went on to discuss the future use of genomics to enhance the monitoring of 
food contamination by Lm, and presented the network of European Union Reference 
Laboratories for L. monocytogenes [37]. 

Haley Oliver (Purdue University, USA) presented a large study on the prevalence and 
modeling of Lm in retail deli in the USA. She reported on the detection of Lm in 25% of 
tested delis and showed that Lm strains can be persistent in stores [38,39].  Cold room floors 
were found to be the most contaminated places, which may be useful information for future 
surveys.  

Annette Fagerlund (Nofima Ås, Norway) presented a detailed genomic analysis of Lm 
strains of clonal complex 8 (CC8), illustrating how the comparison of genomic sequences 
provided answers to questions regarding persistence and epidemiology of Lm in food 
processing facilities and in the food chain [40]. In one case, it was found that the relocation of 
a conveyor belt from one factory to another was at the source of transmission of a Lm strain, 
underlining the complex challenges posed by the control of this pathogen in food industry.   

Pathogenesis of listeriosis in humans and animals 

Caroline Charlier (Institut Pasteur, Paris, France) detailed the approach, results and 
conclusions of an extensive prospective survey of clinical and prognostic factors of listeriosis: 
the MONALISA (Multicentric Observational National Analysis on Listeriosis and Listeria) 
study. She highlighted the high morbidity and mortality of listeriosis during pregnancy and 
neurolisteriosis, independently of patients’ underlying clinical features. She also emphasised 
the efficiency of amoxicillin and gentamicin against listeriosis in adults, whereas anti-
inflammatory dexamethasone treatment was associated with increased mortality from 
neurolisteriosis. 

Anna Oevermann (VetSuisse, Berne, Switzerland) reviewed the current knowledge on 
the pathogenesis of neurolisteriosis in farmed ruminants, which typically manifests as 
rhombencephalitis. She described how L. monocytogenes spreads from the oral cavity to the 
brainstem and further within the brain [41], and reported on the association of the disease 
with hypervirulent clones, the specific virulence factors of which still require characterization 
[42]. 

Anna Bakardjiev (University of California, San Francisco, USA) reported on 
identification of a secreted listerial protein named InlP that increases the bacterial burden in 
the placenta of mice and guinea pigs by a factor of 1000 despite only a minor role in other 
organs [43]. In primary human placental organ cultures InlP promotes bacterial growth and 
spread. Furthermore, InlP is highly conserved in virulent L. monocytogenes strains, and 
absent in environmental strains and strains that are non-pathogenic for humans. In conclusion, 
InlP is a novel virulence factor with strong placental tropism. 

Marc Lecuit (Institut Pasteur, Paris, France) described the unexpected route employed by 
Lm to cross the intestinal epithelium through goblet cells and gain access to the lamina 
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propria [44]. The bacterium appears to hijack the E-cadherin recycling pathway and to remain 
confined in a vacuole during this transcytosis-like process. Interestingly, the process can be 
recapitulated in intestinal organoids, in which the cell biology of Lm translocation across the 
intestinal epithelium is currently being investigated. He also presented on the identification of 
hypervirulent clones of Lm, with increased neuro and/or placental tropisms. Comparative 
genomics between these clones and reference strains identified new virulence gene clusters 
[23]. 

Cellular microbiology: Listeria entry, vacuolar life and spread  

Stéphanie Seveau (The Ohio State University, USA) discussed the role of the L. 
monocytogenes pore forming toxin listeriolysin O (LLO) in promoting bacterial 
internalization into epithelial cells. Indeed, LLO-mediated perforation of the host cell plasma 
membrane allows Ca2+ influx and K+ efflux, which both appear necessary and sufficient to 
promote remodelling of subcortical F-actin leading to the formation of membrane ruffles and 
subsequently bacterial internalization [45,46]. PKC, Rac1, Arp2/3, and dynamin act as 
downstream components in the entry pathway, while neither microtubules nor clathrin seem 
to play a role. Host cell plasma membrane perforation by LLO also activates a membrane 
repair pathway, which is independent of K+ efflux, Rac1, Arp2/3, and F-actin, but requires the 
influx of Ca2+. L. monocytogenes thus appears to hijack components of the host cell 
membrane repair pathway for its own uptake, independently and additively to the internalin-
mediated entry. 

