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The Intestinal Microbiota Interferes with the microRNA Response
upon Oral Listeria Infection
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UMR3215, Rue d’Ulm, Paris, Franceh; Institut Pasteur, Génopole, Plate-forme de Bioanalyze Génomique, Paris, Francei

* Present address: Department of Biology, Chair of RNAi and Genome Integrity, Swiss Federal Institute of Technology, Zurich, Switzerland.

ABSTRACT The intestinal tract is the largest reservoir of microbes in the human body. The intestinal microbiota is thought to be
able to modulate alterations of the gut induced by enteropathogens, thereby maintaining homeostasis. Listeria monocytogenes is
the agent of listeriosis, an infection transmitted to humans upon ingestion of contaminated food. Crossing of the intestinal bar-
rier is a critical step of the infection before dissemination into deeper organs. Here, we investigated the role of the intestinal mi-
crobiota in the regulation of host protein-coding genes and microRNA (miRNA or miR) expression during Listeria infection. We
first established the intestinal miRNA signatures corresponding to the 10 most highly expressed miRNAs in the murine ileum of
conventional and germfree mice, noninfected and infected with Listeria. Next, we identified 6 miRNAs whose expression de-
creased upon Listeria infection in conventional mice. Strikingly, five of these miRNA expression variations (in miR-143, miR-
148a, miR-200b, miR-200c, and miR-378) were dependent on the presence of the microbiota. In addition, as is already known,
protein-coding genes were highly affected by infection in both conventional and germfree mice. By crossing bioinformatically
the predicted targets of the miRNAs to our whole-genome transcriptomic data, we revealed an miRNA-mRNA network that sug-
gested miRNA-mediated global regulation during intestinal infection. Other recent studies have revealed an miRNA response to
either bacterial pathogens or commensal bacteria. In contrast, our work provides an unprecedented insight into the impact of
the intestinal microbiota on host transcriptional reprogramming during infection by a human pathogen.

IMPORTANCE While the crucial role of miRNAs in regulating the host response to bacterial infection is increasingly recognized,
the involvement of the intestinal microbiota in the regulation of miRNA expression has not been explored in detail. Here, we
investigated the impact of the intestinal microbiota on the regulation of protein-coding genes and miRNA expression in a host
infected by L. monocytogenes, a food-borne pathogen. We show that the microbiota interferes with the microRNA response
upon oral Listeria infection and identify several protein-coding target genes whose expression correlates inversely with that of
the miRNA. Further investigations of the regulatory networks involving miR-143, miR-148a, miR-200b, miR-200c, and miR-378
will provide new insights into the impact of the intestinal microbiota on the host upon bacterial infection.
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Listeria monocytogenes is a Gram-positive food-borne pathogen
that infects both humans and animals and has emerged as a model

organism in infection biology and host-bacterium interaction studies
(1). Infection starts with the ingestion of contaminated food. Then,
L. monocytogenes crosses the intestinal barrier to reach the lymph and
the bloodstream, allowing the bacterium to disseminate in the whole
organism. To remain hidden from the innate and adaptive immune
systems and to dampen the host inflammatory response, L. monocy-
togenes deploys an arsenal of virulence factors (2). L. monocytogenes
peptidoglycan N-deacetylase and O-acetyltransferase play a role in
inhibition of signaling cascades that allows Listeria to evade the host
innate immune system (3–5). The L. monocytogenes surface protein
ActA and the internalin InlK prevent bacterial recognition by the cell

autophagic machinery (6–8). InlC, another member of the internalin
family, by interacting with IKK�, a subunit of the I�B kinase complex
critical for the phosphorylation of I�B and activation of NF-�B,
dampens the host innate response induced by Listeria infection (9).
Listeriolysin O (LLO) is a secreted hemolysin. Besides its role in al-
lowing escape from the phagosome, LLO causes T lymphocyte apo-
ptosis and a variety of other signaling events (10, 11). Conversely, the
host uses a combination of cellular and molecular mechanisms for
clearance of the invader and recovery from possible damage (12).
Among these, a fast reprogramming of the host transcriptome with
expression of immune-related genes is thought to be crucial to mount
an efficient antibacterial defense.

