Fast Randomized Semi-Supervised Clustering - Laboratoire de Physique Statistique
Article Dans Une Revue Journal of Physics: Conference Series Année : 2018

Fast Randomized Semi-Supervised Clustering

Résumé

We consider the problem of clustering partially labeled data from a minimal number of randomly chosen pairwise comparisons between the items. We introduce an efficient local algorithm based on a power iteration of the non-backtracking operator and study its performance on a simple model. For the case of two clusters, we give bounds on the classification error and show that a small error can be achieved from O(n) randomly chosen measurements, where n is the number of items in the dataset. Our algorithm is therefore efficient both in terms of time and space complexities. We also investigate numerically the performance of the algorithm on synthetic and real world data.
Fichier principal
Vignette du fichier
Saade_2018_J._Phys.__Conf._Ser._1036_012015 (1).pdf (997.04 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

cea-04542690 , version 1 (11-04-2024)

Licence

Identifiants

Citer

Alaa Saade, Florent Krzakala, Marc Lelarge, Lenka Zdeborová. Fast Randomized Semi-Supervised Clustering. Journal of Physics: Conference Series, 2018, 1036, pp.012015. ⟨10.1088/1742-6596/1036/1/012015⟩. ⟨cea-04542690⟩
54 Consultations
17 Téléchargements

Altmetric

Partager

More