In response to membrane damage by pore-forming toxins such as LLO, plasma membrane 
blebbing allows host cell protection and survival. Sandra Sousa (Instituto de Biologia 
Molecular e Celular (IBMC), Porto, Portugal) introduced a role for the endoplasmic reticulum 
(ER) and components of the cytoskeleton in this process. By targeting the ER, LLO triggers 
the relocation of the ER chaperone Gp96 to cortical vacuolar structures. There, it interacts 
specifically with non-muscle myosin heavy chain NMHCIIA and Filamin A. The recruitment 
of NMHCIIA at the basis of plasma membrane blebs appears pivotal to control membrane 
damage and allow cell recovery [Mesquita et al., in preparation]. 

Anat Herskovits (University of Tel-Aviv, Israel) documented the surprising mutualistic 
relationship adopted by Listeria and one of its temperate phages during the intracellular life 
stage [6]. An A118 prophage integrated in the Listeria comK gene is transiently excised 
during macrophage infection, and recapitulates a replicative cycle without virion production. 
This process, described as “active lysogeny”, relies on the excision of the phage genome 
followed by the expression of early phage genes concomitantly with a strong repression of the 
genes required for virion production and for the lytic stage. Meanwhile, the excision allows 
restoration of the comK open reading frame and activation of Listeria competence system, 
which appears to be required for phagosomal escape. The phage DNA may subsequently be 
reintegrated. 

The spread of Listeria monocytogenes from cell-to-cell requires the formation of actin 
comet tails (Fig. 6), which propel the bacteria to form so-called membrane protrusions. In 
these protrusions, the laboratory of John Brumell (Hospital for Sick Children, University of 
Toronto, Canada) has recently shown that LLO induces plasma membrane damage, which 
promotes cell-to-cell spread by the bacteria [47]. Repair proteins such as Caspase 7 and 
Annexins counter LLO-mediated damage, thus maintaining the integrity of the cell. However, 
local LLO concentration in the protrusion overcomes these repair processes, leading to 
exposure of phosphatidylserine (a well-known “eat-me” signal) on the surface of the 
protrusion, which is then recognized by the macrophage surface protein TIM-4. Thereby, 
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TIM-4 promotes protrusion association with neighbouring cells and cell-to-cell spread. 
Brumell and colleagues also investigated the effect of type-I interferon (IFN) signalling on 
cell-to-cell spread. Strikingly, they found that bacterial spread and motility were impaired in 
bone marrow macrophages from Ifnar1-/- mice, correlating with a defect in ActA polarisation, 
possibly due to a general effect of type-I IFN response on actin dynamics [48]. This very 
intriguing finding awaits further study, as its implications may reach well beyond Listeria 
infection. 

 

Keith Ireton (University of Otago, New Zealand) further detailed the molecular interplay 
between bacterial and host factors allowing Listeria to form protrusions and spread from cell 
to cell in polarised epithelial cells. He highlighted how the secreted internalin InlC binds the 
Src Homology 3 (SH3) domain in the human scaffolding protein Tuba, thereby preventing the 
formation of Tuba-N-WASP and Tuba-COPII complexes. This in turn loosens cortical actin 
tension [49,50]. In addition, the DH domain of Tuba can activate the GTPase Cdc42, which 
plays a role in restricting protrusion formation and Listeria spread, probably by activating N-
WASP [51]. Via a so-far unknown mechanism, Listeria infection causes a drop in Cdc42 
activity, which reinforces the inhibition of N-WASP activity and potentiates the disruption of 
cortical tension, thus favouring cell-to-cell spread. 

It has been shown by the Brumell group that Listeria is targeted by a non-canonical 
autophagy pathway referred to as LC3-associated phagocytosis (LAP) prior to escaping the 
entry vacuole [52]. Here, Gabriel Mitchell (University of California, Berkeley, USA) 
showed that the growth of mutants lacking ActA and the phospholipases PlcA and PlcB is 
restricted in macrophages [53] through a process that resembles LAP and involves the 
recognition of the LLO-perforated vacuole. These results suggest that Listeria uses ActA and 
phospholipases to escape a non-canonical autophagy pathway that targets the entry vacuole. 

Hélène Bierne (Micalis, INRA Jouy-en-Josas, France) reported on the existence of non-
motile forms of Listeria, which arise after long-term infections in some epithelial cells lines. 
These bacteria are devoid of actin and captured in LAMP1-positive single membrane 
vacuoles. This phenomenon coincides with the loss of the actin-polymerizing factor ActA 
from the bacterial surface. In addition, ActA-deficient bacteria persist in vacuoles as viable 
but non-cultivable forms. These results open the possibility that epithelial cells may silently 
carry persistent L. monocytogenes. 