Strikingly, the mechanisms by which both the bacterium and
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the host cell reprogram their transcription during infection in-
volve RNA-mediated regulation through small noncoding RNA
molecules. Research highlighting the multiple roles played by reg-
ulatory noncoding RNAs in both eukaryotes and prokaryotes has
exploded during the last decade. Noncoding RNAs have emerged
as major regulators of various biological processes, including vir-
ulence (13, 14). In 2009, the first Listeria whole-genome transcrip-
tomic analysis revealed that, when Listeria reaches the host intes-
tinal lumen, an extensive transcriptional reshaping occurs, relying
on a sigma B-mediated activation of specific virulence genes. In
contrast, in the blood, the function of the master regulator of
Listeria virulence genes, PrfA, dominates transcriptional repro-
gramming. Remarkably, several noncoding RNAs, absent in the
nonpathogenic species Listeria innocua, exhibit the same expres-
sion patterns as the L. monocytogenes virulence genes (15). To-
gether, these data have unraveled successive and coordinated
global transcriptional changes during infection. In eukaryotes,
microRNAs (miRNAs or miRs) are single-stranded RNAs that are
involved in several functions, such as cellular growth, apoptosis,
metabolism, immunity, and cancer (16–18). miRNAs regulate
gene expression by binding to partially complementary sites
found in target transcripts and then promoting their translational
repression and decay via deadenylation, decapping, and exonucle-
olysis. Various roles of miRNAs in plant and mammal infections
have been reported (19–21). A specific host miRNA response in-
volving, among others, miR-155 and miR-146, takes place during
infection with Helicobacter pylori, as well as with Citrobacter ro-
dentium and intracellular bacteria like Mycobacteria, L. monocyto-
genes, Francisella tularensis, and Salmonella enterica (19, 20).

The intestinal translocation is the first step of L. monocytogenes
infection. The intestinal tract is the largest reservoir of microbes in
the human body. This microbiota provides the host with a wide
range of enzymes and metabolites that are key to its physiology
and represents a metabolic activity that makes it a virtual organ
whose importance is increasingly acknowledged (22–24). To-
gether with the intestinal mucosa and the lymphoid organs, the
intestinal microbiota contributes to protection against gut colo-
nization by enteropathogens (25). Strikingly, it is still largely un-
known how the microbiota regulates host miRNA expression. Re-
cent studies provided evidence that the microbiota exploits the
microRNA pathway to maintain the intestinal homeostasis (26–
30). We previously identified 3 intestinal miRNAs (miR-192,
miR-200b, and miR-215) which are modulated in the intestinal
tissue during L. monocytogenes infection and whose levels are af-
fected by an oral pretreatment by lactobacilli (31).

Here, we undertook a comprehensive analysis of the host gene
expression in the ileum of mice infected by L. monocytogenes. Us-
ing RNA-sequencing technology, we compared the miRNA pro-
files of conventional (CV) and germfree (GF) mice during infec-
tion and showed that the presence of the microbiota in the lumen
influences miRNA expression in the intestinal tissue. Our work
thus reveals the existence of an miRNA modulation through
which the intestinal microbiota may affect host transcriptional
reprogramming during infection by a human pathogen.

RESULTS
The intestinal microbiota provides protection against oral Lis-
teria infection in wild-type mice. We first compared the suscep-
tibilities of GF and CV wild-type C57BL/6J mice to oral infection
with L. monocytogenes strain EGD-e. We determined the L. mono-

cytogenes counts in the intestinal tissue and mesenteric lymph
nodes, as well as in the spleen and liver of the infected CV and GF
mice, at 24 h and 72 h postinfection (p.i.). We found that at 24 h
p.i., the numbers of Listeria were 10,000-fold higher in the small
intestine and about 1,000-fold higher in the mesenteric lymph
nodes of GF mice than in those of CV mice (Fig. 1A and B, left). In
both cases, the higher number of Listeria counts in GF mice was
still observed at 72 h p.i., although to a lesser extent (Fig. 1A and B,
right). In addition, we found that the number of Listeria was
higher in the liver of GF mice than in that of CV mice, while it was
the same in the spleen (Fig. 1C and B). Altogether, our results
show that GF mice are more susceptible to Listeria infection than
CV mice.

Expression of the dominant miRNAs in both conventional
and germfree mice is nearly insensitive to intestinal coloniza-
tion by Listeria. The higher susceptibility of the GF mice to bac-
terial infection has been proposed to be due to a lack of host
immune defense (32). We hypothesized that this lower efficiency
to mount a proficient defense might correlate with a different
miRNA expression, leading to the host failure to adapt its gene
transcriptomic response to infection. To explore this hypothesis,
we undertook a thorough transcriptional analysis of the host in-
testine in CV and GF mice, by monitoring both the miRNA and
mRNA expression levels. As crossing of the intestinal epithelial
barrier is the first step of L. monocytogenes oral infection, total
eukaryotic RNAs were extracted from the ileum of uninfected
conventional (CV0) and germfree (GF0) mice and from L. mono-
cytogenes-infected conventional and germfree mice at 24 h p.i.
(CV24 and GF24, respectively) and 72 h p.i. (CV72 and GF72,
respectively). From these samples, transcriptome profiles were
generated using Illumina sequencing for miRNA expression or
Affymetrix microarrays for mRNA expression.

