Characterization of convective systems dynamics and microphysics using time-delayed tandem microwave radiometers - CEA - Université Paris-Saclay
Article Dans Une Revue IEEE Transactions on Geoscience and Remote Sensing Année : 2024

Characterization of convective systems dynamics and microphysics using time-delayed tandem microwave radiometers

Résumé

Deep convective cloud systems are central to the global water and energy cycle, and yet their representation in climate models remains challenging. This study explores the potential of machine learning to classify and characterize cloud structures inside cloud systems using radiometric measurements from the C²OMODO (Convective Core Observation through MicrOwave Derivative in the trOpics) mission. The gradient boosting algorithm is used to classify clouds into four types: anvil, stratiform, convective, and deep convective, and achieves high performances. Furthermore, retrievals of both dynamical and microphysical quantities are shown to perform well.

The classification method has also been shown to significantly improve the performance of geophysical variable retrieval. This study highlights the potential of the forthcoming C²OMODO mission in advancing our understanding of convective systems.

Fichier principal
Vignette du fichier
Lefebvre et al, 2024.pdf (2.13 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence
Domaine public

Dates et versions

hal-04846361 , version 1 (18-12-2024)

Licence

Domaine public

Identifiants

  • HAL Id : hal-04846361 , version 1

Citer

Thomas Lefebvre, Hélène Brogniez, Ilhem Gharbi, Laura Hermozo, Dominique Bouniol, et al.. Characterization of convective systems dynamics and microphysics using time-delayed tandem microwave radiometers. IEEE Transactions on Geoscience and Remote Sensing, inPress. ⟨hal-04846361⟩
0 Consultations
0 Téléchargements

Partager

More