Fig. 6. Listeria (red) 
forming actin comet tails 
(green) in an infected HeLa 
cell. The nucleus is stained 
in blue with DAPI (courtesy 
of E. Gouin and P. Cossart). 
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It thus seems that Listeria can survive in distinct types of vacuoles, depending on the cell 
type and on the stage of infection. The relative contribution of each of these vacuole types to 
the Listeria life cycle remains to be determined. 

Listeria monocytogenes effectors: Virulence or niche adaptation? 

Colin Hill (University College Cork, Ireland) analysed the impact of bile produced by the 
host on Lm in the gut and identified “niche factor” genes important for survival in the 
presence of bile, and which are absent in Listeria innocua [54]. Two of these factors, the bile 
salt hydrolase BSH and BilE, are regulated by  σB and PrfA, and are essential for virulence in 
oral route infection of mice [55,56]. Strikingly, exposure of bacteria to bile induced the 
expression of the flagellar apparatus gene flaA. In line with this observation, Hill proposed 
that bile acts as an environmental cue, acting as a chemorepellent for Listeria and thereby 
directing the bacterium towards the host cell epithelium. 

Javier Pizarro-Cerda (Institut Pasteur, Paris, France) reported on the first bona fide 
bacteriocin found in Listeria, listeriolysin S (LLS) [57]. Previously described as a haemolytic 
factor encoded by LIPI-3, this 2.3-kDa toxin is present in a subset of strains that are often 
associated with human listeriosis outbreaks [58]. Upon oral infection of mice, LLS is 
specifically expressed in the intestine, where it promotes survival, colonisation and infection 
of deeper organs by challenging the resident microbiota. This feature may contribute to the 
higher pathogenicity of Listeria strains that produce LLS. 

Didier Cabanes (Instituto de Investigação e Inovação en Saúde, IBMC, Porto, Portugal) 
illustrated how Listeria modifies its cell wall teichoic acids (WTA) through L-rhamnosylation, 
resulting in resistance to antimicrobial peptides (AMPs) and thereby enhancing virulence [59]. 
Rhamnosylation of WTA depends on the rml operon, which is overexpressed during spleen 
infection. By decreasing the cell wall permeability to AMPs, WTA rhamnosylation would 
protect bacteria in vivo. This might represent one of the evolutionary pressures that drive 
Listeria to maintain WTA rhamnosylation, despite the fact that the rhamnosylated WTA can 
serve as a phage receptor. 

John-Demian Sauer (University of Winconsin, Madison, USA) reported on novel 
bacterial determinants supporting bacterial survival in the host cytosol. In a screen for 
mutants defective for cytosolic survival, they identified that menaquinone biosynthesis was 
critical [manuscript in preparation]. Menaquinone is a lipid electron carrier involved in 
bacterial oxidative respiration. Strikingly, bacterial survival in the cytosol requires 
menaquinone function to maintain a membrane potential and proton motive force, but the 
final production of ATP is dispensable. This suggests a protective role of the energy potential 
maintained by the respiratory chain independently of energy production, for instance by 
buffering the bacterial redox balance upon exposure to reactive oxygen species (ROS). 

Patrick Studer (ETH Zürich, Switzerland) described the proliferation mechanism of Lm 
cell-wall deficient variants named L-forms, by formation of intra- and extracellular vesicles, 
interconnected by elastic lipid tubules allowing cytoplasmic exchange [60]. Listeria L-forms 
were so far reported as non-pathogenic in phagocytes [61]. However, due to the lack of a 
major antibiotic target and stimulator of the immune response, L-forms could possibly give 
rise to persisters, an antibiotic-resistant subpopulation that is increasingly in the spotlight with 
respect to many different bacterial infections [62,63]. 

The bacterial signalling product cyclic di-AMP (c-di-AMP) is produced by several 
intracellular pathogens, among which L. monocytogenes, Mycobacterium tuberculosis and 
Chlamydia trachomatis [64-66]. Fabian Commichau (Göttingen University, Germany) 



  ISOPOL XIX – June 14-17 2016 

 13 

reported on the role of c-di-AMP produced by the diadenylate cyclase CdaA in Listeria 
[67,68]. CdaA is located in the bacterial cell envelope, where it interacts directly with its 
negative regulator, CdaR [69]. Via an as yet-unknown mechanism, the maintenance of c-di-
AMP levels is required for bacterial cell envelope integrity. 