The RNA-sequencing analyses were performed using the
ncPRO-seq pipeline (see Fig. S1 in the supplemental material)
(33). Under all conditions (CV0, CV24, CV72, GF0, GF24, and
GF72), we determined within each of the 6 libraries the percentage
of each individual miRNA by dividing the number of correspond-
ing reads by the total number of reads sequenced (total counts).
We were thus able to establish a list of the 10 most highly expressed
miRNAs in the ileum of mice, infected or not with L. monocyto-
genes, in the presence or absence of the microbiota (Fig. 2A). miR-
143 and miR-215 were the most highly expressed miRNAs under
any condition. Alone, they represented between 55% and 72% of
the total expressed miRNAs. miR-192, miR-21, and miR-378 rep-
resented between 2.5% and 10% of the total intestinal miRNAs
and showed a relatively conserved ranking position among the 6
conditions. miR-194 and miR-200c represented between 1 and
4% of total miRNAs under all conditions. Five other miRNAs also
occurred repeatedly in the lists of the 10 most highly expressed
miRNAs: let-7b, miR-30a, miR-30d, miR-200b, and miR-203. In-
dividually, each of them represented between 0.5% and 1.8%.
Last, miR-148a was expressed under one only condition, in germ-
free mice at 72 h p.i. (less than 1% of the total miRNAs). Alto-
gether, our data suggest that the nature and fraction of the most
highly expressed miRNAs in the small intestine are robust features
which may define a characteristic miRNA signature of the murine
ileum.

Presence of the intestinal microbiota contributes to the
downregulation of miRNA expression triggered by L. monocy-
togenes infection. To further analyze the impact of L. monocyto-
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genes infection on the expression of the 10 most highly expressed
intestinal miRNAs, we determined, by quantitative reverse
transcription-PCR (RT-qPCR) on biological triplicates, the rela-
tive expression levels of miR-215, miR-143, miR-192, miR-21,
miR-378, miR-200c, miR-194, miR-30d, miR-200b, and miR-
148a in Listeria-infected CV mice and uninfected CV mice. Of the
10 miRNAs tested, the expression of 6 miRNAs, miR-143, miR-
148a, miR-194, miR-200b, miR-200c, and miR-378, decreased
slightly upon Listeria infection (Fig. 2B, top).

Next, we investigated whether the intestinal microbiota had a
role in regulating the expression of 6 miRNAs triggered by Listeria
infection (Fig. 2B, bottom). We observed three scenarios. In one
case, miR-194, the miRNA expression decreased in germfree mice
and in conventional mice 72 h after Listeria infection. In the sec-
ond situation, we found a downregulation of miRNA expression
in conventional mice but not in germfree mice upon infection.
Indeed, the expression of miR-143, miR-148a, miR-200b, and
miR-200c was similar in Listeria-infected germfree mice and un-
infected germfree mice. Strikingly, in the last scenario, the expres-
sion of miR-378 was opposite in Listeria-infected conventional
and germfree mice. It was higher after infection of germfree mice,
while it was lower in infected conventional mice than uninfected

mice. Altogether, our data show that even though intestinal
miRNA expression appears globally stable, L. monocytogenes in-
fection significantly, albeit slightly, affects miRNA expression
within the intestinal tissue. More importantly, we highlight that
the presence of the intestinal microbiota at the onset of the infec-
tion influences the downregulation of miRNA expression during
Listeria infection, suggesting a dialog between the microbiota and
the infected host in the reprogramming of the host transcriptome.

Presence of the intestinal microbiota contributes to the
whole-genome host transcriptional response upon infection. In
parallel with the miRNA expression profiles established as de-
scribed above, we analyzed the expression of the host protein-
coding genes under our 6 conditions, CV0, CV24, CV72, GF0,
GF24, and GF72, by microarrays (see Fig. S2 in the supplemental
material). In the early stages of the infection (24 h p.i.), few genes
were significantly (P � 0.05) affected by Listeria infection in con-
ventional and germfree mice, suggesting that this stage may cor-
respond to the priming of the host transcriptomic response. In
agreement with previous results (31, 34), in late stages of the in-
fection (72 h p.i.), immune-related genes, e.g., the lymphocyte
antigen 6 complex ly6a, macrophage activation 2-like mpa2L, and
NOD-like receptor nlr5 genes, were among the most highly in-
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FIG 1 Germfree mice are hypersensitive to Listeria infection. Listeria counts were assessed in the small intestine (A), mesenteric lymph nodes (B), spleen (C),
and liver (D) of conventional (CV) and germfree (GF) wild-type mice uninfected or orally infected with L. monocytogenes EGD-e wild-type (EGDe wt) for 24 h
and 72 h (24 h p.i. and 72 h p.i.). Each dot represents one organ. Horizontal bars represent the mean for each condition. Statistical tests were performed using a
Mann-Whitney test. Asterisks indicate a P value considered statistically significant (***, P � 0.001; ****, P � 0.0001); ns, nonsignificant difference.
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duced upon Listeria infection, while the expression of several “xe-
nobiotic” genes (glutathione S-transferase genes, genes belonging
to the cytochrome P450 cyp, and solute carrier gene families), as
well as other genes, like the cubulin gene (a receptor for intrinsic
factor-vitamin B12 complexes), decreased in both conventional
and germfree mice (Fig. S2). The expression patterns of a subset of
16 representative genes that were differentially expressed under
one of the different conditions and are involved in immune re-
sponse or metabolic pathways are shown in Fig. 3A. To validate
our transcriptomic analysis, we performed RT-qPCR in biological

