The Functional Bootstrap for Boundary CFT - Laboratoire de Physique Théorique de l'Ecole Normale Supérieure
Article Dans Une Revue Journal of High Energy Physics Année : 2020

The Functional Bootstrap for Boundary CFT

Résumé

We introduce a new approach to the study of the crossing equation for CFTs in the presence of a boundary. We argue that there is a basis for this equation related to the generalized free field solution. The dual basis is a set of linear functionals which act on the crossing equation to give a set of sum rules on the boundary CFT data: the functional bootstrap equations. We show these equations are essentially equivalent to a Polyakov-type approach to the bootstrap of BCFTs, and show how to fix the so-called contact term ambiguity in that context. Finally, the functional bootstrap equations diagonalize perturbation theory around generalized free fields, which we use to recover the Wilson-Fisher BCFT data in the $\epsilon$-expansion to order $\epsilon^2$.
Fichier principal
Vignette du fichier
JHEP04(2020)135.pdf (877.91 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-02410947 , version 1 (22-08-2024)

Licence

Identifiants

Citer

Apratim Kaviraj, Miguel Fernandes Paulos. The Functional Bootstrap for Boundary CFT. Journal of High Energy Physics, 2020, 2020 (04), pp.135. ⟨10.1007/JHEP04(2020)135⟩. ⟨hal-02410947⟩
86 Consultations
10 Téléchargements

Altmetric

Partager

More