In addition, c-di-AMP sensing in host cells results in the activation of type I IFNs through 
the innate immune protein STING [70], but it has been unclear whether STING is the only 
sensor of c-di-AMP in eukaryotic cells. Joshua Woodward (University of Washington, 
USA) introduced RECON as a novel eukaryotic protein with high affinity for c-di-AMP [71]. 
The RECON gene is highly expressed in the intestinal epithelium and encodes a promiscuous 
alkyloreductase that reduces oxidized lipids upon infection. Binding of c-di-AMP inhibits 
RECON activity, leading to increased nitric oxide production, oxidative damage and 
inflammation in tissues, and enhanced bacterial cell-to-cell spread.  

Virulence gene expression and regulation 

Upon invasion of its host, Listeria switches from a saprophytic to a pathogenic lifestyle. 
Its adaptation to new conditions is allowed by a thorough reprogramming of its gene 
expression, the extent of which has been comprehensively characterized in the last decade 
using transcriptomic approaches with increasing sensitivity and resolution [reviewed in 72]. 
Torsten Hain (Institute of Medical Microbiology, Justus Liebig University Giessen, 
Germany) provided updated conclusions on their transcriptional studies of the intracellular 
response of several L. monocytogenes strains [73,74]. Intracellular up-regulated mRNA genes 
include universal stress regulons and virulence factors, while genes implicated in 
environmental life are down-regulated. He emphasized that small RNAs (sRNA) represent a 
significant part of the regulated transcriptome [75]. More recent data from his group indicate 
that significant transcriptional differences of certain genes, such as flagellar motility genes, 
occur in clinical isolates, which could contribute to their virulence potential. 

Birgitte Kallipolitis (University of Southern Denmark, Odense, Denmark) discussed the 
role of LhrC “sibling” sRNAs in the regulation of Listeria genes associated with cell envelope 
proteins [76]. Members of this family were named Lhr (for Listeria Hfq-binding RNAs) due 
to their ability to bind the Listeria homologue of Hfq [77]; however, there is no evidence for a 
role of the RNA chaperone in their function, stability or target recognition. In addition to the 
five previously-described LhrC1-5, which are activated in response to envelope stress via the 
LisRK two component system [78], she reported the identification of two novel siblings, 
Rli22 and Rli33-1 [79]. Whereas all seven sRNAs share redundant targets, their expression 
patterns differ, suggesting that their fine-tuned control participates in the bacterial ability to 
cope with distinct stimuli. 

Francisco Garcia del Portillo (Centro National de Biotecnología, Madrid, Spain) further 
documented the extensive remodelling affecting the Listeria cell surface proteome and 
peptidoglycan (PG) structure in response to environmental changes. In epithelial cells and in 
the blood stage, the bacterial cell surface is decorated with proteins required for intracellular 
life, such as the actin assembly-inducing protein ActA [80,81]. Surprisingly, proteins that are 
required for entry in cells such as InlA are still found anchored to the PG as late as 6 hours 
post-infection (p.i.) of epithelial cells. The intracellular PG also harbours Lmo0514, which 
provides resistance to low pH stress. lmo0514 expression is tightly regulated, and restricted to 
intracellular stages, via an interaction with the intracellular-specific sRNA Rli27 in its 5’-
UTR, which allows its translation [82]. In contrast, the PG of bacteria grown at refrigeration 
temperatures displays typical features of cold adaptation. In addition to an increased 
abundance of specific surface proteins, the cell wall architecture and chemical modifications 
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of its PG backbone are drastically modified, part of which is linked to the activity of cold-
shock proteins. 