independent triplicates on these 16 genes from the intestine of
conventional and germfree mice under the conditions described
above, and we observed the same pattern of expression for 13 of
them (Fig. 3B). We next undertook to assess whether the observed
changes in mRNA levels correlated with changes in protein levels
by Western blot analysis. Quantification of several candidate pro-
teins in the total protein extracts from the small intestine of CV
and GF mice treated under our experimental conditions proved
impossible, all signals being below the detection level (data not
shown). We therefore investigated the regulation of two protein
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FIG 2 Listeria and the intestinal microbiota slightly affect the intestinal miRNA expression pattern. (A) The 10 most highly expressed miRNAs (miR) in the
small intestine of conventional (CV) and germfree (GF) mice uninfected or orally infected with L. monocytogenes for 24 h and 72 h (24 h p.i. and 72 h p.i.) were
determined. In each list, the identity of each individual miR (miR id) is indicated, as well as its percentage (miR %) of the total miRs. (B) Relative expression levels
of miR-21, miR-30d, miR-143, miR-148a, miR-192, miR-194, miR-200b, miR-200c, miR-215, and miR-378 in conventional (CV) and germfree (GF) mice orally
infected with L. monocytogenes for 24 h and 72 h (24 h p.i. and 72 h p.i.). Shown are fold changes after standardization to the small nuclear RNA U6 and using
uninfected CV and GF control mice as references. Data are represented as means with standard errors of the means (SEM) of values for individual mice (n � 3
per group) from three independent experiments. Statistical tests were performed using a two-tailed Student’s t test. Asterisks indicate a value considered
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FIG 3 The intestinal microbiota affects the transcriptional host response to Listeria infection. (A) The heat map presents a subset of 16 representative host genes
whose expression was significantly affected (false discovery rate, Benjamini and Hochberg approach [FDR-BH], P � 0.05) in the small intestine of conventional
(CV) and germfree (GF) mice (n � 2) uninfected or orally infected with L. monocytogenes for 24 h and 72 h (24 h p.i. and 72 h p.i.). The first three columns show
the fold changes of gene expression levels in CV mice at 24 h p.i. and 72 h p.i. relative to the expression levels in uninfected CV mice. The last three columns show
the fold changes of gene expression levels in GF mice at 24 h p.i. and 72 h p.i. relative to the expression levels in uninfected GF mice. White squares indicate genes
whose expression was not significantly affected by the Listeria infection. (B) Relative expression levels of the 16 host genes in CV and GF mice orally infected with
L. monocytogenes 24 h p.i. and 72 h p.i. Shown are fold changes after standardization to GADPH and using uninfected CV and GF control mice as references. Data
are represented as means and SEM of values for individual mice (n � 3 per group) from three independent experiments. (C) Relative abundance of ATF3 and
HK2 transcripts in LoVo cells infected with L. monocytogenes for 20 h. Shown are fold changes after standardization to the GAPDH transcript and using
uninfected LoVo cells as a reference. Error bars indicate standard deviations. (D) Relative levels of abundance of ATF3 and HK2 proteins in LoVo cells infected
with L. monocytogenes for 22 h shown by Western blot analysis of cell extracts of uninfected cells or cells infected at an MOI of 3, 15, or 75 (left). Quantification
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targets, ATF3 and HK2, in a simplified in vitro model of cultured
intestinal epithelial cells. We selected a human colon adenocarci-
noma cell line (LoVo) that can survive long-term infection with
high bacterial loads of intracellular EGD-e. At 20 h p.i., the tran-
script levels of ATF3 and HK2 measured by RT-qPCR were signif-
icantly upregulated in LoVo cells (Fig. 3C), similar to the obser-
vations in vivo. While the HK2 protein level was found to increase
significantly after 22 h of infection (Fig. 3D), ATF3 protein expres-
sion did not change upon infection, in spite of a strong upregula-
tion of the cognate transcript. This previously observed discrep-
ancy between transcript and protein abundances (35) may reflect
the delay needed to observe protein accumulation after an in-
crease in translation. Alternatively, this might arise from addi-
tional levels of gene expression control at the translational stage or
from an increase in protein turnover.

