Dynamics of grain ejection by sphere impact on a granular bed
Résumé
The dynamics of grain ejection consecutive to a sphere impacting a granular material is investigated experimentally and the variations of the characteristics of grain ejection with the control parameters are quantitatively studied. The time evolution of the corona formed by the ejected grains is reported, mainly in terms of its diameter and height, and favorably compared with a simple ballistic model. A key characteristic of the granular corona is that the angle formed by its edge with the horizontal granular surface remains constant during the ejection process, which again can be reproduced by the ballistic model. The number and the kinetic energy of the ejected grains are evaluated and allow for the calculation of an effective restitution coefficient characterizing the complex collision process between the impacting sphere and the fine granular target. The effective restitution coefficient is found to be constant when varying the control parameters.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|