Pascale Cossart (Institut Pasteur, Paris, France) presented an animation (Listeria 
monocytogenes, a unique model in infection biology https://youtu.be/dlAPOa_QXAo) that 
visually summarizes the infection process of the whole organism and at the cellular level, 
highlighting the role of LLO in preparing the cell for infection [83]. She then took one step 
beyond the integrated –omics of Listeria monocytogenes, by presenting the results of a 
proteogenomic study performed in her group [Impens et al., under revision]. High-throughput 
N-terminal proteomics of Lm strain EGD-e grown in different conditions revealed a map of 
translation initiation sites (TIS) covering 62% of Listeria known open reading frames (ORF). 
This analysis also revealed internal TIS in 19 ORFs, and allowed the discovery of 6 
miniproteins encoded by genes previously annotated as sRNAs. One of them, prli42, is 
conserved among firmicutes and consists of a conserved helical peptide that inserts into the 
bacterial membrane. Its N-terminus interacts with the main component of the stressosome 
RsbR, anchors it at the membrane, and is required for H2O2 sensing by the stressosome 
complex, with in addition significant effects on the induction of PrfA-dependent genes. 

Conor O’Byrne (National University of Ireland, Galway, Ireland) investigated the 
regulatory mechanisms of σB activity in response to stress exposure. His group has shown that 
the putative anti-sigma factor RsbW can interact with σB, or with RsbV, as previously shown 
in B. subtilis [84]. Sequestration of RsbW by RsbV exacerbates σB activity. He also 
emphasized the fitness cost of stress protection for Listeria, as σB activity appears to be 
detrimental to growth in the absence of stress. A selection pressure would thus ensure the 
maintenance of sigB and its tight regulation, which provides an advantage in environmental 
stress conditions. One such condition appears to be blue light, as addressed by Kerrie 
NicAogáin from the same group [85]. Lmo0799, the homologue of the stressosome 
component YtvA in B. subtilis [86,87], can sense blue light, activate σB and consequently 
inhibit bacterial growth and motility upon illumination. This response appears to be protective 
against damage caused by ROS production upon exposure to sunshine or to high intensities of 
blue light. 

Claudia Guldimann (University of Zürich, Switzerland) documented the intercellular 
variability existing within a bacterial population in their ability to activate  σB or PrfA in 
response to environmental stress [reviewed in 88]. She reported that activation appeared to be 
a stochastic process, that the proportion of cells activating PrfA was higher than that 
activating σB in all conditions tested, and that heat stress activated the PrfA-dependent hly 
promoter with high efficiency. These differences within a bacterial population could have 
consequences on the capacity of individual bacteria to cross barriers, and perhaps imply 
collective behaviours that remain to be characterized. 

José Vazquez-Boland (University of Edinburgh, UK) explained the raison d’être of the 
PrfA virulence switch [89]. Indeed, even though PrfA activation is critical for the in vivo 
lifestyle, this activation (as determined using the constitutively activated mutant prfA* allele) 
significantly impairs Lm fitness outside the host, i.e. in vitro or in soil microcosms. This is not 
due to pleiotropic effects of the activated PrfA on housekeeping determinants, but specifically 
to the cost associated with the up-regulation of the unneeded PrfA-regulated genes, in 
particular those located in the pathogenicity islands LIPI-1. The fitness cost of PrfA activity 
for extracellular Listeria is further highlighted by the fact that its On/Off switch function is 
rapidly lost during experimental evolution in vitro. In contrast, bacteria grown in alternate 
conditions of broth and cell cultures mostly maintain PrfA On/Off switchability. These results 
underline that a fine regulation of virulence gene expression is needed in order to balance 
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virulence with other fitness components of the pathogen. 
Despite 26 years of research on PrfA, the modes of activation of this key Lm virulence 

regulator are only beginning to be uncovered [90]. Nancy Freitag (University of Illinois, 
Chicago, USA) and colleagues identified a peptide pheromone that promotes Lm escape from 
the vacuole in epithelial cells [91]. The pheromone pPplA derives from the proteolytic 
processing of the secretion signal of the dispensable lipoprotein PplA, and is thought to 
accumulate in the vacuole until it reaches a critical concentration. It contributes to the 
activation of PrfA through a currently unknown mechanism. This finding is reminiscent of the 
multipurpose secretion signals that have been identified for eukaryotic and viral proteins [92], 
and points to the processing of a secretion signal as a largely conserved signalling mode. 

Jörgen Johansson (University of Umeå, Sweden) presented “anti-virulence drugs” as a 
new concept for fighting bacterial pathogens. Based on the screening of a library of ring-
conjugated 2-pyridones on Lm infection in cultured eukaryotic cells, Johansson and 
colleagues identified compounds that act as potent PrfA inhibitors at micromolar 
concentrations, and are effective against a broad range of Listeria strains [93]. These 
molecules directly bind PrfA and thereby prevent the expression of PfrA-regulated virulence 
genes, such as actA and hly. The identified drugs also provide valuable tools for further 
probing PrfA structure/function relationships and mechanisms of action. In a broader 
perspective, anti-virulence drugs may emerge as valuable alternatives to antibiotics in a time 
of ever-rising antibiotic resistance.  