In the transcriptome analysis, 444 genes were identified as dis-
playing significantly different expression levels across the six sam-
ple groups, i.e., CV0, CV24, CV72, GF0, GF24, and GF72 (Ta-
ble S1). An unsupervised hierarchical clustering of the 444 genes
was performed. Three types of expression profiles could be distin-
guished (Fig. 3E). One linked the CV0 uninfected mice with the
CV24 mice, while the profile of GF0 mice was similar to that of
GF24 infected mice. The last group corresponded to mice infected
for 72 h with L. monocytogenes. Indeed, at 72 h p.i., the profiles of
the CV mice were more similar to those of the infected GF mice
than to the profiles of the infected CV mice at 24 h. The divergence
of CV and GF mouse patterns at 24 h p.i. suggests that the absence
of the intestinal microbiota affects the early priming of the host
response to Listeria infection, while at 72 h p.i., this transcriptional
response may have reached a threshold from which the presence
of microbiota is not decisive.

Bioinformatic prediction of miRNA targets together with
gene expression data reveals an miRNA-mRNA network in the
mouse intestinal response to infection. The main mechanism of
miRNA function is by base pairing to the 3=-untranslated region
(UTR) of the target mRNA, thus inhibiting its translation and
stimulating its decay (36). Various parameters have been shown to
be critical for the interaction between an miRNA and its mRNA
target (37). Accordingly, several target prediction tools have been
developed, albeit with unequal performance. Among these, Tar-
getScan is generally acknowledged as having the best accuracy for
its target predictions (37). Therefore, using mouse TargetScan, we
established a list of predicted mRNA targets for the 5 miRNAs
whose expression was affected by L. monocytogenes and the intes-
tinal microbiota. We crossed these 5 distinct lists with the lists of
genes that were differentially expressed at 72 h p.i. in conventional
and germfree mice. By doing so, we were able to define a network
of two miRNAs and candidate mRNA targets; each connection in
this network represents a putative regulatory tandem during in-
fection of the mouse intestine (Fig. 4). Strikingly, miR-143 and
miR-378 constitute two important nodes with more than 10 pu-

tative infection-related targets. Among these, the hexokinase hk2
mRNA has already been described as a target of miR-143 (38).
Some of the mRNAs were potential targets for 2 miRNAs, suggest-
ing the existence of fine-tuned regulatory mechanisms. More im-
portantly, we identified within the network more than 15 miRNA-
mRNA tandems whose interaction is also conserved in humans
(Fig. 4). Last, the expression of several of the predicted target mR-
NAs correlated inversely with the expression of their tandem miR-
NAs, supporting a putative miRNA-dependent regulation of these
species.

DISCUSSION

Since the first report of tissue-specific microRNA expression in
mice in 2002 (39), a constant challenge has been to update the
miRNA catalogue, taking advantage of the novel technologies
available to detect miRNA sequences (40–43). Except in cancer
research, very few studies have assessed the tissue-specific miRNA
expression in nonhomeostatic conditions. Moreover, while the
key role of miRNAs in the host response to bacterial infection is
increasingly recognized, understanding the role of commensal
bacteria in this process is still in its infancy (19, 20). Here, we
performed the first analysis of the role of the intestinal microbiota
in the regulation of both host protein-coding gene and miRNA
expression during L. monocytogenes infection.

We identified the 10 most highly expressed miRNAs in the
small intestine of conventional wild-type (miR-215, miR-143,
miR-192, miR-21, miR-378, miR-200c, miR-194, let-7b, miR-
30d, and miR-200b) and germfree (miR-215, miR-143, miR-192,
miR-21, miR-200c, miR-378, miR-194, let-7b, miR-200b, and
miR-30a) C57BL/6J mice. In agreement with our results, with the
exception of miR-378, all have been individually reported at least
once as expressed in the gastrointestinal tract (31, 40–44). We
confirmed that miR-143, miR-192, miR-194, and miR-215 are
dominantly expressed in the gastrointestinal tract (41, 43). We
also showed that this expression is not drastically affected by the
intestinal microbiota or by infection with L. monocytogenes, there-
fore establishing a characteristic intestinal miRNA signature. Al-
together, our data suggest that potent control mechanisms main-
tain the levels of dominant miRNA species in the intestinal tissue.

