Nonlinear argumental oscillators: Stability criterion and attractor's capture probability - Dynamique
Pré-Publication, Document De Travail Année : 2014

Nonlinear argumental oscillators: Stability criterion and attractor's capture probability

Résumé

The behaviour of a space-modulated, so-called " argumental " oscillator is studied, which is represented by a model having an even-parity space-modulating function. Analytic expressions of a stability criterion and of discrete energy levels are given. Using an integrating factor and a Van der Pol representation in the (amplitude, phase) space, an approximate implicit closed-form of the solution is given. The probability to enter a stable-oscillation regime from given initial conditions is calculated in symbolic form. These results allow an analytic approach to stability and bifurcations of the system. They also allow an assessment of the risk of occurrence of sustained large-amplitude oscillations, when the phenomenon is to be avoided, and an assessment of the conditions to apply to obtain oscillations whenever the phenomenon is desired.
Fichier principal
Vignette du fichier
Cintra_Argoul_debut_2017.pdf (840.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01337990 , version 1 (27-06-2016)

Identifiants

Citer

Daniel Cintra, Pierre Argoul. Nonlinear argumental oscillators: Stability criterion and attractor's capture probability. 2014. ⟨hal-01337990⟩
248 Consultations
100 Téléchargements

Altmetric

Partager

More