Orthogonal polynomials or wavelet analysis for mechanical system direct identification - Dynamique
Article Dans Une Revue Annals of Solid and Structural Mechanics Année : 2010

Orthogonal polynomials or wavelet analysis for mechanical system direct identification

Résumé

A unified formulation of a direct identification method for linear mechanical systems is proposed. Linear operators are applied to the set of motion differential equations, transforming it into an algebraic system. The cases of expansion on Chebyshev polynomials and of Cauchy continuous wavelet transform are studied with a focus on their similarities and differences in writing and performances. Both methods are illustrated and compared by applying them on numerical simulations of two different 3 degrees of freedom systems with non-proportional damping. The effect of additive white noise on signals is also investigated.
Fichier principal
Vignette du fichier
RoubyC_RemondD_ArgoulP_2010.pdf (1.06 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00485149 , version 1 (29-05-2019)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Corinne Rouby, Didier Rémond, Pierre Argoul. Orthogonal polynomials or wavelet analysis for mechanical system direct identification. Annals of Solid and Structural Mechanics, 2010, 1 (1), pp.41-58. ⟨10.1007/s12356-009-0005-1⟩. ⟨hal-00485149⟩
365 Consultations
145 Téléchargements

Altmetric

Partager

More