Although the miRNA expression patterns were very similar
under our different experimental conditions, we were able to
identify microbiota-dependent regulation of miRNA expression
upon Listeria infection. The expression of 4 miRNAs, miR-143,
miR-148a, miR-200b, and miR-200c, decreased only in conven-
tional mice upon L. monocytogenes infection. The expression pat-
tern of miR-378 was even more striking; indeed, Listeria infection
triggered its decrease in conventional mice but its increase in
germfree mice. Very recently, the role of the intestinal microbiota
in host miRNA regulation has begun to be investigated, especially
in the colon (27, 29, 30, 45). Interestingly, downregulation of the
expression of a dendritic cell-specific miRNA, miR-10a, by the

Figure Legend Continued

of the Western blot signals for the HK2 protein (right). Shown are fold changes after standardization to the �-tubulin protein and using uninfected LoVo cells
as a reference. Error bars indicate standard deviations. (E) CV and GF mice were orally infected with L. monocytogenes for 24 h p.i. and 72 h p.i. (2 mice per
condition). As described in the text, 444 genes were identified as displaying significantly changed expression levels under at least one of the 6 tested conditions.
Unsupervised hierarchical clustering based on this list of the 444 genes was performed with the MeV application. The red– green color shows log2 ratios from
mean centered gene expression levels and indicates an upregulation and a downregulation compared to the mean, respectively. See Table S1 in the supplemental
material for a list of the 444 genes and their corresponding expression values. Statistics were performed using a two-tailed Student’s t test. Asterisks indicate a
value considered statistically significant (*, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001); ns, nonsignificant difference.
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microbiota has been reported, and its possible involvement in
maintaining intestinal homeostasis has been proposed (30). Here,
our results suggest that the intestinal microbiota downregulates
the expression of some miRNAs upon Listeria infection. This ob-
servation has to be considered in parallel with the lower suscepti-
bility of conventional mice to intestinal infections. It is likely that
at the beginning of the infection (24 h), the Listeria counts reach a
high threshold before inducing the host response and enhancing
the transcriptional reprogramming that we observed at 72 h
postinfection, when bacterial clearance is effective. Accordingly,
the differences in Listeria counts in germfree and conventional
mice are larger at 24 h p.i. than at 72 h p.i. Our data are in line with
the hypothesis that the ability of the microbiota in priming the
host transcriptional response contributes to counteracting a bac-
terial infection.

The role of several miRNAs, such as miR-146 or miR-155, in

the immune response is well established (46–48). Strikingly, nei-
ther of these two miRNAs was found in the present study. In
contrast, we observed that miR-21, which has been described, to-
gether with miR-146 and miR-155, for controlling Toll-like recep-
tor signaling, was highly expressed in the small intestine, an envi-
ronment where cells are in permanent contact with the surface
determinants of the microbiota (49, 50). miR-21 has also been
shown to decrease in tuberculosis patients (51). However, to our
knowledge, none of the 10 miRNAs described in our study had
been previously reported to play a role in maintaining a dialog
between the microbiota and the host during bacterial infection.
We had previously identified a role in Listeria infection for miR-
192, miR-200b, and miR-215 and demonstrated that oral treat-
ment with two Lactobacillus strains modulated the expression of
these miRNAs during L. monocytogenes infection (31). Very re-
cently, a role for members of the miR-200 family in Helicobacter
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FIG 4 miRNA-mRNA network. Using Cytoscape, we highlighted, among the 5 miRNAs whose expression was affected by L. monocytogenes and the intestinal
microbiota, a network linking miR-143 and miR-378 and the regulated host genes in the small intestine of conventional (CV) and germfree (GF) mice orally
infected with L. monocytogenes 72 h p.i. As described in the text, miR-143 decreased upon infection in both CV and GF mice; in contrast, miR-378 decreased in
CV mice but not in GF mice. Nodes represent infection-regulated miRNAs and genes; lines link each miRNA to its putative targets. Some of the predictions in
mice were valid in humans (green circles). The color coding indicates the fold change of gene expression in Listeria-infected mice relative to the expression level
in uninfected control mice. The differential expression levels of 11 genes were validated by RT-qPCR, as shown in Fig. 3B. Dotted lines show a gene that is similarly
regulated in CV and GF mice.
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infection has been identified. Although they express high basal
miR-200 levels, gastric epithelial cells have an increased miR-
200b/c expression upon Helicobacter infection, leading to NF-�B
activation and initiating a mesenchymal transition by inducing
the zinc finger E-box-binding homeobox ZEB (52).

Here, we identified several candidate target genes whose ex-
pression correlated inversely with that of miRNAs during infec-
tion. Most importantly, we found, by using Human TargetScan
6.0, that some of these predictions in mice were valid in humans,
further supporting the direct link between miRNAs and their pu-
tative targets. In addition, the function of some of the target mR-
NAs identified may be associated with the regulation of the infec-
tious process. For instance, Atf3 encodes a transcription factor
that is involved in the immune response (53). Gprc5 is a retinoic
acid-induced protein that plays a role in epithelial cell differenti-
ation (54). Fut2 is a galactoside 2-alpha-L-fucosyltransferase, an
enzyme involved in the fucosylation of epithelial cells (55). Nt5e
plays a role in intestinal inflammation, including inflammatory
bowel disease (56). Adar encodes a double-stranded RNA-specific
adenosine deaminase, an RNA editing enzyme of the miRNA and
small interfering RNA (siRNA) pathways (57). More investiga-
tions will be required to decipher the direct involvement of a par-
ticular miRNA-mRNA tandem in the bacterial-host cross talk
during colonization of the intestinal tissue.