Immune responses to Listeria infection 

Mobarak Abu Mraheil (Institute for Medical Microbiology, Justus-Liebig University 
Giessen, Germany) reported on the nature of sec-RNAs, consisting of 60-90 bp-long RNA 
molecules that are secreted by Lm into the cytoplasm of its host cell, where they are 
recognized by cytosolic sensors and trigger a potent type-I IFN response [94]. Sec-RNAs are 
essentially small non-coding RNAs. Some of these species have the ability to activate RIG-I 
when transfected into bone marrow-derived macrophages (BMDM), allowing the 
identification of candidate structural motifs required for launching the host response. The 
mechanism of this active secretion of specific RNA molecules, which appears to depend on 
SecA2, still requires further investigation. 

The group of Thomas Decker (University of Vienna, Austria) had previously identified 
the host DEAD-box RNA helicase DDX3X as a key component involved in the 
transcriptional induction of a type I IFN response to Lm infection, downstream of bacterial 
sensing and TBK1 activation [95]. He reported here that mice deficient for DDX3X display a 
complex immune imbalance and an enhanced susceptibility to listeriosis, far beyond the 
expected outcomes of a defect in type-I IFN signalling. Their production of cytokines and 
IFN-γ in response to infection is impaired, and the maturation of the lymphoid lineage is 
compromised, with a dramatic reduction in NK cell populations. The transcriptional role of 
DDX3X thus appears prominent in launching an efficient innate immune response against 
Listeria. 

Dan Portnoy (University of California, Berkeley, USA) asked why Lm is such a potent 
inducer of cell-mediated immunity (CMI). The main requirements for this observation appear 
to be LLO-dependent access to the host cytosol and low levels of cytotoxicity.  Upon entry 
into the cytosol, Lm secretes c-di-AMP which activates the STING signalling pathway and 
subsequent type-I IFN response, but in contrast to their original hypothesis, appears to 
suppress CMI [96], reminiscent of earlier reports showing that type-I IFN signalling enhances 
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susceptibility to Lm infections [97]. Taking these observations into account appears critical 
for the design of future Listeria-based cancer vaccines, to which patients’ response might 
differ depending on their genetic background and physiological condition. 

Thomas Dubensky (Aduro Biotech, USA) updated on recombinant live attenuated 
Listeria (LADD, i.e. Listeria lacking actA and inlB) expressing tumor antigens in order to 
induce a strong CD8+ T-cell response directed against the tumor [98]. Trials in mice as well 
as a phase 1b human mesothelioma trial, where LADD have been used in synergy with anti-
PD-1 (Programmed Death-1) therapy, have been very promising [99]. We are eagerly 
awaiting further developments. 

Concluding Remarks 

The “Listeria book” has dramatically thickened recently (Fig. 1). In many areas, amazing 
achievements have been obtained including, to name a few: Phylogeny, with now at least 18 
species described, and multiple sublineages within L. monocytogenes; Listeria phage biology, 
as lytic phages provide novel tools for diagnosis and biocontrol [reviewed in 100], while 
lysogenic phages appear as also involved in infection regulation [6]; genomics, post genomics, 
transcriptomics and now also translatomics; RNA-mediated regulation by 5’-UTRs, small 
RNAs, riboswitches, excludons, antisense RNAs [reviewed in 72]; gene regulation by 
allosteric regulators, e.g. PrfA that was recently shown to be regulated by glutathione [90]; 
signalling to the host via bacterial second messengers such as c-di-AMP; and use of Listeria 
as a vaccine strain [reviewed in 101]. 

These are only a few highlights, which illustrate how we are reaching a level of 
tremendous complexity in the description of the bacterial physiology, and of the infection 
process. In order to mimic more closely the human disease, future research will require a 
better apprehension of the various cells and tissues which are infected in vivo, based on 
animal models. Clearly, understanding how Listeria interacts with the gut flora will also be a 
major challenge.  

The next meeting will take place in Toronto, Canada and promises to be as interesting as 
the Paris meeting. 
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