Article Dans Une Revue Physical Review Letters Année : 2018

Multiple singularities of the equilibrium free energy in a one-dimensional model of soft rods

Résumé

There is a misconception, widely shared amongst physicists, that the equilibrium free energy of a one-dimensional classical model with strictly finite-ranged interactions, and at non-zero temperatures, can not show any singularities as a function of the coupling constants. In this Letter, we discuss an instructive counter-example. We consider thin rigid linear rods of equal length 2$\ell$ whose centers lie on a one-dimensional lattice, of lattice spacing $a$. The interaction between rods is a soft-core interaction, having a finite energy $U$ per overlap of rods. We show that the equilibrium free energy per rod $F$($\ell$/$a$ , β), at inverse temperature β, has an infinite number of singularities, as a function of $\ell$/$a$.
Fichier principal
Vignette du fichier
1806.09841v1.pdf (1.62 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04873526 , version 1 (08-01-2025)

Identifiants

Citer

Sushant Saryal, Juliane Klamser, Tridib Sadhu, Deepak Dhar. Multiple singularities of the equilibrium free energy in a one-dimensional model of soft rods. Physical Review Letters, 2018, 121 (24), pp.240601. ⟨10.1103/PhysRevLett.121.240601⟩. ⟨hal-04873526⟩
0 Consultations
3 Téléchargements

Altmetric

Partager

More