To our knowledge, our study is the first comprehensive analy-
sis of the miRNA expression patterns in the small intestine ana-
lyzing simultaneously the interplay between a pathogen, the intes-
tinal microbiota, and the infected host. Further investigations of
the function of miR-143, miR-148a, miR-200b, miR-200c, and
miR-378 will most likely provide new insights into the contribu-
tion of the intestinal microbiota to the reprogramming of the host
transcriptional landscape during infection by intracellular bacte-
ria.

MATERIALS AND METHODS
Bacterial strain. L. monocytogenes strain EGD-e was grown in brain heart
infusion (BHI) medium (Difco) at 37°C.

Mice. All experiments involving mice were handled in accordance
with the Pasteur Institute guidelines for animal welfare. Only 9- to 12-
week-old female C57BL6/J conventional (Charles River) and germfree
(CDTA) wild-type mice were used for experiments. Germfree mice were
housed in plastic gnotobiotic isolators.

Infection of mice. L. monocytogenes overnight cultures were diluted in
BHI and bacteria were grown to an optical density at 600 nm (OD600) of 1.
Bacterial cultures were centrifuged at 3,500 � g for 15 min. After three
washes in phosphate-buffered saline (PBS), the L. monocytogenes pellet
was resuspended in PBS at a final concentration of 2.5 � 1010 bacteria/ml.
Mice were infected orally for 24 h and 72 h with 5 � 109 bacteria diluted in
200 �l of PBS supplemented with 300 �l of CaCO3 (50 mg/ml). Serial
dilutions of the inoculum were plated to control the number of bacteria
inoculated.

Infection of cells. The LoVo human colon adenocarcinoma cell line
(CCL-229; ATCC) was grown following ATCC or Invitrogen/Life Tech-
nologies recommendations, at 37°C in a humidified atmosphere contain-
ing 10% CO2. Cells were seeded to achieve a density at the time of infec-
tion of 2.5 � 105 cell/well in 24-well plates for RNA analysis or of 8 �
105 cell/well in 6-well plates for protein analysis. Listeria strain EGD-e was
grown in BHI medium to an OD600 of 3, washed in PBS, and diluted in
culture medium without serum to achieve a multiplicity of infection
(MOI) of 6 for RNA analysis or of 3, 15, or 75 for protein analysis. Bacte-
rial inoculums were added to cell plates and centrifuged for 1 min at 200 �
g to synchronize entry. After 1 h, the cells were washed twice and the

remaining noninvasive bacteria were killed by adding culture medium
containing 20 �g/ml gentamicin. The quantification of intracellular bac-
teria was performed at 18 h p.i. Infected cells were washed in PBS and then
disrupted in sterile water for 10 min at 4°C. Triplicates of serial dilutions
were plated on BHI agar; the number of CFU was determined on the next
day.

Animal studies. The small intestine, mesenteric lymph nodes, liver,
and spleen were removed. The mesenteric lymph nodes, liver, and spleen
were directly disrupted in PBS. The small intestine was treated as previ-
ously described (31). Serial dilutions of all organ homogenates were plated
on BHI plates and incubated at 37°C. Statistical tests were performed
using a Mann-Whitney test on the results of three different experiments.

RNA extraction. RNAs from the ileal tissue were extracted and puri-
fied using the classical TRIzol-chloroform protocol. RNA from LoVo cells
was extracted at 20 h p.i. with the miRNeasy minikit (Qiagen), as recom-
mended by the manufacturer, using 1 column per well of a 24-well plate.
All samples were treated using a Turbo DNA-free kit (Ambion). The RNA
quality was determined using the Experion automated electrophoresis
station (Bio-Rad).

Preparation of the sRNA libraries and high-throughput sequencing.
Small RNA (sRNA) libraries from total eukaryotic RNAs extracted from
the ileum of uninfected conventional (CV0) and germfree (GF0) mice and
from L. monocytogenes-infected conventional and germfree mice at 24 h
p.i. (CV24 and GF24, respectively) and 72 h p.i. (CV72 and GF72, respec-
tively) were prepared with the small RNA sample preparation conversion
kit, version 1.5, following the manufacturer’s instructions (Illumina).
Briefly, the 18- to 30-bp RNA fragments were purified from total RNA on
a 15% urea PAGE gel (Bio-Rad). The purified small RNA was ligated with
3= RNA adaptor (5=-/5rApp/ATCTCGTATGCCGTCTTCTGCTTG/3dd
C/), which is specifically modified to target miRNAs and other small
RNAs that have a 3= hydroxyl group. The 5= RNA adaptor (5=-GUUCAG
AGUUCUACAGUCCGACGAUC) was then ligated to the 5= phosphate
end of the small RNA. Reverse transcription was done to convert the RNA
to cDNA, which was then selectively enriched by 12 cycles of PCR. The
PCR products were purified on 5% PAGE (Bio-Rad) in a size range of 90
to 105 bp and checked on a Bioanalyzer DNA1000 chip (Agilent). Librar-
ies were sequenced using the Illumina Genome Analyzer II platform to
generate 36-base single-end reads. The sRNA-seq analyses were per-
formed using the ncPRO-seq pipeline (33). The reads were aligned on the
mm9 genome using Bowtie software. We assessed the quality of the 6
libraries as shown in Fig. S1 in the supplemental material.

Quantitative RT-PCR. Total eukaryotic RNAs (1 �g) were reverse
transcribed using iScript cDNA synthesis (Bio-Rad). The cDNAs were
used as the templates for PCR using SYBR green PCR master mix (Applied
Biosystems) and detected using the ABI Prism 7900HT real-time PCR
system (Applied Biosystems). The expression of eukaryotic genes from
individual mice (n � 3 per group) was normalized to the expression of the
GADPH (glyceraldehyde-3-phosphate dehydrogenase) gene. For miRNA
expression analysis, total eukaryotic sRNAs (1 �g) were reverse tran-
scribed using the miScript reverse transcription kit (Qiagen). The cDNAs
were used as the templates for PCR using the miScript SYBR green PCR kit
(Qiagen) and detected using the ABI Prism 7900HT real-time PCR system
(Applied Biosystems). RT2 qPCR primer assays (Qiagen) and the miScript
miRNA PCR array (Qiagen) were used to analyze the expression of can-
didate murine genes and miRNAs, respectively. qRT-PCR primers pairs
for HK2 and ATF3 were selected from qPrimerDepot (http://primerdepot
.nci.nih.gov/) and manually designed for GAPDH. For in vivo experi-
ments, statistical tests were performed using a two-tailed Student’s t test
on the results of three independent experiments. For in vitro experiments,
statistical tests were performed using a two-tailed Student’s t test on the
results for 4 samples (two biological duplicates from two independent
experiments).

Mouse gene chip analysis. Labeled cDNA was synthesized from 200
ng of total RNA using the NuGEN Applause WT-amp plus ST systems
(NuGEN Technologies) as previously described (31). Briefly, labeled sam-
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ples were hybridized to Affymetrix MoGene 1.0 ST GeneChips and
scanned with an Affymetrix GeneChip Scanner 3000, generating cell in-
tensity files for each array. Gene-level expression values were derived from
the CEL file probe-level hybridization intensities using the RMA (model-
based robust multichip average) algorithm (58). We calculated the P value
of the local-pooled-error test (59) and corrected it using a false discovery
rate according to the Benjamini and Hochberg approach (FDR-BH). To
detect differentially expressed genes, we applied a cutoff P value of �0.05.
Unsupervised hierarchical clustering analysis of the 444 genes displaying
significantly changed expression under at least one of the 6 tested condi-
tions was performed using the MultiExperiment Viewer (MeV4) applica-
tion.

Protein extraction and Western blotting. In LoVo cells infected as
described above and washed once with preheated PBS, proteins were ex-
tracted by the direct addition of 100 �l of Laemmli sample buffer supple-
mented with 2 mM MgCl2 and 200 U/ml Benzonase to the well, scraping,
sonication, and denaturation at 95°C. Five microliters of each sample was
separated by SDS-PAGE and analyzed by Western blotting using standard
procedures. The dilutions for primary antibodies were as follows: mouse
monoclonal anti-HXKII antibody (HK2, sc-130358; Santa Cruz), 1/200;
anti-�-tubulin antibody (T6074; Sigma), 1/5,000; anti-HP1� antibody
(2MOD-1G6-AS; Millipore), 1/5,000; and rabbit polyclonal anti-ATF3
antibody (sc-188; Santa Cruz), 1/200. Secondary antibodies (goat anti-
mouse or anti-rabbit horseradish peroxidase-conjugated antibodies; Ab-
Cys) were used at a 1/10,000 dilution. Detection was performed with
ECL2 Western blotting substrate (Pierce) on a G:Box system (Syngene).
Statistical tests were performed using a two-tailed Student’s t test on three
independent biological replicates.

Microarray data accession numbers. Array data were deposited in the
ArrayExpress database with the accession number E-MTAB-1800.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org
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